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[57] ABSTRACT

A code translator, constructed similar to a compiler, accepts
as an input to be translated the assembly code written for one
architecture (e.g., VAX), and produces as an output object
code for a different machine architecture (e.g., RISC). The
input code is converted into an intermediate language, and
a flow graph is constructed. The flow graph is referenced by
a flow analyzer for recognizing certain architecture-specific
and calling standard-specific coding practices or idioms that
cannot be automatically converted, particularly relating to
stack usage, register usage, condition codes, and passing
arguments for procedure calls. By tracking stack usage
within routines, the compiler can distinguish up-level stack
and return address references from valid local references.
Also, it can inform the user of stack misalignment, which
has a severe periormance penalty, and can detect code
segments where different flow paths may resuit in different
stack depths at runtime, which may indicate a source code
error. Register usage 1s likewise tracked to determine which
registers are destroyed by a routine, and generate routine
prologue and epilogue code which performs register saves,
as well as provide register “hints” to aid the user in adding
an entry point declaration or documentation for the routine.
The usage of condition codes 1s likewise tracked, by a
backward walk through the flow graph, so that code to
fabricate needed values is generated. In addition, all argu-

ment pointer based memory references in the input code 1s

tracked to determine how the same argument reference may
be made in the target environment.

29 Claims, 12 Drawing Sheets
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TRACKING CONDITION CODES IN
TRANSLATION CODE FOR DIFFERENT
MACHINE ARCHITECTURES

RELATED CASES

The application discloses subject matter also disclosed in
the following copending applications filed herewith and
assigned to the assignee of the present invention:

Ser. No. 666,083, filed Mar. 7, 1991, now U.S. Pat. No.
5,301,325, by Thomas R. Benson, for “USE OF STACK
DEPTH TO IDENTIFY ARCHITECTURE AND CALL-
ING STANDARD DEPENDENCIES IN MACHINE
CODE”;

Ser. No. 666,084, filed Mar. 7, 1991, now U.S. Pat. No.
5,339,238, by Thomas R. Benson, for “REGISTER USAGE
TRACKING IN TRANSLATING CODE FOR DIFEFER-
ENT MACHINE ARCHITECTURES”;

Ser. No. 666,085, filed Mar. 7, 1991, now U.S. Pat. No.
5,307,492, by Thomas R. Benson, for “MAPPING ASSEM-
BLY LANGUAGE ARGUMENT LIST REFERENCES IN
TRANSLATING CODE FOR DIFFERENT MACHINE
ARCHITECTURES”.

BACKGROUND OF THE INVENTION

This invention relates to programs for digital computers,
and more particularly to code translation for conversion of
instruction code which was written for one computer archi-
tecture to code for a more advanced architecture.

Computer architecture is the definition of the basic struc-
ture of a computer from the standpoint of what exactly can
be performed by code written for this computer. Ordinarily,
architecture is defined by such facts as the number of
registers in the CPU, their size and content, the logic
operations performed by the ALU, shifter, and the like the
addressing modes available, data types supported, memory
management functions, etc. Usually, the architectural defi-
nition is expressed as an instruction set, and related elabo-
ration.

As the technology used in constructing computers
evolves, so does computer architecture. Semiconductor
technology has served to make all structural features of a
computer faster, less costly, smaller, lower in power dissi-
pation, and more reliable. In view of such changes in the
economics and performance of the computer hardware, it 1s
necessary to make corresponding changes in architecture to
take full advantage of existing hardware technology. For
example, the CPU data paths have evolved from 16-bit, to
32-bit, to 64-bit. And, as memory has become cheaper, the
addressing range has been greatly extended. A major depar-
ture in computer architecture, however, has been the retreat
from adding more complex and powerful instructions, and
instead architectures with reduced instruction sets have been
shown to provide periormance advantages.

