United States Patent 9

Fossum

US005630039A
(111 Patent Number:

5,630,039
May 13, 1997

[54] TESSELLATING COMPLEX IN POLYGONS
IN MODELING COORDINATES

[75] Inventor: Geordon C. Fossum, Austin, Tex.

[73] Assignee: Intermational Business Machines
Corporation, Armonk, N.Y.

[21] Appl. No.: 203,714
[22] Filed: Feb. 28, 1994

Related U.S. Application Data

[63] Continuation of Ser. No. 963,790, Oct. 20, 1992, abandoned,
which is a continuation of Ser. No. 439,903, Nov. 21, 1989,
Pat. No. 5,276,783.

[51] INt CLO e ccevesreessee e ssssasecs GO6T 11/00
[52] U.S. Cl ... 395/134; 395/133; 395/123
[58] Field of Searchcvininiviiinniinens 395/133-135,
395/119-123, 129, 141, 382/9

[56] References Cited

U.S. PATENT DOCUMENTS
3,816,726 6/1974 Sutherland et al. 235/152
- 4,709,231 11/1987 Sakaibara et al. ...ccceeere.. S 340/729
4710,876 12/1987 Cline et al. ...ccccvrereeseerscrscsesnees 364/414
4715005 12/1987 HEAIMZccovereresrsssseeorcosrasnonssnes 364/521
4,812,988 3/1989 Duthuit et al.cccceerrrerrcnronee 364/522
4.815,000 3/1989 BIlatinccccrccecerarensaresasacssaens 340/734 X
4841292 6/1989 ZeENO .cocorverrerrcrrennrressersccnsanennens 340/736
4855934 8/1989 RODINSOD .ccccereerreannrerccreceencarans 364/521
4,855,938 8/1989 Gonzalez-Lopez et al. 364/522
4,912,659 371990 Liangccccecccccicccssnnsonassoons 395/123 X
FOREIGN PATENT DOCUMENTS
0176373 3/19890 Japan .
OTHER PUBLICATIONS

Harrington et al., Interpress the Source Book (1988) pp.
197-199,
Computers & Graphics, vol. 11, No. 4, 1987, GB,
XP115892, “A Note on Multi-Polygon Area Filing”,
Rankin.

451 Date of Patent:

Patent Abstract of Japan, vol. 850, No. 831 (P-384) Apr. 26,
1985, & JP-A-60 074 086, K. K. Fujitsu, abstract.

IBM Technical Disclosure Bulletin, “Hardware Manipula-
tion of Three—~Dimensional Graphics” vol. 14, No. 12, May
1972.

D. Gordon, R. A. Reynolds, Dept. of Radiology, University
of Penn., “Image Space Shading of Three-Dimensional
Objects”, Nov. 1983.

A. C. Tan, R. Richards, Medical Information, “Pseudoshad-

- ing technigue in the two—-dimensional domain: a post—pro-

cessing algorithm for enhancing the Z-buffer of a three—di-
mensional binary image” vol. 14, No. 2, pp. 149-156, 1989.

Primary Examiner—Almis R. Jankus _f
Attorney, Agent, or Firm—Thomas E. Tyson; Andrew J.
Dillon

[57] ABSTRACT

A computer graphics system, that manipulates the vertices
contained within a group of possibly self intersecting, free
space, over lapping polygons, into simple, convex polygons.
A normal axis to the complex polygon is determined such
that the surface of the polygon is viewed along this normal
axis. The polygon surface is then bounded by a rectangle and
subdivided into a group of slabs, or smaller rectangles, each
rectangular slab being bounded by a pair of interior vertices
of the complex polygon. An active edge table is used to store
values comresponding to the edges crossing through the
slabs, which are used to determine if these edges cross are
another at any point within the slab. If a crossing point does
exist, the slabs are divided at the crossing point mto rect-
angular sub-slabs until it is determined that no edge inter-
sects another edge within the sub-slabs, of the original slab
being considered. At this point, the edges contained within
the rectangular slabs can be viewed as simple polygons, or
trapezoids which can be filled by a conventional graphics
adapter and then displayed.

