United States Patent [

Baror

[54]

[75]
[73]

[21]
122]

[63]
[51]
[52]

[53]

[50]

US005627992A

ORGANIZATION OF AN INTEGRATED
CACHE UNIT FOR FLEXIBLE USAGE IN
SUPPORTING MICROPROCESSOR

(111 Patent Number: 5,627,992
451 Date of Patent: May 6, 1997
4471430 9/1984 Bowden et al. .ooeereerrrerevesennns 364/200
4493026 1/1985 OINOWICH .eeeeeeeomeereeeseenssssenes 364/200

(List continued on next page.)

OPERATIONS
FOREIGN PATENT DOCUMENTS
Inventor: Gigy Baror, Austin, Tex.
0075714A2 4/1983 European Pat. Off. .
: _ . . 0082949A3 6/1983 European Pat. Off. .
Assignee: é;fll:ffanced Micro Devices. Sunnyvale, 0325421A2 7/1989 Eurﬂgean Pat. Off. .
' 0325419A2 7/1989 European Pat. Off. .
0325422A2 7/1989 European Pat. Off. .
Appl. No.: 434,494 0325420A2 7/1989 European Pat. Off. .
| 2344093A1 3/1976 France .
Filed: May 4, 1995 8728494 12/1987 United Kingdomccooeeseenn... 3641200
WO381/
Related U.S. Application Data 01894A1 12/1980 WIPO .
Cor_ltinpatiun ot: Ser. ND. 559,550, Jul. 23, 1990, abandoned, OTHER PUBLICATIONS
zg:g;;acmunuaum of Ser. No. 146,076, Jan. 20, 1338, IBM Technical Disclosure Bulletin, “Shared Castout
. Buffer,” vol. 28, No. 3, Aug. 1985, pp. 1169-1174.
INt. CL® eervierereereceececneseaaeeeeenaens GO6F 12/00 BUI'Sky, “Iﬂte]]jgent Cache_mem(}ly Chlp Speeds Access to
US. CL ..orerrrenressnenns 395/460; 395/461; 395/469; Most CPU’s.” Electronic Design, Mar. 5, 1987, vol. 35, No.
395/470; 395/471; 395/472; 395/415 5, p. 30.
Field of Searchueevevnnennee 364/200, 900; . :
395/469, 470, 471, 403, 472, 275, 461. (Last continued on next page.)
402, 415,892 Primary Examiner—Christopher B. Shin
Attorney, Agent, or Firm—Conley, Rose & Tayon P.C.; B.
References Cited Noel Kivlin
U.S. PATENT DOCUMENTS [57] ABSTRACT
3,761,833 9/1973 Alvarez et al.ooweerssrrriser 33145 A computer system having a cache memory subsystem
3,808,624 8/1975 TODIAS .coveeeerreeeeensenrsaeessseenaannans 3057258 hich allows flexible settine of cachine policies on a pase
4,156,906 5/1979 RYAN rveerreesrreemseommsrssrsssssssreenee 305/455 LV AC . : 5 5P Ofapag
4,157,586 6/1979 Gannon et al.ooerserroe. 3641200 Dasts and a line basis. A cache block status field is provided
4228503 10/1980 Waite et al.ccvurneeernnnreciennne 305/448 for each cache block to indicate the cache block’s state, such
4,357,656 1171982 SaltZ €t al. .oeeereeeereereerernsssesnne. 364/900 as shared or exclusive. The cache block status field controls
4,394,731 7/1983 Flusche et al.ceeeeerreereeran. 395/472 whether the cache control unit operates in a write-through
4,400,770 8/1983 Chan et al.cccccerrcrencroresessuns 395/403 write mode or in a copy-back write mode when a write hit
4423483 12/1983 Tague et al.coceevevevmeceeccecnnen 395/375 access 1o the block occurs. The cache block status field may
4,435,759 3/1984 Baum et al.corrrunnicennnens 364/200 be updated by either a TLB write policy field contained
iggﬁg gﬁggi %’_Jﬁiﬂel}i et al. 3953}?3’?3? within a translation look-aside buffer entry which corre-
4442487 4/1984 Fletcher et al. .oooommeen. 395/449 ~ SPODMS f0 the page of the access, or by a second input
4445174 4/1984 FIEtChEr voovvmorrrsosorersssoserrsan 395/44¢ ~ 1ndependent of the TLB entry which may be provided from
4455606 6/1984 Cushing et al.oooooeersseenne 395/307 the system on a line basis.
4,464,717 8/1984 Keeley et al. ...cccceecerssreccnenrene 395/449
4471429 0/1984 Porter et al.ceeerererrrmeeecenernnen 364/200 32 Claims, 4 Drawing Sheets

oseon SRR |
BUS UNIT CACHE UNIT ' MEMORY BUS UNIT
i /311 312 /313 | 314
BLOCK | |}
\ TAG VALID STATUS LRU
ARRAY ARRAY ARRAY ARRAY
[~Cesr |~ 305
CBSF
r301\ 512X20 || 512X4 31‘233‘+L255x1 AL

|
|
SPECIAL |
|
1
i

POLICY FIELD

8 LOGIC
MADO—
32 ,315 304
/ < MAD31
WRITE
5 BUFFER
REGISTER i 306
IMEMDRY
*32 1~32 READ
-—| BUFFER
I |
316 | %07 |
R e o
CONTROL conTROL | : < Pins

5,627,992
Page 2

U.S. PATENT DOCUMENTS

4,506,323 3/1985 Pusic et al. ...cciiiiinnniinrensannnes 305/488
4513,367 4/1985 Chan et al.covevueneiirannnnnnne. 364/200
4,530,047 7/1985 Roger et al.cccevecrveeerrnnernnns 364/200
4,553,201 1171985 Pollack, Jr. .ccceeeerecrirncreerassrccn 364/200
4,608,631 8/1986 Stfiler et al. ...cccceciiirrerrernnnnnnes 395/293
4,616,310 10/1986 Dill et al.cuueevvvrremnenecrerannanne. 395/250
4622,631 11/1986 Frank et al. ...ocoovereruenrirernnnnnnes 395/800
4,648,029 3/1987 Cooper et al. ...covvviveneinirrcrennn 364/200
4,654,819 3/1987 Stuffler et al.cceovrmevnreeanenenne 395/489
4,669,043 5/1987 Kaplinsky .

4,713,755 12/1987 Wodley, Jr. et al.cccee....e. 364/200
4,755,930 7/1988 Wilson, Jr. et al. .

4758,982 T/1088 PHCE .uuvevviirerriiiirrrenencecerennanes 395/435
4,766,534 8/19088 De Bemedictis ..uuvvereeeeeenrennn. 364/200
4,775,955 1071988 LU .eeeeeereciirenicreenireenccnneessonnee 364/200
4,787,028 11/1988 Finfrock et al.cc.conuu....... 364/200
4,794 521 12/1988 Ziegler et al.ccreeene... 364/200
4,797,813 171989 Igarashicceseieerencneirsnnseees 395/445
4,811,208 3/1989 Myers et al.cccvveerirececerannenne. 395/800
4,811,200 3/1989 Rubinsteinc.cceeeeemennvreennes 395/471
4,825,360 4/1989 Knight, JI. ...ccceceerveniecrneecennes 364/200
4,843,542 6/1989 Dashiell et al.eauennenuneee. 364/200
4.847.804 7/1989 Shaffer et al.cceverierevrvenennne. 364/900
4,851,990 7/1989 Johnson et al. ...ccceevrerernnennneee. 395/280
4,853,846 8/1980 Johnson et al. ...ceeeeueerervnsanneeee. 364/200
4,860,192 8/1989 Sachs et al. ..covvvvvnirinnnnnenee. 364/200
5,008,813 4/1991 Crane et al.ccceeeeveveernnennne. 364/200
3,025,360 6/1909] BarOrcccocceeennencesceresseneesesesnnas 395/455
5,001,846 2/1992 Sachs et al.veevriirerereenenenns 395/250
5,136,601 8/1002 BAIOF ..ceeeereveerrremererensecrssecorennes 395/466
5,185,878 2/1993 Baror et al.cveeevierennennecenes 395/450

OTHER PUBLICATIONS

R.H. Katz et al., “Implementing a Cache Consistency Pro-
tocol.” 12" Annual International Symposium on Computer
Architecture, Boston Mass., Jun. 17-19/1985, pp. 276-283.
Ian Wilson, “Extending 80386 Performance,” New Elec-
tronics, vol. 20, No. 7, Mar. 31, 1995, pp. 30-33.

Sachs, “The Fairchild Clipper Microprocessor Family, A
High—Performance 32—Bit Processor,” 8080 Wescon Pro-
ceedings, 1985 Session, NY, US, Nov. 19-22/1985.

Bell et al. “An Investigation of Alternative Cache Organi-
zations,” IEEE Transactions on Computers, vol. C-23, No.

4, Apr. 1974, pp. 346-351.

Dubois et al., “Effects of Cache Coherency in Multiproces-

sors,” IEEE Transactions on Computers, vol. C31, No. 11,
Nov. 1982, pp. 1083-1099.

Papamaroos et al., “A Low—-Overhead Coherence Solution
for Multiprocessors with Private Cache Memories,” The 11
Annual International Symposium on Computer Architec-
ture, Ann Arbor, Michigan, Jun. 05-07/1984, pp. 348-354.

Patel, “Analysis of Multiprocessors with Private Cache
Memories,” JEEE Transactions on Computers, vol. C31, No.

4, Apr., 1982, pp. 296-304.

Rao, “Performance Analysis of Cache Memories,” Journal
of the Association for Computng Machinery, vol. 25, No. 3,
Jul., 1978, pp. 378-395.

Rudolph et al. “Dynamic Decentralized Cache Schemes for
MIMD Parallel Processors.” The 11** Annual International
Symposium on Computer Architecture, Ann Arbor, Michi-
gan, Jun. 05-07/1984, pp. 340-347.

Smith, “Cache Memories,” Computing Surveys, vol. 14, No.
3, Sep., 1982, pp. 473-530.

Censier et al, “A New Solution to Coherence Problems in

Multicache Systems,” IEEE Transactions on Computers,
vol. C=27, No. 12., Dec., 1978, pp. 1112-1118.

Tang, “Cache System Design in the Tightly Coupled Mul-

tiprocessor System,” National Computer Conference, 1976,
pp. 749-753.

Yen et al., “Analysis of Multiprocessor Cache Organizations
iwth Alternative Main Memory Update Policies,” The 8"
Annual Symposium on Computer Architecture, Minneapolis
Minn. May 12-14/1981, pp. §9-105.

Goodman, “Using Cache Memory to Reduce Proces-
sor-Memory Traffic,”pp. 124-130.

“Implementing a Cache Consistency Protocol”, Interna-
tional Symposium on Computer Architecture (12th:1985;
Boston, Mass.).

5,627,992

Sheet 1 of 4

May 6, 1997

U.S. Patent

| Ol

SNE WILSAS
661)
o NITIONLNOD NIASNVML Viva
ANONIN
G/T 061
sng ANOWIN
HOVD VLV
3HOVO vava vy
121 30T >
< o
~ G2T NOY NOLLONYLSNI O
< M
O 0ST)
HOSSIO0Hd NOLLONMLSNI GINFMAVIALS 9
0T
HOLYYITIOOV OLLINHLINY 0c]
G6T

AVHOVIA WALSAS 1VOIdAL

U.S. Patent May 6, 1997 Sheet 2 of 4 5,627,992

' 32 AO—A31 BSTCO-BSTC1 |2
ASTCO—ASTC1 .
:
BINV *GRT
*CBACK
*CBREQ ' A
*CERR *MASTB
. .
5 | TCRDY ICY +MBACK
CREQTO—CREQTH
rCSEL MBPO—MBP3
*CSM +*MBREQ
32 _
CBO-CB31 MDLNO—MDLN1 [+
*OREQ 20
*LOCK *MERR
MSERR *MLOCK
OPTO—OPT2
"PCA *MRDY
*RESET *MREQTO—*MREQT{ -2
x
R/*W MRWO—MRW1 -2
SUP /*US |
MS /*MU
SYSCLK i
ereoT REQ
WREP *VSI

FIG. 2

5,627,992

Sheet 3 of 4

May 6, 1997

U.S. Patent

d444Nd
av iy
AHJONAN

d3144N8
41 [dM _

148)%

21001

mmum_o@q
AHOWEN _

(8% _

1INO SNg AJOWAN _

4

SHALSIOAN H—— Aamm

\ a131d A2I0d
_ _3LhiM Hovd
104LNOD / T04IN0D | |
SNg TOM1LNOO sNg
AHOWAN 1Z2S FHOVI | gz¢ / 4OSSIO0Nd _
Loy ety ﬁ.n.omIIIL e
. sng viva zZ¢

QILAHS fee™
vivad | | eq—-oa

¢0g

WI03dS
SE7 zg m:m SSIYAAY 7 m —

m —71 Lev—ov
—xmmN ONXN—m _ 10S
AVAdY AV HNY _
nd1 OVL
1432 ¢£le éle 232
LINN 3HOVO - 1NN SN8
a13ld SNLVLS _ MOSSIO0Nd

AJ019 4HOVO

5,627,992

Sheet 4 of 4

May 6, 1997

U.S. Patent

<

*

O
[

SN AJOWIN JJdVHS

AvNIN

AvNdN

NOl
vivd

g0

——
g0

ad

d
d0SS3004d

AJONIN NIV

avINan

v

v Nol
NOLLONALSNI

d

J0SS3004d

Avndn

Nl

NOILONALSNI

5.627,992

1

ORGANIZATION OF AN INTEGRATED
CACHE UNIT FOR FLEXIBLE USAGE IN
SUPPORTING MICROPROCESSOR
OPERATIONS

This application is a continuation of application Ser. No.
07/559,550 filed Jul. 23, 1990, now abandoned. which is a
continuation-application of Ser. No. (7/146.076, filed Jan.
20, 1988. now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates generally to methods and apparatus
for organizing cache units and more particularly relates fo
methods and apparatus for organizing an integrated cache
unit which may be used to implement a variety of multi-

processor support schemes in a flexible manner. The result-
ing cache unit is programmable, can be operated in both

single and multiprocessor modes, and achieves cache data
consistency in multiprocessor mode by allowing a plurality
of user selectable multiprocessor support schemes to be
implemented and tailored to cache system application. The
novel system supports high speed instruction and data
processing in a Reduced Instruction Set Computer (RISC)
environment and is capable of supporting all of the aforesaid
functions with an architecture suitable for integration on a
single chip.

2. Description of the Related Art

Cache memories and controllers for cache memories are

10

15

20

25

30

well known. Devices integrating both the memory and -

control features on a single chip are also known. These
include the commercially available: 43608 manufactured by
NEC. Such devices are hereinafter referred to as “Integrated
Cache Units (ICUs).

Prior art ICU devices utilize predetermined algorithms for
caching data and instructions i.e., the devices are not pro-
grammable. Heretofore, integrating cache memory, a cache
controller and programmability features on a single chip has
not been achieved due in part to circuit density and data path
requirement. In addition to not being programmable, no
known ICU architecture has overcome the circuit density
and data path requirement problems associated with sup-
porting high speed RISC systems having multiprocessor
capabilities.

A programmable integrated cache unit would be desirable
since it would have the inherent fiexibility to permit the
selection and/or modification of caching algorithms.
Additionally, a programmable ICU which incorporates a
plurality of user selectable multiprocessor support schemes
would allow cache data consistency to be assured in a
flexible manner.

A single chip ICU architecture with the aforementioned
features would also be desirable to minimize space and unit

power requirements. Still further, it would be desirable to be
able to use such an integrated cache unit to support high
speed processing operations in both single and multiproces-
sor modes, for both RISC and non-RISC environments.

SUMMARY OF THE INVENTION

Methods and apparatus are disclosed for realizing an
integrated cache unit which may be used to flexibly imple-
ment a plurality of multiprocessor support schemes. The
preferred embodiment of the invention comprises both a
cache memory and a cache controller on a single chip, is
programmable and includes the other atorementioned desir-
able features.

35

40

45

50

55

65

2

The flexible implementation of a plurality of multipro-
cessor support schemes in the cache system is achieved,
according to the preferred embodiment of the invention, via
methods and apparatus which allow the user to specify a
desired multiprocessor support scheme through the setting
of appropriate option bits in on-chip special registers. This
can be performed under software control and allows a high
performance multiprocessor cache system to be designed
with few parts. at low cost and with the ability to perform
with high efficiency.

The preterred embodiment of the invention is described in
the context of an integrated cache unit (ICU) which includes
8 k bytes of data, 51220 bit words of tags, and the necessary
control to fully implement cache functions in both RISC and
non-RISC environments. The preferred embodiment of the
ICU has two buses, one for the processor interface and the
other for a memory interface. An exemplary processor and
high speed interface supported by the ICU is described in
copending application Ser. No. 012,226 filed Feb. 9, 1987,
assigned to the same assignee as the instant invention,
hereby incorporated by reference.

For the purposes of this disclosure, the processor bus is a
non-multiplexed 32 bit address and data bus. The processor
bus supports burst and pipeline accesses as taught in the
copending application. Additionally, for the purposes of this
disclosure, the memory bus provides the interface to main
memory and accommodates multiprocessor organizations.

According to the preferred embodiment of the invention,
the ICU is capable of operating at frequencies in excess of
25 megahertz, achieving processor access times of two
cycles for the first access in a sequence, and one cycle for
burst-mode or pipelined accesses. It can be used as either an
instruction cache or data cache with flexible internal cache
organization. A RISC processor and two ICUs (for instruc-
tion cache and data cache) implements a very high perfor-

mance processor with 16 k bytes of cache. Larger caches can
be designed by using additional ICUs.

In one embodiment, a computer system having a cache
memory subsystem in accordance with the invention allows
fiexible setting of caching policies on a page basis and a line
basis. A cache block status field is provided for each cache
block to indicate the cache block’s state, such as shared or
exclusive. The cache block status field controls whether the
cache control unit operates in a write-through write mode or
in a copy-back write mode when a write hit access to the
block occurs. The cache block status field may be updated by
either a TL.B write policy field contained within a translation
look-aside bufier entry which corresponds to the page of the
access, or by a second input independent of the TLB entry
which may be provided from the sysiem on a line basis.

It is an object of the invention to provide methods and
apparatus for realizing a programmable cache unit which has
enough inherent flexibility to support a wide variety of user
specified multiprocessor support schemes, while imposing
only minimal restrictions on the multiprocessor system
organization.

It is a further object of the invention to provide an ICU
architecture including means for choosing from a plurality
of multiprocessor support schemes to assure cache data
consistency. |

It 1s still a further object of the invention to provide
methods and apparatus for realizing a programmable inte-
grated cache unit suitable for supporting high speed data and
instruction processing applications, in a multiprocessing
system, in both RISC and non-RISC architecture environ-
ments.

5,627,992

3

It is yet another object of the invention to realize the
aforementioned objectives with a cache architecture which
can be integrated on a single chip.

The disclosed ICU can be used as either a data cache or
instruction cache.

Further features include flexible and extensive multipro-
cessor support hardware, modularity, low power
requirements, etc. A combination of bus watching, owner-
ship schemes, software control and hardware control are also
used to achieve cache consistency. |

These and other objects and features of the present
invention will become apparent to those skilled in the art
upon consideration of the following detailed description and
the accompanying Drawing, in which like reference desig-
nations represent like features throughout the figures.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 depicts, in block diagram form, a computing
system that includes two of the novel ICUs.

FIG. 2 depicts the pin package and the various inputs and
outputs. to/from the novel ICU.

FIG. 3 is a data flow diagram depicting data flow between

the processor bus unit and memory bus unit of FIG. 1. via
the novel ICU.

FIG. 4 depicts a simplified shared bus multiprocessor
system with two ICUs per processor, one used as an instruc-
tion cache, the other used as a data cache.

DETAILED DESCRIPTION

FIG. 1 depicts a typical computing system configuration
that would include the novel ICU.