Complex instruction set or CISC processors are charac-
terized by having a large number of instructions in their
instruction set, often including memory-to-memory instruc-
tions with complex memory accessing modes. The instruc-
tions are usually of variable length, with simple instructions
being only perhaps one byte in length, but the length ranging
up to dozens of bytes. The VAX™ instruction set 1s a
primary example of CISC and employs instructions having
onc to two byte opcodes plus from zero to six operand
specifiers, where each operand specifier 1s from one byte to
many bytes in length. The size of the operand specifier
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depends upon the addressing mode, size of displacement
(byte, word or longword), etc. The first byte of the operand
specifier describes the addressing mode for that operand,
while the opcode defines the number of operands: one, two
or three. When the opcode itself is decoded, however, the
total length of the instruction is not yet known to the

processor because the operand specifiers have not yet been
decoded. Another characteristic of processors of the VAX
type is the use of byte or byte string memory references, in
addition to quadword or longword references; that is, a
memory reference may be of a length variable from one byte
to multiple words, including unaligned byte references.

Reduced instruction set or RISC processors are charac-
terized by a smaller number of instructions which are simple
to decode, and by requiring that all arithmetic/logic opera-
tions be performed register-to-register. Another feature 1s
that of allowing no complex memory accesses; all memory
accesses are register load/store operations, and thee are a
small number of relatively simple addressing modes, 1.e.,
only a few ways of specifying operand addresses. Instruc-
tions are of only one length, and memory accesses are of a
standard data width, usually aligned. Instruction execution 1s
of the direct hardwired type, as distinct from microcoding.
There is a fixed instruction cycle time, and the instructions
are defined to be relatively simple so that they all execute in
one short cycle (on average, since pipelining will spread the
actual execution over several cycles).

One advantage of CISC processors 18 in writing source
code. The variety of powerful CISC instructions, memory
accessing modes and data types should result in more work
being done for each line of code (actually, compilers do not
produce code taking full advantage of this). However, what-
ever gain in compactness of source code for a CISC pro-
cessor 1s accomplished at the expense of execution time.
Particularly as pipelining of instruction execution has
become necessary to achieve performance levels demanded
of systems presently, the data or state dependencies of
successive instructions, and the vast differences in memory
access time vs. machine cycle time, produce excessive stalls
and exceptions, slowing execution. The advantage of a RISC
processor is the speed of execution of code, but the disad-
vantage is that less is accomplished by each line of code, and
the code to accomplish a given task is much more lengthy.

One line of VAX code can accomplish the same as many
lines of RISC code.

When CPUs were much faster than memory, it was
advantageous to do more work per instruction, because
otherwise the CPU would always be waiting for the memory
to deliver instructions—this factor lead to more complex
instructions that encapsulated what would be otherwise
implemented as subroutines. When CPU and memory speed
became more balanced, a simple approach such as that of the
RISC concepts became more feasible, assuming the memory
system is able to deliver one instruction and some data in
each cycle. Hierarchical memory techniques, as well as
faster access cycles, provide these faster memory speeds.
Another factor that has influenced the CISC vs. RISC choice
is the change in relative cost of off-chip vs. on-chip inter-
connection resulting from VLSI construction of CPUs. Con-
struction on chips instead of boards changes the econom-
ics—first it pays to make the architecture simple enough to
be on one chip, then more on-chip memory 1s possible (and
needed) to avoid going off-chip for memory references. A
further factor in the comparison is the adding more complex
instructions and addressing modes as in a CISC solution
complicates (thus slows down) stages of the instruction
execution process. The complex function might make the
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function execute faster than an equivalent sequence of
simple instructions, but it can lengthen the instruction cycle
time, making all instructions execute slower; thus an added
function must increase the overall performance enough to
compensate for the decrease in the instruction execution
rate.

The performance advantages of RISC processors, taking
into account these and other factors, 1s considered to out-
weigh the shortcomings, and, were 1t not for the existing
software base, most new processors would probably be
designed using RISC features. In order for software base,
including operating systems and appiications programs, to
build up to a high level so that potential and existing users
will have the advantages of making use of the product of the
best available programming talent, a computer architecture
must exhibit a substantial market share for a long period ot
time. If a new architecture was adopted every time the
technology advances allowed it, the software base would
never reach a viable level. This issue is partly alleviated by
writing code in high level languages; a program written in C
should be able to be compiled to run on a VAX/VMS
operating system, or a UNIX operating system, or on
MS/DOS, and used on various architectures supported by
these operating systems. For performance reasons, however,
a significant amounts of code 1s wriiten in assembly lan-
guage, particularly operating systems, and critical pans of
applications programs. Assembly language programs are
architecture-dependent.