9 Claims, 6 Drawing Sheets

U.S. Patent May 13, 1997 Sheet 1 of 6 5,630,039

USER 10
GRAPHICS PROGRAM APPLICATION

REQUIREMENT FROM PROGRAM TO
FILL MULTIFCONTOUR SELF
INTERSECTING POLYGON

12

14
POLYGON FILL PROCESS

16
GRAPHICS ADAPTER

U.S. Patent May 13, 1997 Sheet 2 of 6 5,630,039

STEP 2
DETERMINE NORMAL TO
POLYGON BEING FILLED
TEP 3
S DETERMINE AXIS
CLOSEST TO NORMAL
STEP 4
COMPUTE BOUNDING
RECTANGLE
STEP 5 DETERMINE AXIS TO WHICH
SLICING PLANES WILL BE
PERPENDICULAR
STEP6

DETERMINE MAJOR,
MINOR AND OTHER AXES

" FIG. 2A

U.S. Patent May 13, 1997 Sheet 3 of 6 5,630,039

STEP7
CREATE EDGE TABLE
STEPS [
CREATE SORTED ARRAY OF VERTEX
COORDINATES ALONG MAJOR AXIS
STEP 9
INITIALIZE ACTIVE EDGE TABLE
ARE
STEP9a 11 ERE RECTANGULAR STEP 9
SLABS LEFT TO
PROCESS
?
STEP 10 UPDATE ACTIVE EDGE TABLE,
DELETING EDGES NO LONGER
CURRENT AND ADDING NEW EDGES
STEP 11

CALLDO_SLAB

U.S. Patent May 13, 1997 Sheet 4 of 6 5,630,039

DO SLAB:

STEP 12

SORT ACTIVE EDGE TABLE
BY MIDPOINTS OF EDGES
WITHIN THIS SLAB

STEP 13

DO
ANY EDGES
CR?SS

NO YES

STEP 14

SUBDIVIDE RECTANGULAR
SLAB INTO TWO RECTANGULAR

TREAT EACH ODD-NUMBERED
EDGE AND ITS EVEN-NUMBERED
SUCCESSOR AS THE GENERATORS
OF ATRAPEZOID

SUB SLABS FIRST INTERSECTION
POINT ENCOUNTERED

STEP 21 STEP 15

BL

TO THE GRAPHICS ADAPTER

STEP 16

CALLDO SLAB ON FIRST
RECTANGULAR SUBORDINATE SLAB

STEP 17

UPDATE ACTIVE EDGE TABLE

STEP 18

FIG. 2C ' CALL DO SLAB ON SECOND
RECTANGULAR SUBORDINATE SLAB

STEP 18

RETURN TO
CALLING MODULE

S. Patent May 13, 1997 Sheet 5 of 6 5,630,039

28

iy
RN
; 'h__'\,. Y "I1|
R RN

FIG. 3

U.S. Patent May 13, 1997 Sheet 6 of 6 5,630,039

5,630,039

1

TESSELLATING COMPLEX IN POLYGONS
IN MODELING COORDINATES

This is a continuation of application Ser. No. 07/963,790
filed Oct. 20, 1992, abandoned, which is a continuation of
application Ser. No. 07/439,903 filed Nov. 21, 1989 now
U.S. Pat. No. 5,276,783.

BACKGROUND OF THE INVENTION

One of the objectives of a computer graphics display
system user is to have the ability to draw polygons, or groups
of polygons, made up of a number of potentially overlapping
contours. These contours may be self intersecting and lack-
ing any information regarding their state. There are two
major methods of filling a polygon, the winding rule and the
odd-even fill rule, the latter being implemented by the
present invention. The majority of graphics adapters cur-
rently being used are capable of filling simple, convex
polygons, but are not able to fill multiple contour, possibly
self-intersecting, free space polygons, except on a scan line
basis which is an extremely inefficient method of resolving
these complex polygons and requires careful consideration
of special cases to avoid incorrect rendering of these poly-
gons. It should be noted that hardware solutions to this
problem are presently known, but are not able to provide the

level of compatibility and efficiency, achieved by the present
Invention.

It would be very desirable to be able to resolve these
complex polygons into a group of simple, convex polygons
which can then be filled by a conventional graphics adapter.

SUMMARY OF THE INVENTION

In contrast to the prior art, the present invention does
resolve self-intersecting, free space, overlapping polygons
into convex polygons which conventional graphics adapters

have the ability to fill.