For the sake of illustration only, the invention will be
described in the context of a RISC processing system having
both single and multiprocessor modes of operation. It will be
clear to those skilled in the art that the ICU, to be described
in detail hereinafter, may be used in non-RISC environments
as well.

FIG. 1 depicts two of the new ICUs. ICU 101 is shown
being used as an instruction cache, while ICU 102 is shown
being used as a data cache.

An example of the depicted, and suitable, high speed
interface coupling the RISC streamlined instruction proces-
sor (SIP) to the caches is described in detail in the copending
application Ser. No. 012,226 previously incorporated herein
by reference.

The incorporated application also teaches the various
operating modes of the SIP processor inputs and outputs, etc.
which will be referenced herein and will be shown as
supported by the novel ICU.

FIG. 1 goes on to show the processor bus comprised of
Address Bus 120 and Data Bus 121. Instructions in Instruc-
tion ROM 150 and the instruction cache, ICU 101, are
addressed by processor 110 via Address Bus 120. Instruc-

tions fetched are shown transmitted to processor 110 via bus
125

The data cache, ICU 102, is also addressed via Address
Bus 120. Bidirectional data flow is shown possible between
processor 110 and ICU 102 via Data Bus 121.

Memory Bus 175 is shown as the bus coupling main
memory 190 with ICU 101 and ICU 102. For the sake of
completeness, arithmetic accelerator 195, which would be
part of a typical RISC system configuration, is shown
coupled to buses 120 and 121. Also, Data Transfer Control-
lers (DTCs) shown as DTC 198, may be used as part of a

10

i5

20

25

30

35

40

45

50

33

65

4

typical system configuration to, for example, allow com-
mercially available peripheral devices having speeds much
lower then the high speed processor, to be attached to the
system without limiting the performance of the processor,
cache units, etc.

A typical arithmetic accelerator is described in copending
application Ser. No. 771,385, filed Aug. 30, 19835, also
assigned to the same assignee as the instant invention.

Before proceeding with the detailed description, the novel
integrated cache architecture is described hereinafter using
general cache terms and multiprocessor cache terms which
themselves need to be defined first for the sake of clarity.
The general cache terms used herein are defined as follows:

Block—A cache block is a group of sequential words
associated with a tag. A cache block is allocated and
replaced as a group whenever required. In the preferred
embodiment of the ICU the block size is four words (one tag
per four words).

Block status—Status bits which are associated with a
cache block. According to the preferred embodiment of the
ICU, there are two status bits per block. They specity the
modified and shared status of a block.

Block status array—aAn on chip random access memory
array that contains the block status bits.

Copy-back—A write policy in which a write access 1s
performed only in the cache, for the case of hit. The block
which includes the written data is marked as modified. The
data is written (copied back) to the main memory only when
the modified block is replaced.

Data cache—A cache which is used for caching fre-
quently used processor data variables.

Direct-mapped—This is an alternate term for a one-way
set-associative organization. A specific address can be
cached only in one specific location (directly mapped by the
address) in the cache.

Hit—The word specified by the access address 1s present
in the cache memory array. An address match is found in the
tag array, and the corresponding valid bit is set.

Invalidate—An operation that removes valid data from
the cache. One or more valid bits are reset, so that the
corresponding words become invalid.

Instruction cache—A cache which is used for caching
frequently used processor instructions.

Least recently used (LRU)—A replacement algorithm in
which the block to be replaced in chosen according to the
history of its usage. The least recently used block 1is
replaced.

Lock in cache—Data variables or instructions can be
locked in the cache. They will not be replaced even if they
are chosen by the replacement algorithm. Note that the
*[LOCK input to the ICU, to be described hereinafter,
specifies interlock operations, and it is not used for lock in
cache operations. A lock bit is associated with each block to
facilitate locking the block.

Memory array—On chip random access memory array
that contains the cached data or instructions.

Memory bus—The bus that connects the cache to the
main memory.

Miss—The word specified by the access address is not
present in the cache memory array.

Modified block—A block is marked as modified when it
is written in a copy-back write policy. This indicates that the
block is modified relative to the main memory, and contains
the more recent version of the data.

3,627,992

<

Non-cacheable—An instruction or data variable which
cannot be cached. A non-cacheable operation is transferred
by the ICU to the memory bus. The cache is not searched for
it. and no cache block is allocated.

Pretetch—The operation of fetching data variables or
instructions into the cache before they are requested.

Prefetch buffer—A buffer which holds prefetched data
variables or instructions read from the memory bus, before
they are written into the cache. In the ICU the read buffer is
used for the function of a prefetch buffer.

Preload—A special prefetch operation that loads the
cache with specific data variables or instructions. The
addresses for the preload operation are specified by the user
as opposed to other prefetch operations in which the
prefetched addresses are determined by the cache.

Processor bus—The bus that connects the cache to the
Processor.

Random replacement—A replacement algorithm in which
the block to be replaced is chosen randomly.

Read buffer—A buffer which holds data variables or
instructions read from the memory bus, before they are
written into the cache. In the preferred embodiment of the
ICU the read buffer is four words deep. and it is also used
for the function of a prefetch buffer.

Read-through—In the case of cache miss, the required
data or instruction is transferred to the processor as soon as
it is accepted from the memory. The reload operation is
completed in parallel. In a cache with no read-through, the
reload operation is completed before the required data or
instruction 1s transterred to the processor.

Reload—The operation that is performed in the case of
cache miss for fetching the required data or instructions
from the main memory.

Replacement algorithm—The algorithm that determines
the block to be replaced when a new block is allocated in the
cache. One block from the set that contains the required new
address is chosen.

Scope—This term is used in the context of cache instruc-
tion to define the scope of the instruction effect. The instruc-
tion can aftect one specific ICU, multiple instruction caches,
multiple data caches, or multiple instruction and data caches.

Set—A group of tags and the associated cache blocks,
which are read and compared concurrently to the requested
address. A match can be found to any of the set’s tags. The
set 15 specified according to some of the address bits. The
number of tags in the set is equal to the number of “ways”,
(to be defined hereinafter), in the cache organization.

Set-associative—A cache organization which allows
caching of a specific address in a number of possible
locations in the cache. This number is referred to as the
degree of associativity. It specifies the number of “ways” in
the cache organization and the number of tags which are
read and compared concurrently. The disclosed ICU sup-
ports two-way and one-way set-associative organizations.

Sub-block—A group of one or more words which are
fetched from main memory together with the required word
for the reload operation. The sub-block size defines the
maximum number of words that are fetched. The sub-block
size 1s lower or equal to the block size.

Tag—The tag identifies the address of the data or instruc-
tion which is currently present in the cache. A cache tag is
associated with each cache block, and it is stored in the tag
array. In the preferred embodiment of the ICU each tag
corresponds to a four-word block.

Tag array—On chip random access memory array that
contains the address tags for the cached data or instructions.

10

15

20

25

30

35

40

45

50

33

65

6

Update memory—An operation that causes the update of
the main memory from the cache. A modified block is
written by the cache to the main memory so that the memory
is updated with the most current version of the data.

Valid array—On chip random access memory array that
contains the valid bits.

Valid bit—A bit that indicates the validity of the cached
data. In the preferred embodiment of the ICU a valid bit is

associated with each cached word.

Way—A group of tags associated with a tag array module.
Only one tag specified by the module’s address decoder is
read and compared from each way. In the preferred embodi-
ment of the ICU there are two ways, each containing 256
tags.

Write-allocate—In case of cache miss for write operation,
a cache block is allocated for the block that contains the
written address. A reload operation is performed for the
required block. For non-write-allocate, a cache block is not
allocated, and the write is performed only in the memory.

Write butier—A bufter which holds write accesses infor-
mation (address, data, and control) until the write access is
performed on the memory bus. The preferred embodiment of

the ICU includes a four deep write buffer that can hold up
to four write accesses.

Write-through—A. write policy in which every write
access is performed into the main memory. In the case of
cache hit, the data is also written into the cache.

The multiprocessor cache terms used herein are defined as
follows:

Bus watching—The memory bus 1s monitored (watched)
by the slave caches. They compare the transferred address to
tag buffer addresses. A special operation can be performed
in the case that a match is found. The terms bus snooping or
snooping cache are equivalent.

Cache consistency—This is a different term used to
describe data consistency in a multiprocessor cache systems.

Data consistency—This is the main problem in multipro-
cessor cache systems. If a variable is shared by multiple
processors it can be cached in multiple caches. The most
up-to-date version of the variable should be supplied when-
ever the variable is accessed. This insures the consistency of
the data variables, throughout the system.

Data intervention—An operation that can be performed
by a slave cache when a match is found in the case of
memory-bus read access. If the slave cache contains modi-
fied data (the most current version of the data), it intervenes
in the access and supplies the data. In this case the main
memory should not supply the data.

Exclusive—Indicates that a variable or a cache block is
present exclusively in one cache. It can be used exclusively

by one processor, or used by more processors but exists only
in onc cache. In the preferred embodiment of the ICU a
LLOW in the shared block status bit indicates an exclusive

block. The block can be either exclusive non-modified or
exclusive modified.

Interlock—Interlock operations are used for temporarily
locking a variable (interlock variable) for exclusive usage of
one processor. No other processors or caches are allowed to
use the variable while it is interlocked. The *LOCK input to
the ICU, to be described hereinafter, indicates an interlock
operation.

Master cache—A cache which is a master of the memory
bus. It issues the request and expects a response.

Match—The address of the memory bus access matches
one of the addresses which is present in the tag buffer, and

5,627,992

7

the corresponding word is valid. This term is used for the
memory bus address compare, and it is equivalent to the
term hit which is used for the processor bus.

Ownership—This is a scheme to guarantee data consis-
tency. The most current value of a variable is owned by one
cache or the main memory. It is the responsibility of the
owner to maintain the consistency of the variable. There are
several ownership schemes which differ in the number of
states that are attributed to a variable and the algorithms for
ownership and state transitions.

Shared—Indicates that a variable or a cache block 1s
shared by more than one processor. A shared variable can be
present in more than one cache. In the preferred embodiment
of the ICU a HIGH in the shared block status bit indicates
a shared block. The block can be either shared non-modified
or shared modified.

Shared modified—A block status in the ICU which indi-
cates that a cache block is shared and modified. It also
indicates that the block is owned by the cache. and that it is
the most current value of the block in the system.

Slave cache—A cache which is not the master of the
memory bus. A slave cache can monitor the memory bus for
data consistency purposes.

Snooping—A different term which is used instead of bus
watching. Bus snooping or snooping cache are also equiva-
lent.

Having defined the terms to be used herein., a detailed
description of the preferred embodiment of the novel ICU
will be set out immediately hereinafter in terms of its pin
description and functional organization.

With respect to the pin description it should be noted that
the term “three state” is used to describe signals which may
be placed in the high impedance state during normal opera-
tion. All outputs (except MSERR. which will be described
hereinafter) may be placed in the high impedance state by
the *TEST input (also to be described hereinatter).

The preferred embodiment of the novel ICU is a CMOS;
169 Pin Grid Array package as shown in FIG. 2.

The processor bus interface will first be described and
includes the following:

The Address Bus, pins A0-A31 of FIG. 2, 1s an ICU input,
is synchronous, and transfers the byte address for the cache
access on the processor bus.

The Access Status Control signals, shown as ASTCO and
ASTC1 in FIG. 2, are synchronous inputs which specify the
status control associated with an access. They are encoded,
according to the preferred embodiment of the invention, as
follows:

ASTC1 ASTCO Meaning
0 ¢ Exclusive write-through
0 1 Exclusive copy-back
1 0 Shared
| i Non-Cacheable

These inputs are normally connected to processor 101°s
MPGMO-MPGM1 outputs as described in the incorporated
application. Specifically, the MMU programmable,
MPGMO-MPGM 1 outputs reflect the value of two bits in an
enfry of a translation look-aside buffer (illustrated as TLB
350 in FIG. 3) that is associated with the access.

*BINV, Bus Invalid, is a synchronous ICU input, active
LOW. indicating that the address bus and related controls are
invalid. It defines an idle cycle on Processor Bus 120.

10

15

20

23

30

35

40

45

50

55

65

8

*CBACK, Cache Burst Acknowledge, is an ICU output,
synchronous, and active LOW. This output is asserted when-
ever a burst-mode cache access has been established on

Processor Bus 120.

*CBREQ, Cache Burst Request, is an ICU input,
synchronous. and active LOW. This input is used to establish
a burst-mode cache access on the processor bus and to
request the next transfer during a burst-mode cache access.

This signal can become valid late in the cycle compared to
*PREQ or *IREQ, to be described herecinatter.

*CERR, Cache Error, is an ICU output, synchronous, and
active LOW. This output indicates that an error occurred
during the current cache access.

*CRDY, Cache Ready, is an ICU output, synchronous,
and active LOW. For processor bus cache reads this output

indicates that valid data is on the Cache Bus. For cache
writes it indicates that data need no longer be driven on the

Cache Bus.

CREQTO-CREQT1, Cache Request Type, is a synchro-
nous inpuf. This signals specify the address space for the
cache access on the processor bus as follows:

CREQT1 CREQTO Meaning
Data Cache Usage
0 0 Memory access
O 1 Input/Output access
1 X Coprocessor transfer
(ignored by the ICU)
Instruction Cache Usage
X 0 Memory access
X 1 Instruction read-only

MEemory access

For instruction cache usage CREQT1 has a special func-
tion. It is sampled during RESET, and if the sampled value
is HIGH, the ICU responds to instruction ROM accesses. If
the sampled value is LOW, the ICU does not respond to
instruction ROM accesses. After RESET the CREQT'1 input
is ignored for instruction cache usage.

*CSEL, Chip Select, is a synchronous input, active LOW.
An active level on the *CSEL input selects the ICU for
processor-bus cache instruction accesses. It is not used in
normal memory accesses. The *CSEL input can be disabled

. via the Chip Select Mapping Register, a portion of the ICU

to be described hereinafter. When *CSEL is enabled and not

asserted the ICU does not respond to processor-bus cache
instruction accesses.

*CSM, Chip Select for Memory access, is a synchronous
ICU input, active LOW. An active level on the *CSM input
selects the ICU for memory accesses. It can be used for
cache extensions and cache address space selection. The
*CSM input can be enabled via the Chip Select Mapping
Register. When *CSM is enabled, The ICU responds to
memory accesses only if the *CSM is asserted and the
address matches corresponding enabled bits in the prese-
lected field of the Chip Select Mapping Register (to be
described in detail hereinafter).

CB0-CB31, the Cache Bus, is bidirectional, synchronous
and three state. The Cache Bus transfers instructions or data
to and from the ICU on the processor bus.

*DREQ, Data Request, is a synchronous ICU input,
active LOW. This input requests a data access on the
processor bus. When it is active, the address for the access

appears on the Address Bus. For instruction cache usage of
the ICU, *DREQ is used for processor-bus cache instruction

transfers.

5,627,992

9

*IREQ, Instruction Request, is a synchronous ICU input,
active LOW. This input requests an instruction cache access

on the processor bus. When it is active the address for the
access appears on the Address Bus. This input has a special
function during reset operation of the ICU. It is sampled by

the rising edge of SYSCLK. when RESET (to be described
hereinafter) is active. The last sampled value determines the
ICU operation as a data cache (*IREQ LOW), or as an
instruction cache (*IREQ HIGH). For data cache operation,
*IREQ should be tied LOW (it is ignored during normal
operation). For instruction cache operation, it should be
connected to the processor *IREQ output, which is deas-
serted during RESET. Note that if the processor 1s placed in
Test Mode during RESET, external logic should drive the
IREQ HIGH (the processor described in the copending
application regarding the high performance interface does
not drive IREQ HIGH in its Test Mode).

*LLOCK, Lock, is an ICU input, synchronous and active
LOW. This input indicates that the processor cache access is
to an interlocked variable. The ICU handles this access in a
special way to be described with reference to the interlock

facility set forth 1n detail hereinafter.

MSERR, Master/Slave FError, is a synchronous, ICU
output, active HIGH. This output shows the result of the
comparison of the ICU outputs with the signals provided
internally to the off-chip drivers. If there is a difference for
any enabled driver. this signal is asserted.

OPT(0-OPT2, Option Control. is a synchronous ICU
input. These signals reflect the option control bits associated
with a cache access. They are used for specifying the data
length as well as special access information. The interpre-
tation of these signals is dependent on the usage of the ICU
as data or instruction cache. The encoding and interpretation
of these inputs, according to the preferred embodiment of
the invention, is as follows:

OPT2-0
value Meaning (Data Cache) Meaning (Instruction Cache)
000 32-bit access No access
001 8-bit access O access
010 16-bit access Nno access
011 NO access NnO access
100 mstruction memory Nno 4CCess
access (as data) -
101 cache operand cache operand
transfer transfer
110 debug module access Nno access
111 reserved reserved

The OPT inputs are ignored if DREQT1 is HIGH (treated
as no access). Codes 100, 101 are treated as no access if
DREQTO is HIGH. Code 100 is used for reading the
mstruction ROM as data. A data cache responds to this code
only if the ROM Enable bit in Moda Register, to be defined

hereinafter, is HIGH. In this case the request is treated as a
non cacheable access. Code 101 indicates an operand trans-
fer for the ICU processor-bus cache instructions. According
to the preferred embodiment of the invention, code 110 is
used for a special debug module access. A data cache

responds with *CRDY HIGH for four cycles, and then
*CRDY is asserted for one cycle.

*PCA, Pipelined Cache Access, is a synchronous ICU
input, active LOW. If *DREQ for data cache or *IREQ) for
instruction cache is not active, this input indicates that the
cache access 1s pipelined with another, in-progress, cache
access. The pipelined access cannot complete until the first
access is complete. The completion of the first access is

10

15

20

25

30

35

40

45

50

35

65

10

signalled by the assertion of *DREQ for data cache and
*IREQ for instruction cache.

*RESET, Reset, is an asynchronous input, active LOW.
This input resets the ICU.

R/*W, Read/Write, is a synchronous input. This input
indicates whether the cache access is a transfer from the ICU

to the processor (R/*W High), or from the processor to the
ICU (R/*W Low).

SUP/#US. Supervisor/User Mode, is a synchronous input.
This input indicates the program mode of the illustrative
processor (Supervisor mode or User mode) during the
access. The ICU internal registers and the execution of cache
instructions are protected trom User mode accesses.

SYSCLK, System Clock is an external clock input, at the
operating frequency of the ICU.

*TEST, Test Mode. is an asynchronous input, active
LOW. When this input is active the ICU is in the Test mode.
All outputs and bi-directional lines, except MSERR, are

forced to the high-impedance state,

WREP, Way for Replacement, is a synchronous input.
This input forces the way number for replacement in a case
of a cache miss. It is sampled during the first cycle of a valid
cache access. A miss in a two-way set associative organi-

zation (if the replacement mode is external), causes replace-
ment as determined by WREP: WREP LOW forces way 0 to
be replaced, WREP HIGH forces way 1 to be replaced.

Next, the memory bus interface will be described, making
continued reference to FIG. 2. The memory bus may be seen
to include:

BSTCO0-BSTC1., Block Status Control, which 1is
bi-directional, synchronous and three state. These signals are
used to inspect and update the cache block status informa-
tion. When required by a memory bus instruction, the ICU
uses them to indicate the block status bits associated with the
supplied address. These signals are also used for supplying
the block status from the memory bus for a Write Block
Status instruction. The encoding of this signal for both of the
above functions 1s as follows:

BSTC1 BSTCO Meaning
0 0 Exclusive non modified
. 0O 1 Exclusive modified
1 0 Shared non modified
1 1 Shared modified

*DI, Data Intervention is a synchronous output, three state
and active LOW. This output is used for the indication of a
data intervention operation on the memory bus. The data
intervention operation is used in some multiprocessor
configurations, to supply the most updated version of the
variable from the appropriate cache (as opposed to memory).
The ICU master precharges the *DI signal during the
address cycle of a memory bus read access. It then places it
in three state mode. The 1CUs which are not the bus masters,
discharge the *DI signal if they respond with data interven-
tion.