Business enterprises (computer users, as well as hardware
and software producers) have invested many years of oper-
ating background, including operator training as well as the
cost of the code itself, in operating systems, applications
programs and data structures using the CISC-type proces-
sors which were the most widely used in the past ten or
fifteen years. The expense and disruption of operations to
rewrite the code and data structures by hand to accommo-
date a new processor architecture may not be justified, even
though the performance advantages ultimately expected to
be achieved would be substantial.

Code translators are thus needed to ease the task of
converting code written for one computer architecture to that
executable on a more advanced architecture. The purpose of
a code transiator is to take in, as imput, computer code
wriiten for execution on one type of architecture (e.g.,
VAX), and/or one operating system (e.g., YMS), and to
produce as an output either executable code (object code) or
assembly code for the advanced architecture. This 1s pret-
erably to be done, of course, with a minimum of operator
involvement. A particular task of a code translator is to
detect latent error-producing features of the code, 1.e., fea-
tures that were acceptable in the prior use of the code as it
executed on the previous operating system or architecture,
but which may produce errors in the new environment,

SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention, a
code translator 1s constructed in a manner similar to a
compiler, and may indeed be implemented as part of a
compiler. The code transiator accepts as an input the assem-
bly code or source code which 1s to be translated, in a
manner similar to the front end of any compiler. The input
code 1s parsed to determine its content, with the basic
building blocks of the code identified (separated) and con-
verted into an intermediate language. The intermediate lan-
guage version of the code 1s stored in a data structure
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referred to as a flow graph. The flow graph 1s referenced by
flow analyzer techniques and optimization routines, before
generating object code for the target machine, This translator
1S particularly adapted for translating VAX assembly lan-
guage 1nto an advanced RISC architecture.

In translating code of one of the CISC architectures into
code tor a RISC architecture, then appear certain architec-
ture-specific and calling standard-specific coding practices
that cannot be automatically converted. The compiler must
detect these 1dioms and report them (via display or printer)
to allow the user to make manual code changes. Among
these practices, an important one is stack references which
rely on the operation of VAX procedure call instructions. A
VAX procedure call (e.g., a CALLS instruction) uses the
stack to pass arguments, and it has been a coding practice to
use the VAX procedure call in ways that result in errors if
translated literally. By tracking stack usage within routines,

the compiler can distinguish up-level stack and return
address references from valid local references. In addition,
it can inform the user of stack misalignment, which has a
severe performance penalty. Finally, it can detect code
segments where different flow paths may result in different
stack depths at runtime, which may indicate a source code
EITOL.

For each routine being compiled, the compiler builds a
flow graph and visits each basic block in flow order, begin-
ning at the routine entry point. The compiler records the
amount of which the stack pointer is changed in each block,
and maintains the cumulative offset from the routine entry
point. As 1t processes each instruction in the block, it can use
this cumulative offset, along with any stack-based operand
specifiers in the instruction (or stack reference implicit in the
instruction), to distinguish whether the instruction:

reads the return address from the stack
modifies the return address on the stack
removes the return address from the stack

1ssues a JSB procedure call through the return address to
implement a co-routine linkage

makes an up-level stack reference
makes an unaligned stack reference

odifies SP such that it is no longer longword aligned

In each of these cases, the compiler/translator detects
these occurrences so that user can be advised of the specific
usage, and thus the user can make the appropriate changes
to the source code. Multiple flow paths to the same basic
block are also detected; these may result in different cumu-
lative stack depths-—the user can be advised of this occur-
rence, which 1s sometimes an indication of an error in the
original source code, where a value was inadvertently left on
the stack.

Another feature of interest in convening code from one
architecture to another 1s that of register usage. Routines in
VAX assembly language irequently preserve register values
at routine entry points by pushing the values on the stack,
and restored them before routine exit. In other instances,
register values are pushed and popped around a small range
of instructions which are known to destroy them. In code
generated, by the compiler for register saves for an advanced
64-bit RISC architecture, only the low 32-hits of the 64-bit
register can be put on the stack, so that any reference to
higher stack addresses will continue to work. However, this
compiled code will be executing in an environment where
many routines use full 64-bit values, so that a 32-bit save/
restore operation is not sufficient.