The present invention determines from which axis the
polygon to be filled is to be viewed. This is accomplished by
determining a normal to the polygon and comparing this
normal to the closest axis corresponding to one of the
standard x,y,z, coordinate axes. Next, a bounding rectangle
is computed in three-space having edges parallel to the other
two coordinate axes. This rectangle is the smallest one to
completely enclose the polygon. This rectangle is then
divided into slicing planes, each perpendicular to the long

S5

10

15

20

25

30

33

2

determined, then the active edge table can be used to
generate a group of simple convex polygons, such as trap-
ezoids which are then turned over to the graphics adapter
and filled prior to being displayed. Thus, it can be seen that
the present invention resolves complex polygons into con-
vex trapezoids, which conventional graphics adapters are
capable of filling and displaying. It should be noted that the
present invention enhances the operation of an existing
computer graphics system.

In accordance with the previous summary, objects, fea-
tures and advantages of the present invention will become
apparent -to one skilled in the art from the subsequent
description and the appended claims taken in conjunction
with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing the relationship of the
polygon fill process of the present invention with conven-
tional graphics components;

FIGS. 2A-2C are flowcharts representing the steps
required by the present invention to implement filling of
complex polygons; '

FIG. 3 is arepresentation of a complex polygon in relation
to a cartesian coordinate system;

FIG. 4 is the complex polygon of FIG. 3 including a
bounding rectangle and divided into rectangular slabs; and

FIG. S shows another aspect of the present invention
including the complex polygon, bounding rectangle, and
slabs which have been divided into sub-slabs.

DETATLED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring to FIG. 1, a block diagram is shown which

~ represents the components of a graphics display system. A

45

axis of the bounding rectangle, one plane for each vertex of

the polygon to be filled. These slicing planes define rectan-
gular regions therebetween which are referred to as slabs.

These slabs will contain edges of the polygon, and an
edge table is created to store information regarding these
edges. An active edge table is also provided which is used
to store current information relating to that subset of the
edges stored in the edge table which intersect a given slab.
The method of the present invention then proceeds through
each slab, updating the active edge table and processing the
slab.

This processing determines if any of the edges in the
active edge table cross, by sorting the edges according to the
averages of their minimum and maximum values within the
current slabs. If it is determined that a crossing does exist,
then two subordinate rectangular slabs, or sub-slabs are
created within the slab being processed. It is then determined
if any edge crossings exist within the newly created sub-
slabs and if so, these sub-slabs are subdivided once again.
This process continues until it is determined that no edges in
the active edge table cross within a slab. Once this is

50

35

65

user interface 10 is provided which allows a user of the
graphics system to make specific selections regarding the
type of graphics application to be implemented.

Reference numeral 12 represents a graphics program
application which requires that complex, or self intersecting,
overlapping polygons be filled to correctly distinguish their
depth (i.e. the portions of a single complex polygon being
closer the viewer may be darker than those farther away
from the viewer). The present invention, depicted by refer-
ence numeral 14 and discussed in greater detail with regard
to FIGS. 2A-2C, manipulates this set of complex polygons
and resolves them into a group of simple, or convex poly-
gons. These simple polygons are then communicated to a
conventional graphics adapter 16, which is capable of filling
only simple polygons. The present invention is a processing
solution which allows conventional graphics adapters 16 to
be enhanced without retrofitting the graphics system with
enhanced hardware. Finally, the graphics adapter 16 trans-
mits information corresponding to the filled polygons to a
display 18, such as a CRT or the like, which correctly shows
the complex polygons originally required to be filled by the
program application 12 and the user.

The present invention will now be described with refer-
ence to FIGS. 2A-2C, wherein at step 1, the process begins
when a user of a program application 12 requests display of
a complex polygon. At step 2, the process determines the
normal axis to the polygon. This is accomplished by taking
the cross product of the first three non-coliinear points which
are in the definition of the complex polygon, as provided by
program application 12. Next, the cartesian coordinate of the
normal axis having the largest absolute value will be the

5,630,039

3

direction from which the polygon is to be viewed (step 3).
That 1s, the normal is compared to the x,y,z, axes and the axis
closest to the normal is determined to be the direction from
which the polygon will be viewed. At step 4, a bounding
rectangle is computed which encompasses the complex
polygons and intersects at least two of the exterior vertex

coordinates of these polygons (see FIG. §).