*GRI, Memory Bus Grant, is a synchronous input, active
LLOW. This input signals that the memory bus is granted for
the ICU use.

*HIT, Hit, is bidirectional, synchronous, three state and
active LOW. This signal can be programmed to be either an
output only or an input/output signal. As an output it is used
for hit indication. It is asserted when a hit is detected in the
tag buffer for the address presented on the memory bus. It is

5,627,992

11

also used in some of the memory bus instruction, to indicate
the validity of a word or a block.

When programmed to be an input/output signal it can be
used, in addition to the above output functions, as a signal
for the detection of hit in any other cache. The ICU master
precharges the *HIT signal during the address cycle and then
places it in input three state mode. The ICUs which are not
the bus masters discharge the *HIT signal only when a hit
is detected in their tag bufter.

*MASTB. Memory Address Strobe, is bidirectional,
synchronous, three state and active LOW. When the ICU is
the Memory Bus master, this signal is asserted by the ICU
to indicate that a byte address is present on the memory bus.
When the ICU is not a master, this signal indicates that a
byte address from another bus master is present on the
memory bus. Note that if both instruction cache and data
cache are present in the system, two *MASTB signals are
available. The two signals can be used to distinguish
between instruction and data accesses.

*MBACK, Memory Burst Acknowledge. is a synchro-
nous input, active LOW. This input is active whenever a
burst-mode cache access has been established on the
memory bus.

MBP0-MBP3, Memory Byte Parity, is bidirectional, syn-
chronous and three state. This is the byte parity bus for
transfers on the memory bus. Even or odd parity can be
specified. MBPO 1is the byte parity for
MEMAD(O-MEMAD7, MBPI1 is the byte parity for
MEMADS-MEMADI15. and so on. For transfers from the
ICU to the memory, the ICU generates parity. For transfers
to the ICU, it checks the byte parity.

If a parity error is detected. and data is to be transferred
on the processor bus, the *CERR signal is asserted. If the
data need not be transferred to the processor (e.g. block
reload), an error bit is set in the Status Register (to be
described hereinafter) and the data is ignored. The parity
generation and checking can be disabled. Memory bus data
timing are relaxed if parity generation and verification is
disabled.

*MBREQ, Memory Burst Request, is bidirectional,
synchronous, three state and active LOW. This signal is used
to establish a burst-mode access on the memory bus and to
request the next transfer during the burst-mode access.
When the ICU is the bus master, this signal 1s an output.
When the ICU is not a master, it is an input, used by the ICU
for data consistency operations.

MDLNO-MDLN1, Memory Data Length, 1is
bidirectional, synchronous, and three state. These signals
reflect the data length for the memory bus data accesses.
They are ignored for instruction accesses. For data cache
usage the ICU supports 8, 16, and 32 bit transfers. The
encoding of these signals are, according to the preferred
embodiment of the invention, are as follows:

MDLN1 MDLNO Meaning
0 O 32-bit access
0 1 8-bit access
1 0 16-bit access
| 1 Invalid

It should be noted that MDILNO and MDLN1 encoding

10

15

20

25

30

35

40

45

50

35

60

corresponds to OPTO0 and OPT 1 for the processor used with -

the illustrative embodiment of the invention.

MEMADO-MEMAD?31, Memory Address/Data Bus, is
bidirectional, synchronous, and three state. The Memory bus

65

12

is a muitiplexed Address/Data bus used for the memory
interface. When *MASTB is asserted, this bus holds the byte

address of the Memory Bus access. When the ICU is the bus
master, it outputs the address. When the ICU is not the bus
master the bus is an input and the address is latched by the
ICU for its internal use. When MASTB is not asserted, the
memory bus is used to transfer data to and from the ICU.
*MERR, Memory Error, is a synchronous ICU input,
active LOW. This input indicates that an error occurred
during the current memory access. The ICU also uses this

signal for data consistency operations.

*MLOCK., Memory Lock, is bidirectional, synchronous,
three state and active LOW. This signal indicates that the
memory access is an interlocked access. The ICU master
asserts this output when an interlocked access is presented
on the memory bus. When the ICU is not the bus master, this
signal is used as an input. If a match is found for a write
access with *MLOCK asserted, the associated word is
invalidated. This feature is used for schemes that enable

caching of interlock variables.

*MRDY, Memory Ready, is bidirectional. synchronous
and active LOW. When the ICU is the bus master, this signal
is used as an input. For memory bus reads, this input
indicates that valid data is present on the memory bus. For
memory bus writes, it indicates that the data need no longer
be driven on the memory bus. When the ICU is not the bus
master, this signal is used as an input for data consistency
operations. It is used as an output for data intervention and
memory bus special operations. The ICU asserts *MRDY to
indicate that valid data is present on the memory bus.

MREQTO-MREQT1, Memory Request Type, is
bidirectional, synchronous and three state. These signals
specify the address space for the access on the memory bus.
When the ICU is the bus master, it uses these signals as
outputs. When it is not the bus master, the MREQT signals
are used as inputs for data consistency operations. The
encoding, according to the preferred embodiment of the
tpvention, is as follows:

MREQT1 MREQTO Meaning
0 O Data memory access
0 1 Data input/output access
1 0 Instruction memory access
1 1 Instruction Rom access

When the ICU is not a bus master the MREQT signals are
also used (together with the MRW signals) for specifying a
memory bus cache instruction for the ICU.

MRW(0O-MRW1, Memory Read Write, is bidirectional
synchronous and three state. These signals are used to
specify the type of read and write operations on the memory
bus. When the ICU is the bus master, it uses these signals to
indicate the required operation. When the ICU is not the bus
master these signals are inputs, used for data consistency
operations. The encoding of these signals, according to the
preferred embodiment of the invention, is as follows:

MEW1 MRWO Meaning
0 0 Write
0 1 Read
1 Q Write broadcast
1 1 Read for modify

The read and write operations referred to hereinabove are
relative to the ICU, e.g. read is from the memory to the ICU.

3,627,992

13

When the ICU is not a bus master the MRW signals are
also used (together with the MREQT signals) for specifying
the memory bus cache instruction for the ICU. A detailed

description of a memory bus instruction set suitable for use
with the ICU being described herein, will be set forth in

detail hereinafter.

MS/*MU, Memory Supervisor/User Mode, is a synchro-
nous ICU output and is three state. This output indicates the
program mode of the processor (Supervisor mode or User
mode) during the memory access. The ICU transfers the
SUP/*¥US value presented on the processor bus to the
MS/*¥MU value on the memory bus, for the appropriate
transactions.

*REQ Memory Bus Request, is a synchronous ICU
output, active LOW., This output is used by the ICU to
request the memory bus.

*VSI, Valid Status or Instruction, is a synchronous, ICU
input, active LOW. When the ICU is the bus slave, an
asserted *VSI indicates a memory bus cache instruction
access. When the ICU is the bus master and it issues a read
request for a reload operation, the assertion of *VSI indi-
cates that a special Write Block Status instruction should be
executed. A detailed description of a suitable memory bus
cache instruction set and the use of *VSI will be set forth
hereinatter.

Having described the various inputs and outputs to and
from the novel ICU with reference to the pinout diagram of
FIG. 2. a complete understanding of the novel methods and
apparatus may be had with reference to the detailed descrip-
tion of the ICU’s functional organization. This description
will be set forth in several parts. First, an overview of how
the ICU fits into a computing system, particularly the
exemplary RISC system being used to demonstrate the
utility and operability of the invention, will be described.
Second, the data flow through the ICU will be described in
detail. Third, a register level description of a register set
suitable for implementing the invention will be set forth. A
suitable cache instruction set, a description of data formats

and handling, cache accesses and prefetch operations will
also be set forth.

Further details on the use of an ICU write buffer, initial-
ization and reset operation will be described hereinafter as
well.

Finally, multiprocessor support by the ICU and the special
ICU interlock facility will be described to complete the
detailed description of the invention.

As indicated hereinbefore, the novel ICU is described in
the context of a RISC architecture including a SIP. The
preferred embodiment of the invention is described 1n such
a way as to support this architecture. Those skilled in the art
will readily appreciate that modifications may be made to
the preferred embodiment of the novel ICU, without depart-
ing from the scope of spirit of the invention, to support, for

example. non-RISC processors. The description to follow is,
accordingly, set forth for the purpose of illustration only.

The core of the preferred embodiment of the ICU is an 8
k byte memory array with the associated tag and valid
arrays. The arrays are organized as a two-way set-
associative cache with 4 words per tag (block size=4 words)
and a valid bit per word. This basic organization also
supports direct mapped cache, variable block and sub-block
size as well as a flexible reload scheme. A block status array
and LRU array are also incorporated. They are used for
cache replacement, locking data in cache, and data consis-
tency policies. The ICU contains all the control logic for the
different cache policies, algorithms and instructions. Special

10

15

20

23

30

35

40

45

S0

33

65

14

registers are implemented for programmable option
selection, cache instructions implementation and status
report.

Cache policies can be selected by using programmable
options. The cache write policy can be programmed as
write-through, copy-back or flexible on a per access basis. A
write allocate or nonwrite allocate option can be selected. A
four word write bufter is incorporated for efficient imple-
mentation of write accesses. The write buffer can be enabled
or disabled. The replacement algorithm can be programmed
as LRU, random or external. A flexible prefetch policy can
be selected. Read through option can be enabled. A four
word read buffer is incorporated to support eilicient
prefetching and read operations.

The multiprocessor support policy can be tailored to the
system. The level of multiprocessor support can vary from
a simple software controlled organization through an exten-
sive ownership scheme. A bus watch capability can be
enabled or disabled. The ownership algorithm can be con-
trolled to support the required scheme. Caching interlock
variables can be enabled or disabled.

Two chip select inputs and a chip select mapping register
allows easy cache extensions as well as multi cache orga-
nizations. The reload function can be tailored to the system
by selecting the appropriate access control options such as
reload size, starting and stopping addresses, burst and wrap
around.

Again, the preferred embodiment of the ICU operates at
the same frequency of the RISC processor in the illustrative
example being set forth, i.e., at a 25 MHZ. nominal fre-
quency with possible higher frequencies. It achieves access
times of two cycles for the first hit access and one cycle for
the next burst-mode or pipeline hit accesses.

A three IC configuration, one containing the RISC pro-
cessor and two for ICUs (one for an instruction cache and
one for a data cache) is a very high performance cache
system with 16 k bytes of cache.

As indicated hereinbefore with reference to FIG. 1, the
ICU has two interface busses; the Processor Bus and the
Memory Bus. It can be connected directly to the RISC
processor without any interface logic. The ICU cache bus is
connected fo the processor’s data or instruction bus, for data
or instruction cache respectively. Pipelined and burst-mode
accesses are supported for maximum utilization of the
processor channel. The Memory Bus is a separate interface
to the memory, other processors, and the system bus. It is a
multiplexed address and data bus with support for burst-
mode accesses. It also incorporates multiprocessor support
functions. In shared memory multiprocessor environments
the memory bus can be used effectively as a shared multi-
processor bus. For single processor systems it can be used as
the system bus or as a local bus.

The preferred embodiment of the ICU contains special
hardware for fault tolerance support. It supports master/
slave checking and byte parity generation and checking on
the memory bus. For master/slave checking two or more
ICUs are connected in parallel with one or more caches (the
slaves) checking the outputs of the master. The byte parity
generation and checking can be used on the memory bus for
reliable bus transfers.

The preferred embodiment of the invention is, as indi-
cated hereinbefore, fabricated in CMOS technology and has

a maximum power dissipation of 1.5 W,

The ICU internal data flow organization is shown in FIG.
3. The following description refers to the functional com-
ponents on this data flow diagram. The ICU is partitioned

3.627,992

15

into three main functional units: Processor Bus Unit,
Memory Bus Unit and Cache Unit, each depicted in FIG. 3.
The description to follow will from time to time make
reference to specific bit locations and fields of various words
being used for any number of purposes. One skilled in the
art will readily appreciate that these specific references are
not intended to be limiting and can be modified to suit a
desired application. The specific references are made for the
sake of clarity only in setting out a workable, illustrative,

preferred embodiment of the invention.

The Processor Bus Unit controls all the Processor Bus
activity. It supports all RISC/SIP channel protocols; single,
burst and pipelined. It incorporates the Address Incrementer,
the Data Shifter and the Processor Bus Control, each to be
described immediately hereinafter.

The Address Incrementer (AI) latches the address bus
input. It can be incremented on every cycle. The Al output

is the address for a cache access. The Al is shown in FIG.
3 as unit 301.

The Data Shifter (DSH) is used for data alignment. It
shifts bytes and halfwords and holds the data for cache write
accesses. It is also used for the appropriate byte and half-

word shift operation in the case of byte and half-word reads.
The DSH is shown in FIG. 3 as unit 302.

The Processor Bus Control (PBC) controls the different
Processor Bus operations. The PBC is shown in FIG. 3 as
unit 303.

The Memory Bus Unit controls Memory Bus activity. It
incorporates the Write Buffer, the Memory Address logic,
the Memory Read Buffer and Memory Bus Control, each to
be described immediately hereinafter.

The Write Buffer (WB) used in the preferred embodiment
of the invention, includes two four word first-in, first-out
(FIFO) buffers (one for address and one for data). The WB
can buffer all ICU write operations. For write through
operations it buffers up to 4 byte, half word or word writes.
For copy-back operations it buffers a 4 word block. The WB
is shown in FIG. 3 as unit 304.

The Memory Address Logic (MAL) includes two address
incrementers. The first latches and increments the memory

bus addresses for operations from the bus to the ICU. The
second latches and increments the addresses for read opera-

tions initiated by the ICU. The MAL is shown in FIG. 3 as
unit 305.

The Memory Read Buffer (MRB) is a four word data

buffer. It buffers the data from the memory bus, until the
cache is available for update operation. The MRB is used as

a prefetch buffer when prefetching is enabled. The MRB is
shown in FIG. 3 as unit 306.

Finally, the Memory Bus Control (MBC), which controls
memory bus operations, is shown in FIG. 3 as unit 307.

The cache unit performs all the cache functions. It incor-
porates the Memory array, Tag array, Valid array, Block
Status array, LRU array, Special Registers, and Cache
Control, each to be described immediately hereinafter.

The Memory array is a 64 k bits storage array for cached
instructions or data. It is organized as two ways of 1024
words. For read operations the two ways are accessed
simultaneously, according to the preferred embodiment of
the invention, using bits 11-2 of the address. The appropriate
word is selected according to the hit signals from the Tag
array. For write operations the correct word in the array 1is
written after the Tag access is completed and the hit signals
generated. The Memory array is shown in FIG. 3 as unit 310.

The Tag array stores cache tags in a two way set asso-
ciative organization. Each way is organized as 256x20 bits.

10

15

20

235

30

35

45

50

35

65

16

Each tag corresponds to a block of 4 consecutive cached
words. For each cache access, two tags are accessed simul-
taneously using bits 11-4 of the address. The tags are
compared to bits 31-12 (in one embodiment of the
invention) of the address. The hit signals are generated from
the comparison results and configuration bits. The Tag array
is written whenever a miss occurs and a cache block is
allocated. The tag is selected according to bits 11-4 of the
address and the replacement algorithm. Address bits 31-12
are written to the Tag array. The Tag array is shown in FIG.
3 as unit 311.

The Valid array, unit 312 of FIG. 3. is a 2 k bit array that
stores a valid bit for each cached word. It is organized as two
1024x1 arrays. A valid bit is set for each word as it is written
into the cache. The valid bit is selected by address bits 11-2
(as is the memory array). and the matching way. Two valid
bits corresponding to the two ways are checked on every
cache access. A hit signal is generated only if the appropriate

valid bit is set.

The Block Status array, unit 313 of FIG. 3. is a 1536 bit
array that incorporates 3 block status bits per each cache
block. It is organized as two 2563 arrays (this corresponds
to the Tag array organization). The three bits are: Modified,
Shared and Locked. The Modified bit indicates that the
block is modified and should be written back to memory
before replacement. It is used for copy-back operations and
data consistency operations. The Shared bit indicates that the
block is shared. It is used for data consistency operations.
The Locked bit indicates that the block is locked and cannot
be replaced. It is used for locking important data or instruc-
tions in the cache.

The LRU array, unit 314 of FIG. 3, is a 256 bit array
which stores the LRU bits. It is organized as a 256x1 array.
Each LRU bit corresponds to a set of two tags. The LRU
array is used if the Least Recently Used replacement algo-
rithm is selected. The appropriate LRU bit is updated to
reflect the least recently used block of the two blocks in a set.
When required, the LRU bit determines which block is
replaced from the set.

The Special Registers block, shown as unit 315 of FIG. 3,
incorporates all the special registers of the ICU. They are
used for programming the ICU options, controlling special
operations, and holding status information.

Finally, the Cache Control block, unit 316 of FIG. 3,
includes control logic for the cache operations.

Having set forth and described data flow through the

novel ICU with reference to FIG. 3, attention will now be

turned to a register structure to support the data flow and
control of the ICU.

The preferred embodiment of the ICU contains 8 special
registers. These registers select programmable options, sup-
port cache confrol operations, and indicate cache status
information. Each register can be read or written by the
processor via the processor bus or the memory bus. A read
register or write register cache instruction is transferred to
the ICU using the appropriate cache instructions protocol on
one of the buses. For the processor-bus instructions, the
register number is specified by the three least significant bits
of the opcode. The instruction transfer protocol and the ICU
response are controlled by the Read Registers Control and
Instruction Transfer Protocol Control in the Modb Register
respectively. For the memory-bus instruction the register
number is specified by the three least significant bits of the
address. A detailed description of the these illustrative
protocols and responses will be set forth hereinafter.

For processor-bus accesses, all ICU special registers are
protected. They can be accessed only if the SUP/*US input

5.627,992

17

is HIGH. User mode accesses are not executed. A *CERR
response signals an 1invalid User mode access. The registers
are not protected for the memory bus cache instruction.

According to the preferred embodiment of the invention,
each register 1s assigned a number as follows:

reg # rég name

Chip Select Mapping
Instruction

Address Operand
Count

Error Address

Status

Moda

Modb

-1 Oh Lh b U= O

Only the general function of each register will be
described hereinafter since one skilled in the art wiil appre-
ciate that specific bit assignment may be made for applica-
tion dependent purposes.

The Chip Select Mapping Register is special register 0. It
specifies the address and the conditions for the ICU chip
select functions. The ICU has two independent chip-select
functions: for normal cache accesses and for cache instruc-
tion accesses.

For normal cache accesses, the chip-select function can be
used for cache extensions, cache address space assignments,
and multiple-cache configurations. In the preferred embodi-
ment of the invention, up to 32 ICUs (16 instruction caches
and 16 data caches) can be used without external chip-select
hardware. Memory access (MA) selection is also affected by
the *CSM input and a Memory Bit Enable field of the Moda
Register. If the *CSM input is enabled, it must be asserted
to enable a memory access. If the *CSM input is disabled,
it is ignored. The Memory Bit Enable Field can selectively
enable the comparison of an appropriate address bit to a
corresponding (MA) field bit in the chip-select memory
register. When a bit is disabled for comparison, it is ignored.
If all the bits are disabled, a match is forced. Note that when
the *CSM is enabled, it should be asserted and the MA field

comparison match, for a memory access to be serviced.

For cache instruction accesses, the chip-select function is
used for selecting the appropriate ICU for the access. A
cache instruction access is enabled when *CSEL is asserted
and enabled, or when the address inputs A31-Al4 and
CREQTO0 match Cache Insttuctions. Address and Cache
Instruction Address Space fields in the Chip Select Mapping
Register. In the second case, all the caches with a match are
selected. If the instruction scope is multiple caches, all the
selected caches respond. If the instruction scope is one
cache, only the cache where the address inputs A13-A8
match a Specific Cache Number field of the Chip Select
Mapping Register, responds.