Accordingly, in one embodiment of the invention, the
compiler tracks register usage to determine which registers
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are destroyed by a routine, and generate routine prologue
and epilogue code which performs 64-bit register saves. As
a result of this tracking, the compiler can also advise the user
of registers which are input registers to the routine, or appear
to be output registers. These register “hints” can aid the user
in adding an entry point deciaration or documentation for the
routine. A declaration of routine output registers 1s required
so that the compiler does not restore the original register
value after it has been changed; the output register hints may
also be useful in identifying these. The input register hints
may also uncover bugs in which code incorrectly uses
uninitialized register values.

For each basic block in the routine being compiled, the

compiler tracks which registers are read and written by the
instructions in the block. At the same time, it accumulates
the set of registers written for the entire routine. During a
forward flow-order walk through the basic blocks, the com-
piler computes which registers are written but not subse-
quently read, to be reported as possible output registers of
the routine. During backward flow-order walks from all exit
points of the routine, the compiler computers which registers
arc read before being written, to be reported as possible
input registers.

When generating code for the routine, the compiler uses
the list of registers written to determine which should be
saved by routine prologue code. Registers which have been

explicitly declared as routine output or scratch registers are
removed from the set. Routine epilogue code is generated to
perform the register restores. |

According to another feature of one embodiment of the
invention, the usage of condition codes are tracked. Many
computer architectures such as VAX make use of condition
codes (overflow, equal to zero, not equal to zero, etc.)
generated by the ALU and internally stored for later refer-
ence in a conditional branch, for example. Nearly all VAX
instructions modify these condition code bits which are part
of the machine architecture. Other instructions test these bits
to detect conditions such as overflow or perform conditional
branches. In addition, because these bits survive jump-
subroutine (JSB) routine invocations, they are sometimes
used in assembly language as implicit routine parameters or
return status codes (though this 1s not a recommended
coding practice). An advanced RISC architecture has no
condition code bits; instead, when a condition 1s to be
needed, an explicit test 1s made and the result stored in a
register for later use. As a result, when VAX code 1is
translated for this RISC architecture, the compiler must
track condition code usage in source programs so that the
code to fabricate their values is only generated when the
values are actually used. In the vast majority of instances,
the condition codes automatically generated in the VAX
architecture are not actually used, so it would be an unnec-
essary burden to generate all the condition codes. The
translator must also detect the case where condition codes
are used as implicit parameters or status return values and
report it to the user, since that behavior cannot be emulated,
but instead must be recoded. It is also possible that a routine
which uses a condition code value set by its caller may
actually contain a coding error.

To accomplish this condition code tracking, according to
one embodiment, the compiier builds a flow graph of each
routine being compiled. It subsequently walks this graph in
reverse flow order from all exit points, through all basic
blocks, up through the routine entry point, maintaining a
map of which condition codes are “‘required” for instructions
it has processed. At entry to a basic block, the compiler
records which condition codes its successor requires. It then
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examines the instructions in the block in reverse order. If the
instruction sets any condition codes, 1t will remove them
from the “‘required” set, and set corresponding bits in the
instruction data structure, which direct the code generator to
fabricate those condition codes. If the instruction reads any
condition codes, 1t will add them to the “required” set. When
all instructions in the block have been read, the compiler will
record the set of condition codes still “required as “input” to
this block. This will continue through all predecessors of the
current block.

If a JSB instruction is encountered during this reverse-
flow walk through the flow graph, and the “required” set 1s
non-empty, the user 1s informed that condition codes appear
to be used as implicit JSB routine outputs.

It 1s possible and likely that a node will be visited more
than once during these backward walks. When a node is
revisited, the compiler will compare the current “require” set
against the initial set stored by the previous walk, and
terminate the traversal if the required codes were previously
searched for.

After all backward paths have been examined, the com-
piler checks the basic block corresponding to the routine
entry node. If the “input” set 1s not empty for this node, the

user is informed that the routine expects condition codes as

input and that a source code change is required.