The larger axis of the bounding rectangle is then
determined, at step S, the slicing planes being perpendicular
to this axis. Step 6 determines the configuration of the Xx.y.z,
axes with respect to the surface of the complex polygon. For,
example, if at step 3, it was determined that the normal to the
polygon was closest to the z axis, then the z axis would be
characterized as the “third” axis. Continuing with this same
example, the longest axis (i.e. the axis perpendicular to the
slicing planes of step §) will be characterized as the “major”
axis and the remaining axis will be the “minor” axis. Thus,
it can be seen that if.the z axis is closest to the polygon
normal and is the third axis, and the x axis is the longest axis
(major axis), then the remaining axis (y) will be the minor
axis. The cartesian coordinates will hereinafter be referred to
in terms of the corresponding major, minor and third axes.

At step 7, an edge table is created in a storage device, such
as a buffer, or the like, which will contain an entry for each
edge of the complex polygon. The edge data represented by
each entry includes coordinates based upon the major, minor
and third axis system. as previously discussed. The edges are
thus viewed as being three-dimensional lines, including a
major high (MajHi) and a major low (MajLo) which are the
larger and smaller of the vertex coordinates along the major
axis, respectively. Also included in the edge table for the
edge being considered are values representative of the minor
high (MinHi) and minor low (Minlo), corresponding to the
vertex coordinates of the minor axis. It should be noted that
since Majl.o and MinLo are derived from the same vertex it
is possible for MinHi to be less than MinLo. Further, since
MajHi and ThirdHi are derived from the same vertex, it is
possible that ThirdHi will be less than ThirdLo.
Additionally, the edge table entry includes information
regarding the inverse slope of the minor axis (MinlIS) and
third axis (ThirdIS). MiniS is equal to the span of the minor
axis divided by the span of the major axis. Similarly, ThirdIS
equals the span of the third axis divided by the span of the
major axis. Thus, these values which are necessary to
perform subsequent computations, are stored as entries in an
edge table at step 7.

At step 8, an array of sorted vertex coordinates, running
along the major axis, is created. These coordinates define
planes which intersect interior vertices of the complex
polygons and are perpendicular to the major axis. Each
adjacent pair of these planes further defines a *“‘slab,” or
rectangular region of space bounded by the two adjacent
planes. Next, an active edge table is initialized (step 9) in a
storage device, such as a buffer, or the like. The active edge
table contains a list of pointers identifying entry information
contained in the edge table. The active edge table starts with
no entries, but is updated with values relating to the first
rectangular slab (created in step 8) being considered by the
process of the present invention. Step 9a determines whether
there are any slabs remaining to process. If there are no
remaining slabs, then the process continues to step 95 and
ends. However, if there are slabs remaining to process, then
the active edge table will be updated, at step 10 with edge
values for the initially considered slab and each subsequent
slab to be considered. That is, the Minl.o, MinHi, ThirdLo
and ThirdHi values correspond to the points of intersection
between the edge and the boundary planes of the slab being

10

15

20

25

30

35

40

45

50

33

65

4

considered, not necessarily the end points of the edge. The
MajHi and MajLo values should correspond to the distance
between the vertex coordinates created in step 8.
Additionally, as discussed below with regard to step 10, the
present invention provides a method of processing red,
green, blue (r,g.b) values for the intersection points being
calculated.

Step 10 further includes deleting any of the edges previ-
ously contained in the active edge table, which do not cross
the rectangular area, or slab under consideration, (i.e. those
edges having a MajHi that is less than the maximum value
along the major axis of the slab being considered). Thus, it
can be seen how edges crossing the initial slab being
considered may not cross the subsequent rectangular slab
under consideration and that the active edge table must be
updated to reflect this change. Similarly, it is apparent that
successive slabs being considered may include edges which
were not contained in the previously considered slab and
that the active edge table will need to be updated to include
these new edges. That is, those edges whose MajLo is less
than the maximum value along the major axis of the slab
being considered will be added to the active edge table.