During initialization the *CSEL input is used to program
the Chip Select Mapping Registers of a given ICU. In a
typical configuration, a different address bit can be con-
nected to the *CSEL of different ICUs. When *CSEL is
asserted and enabled, the ICU treats data accesses as cache
instruction accesses. After the Chip Select Mapping Register
is programmed, the *CSEL input can be disabled, and the
mapping specified by the Chip Select Mapping Register
applies.

The Instruction Register is special register 1. It is used for
specifying an instruction to the ICU. The Instruction Reg-
ister can be read or written as any other special register,
however, 1t is also loaded automatically for a valid cache

10

15

20

25

30

35

40

45

50

55

65

18

instruction. A valid cache instruction is detected when the
*CSEL input is asserted and enabled or when the address
inputs A31-A14 and CREQT0 match the Cache Instructions
Address and Cache Instructions Address Space fields in the
Chip Select Mapping Register. In these cases, the instruction

is copied from the address inputs A7-A0.

The Instruction Register can be accessed as a special
register for saving and restoring the ICU state in the case of
a processor interrupt during the instruction transfer protocol,
or if a multiple cache instruction is interrupted. When it is
accessed as a special register, a Read or Write Register cache
instruction is transferred to the ICU. Shadow registers are
incorporated in order to be able to latch the Read Register
instruction and optional operand, without destroying the
required old contents of the Instruction and Operand Reg-
ister. The shadow Instruction Register is first loaded with an
instruction. For all the instructions except the Read Register
and the Write Register instructions, the Instruction Register
is updated when the instruction execution is started. For the
Read Register and Write Register instructions the Instruction
Register is updated only if there is no other valid instruction
in the Instruction Register. If a valid instruction is present in
the Instruction Register, the Read Register instruction is
executed without affecting the Instruction and Operand
registers. This feature is also used for checking the status of
the ICU without affecting the execution of a cache instruc-
tion.

An instruction is executed by the ICU whenever all the
required operands are valid. A detailed description of exem-
plary instructions, required operands, and cache-instructions
accesses will be set forth hereinafter.

The Operand Register is special register 2. It specifies an
operand for certain ICU instructions. The register contains a
bit (OV bit) to indicate the validity of the Operand Register
value. A shadow Operand Register is incorporated in the
ICU for correct execution of Read Register and Write
Register instructions. The shadow Operand Register is first
loaded with an operand. For all the instructions, except Read
Register and Write Register instructions, the Operand Reg-
ister is updated if the validity bit is reset. If the OV bit is set,
the ICU delays the *CRDY response until the OV bit is reset
(the previous instruction completion), and then loads the
register. For Read Register or Write Register instructions the
Operand Register is updated only if there is no other valid
instruction in the Instruction Register. If a valid instruction
is present in the Instruction Register, the Read Register and
Write Register instructions are executed without affecting
the Instruction and Operand registers. This enables saving
and restoring the Operand Register, when required. When
required, the Operand Register can be read or written by
using Read Register or Write Register instructions.

The Count Register is special register 3. It specifies the
number of words to be operated on by certain ICU instruc-
tions. The Count Register is not affected by the instruction
execution.

The Exception Address Register is special register 4. It is
used for reporting the address associated with some excep-
tions. The Exception Address register is loaded with the
exception address. The exception type can be found in the
Status Register.

The Status Register is special register 5. It is used for
reporting the status of the ICU, and for information transfer
between the ICU and the processor in the Read Tag and
Write Tag cache instructions (to be explained hereinafter).
Bits are reserved for reporting the tag value for the Read Tag
instraction and for transferring the tag for the Write Tag

5,627,992

19

instruction; for the reporting of the WAY for cached data; for
reporting the valid bits for a block and for transterring the
valid bits for the Write Tag instruction; for reporting the
locked bit for the block and for transferring the locked bit for
the Write Tag instruction; for reporting the shared bit for the
block and for transferring the shared bit for the Write Tag
instruction; for reporting the modified bit for the block and
for transferring the modified bit for the Write Tag instruc-
tion; for indicating if a hit is found in the cache; and for
indicating protection violations; illegal instructions;
memory errors and parity error.

The Moda Register is special register 6. It is used for
selecting various ICU options. The Moda register is reset
during initialization.

Fields are set aside to: control global cache operation; to
lock all cache locations; to disable the write buffer; and to
disable the read through option.

A ROM enable bit is included in this register which has
different functions for instruction cache and data cache
usage (“ROME” bit).

For instruction cache usage when this bit 1s set, the ICU
responds to ROM accesses and caches them. When it is 0,
ROM accesses are ignored.

For data cache usage, when this bit is set, the data cache
is enabled for instruction memory accesses (as data). When
the OPT inputs indicate an instruction memory access, the
ICU treats it as a non-cacheable transaction. The specified
address is read on the memory bus and transferred to the
processor, without loading it into the cache. When the
ROME bit is 0. the ICU ignores this type of transaction.

Further fields are provided in the register to enable the
prefetch option for single accesses; to disable an address
wrap around option; to control the ICU operation on a single
access miss; to control the ICU operation when a burst mode
read request is terminated by the processor; to enable the
prefetch option for burst accesses; and to select sub-block
size (SBYS).

It should be understood that the sub-block size 1s used in
the control of cache reload operations. The number of words
to be reloaded into the cache for a single cache miss is
defined by the defined sub-block size and the information

stored in the field controlling ICU operation for an access
miss (for example, control information such as start and stop

on a sub-block boundary). The SBS field is also used,
together with the burst mode control information, in the

burst end control. The inherent block size of the ICU is 4
words, one tag is associated with four data words. The

sub-block size is either 1, 2 or 4 words.

Still further, the Moda Register contains fields for con-
trolling the extension of memory bus address transfers; for
indicating whether a write allocate option is on; and for
selecting the write policy options on a global basis.

According to the preferred embodiment of the invention,
the write policies are: flexible, write-through or copy-back.

When a write-through policy is selected. every processor

10

15

20

25

30

33

40

45

50

335

write to the ICU is also written to the memory. When a .

copy-back is selected, every processor write hit is written in
the cache and the modified bit set. The block copies back to
memory only when the block is replaced. When the flexible
policy is selected, a write-through or copy-back operation
can be selected on an access by access basis. The write
policy for an access, is also affected by the ASTC inputs, the
block status shared information, and the Write Shared Hit
Control and the Processor Status Bit Control fields of the
Modb Register (to be explained hereinafter).

635

20

The Moda Register also contains a field used to select the
block replacement policy. The selection is not used for
direct-mapped organization. In a two-way set-assoclative
organization, if one of the blocks is not valid, it is chosen for
the new block. The replacement policy options, according to
the preferred embodiment of the invention, are: Least
Recently Used (LRU), random, or external.

When the LRU policy is selected, the LRU array is used
for the selection of the block to be replaced. The LRU array
is updated on each cache access. One bit is assoclated with
each set. It points to the least recently used block from the
two blocks in a set.

When the random policy is selected, a pseudo random
logic selects the block to be replaced. The logic is a simple
flip flop which change state every clock cycle, and used for

all the sets.

When the external policy is selected, the WREP 1nput is
latched with the processor address. The latched value forces
the replaced block selection. This option may be used for
cache testing and multi-level cache organizations.

Finally. the Moda Register contains fields for selecting the
cache organization (two-way set-associative or direct-
mapped); for selecting the cache operation as Instruction
Cache or Data Cache; for controlling parity generation and
checking options and memory bit enable information for
enabling the corresponding MA bits in the Chip Select
Mapping Register for address comparison on Memory
accesses.

The Modb Register is special register 7. It is used for the
selection of various ICU options. One field of the Modb
Register is associated with multiprocessor organizations. A

detailed description of multiprocessor organizations and the
usage of this field will be described hereinatter.

The Modb Register also contains a bit for controlling the
ICU for Input/OCutput data accesses on the processor bus (it
is ignored in instruction cache usage); a bit which specifies
the mode of reading the ICU registers; a bit which specifies
the protocol for cache instruction transfer on the processor
bus; and a bit which controls the byte and half-word ordering
within a word, for the relevant ICU operations.

The multiprocessor oriented information in the Modb
Register includes: a Cache Interlocked Enable bit; a Read
Bus Watch Enable bit; a Write Bus Watch Enable; a field
which controls the operation of the ICU in the case of a
match on memory bus read by another master; a field which
controls the operation on match for memory bus write
operation by another master; a Write Miss Memory Access
Control which controls the memory bus operation of the
ICU for a copy-back write miss with write-allocate; a Write
Shared Hit Control field which controls the operation on a
write hit to a shared block; a Processor Shared Bit Control
which causes the block status share bit to be modified for
every processor access when set; and an External Shared Bit
Control which controls the assignment of the shared block
status by external control. For external shared control, the
*HIT signal is used as an input for memory bus read and/or
write accesses. If it is asserted, then the data is also present
in other caches, and the block is assigned a shared status. If
the *HIT input is not asserted, the variable is not present in
any cache and the block is assigned an exclusive status.
Detailed description of this feature is set forth hereinafter
with reference to ICU multiprocessor support.

Turning to the ICU instruction set.

The preferred embodiment of the ICU implements 20
processor bus cache instructions, and 9 memory bus cache

instructions. The processor bus instructions are issued by the

5,627,992

21

processor for special register accesses and for special cache
operation requests. The memory bus instructions are issued
by special logic on the memory bus for special cache
operation requests. This section sets forth examples of
different instruction transfer protocols and sets forth an
example of a typical processor bus instruction and a memory
bus instruction set, in detail.

The processor bus cache instructions and operands are
transferred to the ICU from the processor by a special
sequence of processor bus transactions. The instruction is

executed whenever all the required operands are transferred
to the ICU.

Some processor bus cache instructions have four optional
scopes of operation. The instruction scope specifies the
number of ICUs which are affected by a cache instruction.
The scope is designated by (s) in the instruction table. The
instructions without the (s) indication can operate only on
one specific ICU. The instruction scope can be designated as
tollows:

specified Opcode 2
(s) stgnificant bits Meaning
0 GO One specific ICU affected
| 01 All instruction caches affected
D 10 All data caches affected
A 11 All caches affected

This flexibility allows a system designer to issue cache
instructions which operate on the desired addresses in the
appropriate caches. In a multiple ICU environment, it is
more efficient to issue one instruction that will operate on all
the caches simultaneously. For example, the Invalidate
Block instruction with (s)=A (INVBA), invalidates the
specified block 1in all the ICUs (where the block is valid) in
parallel.

Most instructions are executed in two cycles. However,
there may be exceptions as will be indicate hereinafter.
During processor bus cache instruction execution, the ICU
can accept other processor transactions, (inciuding new
instruction transfers) but in most cases (unless otherwise
specified in the instruction description) they are serviced
only after the processor bus cache instruction completes.
Memory bus transactions are serviced during the processor
bus cache instruction execution. However, since they are not

synchronized to instruction execution, the ICU operation
refiects the current state of the cache.

All processor bus cache instructions are privileged. If the
SUP/*US input is LOW, when the processor bus cache
instruction access is performed, itis ignored and the *CERR
asserted as a response. The Status Register is updated with
status information for the relevant instructions. In case of an
exception the Exception Address Register and the Status
Register are updated with the exception information.

There are several options for the communication between
the ICU and the processor during cache instruction execu-
tion. The protocol is defined according to the Instruction
Transter Protocol Control (ITPC) and Read Register Control
(RRC) bits of the Modb Register as well as the cache
mstruction type and scope. All instructions, except Read
Register, are transferred by using a write operation. The
Read Registers instruction is transferred by using a read or
write operation as defined by the Read Register Control bit
of the Modb Register. A description of these options can be
found in Read Register instruction description set forth
hereinafter.

S

10

15

20

25

30

35

45

50

35

65

22

The first part of each instruction is the detection of a
processor bus cache instruction request. A processor bus
cache instruction request can be either a read or write
processor bus access. It 1s detected by the ICU in two cases:
1) The *CSEL is asserted and enabled or 2) the address
inputs and CREQTO match the Cache Instruction Address
and Cache Instruction Address Space fields in the Chip
Select Mapping Register.

When no operand is required for the instruction
execution, the transfer is completed in one cycle. In this case
the value on the cache bus is irrelevant and the instruction
execution starts immediately.

If operands are required, there are two optional transfer
protocols which are supported by the ICU. The protocol is
selected according to the Instruction Transfer Protocol Con-
trol bit of the Modb Register.

When ITPC is 1. the cache bus is used for the operand
transfer. The processor uses a normal write operation, and
the processor address and data buses are both used. The ICU
latches the operand value from the cache bus. For ICU used
as an instruction cache, external transceivers are required for
transferring the data from the ICU data bus to the cache bus.
This option is the natural selection for ICU used as a data
cache. A more efficient protocol is also achieved for ICU
used as an instruction cache in the expense of external
transceivers.

When ITPC is 0, the cache bus in not used. Operands are
transferred on the processor address bus. A special two cycle
protocol is required for instruction and operand transfer.
After a valid instruction is latched, the ICU expects a special
data transaction on the processor bus. The CREQT inputs
should specify a memory data transaction, the option inputs
should specify a cache operand transfer, and the address bus
contains the operand. This special write transaction is

detected by the ICU and the operand on the address bus
latched. Note that the above transaction should be ignored

by all other elements connected to the processor bus. This
option 1s less efficient than the other, but is does not require
transceivers for ICU used as an instruction cache.

Both options can be selected independently for ICU used
as a data cache or an instruction cache. However, from
system programming point of view, it might be desirable to
access both caches in a similar way. If this is the case, both
caches can be programmed to respond to the same protocol.

If a count operand is required for the instruction
execution, a Write Register Instruction should be executed
for writing it to the Count Register before the instruction
execution starts. The instruction is executed by the ICU
whenever the instruction and all the required operands are
valid.

Processor interrupts can happen during the cache instruc-
tion transfer protocol. The preferred embodiment of the ICU
includes logic to recover from such cases. The Instruction
Register, Operand Register, and Count Register can be read
for saving their content without affecting it, using the Write
Register instruction. The Instruction Valid, Operand Valid,
and Count Valid bits indicate the validity of the correspond-
ing register. The save and restore operations enable the

instruction transfer protocol to continue from the point of
interruption.

A set of Processor bus cache instructions found useful in
one embodiment of the invention, in terms of Mnemonic,
description and brief explanation of purpose, are set forth
immediately hereinafter in tabular form:

5,627,992

23
Mnpemonic Description
NOP No Operation
INVW(s) Invalidate word
INVB(s) Invalidate block
INVM(s) Invalidate multiple
INVA(s) Invalidate all
SWM(s) Send word if modified
SBM(s) Send block if modified
UPMI(s) Update memory and invalidate
UPIM(s) Update memory and mvalidate multiple
LCK(s) Lock block
ULCK(s) Unlock block
RBST(s) Read block status
WBST(s) Write block status
SWH Send word if hit
RTAG Read tag
WTAG Write tag
PRLD Preload cache
RST Reset
RDR(1) Read register
WRR(1) Write register

It should be noted that the (s) symbol in the instruction
mnemonic indicates the instruction scope as previously

defined herein and the (i) symbol in the RDR and WRR
instructions indicates the register number which is specified
by the 3 least significant bits of the opcode.

It should also be noted that specific operands (although
not discussed herein) are specified according to instruction
requirements. If more than one operand is to be specified, a
WRR instruction is required for loading the second specified
operand.

On a functional level, the execution of the instructions
result in the following actions:

No Operation (NOP), no operation is executed by the ICU
for this instruction. '

Invalidate Word (INVWO, INVWIL, INVWD, INVWA)
(note different scopes)—the word specified by an address
operand is invalidated (the corresponding valid bit is reset).

Invalidate Block (INVBO, INVBL INVBD, INVBA)—
the four word block specified by the address operand 1is
invalidated (all the corresponding valid bits are reset).

Invalidate Multiple (INVMO, INVMI, INVMD,
INVMA)—multiple sequential four word blocks are invali-
dated by the ICU. Every single operation is similar to the
INVB instruction. The instruction is executed in multiple
cycles (two cycles for initialization+one cycle per four word
block). For this instruction, the Count Register must contain
a valid count. The Count Register is loaded by using the
Write Register instruction. The Count Valid bit remains set

after the instruction execution. To guarantee correct
execution, the Count Register should either be loaded before

the INVM instruction is requested or should contain the
correct value from a previous operation. This instruction can
be used in order to invalidate a page frame. The Count
Register should contain the number of four word blocks in
a page (page size in bytes divided by 16).

Invalidate All (INVAO, INVAI, INVAD, INVAA)—this
instruction invalidates all words in the cache. All valid bits
are reset.

Send Word if Modified (SWMO, SWMI, SWMD,
SWMA)—if the word specified by the address operand is
present in the cache and the modified bit for the block is set,
it is written to the corresponding address in memory.

Send Block if Modified (SBMO, SBMI, SBMD, SBMA)
—if the four word block specified by the address operand is
modified, all the valid words are written to the correspond-
ing addresses in the memory.

10

15

20

25

30

35

40

45

50

55

65

24

Update Memory and Invalidate (UPMIO, UPMII,
UPMID, UPMIA)—if the four word block specified by the
address operand is modified, all the valid words are written
to the corresponding addresses in the memory. Then, all the
valid bits are reset. The write operation 1s performed by
using a burst mode or single memory bus write access
(depending on the number of valid words), after the memory
bus is granted to the ICU.

Update Memory and Invalidate Multiple (UPIMO.
UPIMI, UPIMD, UPIMA)—multiple sequential Update
Memory and Invalidate operations are executed by the ICU.
Every single operation is similar to the Update Memory and
Invalidate instruction. The instruction is executed in mul-
tiple cycles (two cycles for initialization plus one cycle and
optional memory bus four word write access per four word
block). For this instruction, the Count Register must contain
a valid count. The Count Register is loaded by using the
WRR instruction. The Count Valid bit remains set after the
instruction execution. To guarantee correct execution, the
Count Register should either be loaded betore the UPIM
instruction is requested or should contain the correct value
from a previous operation. This instruction can be used
in-order to update memory and invalidate a page trame. The
Count Register should contain the number of blocks in a
page (page size in bytes divided by 16).

LLock block (LCKO, LCKI, LCKD, LCKA)—if the four
word block (or part of it) specified by the address operand
is present in the cache, the corresponding block status Lock
bit is set.

Unlock block (ULCKO, ULCKI, ULCKD, ULCKA)—if
the four word block (or part of it) specified by the address
operand is present in the cache, the corresponding block
status lock bit is reset.

Read Block Status (RBSTO, RBSTI. RBSTD, RBSTA)
—the specified word address is checked for presence in the
cache and the status register is updated accordingly.

Write Block Status (WBSTO, WBSTI, WBSTD,
WBSTA)—the block which includes the specified word

address is checked for presence in the cache. If the block is
present in the cache then the block status bits are updated

based on the value of the bits in the status register.

Send Word if Hit (SWH)—if the word specified by the
address operand is present in the cache, it is written to the
corresponding address in the memory.

Read Tag (RTAG)—this instruction is used for reading a
specific tag in the cache.

Write Tag (WTAG)—this instruction is used for writing a
specific tag in the cache.

Preload (PRLD)—preload is a special operation that can
be performed in order to load a cache with specific data
variables or instructions before they are needed. The opera-
tion is done under software control. The addresses of the
required variables or instructions are supplied by the user.
Note that the preload operation is different from simple
prefetch operations. Prefetch is usually done under hardware
control, and the prefetched addresses are in the close neigh-
borhood of the address for the original memory request.

User and compiler knowledge of the program should be
used in order to predict the most valuable instructions or data
variables. The appropriate addresses are preloaded into the
instruction and data caches before the program execution is
started. The operation can be done under the cache control
without the processor interference. This allows better utili-
zation of the cache and higher overall performance.

The preload operation, novel unto itself, is described in
the context of the incorporated RISC/SIP architecture. It can
be used in other cache systems as well.

5.627,992

23

The instruction is initiated by the processor, by transfer-
ring the opcode and the operands to the appropriate cache
unit. Two operands are required: an address operand and a
count operand. Multiple sequential words are loaded to the
cache. using memory bus read burst transaction, under the
ICU control. The address operand specifies the starting word
address. The Count Register specifies the number of four

word blocks. When the highest possible address is reached,
a wrap around is performed.

The instruction is executed in multiple cycles (two cycles
for initialization plus one memory bus burst read access per
word). For this instruction, the Count Register must also
contain a valid count. The preload instruction can be used in
various methods. Two basic options are as follows:

A simple method of using the preload instruction does not
require special cache configuration and can be used with any
cache system. In this method, the preload instruction is
issued under software control before the program execution.
The instruction can be issued as part of the context switch
procedure. Since the caches are preloaded the cold start
eifect is minimized. The main disadvantage of this method
is that the preload operation can interfere with other cache
operations which are required by the processor.

A more complex cache configuration can overcome the
above limitation. This configuration (referred to as switch-
able caches) require more than one cache per each processor,
and a method to switch between the caches. The switchable
caches configuration allows the operation of multiple caches
on the same address space. Two or more caches are placed
in parallel, but only one of the caches is enabled for
processor memory accesses response. The other cache or
caches can be programmed to preload the variables or
instructions which are required for the next program (or
procedure). Before the execution of the next program starts,
the appropriate cache (which includes the preloaded data) is
enabled, and the other caches disabled.

The implementation of this scheme is fully supported by

the ICU. All the necessary support is implemented on the
single chip. An i1ndividual ICU can, be disabled or enabled
by programming a mode register. The preload instruction is

5

10

15

20

25

30

335

implemented so that this scheme is supported. Specifically

the ICU can perform the preload instruction, even if it is
disabled for normal cache operations. Two or more ICUs can
be placed in parallel and only one can be enabled for normal
cache operations, while the other performs preload opera-
tions (no glue logic is required).

This configuration can have a significant performance
advantage, since the preload operations are performed with
minimal impact on the current program execution.

Reset (RST)—the Reset instruction performs the same
function as performed by asserting the *RESET input. The
ICU is initialized. The RST instruction is executed imme-
diately as it is accepted. A multiple instruction (INVM,
UPIM. PRLD) execution is terminated.

Read Register (RDR)—the Read Register instruction is
used for reading the special registers of the ICU. The special
register number is specified by the opcode. The ICU
responds 1n different ways to this instruction depending on
the state of a Read Register Control (RRC) bit in the Modb
Register. When RRC i1s 1, a read transaction with the
instruction on the address bus initiates the instruction. When
RRC is 0, the main memory is used in order to read the
registers.

Write Register (WRR)—the Write Register instruction is
used for writing the special registers of the ICU. The special
register number is specified by the opcode. The data is

45

50

55

65

26

specified as the instruction operand. The WRR instruction is
executed immediately as it is accepted. If valid instruction
and operand are present in the Imstruction and Operand

registers, it is executed without affecting their content. This
feature can be used for restoring the ICU registers.

As indicated hereinbefore, the memory bus cache instruc-
tions are issued by special logic on the memory bus. This
logic should be able to direct the instruction to the appro-
priate ICU. All the ICUs in the system which recognize a
valid instruction on their inputs execute it. There are no
equivalent concepts to the processor bus instruction scope
and privileged instructions on the memory bus.

All the memory bus cache instructions can be transferred
to the ICU, when it is the bus slave, by using one cache
instruction transfer memory bus transaction. The Write
Block Status instruction can be also transferred when the
ICU is the bus master, by asserting the *VSI input. The
instruction is executed whenever the required cache
resources are available, after the instruction and the oper-
ands are accepted. All the instruction are executed internally
in two cycles. In the case that a memory bus operation is
required for the instruction execution, the number of cycle
for the bus operation should be added.

The memory bus cache instructions are executed inde-
pendently of other ICU operations on the processor bus
(including the processor bus cache instructions). The
memory bus instructions and the processor bus operations
are executed according to the order in which they are
received. The result of the memory bus instruction reflects
the current state of the cache. If a memory bus cache
instruction 1s accepted during the execution of a multiple
processor bus cache instruction, it is exXecuted without
affecting the multiple instruction execution.

All the memory bus cache instruction, except Write Word
in Cache, has an equivalent processor bus cache instruction
with a similar name. These instructions have a similar effect
on the internal cache, however, the processor bus and
memory bus operations are different.

All the memory bus cache instructions are transferred
using one cache instruction transfer memory bus transaction.
When the ICU is not the bus master, the assertion of *VSI
causes a cache instruction transaction on the memory bus.
During the first cycle of the transaction, the MRW, MREQT,
BSTC signals, and the address are latched. The MRW and
MREQT signals specify the instruction. The BSTC signals
specily the block status for the relevant instructions. The
address is used as the address operand for the relevant
instruction. If the instruction requires data operand, the data
is latched during the second cycle.

When the ICU is the bus master, and it issues a read
request for reload operation, the *VSI input has a special
function. If it is asserted before the transaction is completed
(the last *MRDY has not been accepted), then the BSTC
signals are latched, and a Write Block Status insfruction is
executed. The address operand is the block address which
correspond to the address that was transferred by the ICU for
the reload operation.

A set of memory bus cache instructions found useful in
one embodiment of the invention, in terms of Mnemonic,
description and brief explanation of purpose, are set forth
immediately hereinafter in tabular form:

3,627,992

27
MRW MREQT Mnemonic description
00 00 NOP No operation
00 01 SWH Send word if hit
00 10 SWM Send word if modified
00 11 SBM Send biock if modified
01 00 INVW Invalidate word
01 01 INVB Invalidate block
01 10 WBST Write block status
01 11 WRR Write register
10 00 UPMI Update memory and invalidate
10 01 RBST Read block status
10 10 RDR Read register k
11 10 WRW Write word in cache

It should be noted that the instruction codes are arranged
so that MRWO is consistent with other memory bus opera-
tions. For MRWQO LOW, the dissection is from the ICU to
the memory bus and for MRWO HIGH, the direction is from
the memory bus to the ICU.

On the functional level, the execution of the instructions
result in the following actions:

No Operation (NOP)—this instruction has no attect on the
ICU. The memory bus cache instruction transaction protocol
is performed as for any instruction.

Send Word if Hit (SWH)—if the word specified by the
address operand is present in the cache, the *HIT signal is
asserted. The word is driven on the memory address bus, the
block status shared and modified bits are driven on the
BSTC signals, and the *MRDY is asserted.

Send Word if Modified (SWM)—if the word specified by
the address operand is present in the cache and the modified
bit for the block is set, the *HIT and the *MRDY signals are
asserted, and the block status shared and modified bits are
driven on the BSTC signals. Then, the word is written to the
corresponding address in the memory.

Send Block if Modified (SBM)—if the four word block
specified by the address operand is modified, the *HIT and
the *MRDY signals are asserted, and the block status shared
and modified bits are driven on the BSTC signals. Then, all
the valid words are written to the corresponding addresses in
the memory.

Invalidate Word (INVW)—the word specified by the
address operand is invalidated (the corresponding valid bit is
reset). The *HIT signal is driven according to the hit or miss
conditions and the *MRDY asserted after the instruction
execution is completed.

Invalidate Block (INVB)—the four word block specified
by the address operand is invalidated (all the corresponding
valid bits are reset). The *HIT signal is driven according to
the hit or miss conditions and the *MRDY asserted after the
instruction execution is completed.

Write Block Status (WBST)—this instruction can be
executed either when the ICU i1s the bus slave or the bus
master. When the ICU is the slave the address operand is
specified by the memory bus transaction. In this case, the
block which includes the specified word address is checked
for presence in the cache. If the block is present then the
*HIT and *MRDY signals are asserted, and the block status
bits are copied from the BSTC signals. If the block is not
present in the cache then the *HIT signal is deasserted and
the *MRDY asserted. The Hit and Valid bits of the Status

Register are reset.

When the ICU is the bus master and it issues a read
request for a reload operation the *VSI input has a special
function. If it is asserted before the transaction is completed

10

15

20

25

30

35

40

45

50

55

65

28

(the last *MRDY has not been accepted), then the BSTC
signals are latched, and the Write Block Status instruction is
executed. The address operand is the address that was
transferred by the ICU for the reload operation. In this case,
the block which includes the specified word address 1s
always present in the cache (since it 1s being reloaded). The
block status bits of this block are copied from the BSTC
signals. The Status Register is not affected.

Write Register (WRR)—the Write Register instruction is
used for writing the special registers of the ICU.

Update Memory and Invalidate (UPMI)—if the four word
block specified by the address operand is modified, the *HIT
and the *MRDY signals are asserted and the block status
shared and modified bits are driven on the BSTC signals.
Then, all the valid words are written to the corresponding
addresses in the memory, and then the valid bits are reset.

Read Block Status (RBST)—the specified word address 1s
checked for presence in the cache. The block status bits are
driven on the BSTC signals. The *HIT and *MRDY are also

driven accordingly.

Read Register (RDR)—the Read Register instruction 1is
used for reading the special registers of the ICU.

Write Word in Cache (WRW)—if the word specified by
the address operand is present in the cache, the *HIT signal
is asserted and the supplied data is written into the cache.
The two least significant bits of the address are ignored.
Note that the address cycle is specified by the *VSI input
and not by the *MASTB signal. The data 1s specified by the
value on the memory bus during the cycle following the
address cycle. If the word is not present in the cache the
*HIT signal is deasserted and the Hit and Valid bits of the
Status Register are reset. The *MRDY signal is asserted
when the ICU latches the data from the memory bus.

Having completed the description of a suitable and useful
instruction set for use with the preferred embodiment of the
invention, a brief description of data formats and data
manipulation mechanisms supported by the novel ICU will
now be set torth.

As indicated hereinbefore, a word is defined as 32 bits of
data. A half word consists of 16 bits. A byte consists of 8 bits.
The ICU has direct support for word, half word and byte
accesses. On the processor bus, the access Iength is deter-
mined according to the OPT inputs. The access length is
effective only for single data memory accesses. It is ignored
and a word length is assumed, in all other processor bus
accesses (including burst mode memory accesses). On the
memory bus, the access length is determined according to
the MDLN signals.

The numbering conventions for data units within a word
for the preferred embodiment of the invention, are consistent
with the RISC/SIP definitions set forth in the incorporated
application describing a RISC processor. Bits are numbered
in increasing order from right to left. Bytes and half words
can be ordered either from right-to-left or from left-to-right,
as controlled by the Byte Order bit of the Modb Register.

The preferred embodiment of the ICU contains the nec-
essary hardware to fully support byte, half word and word
accesses. The different data types should be aligned on their
natural address boundaries. Accesses which are not on their
natural boundary are reported on the Error and Status
registers; but the access is serviced as if it was correctly
aligned (i.c. the appropriate address bits are ignored).

For memory byte read operations on the processor bus,
alignment hardware shifts the byte to the low order

(rightmost) location within a word.

3,627,992

29

For memory half word read operations on the processor
bus, alignment hardware shifts the halt word to the low order
(rightmost) location within a word.

In case of a miss on memory read operation, the ICU uses
word accesses on the memory bus for the reload operation.

Byte and half word accesses are used for non-cacheable read
accesses. The byte or the half word are aligned before they
are sent to the processor. The access length is transterred
from the processor bus (OPT inputs) to the memory bus
(MDLN signals).

For memory write operations the ICU writes bytes and
half words in the appropriate cache locations. For a byte
write, the byte is duplicated from the low order byte location
to all other byte locations within a word. The appropriate
byte write enable is activated in order to write the correct
byte in the cache. For half word write. the half word is
duplicated from the low order to the high order half word.
Then, it is written into the cache by activating the appro-
priate byte enables.

For write-through and non-cacheable write accesses, the
access length is transferred from the processor bus (OPT
inputs) to the memory bus (MDLN signals). The duplicated
bytes or half words are placed on the memory bus. The
memory controller decodes the address and length, and
activates the correct write enable signals.

It should be noted that although the ICU supports byte and
half word accesses, the user can decide if the system will

support them. If the decision is to support only word

accesses., the OPT and MDLN inputs should always specity
word accesses.

The portion of the detailed description to follow imme-
diately hereinafter describes the ICU operation for the
different cases of cache accesses on the processor and
memory buses.

The processor bus accesses are either single, pipelined
and burst mode accesses.

All the accesses on the processor bus are initiated by the
processor. The ICU supports the three access protocols as
defined in the copending applications previously incorpo-
rated herein by reference.

Single accesses are used for single data read and write
accesses as well as special instruction accesses.

Pipelined accesses are supported by the ICU. The ICU
latches the address (*PEN should be driven by external
logic). The processor can use the address bus for starting
another ICU access. The address of a pipelined access is
used by the ICU for the tag compare function, in pipeline
with the previous access. In case of a cache hit, one cycle is
required for the pipelined access to complete, after the
primary access completes. In case of a cache miss, the
memory bus access starts one cycle earlier.

Burst mode accesses are used for instruction accesses and
multiple data accesses. In these accesses the address for the
first word is transferred, and then sequential addresses are
assumed for the following words. Burst mode read and write
accesses are fully supported by the ICU. The maximum rate
of one word per cycle is achieved for cache hits.

A single memory read access is used for reading data
variables from a data cache. (The incorporated RISC pro-
cessor performs all instruction reads using burst mode
protocol.) The address 1s used for searching the cache for the
required word. If the word is found (hit), the data is
transferred to the processor and the *CRDY output asserted.
Alignment 1s performed for byte and half word accesses. For
single memory read accesses, the ICU responds in two
cycles.

10

15

20

25

30

35

40

45

50

55

65

30

If the required word is not found in the cache (miss), the
ICU initiates a predetermined miss handling procedure. The
shared block status bit is updated on every miss. Also, the
LLRU bit associated with the set is updated on every access
to reflect the least recently used block.

A burst mode memory read access is treated by the ICU
as a series of sequential memory read accesses. In the first
cycle of a burst mode read access, the address for the first
word is transferred by the processor. When a burst mode
read access is detected by the ICU, it latches the address and
asserts the *CBACK signal. The address is compared and
automatically incremented for every word in the burst. In the
case of cache hit, the ICU responds with the first word in two
cycles. An address can be incremented and compared in a
maximum rate of once per cycle. This allows a reate of one
cycle per word to be achieved in the case of cache hits. Note
that the one cycle access is maintained also in the case of

block boundary crossing.

If a miss is found at any point during the burst mode
access, a predetermined burst miss handling procedure is
initiated.

During the memory bus burst mode access, the next word
address (current word address plus 1) is checked in the
cache. I a hit is found during the memory bus burst mode
operation, the memory bus access is terminated and the data
transfer continues from the cache. The misses and hits cases

and the transfers from one to the other are transparent to the
processor (only the access time is affected).

A burst mode read access can be termunated by the
processor at any point of time by deasserting *BREQ. One
more word is serviced as defined for the incorporated RISC
processor’s burst mode protocol.

A single memory write access is used for writing data
variables to the cache. The address and the data are latched
by the ICU in the first cycle of the access, and the *CRDY
signal is asserted during this cycle (single cycle writes).
Note that the *CRDY signal is asserted independently of the
hit or miss conditions.

In the case of cache hit, the data 1s written 1n the cache in
the second cycle. The write policy is determined according
to the ASTC inputs, the Write Policy field of the Moda
Register, the Write Shared Hit Control and Processor Shared
Bit Control fields in the Modb Register, and the block status
shared bit. There are three possible write policies: exclusive
write-through, exclusive copy-back and shared.

For an exclusive write-through write access, the data is
also written to the memory. If the write buffer is enabled, the
data 1s written into the write buffer. When it is disabled, the
write operation is not buffered as will be explained herein-
after with reference to the description of the write buffer. In
both cases, the memory bus access is started when there are
no other memory bus operations that should be performed
earlier, and when the memory bus is available. |

For an exclusive copy-back write access, the data is
written only in the cache and the modified bit set. The data
is written to the memory when the block is replaced.

For the case of a shared write access, a write-through or
write-broadcast access 1s always performed on the memory
bus. In this case, the Write Shared Hit Control field of the

Modb Register and not the Write Policy field of the Moda
Register controls the ICU operation.

In case of a cache miss, the ICU operation is determined
according to Write Allocate bit of the Moda Register. If write
allocate is enabled, a cache block 1s allocated for the missed
block, and a miss procedure is initiated. The miss procedure

5,627,992

31

is similar to the memory read miss procedure. After the miss
procedure is completed, the cache operation continues as
previously described for the write hit case.

If write allocate is disabled, a block is not allocated in the
cache. The data is written only in the memory as described
for the write-through operation. Note that for this case a
copy-back write is treated as a write-through access.

The shared block status bit is updated on every miss. It
can be also updated for cache hit, if the appropriate bit of the
Modb Register is set.

The LRU bit associated with the set is updated on every
access to reflect the least recently used block.

A burst mode memory write access is treated by the ICU
as a series of sequential memory write accesses. In the first
cycle of a burst mode write access. the address and data for
the first word are transferred by the processor. When a burst
mode write access is detected by the ICU, it latches the
address and the data and asserts the *CRDY and the
*CBACK signals. The address is compared and automati-
cally incremented for every word in the burst.

In the case of cache hit the ICU writes the first word into
the cache during the second cycle. An address can be
incremented and compared in a maximum rate of once per
cycle. This allows a rate of one cycle per word to be
achieved in the case of cache hits. Note that the one cycle
access is maintained also in the case of block boundary
crossing. A memory bus write operation may be started as
well. in the same conditions as for single memory writes. If
the write buffer is enabled it is used to buffer up to four
writes. The memory bus access is burst mode write. The
conditions for the memory bus operation are checked for
every word in the burst, and the memory bus operation is
affected accordingly.

If a miss is found at any point during the burst mode
access, the ICU operation is determined according to the
Write Allocate bit of the Moda Register. If write allocate 1s
enabled, a cache block is allocated for the missed block and

a miss handling procedure is initiated. The memory bus
access is either read or read for modify depending if the
Write Miss Memory access Control bit of the Modb Register
is HIGH or LOW respectively. After the miss procedure is
completed, the cache operation continues as described for
the hit case. Note that in this case, each missed sub-block is
first read into the cache and then written. The memory bus
operation is not a continuous burst.

If write allocate is disabled. a block is not allocated in the
cache. The data is written only in the memory using a burst
mode write operation. The conditions for the memory bus
operation are checked for every word in the burst, and the
memory bus operation is affected accordingly.

The next word address (current word address plus 1) is
checked in the cache for every word write. If a hit is found
after one or more misses, the ICU continues as described for
the case of hit. The misses and hits cases and the transters
from one to the other are transparent to the processor (only
the access time 1s affected).

A burst mode write access can be terminated by the
processor at any point of time by deasserting *BREQ. The
ICU services the last word write and terminates the memory
bus burst mode access, if necessary.

Next, a variety of other access procedures supported by

the preferred embodiment of the invention, will be
described.

A non-cacheable memory access is supported. It is used
for bypassing the cache for special variable accesses. For

10

15

20

25

30

35

40

45

50

55

65

32

this access. the cache is not searched for the required data.
A memory access is started for reading or writing the data in
memory. No block is allocated in the cache for this data.

Instruction ROM accesses may be optionally supported.

These accesses are serviced by an instruction cache as a
regular memory read access. In case of a miss the memory

bus access is designated as a ROM access. The ICU can be
programmed to ignore ROM accesses.

Input/Output accesses may be optionally supported and
treated by a data cache as non-cacheable accesses. The ICU
transfers the access to the memory bus with the I/O indica-
tion. The ICU can be programmed to ignore Input/Output
accesses.

Coprocessor transfers are ignored by the data cache.

Also supported is a memory access which can be specified
as an interlock access. This is done by setting the *LOCK
input. An interlock access can be used to access semaphores
and other synchronized shared variables. Interlock accesses
are controlled by the Modb Register.