Slab processing then begins at step 11, where the process
Dodlab is called. DoSlab is illustrated as a flow chart in FIG.
2C and begins by Sorting the active edge table by “mid-
point” values of the edges contained therein (step 12). In this
context the “midpoint” of an edge within the active edge
table is the midpoint of that portion of the edge contained
within the current slab. The midpoints can be determined
using algebraic equations since the linear equations for the
major, minor and third axes are known and the inverse slope
of the minor and third axes has been calculated. It is
determined at step 13 whether any adjacent edges cross by
a linear (not quadratic) process. If it is determined that two
edges cross, then it must follow that two neighboring edges
in this sorted list must cross. This determination is made by
looking at the Minl .o and MinHi Values for each edge. If one
edge has a larger Minl.o value and the neighboring edge has
a larger MinHi value, then an edge crossing exists and the
actual point of the intersection is then computed. If it is
determined at step 13 that adjacent edges do cross, then step
14 subdivides the original slab into two rectangular sub-
regions, or sub-slabs at the point of intersection of the edges.
The process then proceeds to step 15 where the active edge
table 1s updated with values corresponding to that portion of
the edges contained in the first rectangular sub-slab being
considered. Step 16 calls the DoSlab process for the first
subordinate rectangular slab and the present invention con-
tinues to step 17 where the active edge table is updated with
information regarding edges within the second rectangular
sub-slab created at step 14. Next, step 18 calls DoSlab for
the second sub-slab, effectively returning the process of the
present invention to step 12. Subsequent to the completion
of DoSlab processing for the second sub-slab, step 19
returns the process to the calling module which is the loop
between steps 9a and 11 of the flowchart of FIG. 2B.
However, if at step 13 it is determined, that no edge
crossings occur, then at step 20 each odd numbered edge and
its even-numbered successor generate a simple polygon or
trapezoid which can be turned over to the conventional
graphics adapter 16 to be filled (shaded) at step 21. The
DoSlab routine then continues to step 19 and on to step 9a
of the original process. If at step 9a, there are no slabs
remaining to be processed, the process of the present inven-
tion proceeds to step 95 and ends. It should also be noted that
the present invention is capable of determining the colori-
zation of the edges contained in the edge table. The r,g,b

5,630,039

S

values for each vertex coordinate of the complex polygon
being considered will be known. The values of the third
(depth) axis are known and are interpolated to update the
values in the active edge table. In an analogous fashion by
simple interpolation, the r,g,b values along each line in the
edge table can be calculated in a manner identical to
updating the active edge table. That is, the r,g,b values would
be updated for each edge within the active edge at the same
time the new edge values being considered are updated.
Processing the r,g,b values would require additional com-
putations in step 10 to update both r,g.b and edge values, and
additional storage space in the edge table. However, the
additional computations are merely linear interpolation and

thus contemplated by the present invention.

An example of the process of the present invention will
now be discussed with reference to FIGS. 3-5. FIG. 3 shows
a complex polygon 20 having vertex coordinates 22, 24, 26,
28, 30. Polygon 20 lies substantially in the x-y plane as
shown by the cartesian coordinate system. However, for the
purposes of this example presume that vertex coordinates
22, 30 lie in the x-y plane, whereas vertices 24, 26, and 28
lie slightly behind the x-y plane.

Since, polygon 20 is substantially in the x-y plane, the
z-axis will be closest to its normal (steps 2 and 3). Thus, in
this case, the z-axis will be characterized as the third axis
and the direction from which polygon 20 will be viewed.

FIG. 4 shows polygon 20 after being encompassed by a
computed bounding rectangle (step 4). Also, an axis 34 has
been determined (step 5), which will be perpendicular to the
rectangular slabs, and characterized as the major axis, leav-
ing the remaining axis 36 to be the minor axis (step 6). The
edge table is then created (step 7) and the vertices 22, 24, 26,
28, 30 of polygon 20 will determine the sorted array of
vertex coordinates 38, 40, 42, 44, 46 along the major axis 34
(FIG. 4), which define the rectangular slab boundaries (step
8). The active edge table is then initialized (step 9) and it is
determined whether there are any slabs remaining to process
(step 9a). At step 10 the active edge table is updated with the
edge values (and r,g,b values if desired) for the edges
contained in the slab being considered (e.g. the active edge
table is updated with the edges in slab 38-40, 40-42, 4244,
and 44-46, in sequence of their consideration). It can be seen
that step 10 also adds and deletes edges as required, as
subsequent rectangular slabs are considered.