An Instruction memory access as Data is supported. This
is a special data access used for reading and writing the
contents of an instruction memory. It is indicated by a
special code on the OPT inputs.

A Debug Module Access is also supported. This is a
special data access used for accessing the RISC/SIP debug
module. It is indicated by a special code on the OPT inputs.
The ICU drives the *CRDY signal for this access. *CRDY
is driven HIGH for four cycles, and then asserted for one
cycle. This is done in order to enable the insertion of the
debug module in the cache system, without affecting the
processor’s *RDY logic.

In addition to all the above, a Cache Instruction access 1s

supported. This access is used for transferring processor bus
cache instructions to the ICU.

Turning to Memory Bus accesses, it should be understood
that the memory bus is used by both the ICU master cache
and slave caches. The memory is accessed by an ICU bus
master, by issuing a memory bus access. The ICU gets the
bus mastership by asserting the *MBUSR (bus request)
output and waiting for *MBGRT (bus grant). A ICU bus
slave can monitor the memory bus accesses for cache
consistency purposes. Cache instructions can be activated by
special accesses on the memory bus.

Read accesses, write accesses and read for modity
accesses will now be described as supported by the ICU.

A memory bus read access 1s initiated by a cache master
for reload operation and for non-cacheable accesses. All
reload operations use access length of words. For non-

cacheable accesses, the access type and appropriate length
are transferred from the processor bus to the MDLN,

MREQT and *MLOCK memory bus signals. A burst mode
access is used for the reload operation if more than one word
is required. A single access is used in all other cases.

The reload operation is dependent on the original proces-
sor bus operation. It is different for the cases of single

accesses and burst mode accesses.

For the case of cache miss on a processor bus single
memory read operation, the starting and ending addresses, as
well as address wrap around or no wrap around, are con-
trolled by the Single Miss Control (SMC) and Sub-block
Size (SBS) fields of the Moda Register.

For the case of a cache miss on a processor bus burst mode
read access, a burst mode access is started on the memory
bus, for the reload operation. The reload starting address is
always the one of the missed word. The burst end address is
controlled by the Moda Register.

3,627,992

33

When the ICU is the bus master, and it issues a read
request for reload operation, the *VSI input has a special
function. If it is asserted before the transaction is completed
(the last *MRDY has not been accepted), then the BSTC
signals are latched, and a special Write Block Status instruc-
tion is executed.

The operation of a slave cache for memory bus read
accesses is described with reference to ICU multiprocessor
support, to be set forth hereinafter.

Turning to write accesses. A write operation is initiated by
the cache master for write-through and non-cacheable write
accesses, modified block copy-back to memory, and shared
block write hit operations. A burst mode access 1s initiated
for the modified block copy-back operation, and for burst
mode write accesses on the processor bus. A single access is
initiated in all the other cases. For single accesses, the access

type and length are transferred from the processor bus to the
MDLN. MREQT and *MLOCK memory bus signals.

A burst mode write access on the memory bus starts at the
required initial word address and stopped at the last word
which 1s required to be written to the memory. It is not
affected by the Moda options as in the case of burst mode
read accesses.

In the case of a hit to a shared block, a write-through
operation is initiated under control of the Modb register
depending on the value of the register’s write shared hit
control field.

The operation of a salve cache for memory bus write
accesses is.also described hereinafter with reference to ICU
multiprocessor support.

A read for modify is a special read operation. It is used by
the ICU in the case of a miss on a copy-back write operation,
under control of the Modb register. The master cache

indicates that the block is going to be modified after the read
is completed. In all other respects the master operation is

simifar to the read access.

When the ICU is the bus master, and if issues a read for
modify request for reload operation, the *VSI input has a
special function. If it is asserted before the transaction is
completed (the last *¥MRDY has not been accepted), then the
BSTC signals are latched, and a special Write Block Status
instruction is executed.

The operation of a slave cache for memory bus read for
modify accesses is also described hereinafter with reference
to ICU multiprocessor-support.

Two more operations are supported by the preferred
embodiment of the ICU, a Write Broadcast operation and a
Memory Bus Cache Instruction access.

A write broadcast operation is initiated by the ICU only in
the case of a write hit to a shared block, under Modb
Register control. The ditterence between a write broadcast
and a regular write 1s that in write broadcast the memory is
not updated. In all other respects the operation is similar to
the write access.

A memory bus cache instruction access may be initiated
on the memory bus by external logic. When the ICU is not
the bus master, the assertion of *VSI causes a cache instruc-
tion transaction on the memory bus. During the first cycle of
the transaction, the MWR, MREQT, BSTC signals, and the
address are latched. The MWR and MREQT signals specify
the instruction. The BSTC signals specify the block status
for the relevant instructions. The address is used as the
address operand for the relevant instruction. If the instruc-
tion requires data operand, the data is latched during the
second cycle.

10

15

20

25

30

35

40

45

50

35

65

34

The preferred embodiment of the ICU follows the fol-
lowing priority rules with respect to the different cache
accesses:

1. All accesses are serviced on a first come first serve
basis.

2. A second access may be started in pipeline while the
first completes. The tag and memory arrays can service a
different access every cycle.

3. It two accesses, one on the processor bus and one on the
memory bus, requires a tag array access at the same time, the
processor bus access has the priority only if it is a primary
(not pipelined or continued burst) memory access. The
memory bus access has the priority in all other cases.

4. The responses to the processor bus accesses are always
in the order that they were received. If a pipelined or burst
continuation access hit in the cache, the response is delayed
until the primary access completes. Note that the pipelined
or burst continuation can complete after the response of the
primary access has been sent but before it was fully com-
pleted. This happens for primary write accesses before the
write is executed on the memory bus, for reload operation
after the required data has been sent to the processor and in
some of the special instructions execution.

It should now be clear to those skilled in the art that the
ICU’s special registers can accommodate programimable
option selection and status reporting. Cache policies can be
selected by using programmable options. The cache write
policy can be programmed as write-through, copy-back or
flexible on a per access basis. A write allocate or non-write
allocate option can be selected. The replacement algorithm
can be programmed as LRU, random or external. A flexible

prefetch policy can be selected. Read through option can be
enabled. A four word read buffer is incorporated to support

efficient prefetching and read operations.

The option bits, as indicated hereinbefore, are defined for
options selection and stored in the Moda register.

As previously indicated, by comparison with the preload
instruction, a prefetch operation is defined as the fetching of
a variable or an instruction before it is required. The ICU
includes the hardware to support several programmable
prefetch options. It also includes a memory read buffer
which is used as a prefetch buffer. Prefetched words can be
saved 1n the prefetch buffer if the cache array is not available
tor the update. Each of the following prefetch options can be
used independently or in any combination.

The simplest form of prefetching can be achieved by
using a sub-block size larger than one word. The ICU
reloads the sub-block in the case of a miss. The words in the
same sub-block of the required word are prefetched.

The Moda Register controls the operation of the ICU for
single access miss.

The Moda register also controls the ICU operation for a
miss on a burst mode access. If the burst is suspended by the
processor, the cache can prefetch more words before stop-
ping the memory bus burst. In this case the prefetch can

proceed up to the end of the same sub-block or the next
sub-block.

The Moda register also enables the prefetch option for
single access cache hits and burst access cache hits.

In addition to prefetch, a reload operation is defined and
under the control of the programmable Moda register.

The reload operation is dependent on the original proces-
sor bus operation. It is different for the cases of single
accesses and burst mode accesses.

For the case of cache miss on a processor bus single
memory read operation, the starting and ending addresses as

3,627,992

33

well as address wrap around or no wrap around are con-
trolled by the Moda register.

For the case of a cache miss on a processor bus burst mode
read access, a burst mode access is started on the memory
bus, for the reload operation. The reload starting address is
always the one of the missed word. The burst end address is
also controlled by the Moda register.

Next, before turning to the detailed description of how the
ICU supports multiprocessor operations, the ICU write
buffer and ICU initialization and reset criteria will be set
forth.

The ICU incorporates a 4 location write buffer. It can
buffer up to four write accesses (address, control and data).
The write buffer can be disabled by setting a bit in the Moda
register.

When enabled, the write buiter is used for buffering write
accesses on the memory bus. For write-throngh and write
broadcast accesses, four individual write accesses can be
buffered. The writes wait in the write buffer until the bus is
available. This can improve the pertormance significantly
for a write-through cache, or if there are many write broad-
cast operations.

The write buffer is also used for buffering a modified
block before it is written to the memory. In the case of a
miss, if a modified block is chosen for replacement, it is
placed in the write buffer. The read for the missed sub-block
is started before the write. This feature enables the ICU to
respond faster to the processor request.

When the write-buffer is full, the ICU can still service one
more cache access as long as the memory bus is not required
(read hit or copy back write hit). If the memory bus is
required for another write operation, the cache holds until

there is one available space in the write buffer for the write.
All other requests are serviced only after the write bufter is

empty. This is required in order to guarantee correct
sequencing of requests, i.e. a miss on memory read waits
until all the writes are executed. in order to read an updated
memory.

When the write buffer is disabled no write accesses are
buffered. The write operation on the memory bus is started
as soon as the bus is available. The ICU can still service one
more cache access as long as the memory bus is not required

(read hit or copy back write hit). If the memory bus is
required, the cache holds until the previous write operation

1S completed.

As for initialization, the ICU must be initialized when
power is first applied. It can be also initialized at some later
point in time, when required.

There are two methods to initialize the ICU, assert the
*RESET input or issue a Reset instruction. The two methods

have exactly the same effect on the ICU. A special 1nitial-
ization sequence is performed, according to the preferred

embodiment of the invention, as follows:

1. Any, in progress, cache operation or cache instruction
is suspended.

2. Any memory bus operation is suspended.

3. Chip Select disable and chip select for memory access
enable bits, stored in the Chip Select Mapping Register, are
reset.

4. Bits indicating instruction and operand validity, stored
in the Instruction Register, are reset.

5. A bit indicating instruction count validity, stored in the
Count Register, is reset.

6. The parity error, memory error, illegal instruction and
protection violation bits of the Status Register are reset.

10

15

20

25

30

35

40

45

50

35

65

36

7. All the Moda register bits except for Read Only
Memory Enable (ROME) and the bit indicating whether the
cache is an instruction or data cache (ID bit) are reset.

8. All the Modb register bits are reset.

0. All the valid bits are reset.

The following conditions should be kept for a proper reset
operation:

1. The *IREQ input of all ICU data caches in the systeirx
should be connected to LOW level. The *IREQ of all
instruction caches should be connected to the *IREQ output
of the processor.

2. The DREQT1 of only one instruction cache shouid be
connected to High level, if the Reset ROM 1s placed on the

memory bus. All DREQT1 should be connected to LOW
level if the Reset ROM is placed on the processor bus.

3. The Chip Select Mapping Register of different ICUs
should be programmed to respond to different addresses for
memory accesses and cache instruction accesses. This can
be done by using the *CSEL input. A simple configuration
that does not require external hardware is possible. The
*CSEL input of different caches can be connected to differ-
ent address bits and use the appropriate addresses. After the
initial register programming is completed, the *CSEL input
can be disabled.

4. The programming of the ICU registers should be the
first sequence of operations after Reset. No memory (except
from instruction ROM accesses), /O or coprocessor
accesses should be performed betfore the ICUs are config-
ured according to the specific system.

5. If a data transfer controller (DTC) as described in the
incorporated copending application related to the DTC, is
present in the system, the Modb register should be pro-
grammed before any DTC access is performed. If the DTC
is placed on the processor bus, it should be programmed to
respond to I/0 addresses (the ICUs should be programmed
to ignore I/O accesses).

Turning now to the multiprocessor support features of the
ICU.

The main problem, from a cache point of view, of
multiprocessor organizations is the data consistency prob-
lem. This problem occurs if more than one cache contain a
copy of the same memory location, and it is modified in one
of the caches by its processor. The other caches then contain
staled (not updated) copy of the data. The novel ICU
architecture addresses these problems. It will be recognized
by those skilled in the art that the multiprocessor support

constructs incorporated in the novel ICU can be applied in
other multiprocessor cache environments as well.

The basic philosophy behind ICU muitiprocessor support
is to include extensive features in order to enable a high
performance and high efficiency multiprocessor cache sys-
tem. The features include enough flexibility so that the ICU
imposes minimal restrictions on the multiprocessor system
organization. The selection of the appropriate way to use the
multiprocessor support features is simple. It is done under
software control by programming option bits in the on chip
special registers.

Reference should now be made to FIG. 4.

A typical simplified shared bus multiprocessor system
diagram is shown in FIG. 4. Two or more processor clusters
can share the same memory bus (two are shown in the
figure). Each processor cluster consists of one processor and
two ICUs. One ICU is used for instruction cache and the
other for data cache. The processor address bus (A) is shown
connected to the address bus of the two ICUs (A). The

|

5,627,992

37

processor instruction bus (I) is connected to the cache bus
(CB) of the instruction cache. The processor data bus (D) is

connected to the cache bus (CB) of the data cache. The
memory bus (MEMAD) of the ICUs are both connected to

the shared memory bus. Many variations of this basic
diagram are possible without departing from the scope or
spirit of the invention.

It should be recalled that. according to the preferred
embodiment of the invention, two block status bits and four
valid bits are associated with each cache block. The valid
bits indicate the validity of the words in the block. Each
valid bit corresponds to one word. If at least one valid bit is
set then the block is valid and the block status bits indicate
a valid status. If ali the valid bits are reset, the block is in a
non-valid status, and the block status bits are irrelevant. The
block status bits are named shared and modified bits. The
shared bit indicates if the block is shared by more than one
processor, or present in more than one cache. The modified
bit indicates if the block is modified relative to the main
memory. The two bits are independent and a valid block can
be assigned with the following statuses:

Block status bits

value (shared, modified) Meaning

00 Exclusive non modsfied
01 Exclusive modified

10 Shared non modified

11 Sahred modified

It should also be recalled that non-cacheable data is a data
variable which is not cached. A non-cacheable processor bus
access 1s indicated to the ICU, ASTC 1nputs. For this access,
the cache is not searched for the required data. A memory
access is started for reading or writing the data in memory.
No block is aliocated in the cache for this data. Non-
cacheable data can be assigned on an access by access basis.
Usually, the ASTC inputs are connected to the MMU
programmable (MPGM) outputs of the processor. In this
case, the non-cacheable data is assigned on a MMU page
basis. The non-cacheable data should be placed in a location
assigned by the system as non-cacheable. One way to solve
the data consistency problem is to assign shared variables as
non-cacheable.

A processor bus memory access can also be specified as
an interlock access. This is done by setting the ICU *LOCK
input. Interlock accesses are controlled by the Modb Reg-
ister and can be designated as cacheable or non-cacheable
accesses.

In a multiprocessor environment, interlock variables can
be used for synchronization, and synchronized communica-
tion. These variables are accessed in a synchronized way.
They can be written by only one processor at any given time.
A detailed description of the ICU support for interlock
accesses will be set forth hereinafter.

The ICU supports flexible write-through and copy-back
write policies. These write policies can be assigned either
globally or on an access by access basis. The Moda Register
controls the global write policy. It can specify the flexible
write-through or copy-back policy. The ASTC inputs define
the write policy on an access by access basis. The access can
be assigned as an exclusive write-through, exciusive copy-
back, or shared. In the case of a cache hit, if there is a confiict
between the ASTC inputs shared bit assignment and the
block status shared bit in the cache, the write operation is
controlled by the value on a Processor Shared Bit Control
(PSBC) in the Modb Register. If PSBC is 0, the block status

10

15

20

25

30

35

40

45

50

35

65

38

shared bit is not affected and the write policy is determined
according to the block status. If PSBC is 1, the block status
shared bit 1s assigned according to the ASTC inputs and the
write policy is determined accordingly.

For the case of a shared write access, a write-through or

write-broadcast access is always performed on the memory
bus. In this case, a Write Shared Hit Control (WSHC) field
in the Modb Register, and not the write policy field, controls
the ICU operation.

In a multiprocessor cache environment, the write-through
policy has less problems than the copy-back policy. If
write-through is used, the memory always contains an
updated version of the data. The write-through access can be
also used by other caches to invalidate their own copy.

The processor bus cache instructions can be used by the
system for controlling the cache in a multiprocessor envi-
ronment. Invalidate instructions can be used to invalidate
stale data. Other instructions can be used in more complex
software controlled multiprocessor caches for reading and
writing block status, memory updates, and sending cached
data on the memory bus.

A further multiprocessor support feature of the ICU is
“bus watching”. The novel ICU is capable of watching the
memory bus addresses, and checking if they match an
address in the tag array. This is done transparently to the
processor bus cache accesses. The Read Bus Watch Enable
information in the Modb register, controls (enables or
disables) the bus watching capability for memory bus read
accesses. The Write Bus Watch Enable information in the
Modb register does the same thing for memory bus write
accesses. When enabled, the bus is watched only when the
ICU is the bus slave. In the case of an address match, the
ICU performs operations as controlled by the Read Match

Control and Write Match Control information in the Modb
register.

In the case of a match on memory bus read, the *HIT
signal is asserted by the ICU. The shared block status bit is
set since the block is potentially fetched by another cache.
The Modb Register controls the data intervention operation
and the block status modified bit assignment. The options
are no data intervention, data intervention (modified bit
unchanged) and data intervention (modified bit reset).

When data intervention is disabled, in the case of a match
on memory bus read by another master, the ICU asserts the
*HIT signal, but does not drive the data. The block status
modified information is not changed. When data interven-

tion 1s enabled, if a match is found for a memory bus read

by another master and the block is modified, then the ICU
asserts the *DI output and supplies the required data on the

memory bus. The block status modified bit is either not
changed or reset.

In the case of a match on a read-for-modify access, the
corresponding word is invalidated by the slave caches. In all
other respects the slave cache operation is similar to the case
of a match on regular read access.

For memory bus burst mode accesses the initial address is
latched. The address is incremented and checked in the slave
cache for every single transfer. The slave cache operation in
case of a match is similar to the single access match.

The bus watching for read is essential in the support of the
data consistency ownership schemes to be described in
detail hereinafter.

The data intervention option is required by some of the
ownership schemes. For those schemes, the memory should

be designed to support it. The *DI signal is precharged by

5,627,992

39

the master cache during the first cycle of the access. An
external pull-up resistor should be placed on the *DI signal
in order to hold the precharged HIGH value. The *DI signal
is discharged by the slave caches if data intervention opera-
tion is performed. In this case, the data should not be
supplied by the memory. and the read access should be
cancelled in the memory. Note that the *DI output is valid
two cycles after the address is presented on the memory bus.
The memory cannot respond during these cycles.

In the case of a match on a memory bus write or write
broadcast, the *HIT signal is asserted.

For burst mode write accesses the initial address 1s
latched. The address is incremented and checked in the slave
cache for every single data transfer. The slave cache opera-
tion in case of a match is similar to the single access match.

The bus watching for write is essential in the support of
most of the data consistency schemes.

A description of how block status shared bits are assigned
will now be set forth.

The block status shared bit can be assigned by either
software or hardware control. For software control, the
processor can assign the shared bit by using the ASTC
inputs. These inputs define the shared bit assighment on an
access by access basis. The access can be assigned as an
exclusive write-through, exclusive copy-back, or shared.
Usually the ASTC inputs are connected to the processor
MPGM signals, which are driven according to the MMU
user programmable bits. The shared and exclusive variables
are placed in shared or exclusive pages, and the user
programmable bits for the pages are assigned accordingly.
Depending on the state of the PSBC bit of the Modb register
(referred to hereinbefore), the shared bit can be modified for
every processor access (PSBC=1), or only for the case of
cache miss (PSBC=0).

For hardware control the shared bit can be assigned by
using the *HIT signal, or by using special purpose logic on
the memory bus and the Write Block Status memory bus
cache instruction. The *HIT signal usage in read and write
accesses is controlled by an External Shared Bit Control
(ESBC) field of the Modb Register.

In the case that a master cache uses the *HIT signal, it
precharges it during the first cycle of the memory bus access.
Then, the ¥*HIT signal is placed in three state. An External
pull-up resistor should be placed on the *HIT signal, in order
to hold the precharged HIGH value. The slave caches
discharges it if they find a match in their tag buffer. The
*HIT signal is latched by the master cache when *MRDY is
asserted or two cycles after the memory bus address cycle,
whichever is later. If the *HIT is asserted, then, the variable
is also present in other caches, and the block is assigned with
a shared status. If the *HIT input is not asserted, the variable
is not present in any cache, and the block is assigned with

an exclusive status.

This method is used in some of the ownership schemes.
It guarantees that the shared status reflects the exact state of
the variable. It is shared only if it is present in another cache.
Note that there is a performance price associated with the
use of the *HIT signal. The ICU has to wait for two cycles
until all other caches respond. A special internal cache array
access is also required if the shared bit must be modified.
This should be considered against the advantages, betore
choosing this option.

The Write Block Status memory bus cache instruction,
described hereinbefore, can be used for writing a specific
status to the block status shared bit. This instruction can be
used by external logic for a flexible control of the shared bit.

10

15

20

235

30

35

40

45

50

55

63

40

In the case of a conflict on the shared block assignment
between the above three methods, the operation will be
performed, in the preferred embodiment of the invention,
according to the following priority:

1. Write Block Status instruction.

2. *HIT input control.

3. ASTC inputs control.

For example, if the block is assigned as exclusive by the
ASTC inputs, but a memory bus access is required. The
*HIT input usage is enabled and it indicates that the block
is exclusive. The Write Block Status instruction is also used
during the memory access and assign a shared status. The
block ends up in the shared status.

The different methods of shared block assignments, and

their combinations, are used for the implementation of all
the multiprocessor cache systems supported by the novel

ICU.

Next. ICU operation when a write hit occurs to a shared
block will be described. |

When a write access is directed to a shared block and it
hits in the cache, a special operation should be performed on
the memory bus. The other caches in the system should be
aware of the fact that a shared data variable has been
modified. Their copy should be either invalidated or updated
toreflect the current version of the shared variable. The main
memory can be either written or not. The block status of the
master cache is affected accordingly. The ICU operation on
a write hit to a shared block is controlled by a Write Shared
Hit Control (WSHC) field in the Modb register. One encod-
ing scheme is as follows:

WSHC Master cache Slave cache

value operation operation New block status
00 Write through invalidate exclusive unmodified
01 Write broadcast invalidate exclusive modified
10 Write through update shared unmodified
11 Write broadcast update shared modified

When WSHC=00, the ICU writes through any write hit to
a shared block. The memory is updated and other caches are
invalidated. The block is assigned with the exclusive
unmodified status. Since the block becomes exclusive, fur-
ther writes to the same block can be written only in the
cache. This scheme is effective if a shared variable is written
many times by one processor before needed by other pro-
CESSOrS.

When WSHC=01, the ICU uses a write broadcast trans-
action on the memory bus. The memory is not updated and
other caches are invalidated. The block is assigned with the
exclusive modified status. Since the block becomes
exclusive, further writes to the same block can be written
only in the cache. Since the memory is not updated the
modified bit is set. The data intervention option should be
enabled in order to supply the most current value, when
another master tries to read this block.

When WSHC=10, the ICU writes through any write hit to
a shared block. The memory is updated and other caches are
also updated. If the ESBC is not enabled for write accesses,
the block is assigned the shared unmodified status. If the
ESBC is enabled for write accesses, the block is assigned the
exclusive unmodified or shared unmodified status, according
to the *HIT input. In this scheme all the caches are kept
synchronized, in the expense of memory bus write transac-
tion for each write to a shared block. It is effective if a shared
variable is not written many times by one processor before
needed by other processors.

3,627,992

41

When WSHC=11, the ICU broadcast writes any write hit
to a shared block. The memory is not updated and other
caches are updated. If the ESBC is not enabled for write
accesses, the block is assigned the shared modified status. It
the ESBC is enabled for write accesses. the block is assigned
the exclusive modified or shared modified status, according
to the *HIT input. In this scheme all the caches are kept
synchronized. in the expense of memory bus write transac-
tion for each write to a shared block. It is effective it a shared
variable is not written many times by one processor before
needed by other processors. Since the memory is not
updated the modified bit is set. The data intervention option
should be enabled in order to supply the most current value,
when another master tries to read this block.

The WSHC options are used for the different ownership
schemes. They can be also used for other multiprocessor
cache systems.

The ICU memory bus operation for a copy-back write
miss with write allocate is controlled by a Write Miss
Memory access Control (WMMUOC) bit on the Modb register.
It has no effect on write-through accesses or copy-back
accesses with no write allocate. When WMMC=1, the ICU
uses a read access on the memory bus for fetching the
required sub-block, followed by cache write access. This
access is treated as a separate cache write operation. It
always hits and is written into the cache. If the block is
shared, a memory bus operation is performed according to
the WSHC field of the Modb register. When WMMC=0, the
Read for Modify transaction is used on the memory bus for
fetching the required sub-block. Slave caches invalidate
their copy of the block, in case of a match. The write is
performed in the cache without any memory bus operation.

The WMMUC options are used for the ditferent ownership
schemes. They can be also used for other multiprocessor
cache systems.

The memory bus cache instructions are issued by special
logic on the memory bus. They allow flexible control of the
cache. Cached data can be invalidated, read, and written.
The block status can be read and written. A detailed descrip-
tion of the memory bus cache instructions has been set forth
hereinbefore.

In the multiprocessor environment, the special control
logic should be able to direct the instruction to the appro-
priate ICU. The logic can be designed for any required
multiprocessor system. Specifically, it is required to use this
method, for systems without one shared bus (cross-bar
switch or multi-bus configurations). In these systems the bus
watching facility is not effective, and special logic should
monitor the memory accesses and issue¢ commands to the
different ICUs in the system accordingly. The control logic
can be also designed to implement a specific multiprocessor
scheme which is not directly supported by the ICU.

There are many possibilities for multiprocessor cache
organizations. The ICU is designed to support various
shared memory multiprocessor cache organizations. The
ICU can be also used in a non-shared-memory organization,
but it does not include special hardware support for these
systems. The detailed description to follow sets forth the
main shared-memory organizations which are supported by
the ICU. Variations, combinations and different systems than
the described systems are also possible.

The main shared-memory organizations supported are:
software controlled caches, write-through caches, copy-back
caches with write-through shared variables, ownership
schemes and shared memory with non-shared bus organi-
zations.

10

15

20

25

30

35

40

45

30

33

65

42

For software controlled caches, all the multiprocessor
communications and synchronizations are done under soft-
ware control. The cache consistency 1s maintained by soft-
ware. This can be done by using a combination of non-
cacheable variables, interlock operations (to be described in
detail hereinafter), and the use of cache instructions (e.g.,
invalidate). Shared variables can be either assigned as non-
cacheable or invalidated from the appropriate caches when
they can be modified by another processor. Interlock opera-
tions are used for synchronization. Shared butlers. or mail-
boxes are used for communication.

This 1s a very flexible scheme with no special hardware
requirements or restrictions. It can be used successfully in
systems with small amounts of sharing. However, if the
amount of sharing is high, the system performance can be
severely degraded in this scheme. Many variable cannot be
cached, or big overhead is imposed on cache consistency
maintenance. Another disadvantage of this scheme is that
the cache 1s not transparent to the software, and the infor-
mation about which variables are shared must be known.

Software control can be used in combination with any of the
other multiprocessor schemes.

There are no special programmable options requirements
for this configuration. The Modb register can be pro-
orammed to 0.

For write-through caches, the processors share the same
bus and memory, and all the caches use the write-through
policy. A master cache transfers every processor write opera-
tion to the memory bus. The cache consistency is maintained
by using bus watching for writes. Every write operation on
the shared memory bus is checked in all the slave caches. If
a match is found the corresponding address is invalidated.
This is a simple data consistency scheme. Its main disad-
vantage is that every write cause a memory bus operation.
The performance can be severely degraded because of it.

The memory bus utilization can be much higher so that only
a small number of processors can be placed in the system.

The write bulier can help to reduce these bad effects.

For this option, all the blocks should be assigned as
exclusive write-through, the write policy should be pro-
srammed as write-through, bus watching should be enabled
for write accesses, and the Modb register should specify

invalidate word.

For copy-back caches with write-through shared
variables, the processors share the same bus and memory,
and the caches use a flexible write policy. The exclusive
variables use a copy-back option (placed in a page assigned
as exclusive copy-back). It is the system responsibility, to
insure that only the variables that are used exclusively by
one processor are assigned as exclusive copy-back. Note that
if process migration is permitted, an exclusive variable must
be invalidated in the old processor’s cache.

The shared variables use a write-through option (placed in
a page assigned as exclusive write-through. It is the system
responsibility to assign this status to any variable that might
be shared (including sharing with I/O, or processors with no
cache). Some variables, like I/O, must still be assigned as
non-cacheable. A bus watching for writes scheme (similar to
the one for the write-through caches) is used for maintaining
data consistency. Slave caches invalidate their copy in the
case of match. A possible variation with a better pertfor-
mance is that the slave caches update their copy instead of
invalidating it.

This scheme is based on the assumption that all the shared
variables are known and placed in a write-through or shared
pages. If this is the case, a better performance compared to

5,627,992

43

the write-through scheme can be achieved. However, if the
amount of sharing is high, the disadvantages of the write-
through operations of the shared data become more
significant. and the performance degrades.

Except from the shared and exclusive variable
assignments, bus watching should be enabled for write
accesses and the Modb register should specify invalidate
word. If the slave cache update variation is desired the Modb
register should be programmed accordingly.

Turning to ownership schemes. These schemes are based
on shared memory and shared bus organizations with bus
watching for maintaining data consistency. The basic prin-
ciple of the ownership schemes is that a variable is owned
by only one cache. The owning cache contains the most up
to date version of the variable, and it 1s responsible for
maintaining its consistency. If a variable is not owned by any
cache, then, the memory contains an updated value. In all the
ownership schemes, a variable can be in one of several
(maximum 5) states in a cache. The five possible states
(block statuses) supported by the preferred embodiment of
the ICU are:

1. Exclusive write-through
2. Exclusive copy-back

3. Shared unmodified

4. Shared modified

5. Not valid
Each ownership scheme is supported by a hardware

implemented state machine which controls the state transi-
tions. The different ownership schemes require different
operations in the cases of read match, write match, write hit,
and write miss. Different amounts of hardware support in the
caches and in the system in general are required accordingly.

None of the ownership schemes require software control
of the cache. They allow higher performance at the expense
of more complicated hardware requirements.

There are six ownership schemes well known to those
skilled in the art. They are:

1. Write Once
2. Berkeley
3. Illinois

4. Firefly

5. Dragon

6. Futurebus

One more scheme, known as the Synapse scheme, is very
similar to the Write Once scheme, but it relies on a single bit
tag which is included in the main memory for each cache
block. This scheme is not directly supported by the ICU,
however it can be implemented by using the Write Once
options and some external logic.

Although the details of the various ownership schemes are
well known and taught in printed publications, a short
description of the main features of each scheme will be set
forth for the sake of completeness and to facilitate the
explanation of how these schemes are supported by the ICU.

The ICU directly supports all the above ownership
schemes, and possibly other schemes that may evolve. This
is achieved by selecting the required programmable options.
In all the ownership schemes the write policy is programmed
as flexible. Most of the write accesses can use a copy-back
policy. Bus watching is enabied for both read and write. The
Modb register with the various control fields defined
hereinbefore, may be used to implement the various own-
ership schemes.

In the Write Once scheme, only the exclusive unmodified,
exclusive modified, shared unmodified, land invalid states

10

15

20

25

30

35

40

435

S0

55

65

44

are defined. The shared modified state is not used. The basic
principle of this scheme is that every write which hits in the
cache the first time (write to a shared page) causes a
write-through operation. Then, the block is assigned as
exclusive modified, and further writes can be performed
only in the cache. The slave caches invalidate their own copy
of the block. A copy-back write to an exclusive block sets the
modified bit. An exclusive modified block is owned by the
cache, and data intervention is used in the case that another
cache tries to read it (the memory is also updated and the
block is then assigned as shared unmodified). For this
scheme, all processor accesses should be assigned as shared.
Note that an exclusive block status overrides the shared
indication by the ASTC inputs.

In the Berkeley scheme, only the exclusive modified,
shared unmodified, shared modified, and invalid states are
defined. The exclusive unmodified state is not used. A cache
that contains the exclusive modified or shared modified
block is its owner. In the case of a miss on read, the block
is assigned as shared unmodified. In the case of write hit to
a shared block a write broadcast operation is performed and
the block is assigned as exclusive modified. Other caches
invalidate their own copy of the block. Data intervention is
performed by the owner in the case of read match. For this
scheme, all processor accesses should be assigned as shared.

In the Hlinois scheme, only the exclusive unmodified,
exclusive modified, shared unmodified, and invalid states
are defined. The shared modified state is not used. A cache
that contains the exclusive modified block is its owner. In the
case of a miss on read, the block is assigned as shared
unmodified or exclusive unmodified depending on the *HIT

input. In the case of write hit to a shared block a write
broadcast operation is performed and the block is assigned
as exclusive modified. Other caches invalidate their own
copy of the block. Data intervention is performed by the
owner in the case of read match. Note that the data inter-
vention operation is different from the original Illinois
scheme definition, however the end results are the same. In
the original definition, all caches that contain a copy of the
required data try to intervene. In our case, data intervention
is performed only if the block is modified. If the block is
shared unmodified the data is supplied from the memory. For
this scheme, processor accesses shared bit assignment 1s
irrelevant, since the *HIT signal is used for this purpose.
In the Firefly scheme, only the exclusive unmodified,
exclusive modified, shared unmodified, and invalid states
are defined. The shared modified state is not used. A cache
that contains the exclusive modified block is its owner. In the
case of a miss on read, the block is assigned as shared
unmodified or exclusive unmodified depending on the *HIT
input. In the case of write hit to a shared block a write-
through operation is performed and the block is assigned as
shared unmodified or exclusive unmodified according to the
*HIT input. Other caches update their own data in the
memory array. Data intervention is performed by the owner
in the case of read match. Note that the data intervention
operation is different from the original Firefly scheme
definition, however the end results are the same. In the
original definition, all caches that contain a copy of the
required data try to intervene. In our case, data intervention
is performed only if the block is modified. If the block is
shared unmodified the data is supplied from the memory. For
this scheme, processor accesses shared bit assignment is
irrelevant, since the *HIT signal is used for this purpose.
In the Dragon scheme, all the five block statuses are used.
A cache that contains the exclusive modified or shared
modified block is its owner. In the case of a miss on read, the

J,627,992

435

block is assigned as shared unmodified or exclusive unmodi-
fied depending on the *HIT input. In the case of write hit to
a shared block a write-broadcast operation is performed (the
memory is not updated) and the block is assigned as shared
unmodified or exclusive unmodified according to the *HIT
input. Other caches update their own copy of the data. Data
intervention is performed by the owner in the case of read
match. For this scheme, processor accesses shared bit
assignment is irrelevant, since the *HIT signal is used for
this purpose.

In the Futurebus scheme, all the five block statuses are
used. This scheme 1s a fiexible scheme that allows the
implementation of all the other ownership schemes (with
some shight modifications). The cache operation for the
cases of read and write matches as well as write hit and read
and write miss, are defined with enough flexibility for the
different ownership schemes implementations. The use of
the *HIT signal is also optional. The Futurebus scheme is
fully supported by the ICU’s fiexibility. The ICU includes
more flexibility than required by the Futurebus scheme so
that some of the limitations, like memory update on data
intervention and write broadcast support, are removed. For
this scheme, processor accesses shared bit assignment can be
performed either by software assignments or using the *HIT
signal.

Turning, finally, to shared memory with no shared bus
organizations. First, it should be noted that the bus watching
capabiity 1s useful only in a shared bus multiprocessor
organization. Other shared memory organizations which
include multiple buses or a cross-bar switch, are also sup-
ported by the ICU. These organizations are required when
the shared bus becomes a bottleneck in the system. In this
case, they enable a larger number of processors and better
performance.

The basic support for these organizations are the memory
bus cache instructions. A detailed description of the memory
bus cache instructions has been set forth hereinbefore.
External control logic is required for monitoring memory
accesses and issuing the cache instructions to the appropriate
ICU. This logic may be designed according to the specific
system organization. It should be capable of monitoring all
main memory accesses (this function can be placed in the
memory controller). Then, according to global information,
a memory bus cache instruction can be directed to the
appropriate cache. The details of such an implementation are
system. dependent, not a part of the invention, and many
variations are possible. In order to illustrate the ICU support
for these organizations some basic functions will now be
described.

When one cache tries to read a block from the memory,
the control logic can use the Write Block Status instruction
in order to designate the block as shared or exclusive. If the
updated version of the required variable is not present in the
memory but in one of the caches, the Send Word, Send Word
it Modified, or Send Block if Modified can be used in order
to receive the updated version.

When a shared variable which is present in some of the
caches is written by one of the processors, the ICU can be
programmed to either write-through or write-broadcast the
write information. An Invalidate Word, Invalidate Block, or
Write In Cache instruction can be used in order to invalidate
or update the copy of the other caches.

The block status of any cache block can be read or written
whenever necessary by using the Read Block Status and
Write Block Status instruction. This can be done by the
control logic, in order to gather information on caches
contents or specify block statuses.

10

15

20

25

30

33

40

45

50

35

635

46

Some of the programmable options can be also used for
these organizations, in order to specify the ICU operation in
the cases of shared hit, read and write miss. The bus
watching can be used if the special logic is designed to issue
read and write operations on the ICU memory bus, instead
of memory bus cache instructions.

In a multi-bus organization, a combination of the bus
watching and the memory bus cache instruction can be used.
Bus watching can cover the data consistency of the caches
that share the same bus. Special logic is required to transfer
the relevant accesses or issue memory bus instruction to the
appropriate caches, for inter bus data consistency, i.c., an
operation on one bus which affect data in a cache placed on
another bus. The design of the special logic is well within the
capability of those skilled in the art and outside the scope of
the instant invention.

In order to complete the description of the novel ICU, its
interlock facility will be described in detail. First, however,
more generally then in the ICU context, one skilled in the art
will appreciate that interlock variables are used for sema-
phores and other synchronization variables in a multipro-
cessor or multitasking environment. Synchronization vari-
ables can be also used as a protection key for a shared
memory area. The accesses to the interlock variables should
be synchronized. Only one processor should be allowed to
access interlock variables at any given time. Any read of an
interlock variable should return the most up-to-date value of
the variable.

In order to support interlock variable accesses, the pro-
cessor should include some type of atomic read-modify-
write operation. This allows checking and affecting a vari-
able by a processor in an atomic way, while no other
processor can interfere. In a system which includes cache
memories, the interlock variables create a special problem,
since their access should be synchronized independently of
the cache.

A simple solution to this problem is to assign all the
interlock variables as non-cacheable. In this case, the inter-
lock variables are not allowed to be cached, and all interlock
accesses are directed to the memory. This method is used in
most of the known cache systems. The main disadvantage is
the lower performance, and the higher bus utilization,
caused by the interlock variables accesses to the memory. As
the number of interlock accesses grows, the impact on the
performance can become severe.

The novel ICU and indeed the interlock facility to be
described hereinafter which is novel in its own right, allows
for the caching of interlock variables. This allows a better
pertormance and lower bus utilization to be achieved. Most
of the interlock variable accesses are faster and do not
appear on the memory bus, since the access is done only in
the cache. The scheme is simple and can be implemented on
the single chip ICU.

There are several ways to guarantee the synchronization
associated with interlock variables. The processor associated
with the illustrative embodiment of the invention includes
the basic operations required for efficient interlocking. These
are described in detail in the incorporated, processor related
copending application, and specifically are the LOADSET,
LOADL and STOREL instructions, the LK bit in the Current
Processor Status Registers, and the *L.LOCK output. The ICU
implements two schemes for handling interlock variables.
The desired scheme can be selected by programming the
Cache Interlock Enable (CILE) bit of the Modb register.