The present invention then calls the process DoSlab (step
11) which sorts the active edge table for edge crossings
contained in the slab being considered. It can be seen from
FIG. 5 that no edges cross in slab 38-40 (step 13) and step
20 treats each odd edge and its even successor as a simple
polygon, and step 21 then passes these trapezoids to graphics
adapter 16 for processing. However, in rectangular slab
40-42 edge 22-28 crosses edge 30-24, thus when the

process DoSlab is called for slab 40-42 a subdivision occurs
(step 14). The active edge table is then updated with only
edges contained within rectangular sub-slab 40-40a and the
DoSlab process is called again. It can be seen that no edges

cross in sub-slab 40-40a and the present invention continues

processing for the remaining portion of slab 40—42. DoSlab
is then called for the second portion of slab 40-42 (i.e.

sub-slab 40a-42) where it is determined that a crossing does
exist and rectangular sub-slabs 40a—40b and 40042 are

created. Again, DoSlab is called for these slabs which
determines that there are no crossings in sub-slabs 40a—40b
and 40b—42. Consequently, the entire rectangular siab 40-42

has now been processed into simple polygons which have
been handed off to the adapter. The present invention uses

identical methods to those just discussed, with respect to

10

15

20

25

30

35

40

45

50

55

65

6

slab 40-42, to resolve slabs 42-44 and 44-46 into simple
polygons which can then be processed by a conventional
graphics adapter 16.

Although certain preferred embodiments have been
shown and described, it should be understood that many
changes and modifications may be made therein without
departing from the scope of the appended claims.

What is claimed is:

1. A computer program, including instructions which
implement specific operations and are stored as a unique
data structure on a computer readable media in a computer
graphics system, for displaying at least one complex
polygon, having at least one edge that intersects itself,

- comprising:

means for determining an angle from which said complex
polygon is to be viewed;

means, implemented by said instructions in said data
structure, for causing said complex polygon to be
encompassed by a bounding rectangle which is the
smallest rectangle that will encompass said complex
polygon, said bounding rectangle intersecting at least
two exterior vertex coordinates of said complex poly-
oon;

means, implemented by said instructions in said data
structure, for dividing said bounding rectangle into
rectangular regions, such that none of said regions

contain any interior vertices where at least one of said
complex polygon edges intersects itself;

means for controlling a graphics adapter to fill portions of
said complex polygon within said rectangular regions;
and
means for causing all of said complex polygon to be
displayed, based upon said filled portions.
2. A computer program according to claim 1 wherein said
means for determining comprises:
computing an axis perpendicular to a surface of said
complex polygon:
means for comparing said perpendicular axis to the x,y,z
axes contained within a cartesian coordinate system to
determine the closest one of said x,y,z axes to said
perpendicular axis: and
means for characterizing said perpendicular axis by one of
the x,y,z, axes closes thereto.
3. A computer program according to claim 1 wherein said
means for dividing comprises:
means for determining a longest axis of said bounding

rectangle havng a length longer that any other axis of
said bounding rectangle;

means for determining a shortest axis of said bounding

rectangle having s length shorter than any other axis of
said bounding rectangle; and

means for determining dimensions of said rectangular
regions, each region and a width determined by two
planes perpendicular to said longest axis end intersect-

ing a vertex coordinate of said complex polygon.
4. A computer program according to claim 3 wherein said

“means for dividing comprises:

means for subdividing said rectangular regions into rect-
angular sub-regions, said regions being subdivided by
at least one additional plane that is perpendicular to
said longest axis and contains at least one of said
interior vertices where at least one of said complex
polygon edges intersects itself.

5. A computer program according to claim 4 wherein said

means for subdividing comprises:

5,630,039

7 8
means for determining point of intersection of any of said second means for storing values representative of the
edges contained within said complex polygon that edges of said complex polygon contained within said
intersects itself, regions.
6. A computer program according to claim 4 wherein said 9. A computer program according to claim 8 wherein said

means for subdividing is repeated until there are no said 5

! : : . -)) : second means for storing values representative of the edees
points of intersection contained within said regions or said 5 P &

of said complex polygon contained within said regions,

sub-regions. .
7. A computer program according to claim 1 further COMPIISES.
comprising: means for storing information representative of a color
first means for storing values representative of all of the 10 value of said edges contained within said first means
edges of said complex polygon. for storing values.

8. A computer program according to claim 7 further
comprising: k¥ ok ok ok ok

	Front Page
	Drawings
	Specification
	Claims