When the CILE bit is LOW, caching interlock variables is
disabled. Interlock accesses (*LOCK bit asserted) are
treated as non-cacheable addresses. The cache is not

5,627,992

47

searched for a hit and the access is transferred with the lock
indication (*MLOCK asserted) to the memory bus. In this
option the interlock variable handling is under the memory
control. The memory should disable any access to the

interlock variable while the *MLOCK signal is asserted. A 5

LOADSET instruction can be used for testing and setting the

interlock variable in the memory.

When the CILE bit is HIGH, the facility for caching
interlocked variables is enabled. This is a special facility,
built into the ICU to enable more efficient handling of
interlock variables. It is compatible with the processor and
takes advantage of the processor’s different interlock basic

operations.
The interlocked read and write operations (*LOCK 1is

asserted) are treated in a special way. An interlocked read
(generated by the processor for the LOADL and LOADSET
instructions), is treated as a miss, unless it hits in a shared
block. A reload operation is started on the memory address
bus with *MLOCK asserted. The read data is stored in the
cache and the block assigned as shared. For a shared block

hit, the data is supplied by the cache with no memory
address bus access.

An interlocked write operation is treated differently for
the processor STOREL than the write of the LOADSET
instructions. The ICU can distinguish between the two types
of interlock writes according to the state of the *!LOCK input
in the cycle preceding the write access. If the *LOCK bit
was set, it means that the interlock write is the write of a
LOADSET instruction. If it was not set, then this is a write
of STOREL.

For the STOREL write interlocked, the ICU initiates a
write-through operation to the memory. In case of a cache hit
the block is invalidated.

For the LOADSET write interlocked. the data is written
into the cache. The data is written also to the memory only
if the read access of the LOADSET instruction generated a
miss. This guarantees that the memory will be written only
for the first time that the interlocked variable is read.

For both cases, the *MLOCK output is asserted during the
memory write operation. All other caches invalidate their
own copy. when a write with *MLOCK asserted is per-
formed by another master. -

There is a special way in which the processor should
access interlock variables if the interlock facility is enabled
(variations might be possible). The LOADSET instruction is
used in order to test and set an interlock variable. If the
variable value is 0, it is not busy and can be used by the
processor (or the process). Note that as a result of LOAD-
SET instruction a sub-block is loaded into the cache. This
sub-block includes the interlock variable (word) and possi-
bly some other words if the sub-block size is greater then
one. The user can take advantage of this fact and place
related information in the same sub-block of the interlocked
variable.

If the variable value is 1, it is busy and it (or the area that
it protects) cannot be used. The program can either use a
busy wait scheme and continue the testing until the variable
is free, or do other operation (or tasks) and check the
variable later. The testing of the variable is done by using the
LOADSET instruction.

The master ICU uses the memory address bus only for the
first LOADSET instruction. The variable is read from
memory and placed in the cache with the shared block
status. The first write of the LOADSET is also written to the
memory. The next LOADSET instructions hit in the cache
(in most cases) and do not use the memory address bus.
Other caches invalidate their own copy in case of a match on
a write with *MLOCK asserted.

i0

15

20

23

30

35

40

45

50

35

65

48

The STOREL instruction is used for the release of an
interlocked variable. As a result of the STOREL instruction
a write access with *MLOCK asserted is initiated on the
memory address bus by the master cache, and the variable

is invalidated in all the other caches. If the variable is still
in the master cache, it is also invalidated. This is done to
guarantee that the next access to this variable by the pro-
cessor will be a miss. The variable will be read from the
memory in order to get the most up-to-date value. Note that
during the usage of an interlock variable by the master
cache, if another processor is trying to test the same variable
at the first time (using LOADSET), the write of the LOAD-
SET is issued on the memory address bus and variable
invalidated in all other caches (including the master cache).

All the other processors that have been waiting for the
variable have to access the memory when they next test it.
Only the one cache that wins in the bus arbitration gets the
free interlocked variable.

The main advantage of using the interlock facility is better
performance and lower memory bus utilization. In a multi-
processor system with many interlock variable accesses a
significant performance improvement can be achieved by
using it. Another advantage is that the memory controller
can treat interlock accesses as regular accesses.

It should also be noted that the interlock facility can be
implemented with other then the RISC/SIP processor
defined in the relevant copending application referred to
herein.

What has been described herein include the novel ICU per
se, along with the novel organization of the ICU for fiexible
cache system design, a novel cache interlock facility, a novel
and flexible multiprocessor support scheme and a preload
scheme for integrated cache memories. The details of the
above have been set forth in terms of the novel ICU’s
function, its internal registers, inputs and outputs, sample
instruction sets, data formats, programmability, types of
systems supported, etc. In view of this presentation, those
skilled in the art will readily appreciate that the objectives of
the invention, set forth hereinbefore, have been met.

The foregoing description of a preferred embodiment and
illustrative examples of the novel methods and apparatus has
been presented for the purposes of illustration and descrip-
tion only. It is not intended to be exhaustive or to limit the
invention to the precise form disclosed, and obviously many
modifications and variations are possible in light of the
above teaching.

The embodiment and examples set forth herein were
presented in order to best explain the principles of the instant
invention and its practical application to thereby enable
others skilled in the art to best utilize the instant invention
in various embodiments and with various modifications as
are suited to the particular use contemplated.

It is intended that the scope of the instant invention be
defined by the claims appended hereto.

What is claimed is:

1. A cache memory subsystem operable in a write-through
write mode and a copy-back write mode, said cache memory
subsystem comprising:

a storage array containing a plurality of blocks;

a plurality of cache block status fields, wherein each of
said plurality of cache block status fields corresponds to
an individual block in said storage array;

a translation lookaside buffer configured to identity a page
of addressed information and including a page write
policy field corresponding to said page of addressed
information, said TLB write policy field capable of
being set in a first TLB write policy state associated

),627,992

49

with satd write-through write mode and in a second
TLB write policy state associated with said copy-back
write mode, wherein said page of addressed informa-
tion includes multiple blocks;

one or more write policy pins capable of being placed in
a first write policy pin state associated with said write-
through write mode and in a second write policy pin
state associated with said copy-back write mode; and

a cache control unit for controliing a transfer of data when
a write hit operation to a particular block in said storage
array occurs, wherein said cache control unit is con-
figured to effectuate said transfer of data in either said
write-through write mode or in said copy-back write
mode depending upon a state of a cache block status
field corresponding to said particular block, and
wherein said cache control unit is further configured to
update said state of said cache block status field accord-
ing to a state of said one or more write policy pins in
response to one read or write cache operation and
according to said TLB write policy field in response to
another read or write cache operation, and wherein said
state of said one or more write policy pins is indepen-
dent of said TLB write policy field.

2. The cache memory subsystem as recited in claim 1
wherein said cache control unit is configured to set said state
of said cache block status field to indicate said write-through
write mode if said one or more write policy pins are placed
in said first write policy pin state, even it said TLB write
policy field is set in said second TLB write policy state.

3. The cache memory subsystem as recited in claim 1
further comprising a write buffer coupled to said storage
array wherein said write buffer is configured to store an
evicted cache block prior to said evicted cache block being
written back to a main memory and subsequent to said
evicted cache block being removed from said storage array.

4. The cache memory subsystem as recited in claim 1
wherein said cache block status field is indicative of whether
said particular block in said storage array contains modified
data.

5. The cache memory subsystem as recited in claim 1
wherein said cache block status field is indicative of whether
said particular block in said storage array contains shared
data.

6. A cache memory subsystem operable in a write-through
write mode and a copy-back write mode, said cache memory
subsystem comprising:

a storage array containing a plurality of blocks;

a plurality of cache block status fields, wherein each of
said plurality of cache block status fields corresponds to

an individual block in said storage array;

a translation lookaside buffer configured to identify a page
of addressed information and including a TLLB write
policy field corresponding to said page of addressed
information, said TLLB write policy field capable of
being set in a first TLB write policy state associated
with said write-through write mode and in a second
TLB write policy state associated with said copy-back
write mode, wherein said page of addressed informa-
tion includes multiple blocks;

one or more write policy pins capable of being placed in
a first write policy pin state associated with said write-
through write mode and in a second write policy pin
state associated with said copy-back write mode; and

a cache control unit configured to update a state of a cache
block status field corresponding to a particular block of

said storage array depending upon a state of said one or

10

15

20

23

30

35

40

45

50

55

65

50

more write policy pins during one read or write cache
operation and depending upon said TLB write policy
field during another read or write cache operation, and
wherein said cache control unit is further configured to
subsequently effectuate a transfer of data in either said
write-through write mode or in said copy-back write
mode dependent upon said state of said cache block
status field, and wherein said state of one or more write
policy pins is independent of said TLLB write policy
field.

7. The cache memory subsystem as recited in claim 6
wherein said cache control unit is configured to effectuate

said transfer of data in response to an occurrence of a write
hit to said particular block of said storage array.

8. The cache memory subsystem as recited in claim 6
wherein said cache control unit is configured to set said state
of said cache block status field to indicate said write-through
write mode if said one or more write policy pins are placed
in said first write policy pin state, even if said TLB write
policy field is set in said second TLB write policy state.

9. The cache memory subsystem as recited in claim 6
further comprising a write buffer coupled to said storage .
array wherein said write buffer is configured to store an
evicted cache block prior to said evicted cache block being
written back t0 a main memory and subsequent to said
evicted cache block being removed from said storage array.

10. The cache memory subsystem as recited in claim 1
wherein said cache block status field is indicative of whether

said particular block in said storage array contains shared
data.

11. The cache memory subsystem as recited in claim 6
wherein said cache block status ficld is indicative of whether

saild particular block in said storage array contains modified
data.

12. A cache memory subsystem for use in a computer
system including a translation lookaside buffer said cache
memory subsystem comprising:

a block status array including a plurality of storage
locations wherein each of said plurality of storage
locations is configured to store a status field associated
with a corresponding cache block, wherein said status
field is capable of being set to a first state indicative of
a write-through write mode and wherein said status
field is capable of being set to a second state indicative
of a copy-back write mode;

a first input configured to convey a first write-through
status value indicative of said write-through write mode
and to convey a first copy-back status value indicative
of said copy-back write mode, said first input for
receiving said first write-through status value or said
first copy-back status value from said translation looka-
side buffer;

a second input configured to convey a second write-
through status value indicative of said write-through
write mode and to convey a second copy-back status
value indicative of said copy-back write mode, wherein
said first input is independent of said second input; and

a control unit coupled to said block status array, wherein
said control unit is configured to cause said block status
array to store a value indicative of a write-through write
mode into said status field of a particular one of said
plurality of storage locations, and wherein said control
unit is configured to be responsive to said first write-
through status value conveyed by said first input during
one read or write cache operation, and wherein said
control unit is configured to be responsive to said
second write-through status value conveyed by said
second input during another read or write cache opera-
tion.

3,627,992

51

13. The cache memory subsystem as recited in claim 12
wherein said control unit is further configured to cause said
block status array to store another value indicative of a
copy-back write mode into said status field of said particular
one of said plurality of storage locations, and wherein said
control unit is configured to be responsive to said first
copy-back status value, and wherein said control unit is
configured to be responsive to said second copy-back status
value.

14. The cache memory subsystem as recited in claim 13
wherein said at least one bit when set is indicative of a
write-through state and wherein said at least one bit when
clear is indicative of a copy-back state.

15. The cache memory subsystem as recited in claim 12
further comprising a cache memory storage atray for storing
said corresponding cache block.

16. The cache memory subsystem as recited in claim 135
further comprising a write buffer coupled to said cache
memory storage array wherein said write buffer is config-
ured to store an evicted cache block prior to said evicted
cache block being written back to a main memory and
subsequent to said evicted cache block being removed from
said cache memory storage array.

17. The cache memory subsystem as recited in claim 12
wherein said status field includes at least one bit.

18. The cache memory subsystem as recited in claim 12
wherein said first write-through status value is provided
from said translation lookaside bufter.

19. The cache memory subsystem as recited in claim 12
wherein said first input is further configured to convey a first
non-cacheable value indicative of a non-cacheable state.

20. The cache memory subsystem as recited in claim 19
wherein said first write-through status value and said first
non-cacheable value are provided from said translation
lookaside buffer.

21. A computer system comprising:

a processor including a translation lookaside buffer
capable of storing tag information sufficient to identify
a particular page of information and including a TLB
write policy field within said tag information wherein
said TLB write policy field is capable of being set to a
first TLB write policy state associated with a write-
through write mode and to a second TLB write policy
state associated with a copy-back write mode; and

a cache memory subsystem including:

a first input line configured to convey a write-through
status indicative of said write-through write mode
and to convey a copy-back status indicative of said
copy-back write mode;

a cache block status array configured to store a plurality
of cache block status fields, each block status field
corresponding to an individual cache block and
capable of being set to a write-through state associ-
ated with said write-through write mode and to a
copy-back state associated with said copy-back write
mode; and

a control circuit configured to perform a write-through
operation in response to a write hit to a particular
cache block associated with a cache block status field
which indicates said write-through state and config-
ured to operate in a copy-back mode in response to
said write hit if said cache block status field indicates
said copy-back state, wherein said control circuit is
configured to control said particular cache block
status field in response to storing data to said par-
ticnlar cache block in said cache memory subsystem,
and wherein said control circuit is further configured

10

15

20

235

30

35

40

45

50

33

635

52

to be responsive to said TLB write policy field during
one read or write cache operation and to be respon-
sive to said first input line during another read or
write cache operation, whereby said particular cache
block status field can be set to said write-through
state if said TLB write policy field indicates said first
TLB write policy state and whereby said particular
cache block statue field can be set to said write-
through state if said first input line conveys said
write-through status, and wherein said write-through
status conveyed upon said first input line is indepen-
dent of said TLLB write policy field.

22. The computer system as recited in claim 21 wherein
said control circuit is configured to set said state of said
cache block status field to indicate said write-through write
mode if said first input line conveys said write-through
status, even if said TLB write policy field is set in said
second TLB write policy state.

23. The computer system as recited in claim 21 further
comprising a storage array for storing a plurality of cache
blocks.

24. The computer system as recited in claim 23 turther
comprising a write buffer coupled to said storage array
wherein said write buffer is configured to store an evicted
cache block prior to said evicted cache block being written
back to a main memory and subsequent to said evicted cache
block being removed from said storage array.

25. A cache memory subsystem operable in a write-
through write mode and a copy-back write modes said cache
memory subsystem comprising:

a storage array containing a plurality of blocks;

a plurality of cache block status fields, wherein each of
said plurality of cache block status fields corresponds to
an individual block in said storage array;

a translation lookaside bufter configured to identify a page
of addressed information and including a page write
policy field associated with said page of addressed
information, said TLB write policy field capable of
being set in a first TLB write policy state associated
with said write-through write mode and in a second
TLB write policy state associated with said copy-back
write mode;

one or more write policy pins capable of being placed in
a first write policy pin state associated with said write-
through write mode and in a second write policy pin
state associated with said copy-back write mode; and

a cache control unit for controlling a transfer of data when
a write hit operation to a particular block in said storage
array occurs, wherein said cache coatrol unit is con-
figured to effectuate said transfer of data in either said
write-through write mode or in said copy-back write
mode depending upon a state of a cache block status
field corresponding to said particular block, and
wherein said cache control unit is further configured
such that said state of said cache block status field can
be set according to at least a state of said one or more
write policy pins and according to said TLB write
policy field, and wherein said cache control unit is
configured to set said state of said cache block status
field to indicate said write-through write mode if said
one or more write policy pins are placed in said first
write policy pin state, even if said TLB write policy
field is set in said second TLB write policy state.
26. The cache memory subsystem as recited in claim 25
further comprising a write bufter coupled to said storage
array wherein said write buffer i1s configured to store an

5,627,992

S3

evicted cache block prior to said evicted cache block being
written back to a main memory and subsequent to said
evicted cache block being removed from said storage array.

27. A cache memory subsysiem operable in a write-
through write mode and a copy-back write mode, said cache

memory subsystem comprising:

a storage array containing a plurality of blocks;

a plurality of cache block status fields, wherein each of
said plurality of cache block status fields corresponds to
an individual block in said storage array;

a translation lookaside buffer configured to identify a page
of addressed information and including a TLB write
policy field associated with said page of addressed
information. said TLB write policy field capable of
being set in a first TLB write policy state associated
with said write-through write mode and in a second
TLB write policy state associated with said copy-back
write mode;

one or more write policy pins capable of being placed in
a first write policy pin state associated with said write-
through write mode and in a second write policy pin
state associated with said copy-back write mode; and

a cache control unit configured to accommodate a setting
of a state of a cache block status field corresponding to
a particular block of said storage array depending upon
a state of said one or more write policy pins and
depending upon said TLB write policy field, and
wherein said cache control unit is further configured to
subsequently effectuate a transfer of data in either said
write-through write mode or in said copy-back write
mode dependent upon said state of said cache block
status field, and wherein said cache control unit is
configured to set said state of said cache block status
field to indicate said write-through write mode if said
one or more write policy pins are placed in said first
write policy pin state, even if said TLB write policy
field is set in said second TLB write policy state.

28. The cache memory subsystem as recited in claim 27
wherein said cache control unit is configured to effectuate
said transfer of data in response to an occurrence of a write
hit to said particular block of said storage array.

29. The cache memory subsystem as recited in claim 27
further comprising a write buffer coupled to said storage
array wherein said write buffer is configured to store an
evicted cache block prior to said evicted cache block being
written back to a main memory and subsequent to said
evicted cache block being removed from said storage array.

30. A computer system comprising:

a processor including a translation lookaside buffer
capable of storing tag information sufficient to identify
a particular page of information and including a TLB

10

15

20

25

30

33

40

45

S0

Tl

write policy field within said tag information wherein
said TLB write policy field is capable of being set to a
first TLB write policy state associated with a write-
through write mode and to a second TLB write policy
state associated with a copy-back write mode; and

a cache memory subsystem including:

a first input line configured to convey a write-through
status indicative of said write-through write mode
and to convey a copy-back status indicative of said
copy-back write mode;

a cache block status array configured to store a plurality
of cache block status fields, each block status field
corresponding to an individual cache block and
capable of being set to a write-through state associ-
ated with said write-through write mode and to a
copy-back state associated with said copy-back write
mode; and

a control circuit configured to perform a write-through
operation in response to a write hit to a particular
cache block associated with a cache block status field
which indicates said write-through state and config-
ured to operate in a copy-back mode in response to
said write hit if said cache block status field indicates
said copy-back state, wherein said control circuit is
configured to control said particular cache block
status field in response to storing data to said par-
ticular cache block in said cache memory subsystem,
and wherein said control circuit is further configured
to be responsive to said TLB write policy ficld and
to be responsive to said first input line whereby said
particular cache block status field can be set to said
write-through state if said TLB write policy field
indicates said first TLB write policy state and
whereby said particular cache block status field can
be set to said write-through state if said first input
line conveys said write-through status, and wherein
said control circuit 1s configured to set said particular
cache biock status field to indicate said write-through
write mode if said first input line conveys said
write-through status, even if said TLB write policy
field is set in said second TLB write policy state.

31. The computer system as recited in claim 30 further
comprising a storage array for storing a plurality of cache
blocks.

32. The computer system as recited in claim 30 further
comprising a write buffer coupled to said storage array
wherein said write buffer is configured to store an evicted
cache block prior to said evicted cache block being written
back to a main memory and subsequent to said evicted cache
block being removed from said storage array.

S R T -

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 2:627.9392
DATED . May 6, 1997
INVENTOR(S) © G aror

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Claim 25, col. 52, line 29, please replace "modes" with “mode,”.

Signed and Sealed this
Seventeenth Day of February, 1998

Attest: ﬁ(/kd Zuﬁmw\

BRUCE LEHMAN

Antesting Officer Commissioner o} Patents and Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