Another issue encountered 1n translating code to a differ-
ent machine architecture is the way argument list references
are handled. VAX assembly language routines rely on the
arcument list pointer (AP) established by the VAX CALLS/
CALL instructions to refer to routine parameters. On an
advanced 64-bit RISC machine, there is no architected
argument list pointer, and the calling standard dictates that
parameters are passed in registers, and, if necessary, on top
of the stack. The code translator, according to another
feature of one embodiment of the invention, resolves this
difierence without requiring all arcument list references to
be modified 1n the source code. The argument list references
are mapped across the architectures in making the code
translation.

The compiler examines all AP-based memory references
in the input.code to determine how the same argument
reference may be made in the target environment. Element
0 of the argument list vector represents the argument count
on VAX; in the target RISC architecture, the argument count
appears in a defined register, e.g., the Argument Information
Register (R235). Hence, in this instance, a memory reference
of the form O(AP) will be compiled to an R25 reference. The
first six arguments are received in registers R16—R21 on 1n
the target RISC architecture, so that 4(AP) will be compiled
to use R16, 8(AP) to use R17, etc.

In some cases, the compiler mimics VAX argument lists
by packing the quadword registers and stack arguments into
a longword argument list on the stack. This argument list
“homing” occurs if the compiler detects any AP uses which
may result in aliased references to the argument hist, any AP
references with variable indices, or any non-longword
aligned AP oitsets. In this case, argument list references are
compiled into FP (frame pointer) based references to the
homed list, which is built by code generated for the routine
entry point.

When a CALLS (call subroutine) instruction is encoun-
tered in the input VAX code, the compiler generates code to
copy arguments from the stack, where they have been placed
by the original source code, into the RISC argument regis-
ters. If there are more than six arguments (requiting more
than R16-R21), the seventh and beyond must be copied to
consecutive aligned 64-bit slots on top of the stack. The
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argument information register R25 receives the argument
count, which, on VAX, would have been at O(FP). Corre-
sponding code to clean the stack after the called routine
returns 1s also generated.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as other features and advantages thereof,
will be best understood by reference to the detailed descrip-
tion of specific embodiments which follows, when read in
conjunction with the accompanying drawings, wherein:

FIG. 1 is diagram of the compiler or code translator
functions, according to one embodiment of the invention;

FIG. 2 is an electrical diagram of a host computer for
executing the code translator program of FIG. 1;

FIG. 3 is a diagram of an example of a line of code
translated by the mechanism of FIG. 1 and 2;

FIG. 4 is a diagram of the data structure of a tupie created
in the code translator of FIG. 1;

FIG. 5 is a more detailed diagram of the compiler front
end in the translator of FIG. 1;

FIG. 6 is a listing of a small example of code 1llustrating
the basic blocks or nodes of the code;

FIG. 7 1s a flow graph of the program expressed in the
code of FIG. 6;

FIG. 8 is a listing of another example of code used as the
basis for the example of Appendix A;

FIG. 9 is a flow graph of the program expressed in the
code of FIG. 8; |

FIG. 10 is a logic flow chart of a procedure referred to as
Build_ Flow__Graph, used in the method of the invention,
according {o one embodiment;

FIG. 11 1s a logic flow chart of a procedure referred to as
Analyze__Flow_ Graph, used in the method of the invention,
according to one embodiment;

FIG. 12 is a logic flow chart of a procedure referred to as
Traverse__Graph_Backward, used in the method of the
invention, according to one embodiment;

FIG. 13 is a logic flow chart of a procedure referred to as
Traverse_ Graph_ Backward, used in the method of the
invention, according to one embodiment;

FIGS. 14a and 14b are a logic flow chart of a procedure
referred to as Process_ Forward Node, used in the method
of the invention, according to one embodiment;

FIG. 15 1s a logic flow chart of a procedure referred to as
Process Backward_Node, used in the method of the 1nven-
tion, according to one embodiment;

FIG. 16 is a logic flow chart of a procedure used for
mapping argument list references in translating code to
another machine architecture, used in the method of one
feature of the invention, according to one embodiment.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENT

Referring to FIG. 1, the code translator or interpreter 10
according to one embodiment of the invention resembles a
compiler, and includes a portable operating system interface
referred to as the shell 11, as well as a {front end for
converting the code and a back end, with optimizer and code
generator, as is the usual practice The shell 11 may be
portable in that can be adapted to function with any of
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several operating systems such as VAX/VMS, Unix, etc.,
executing on the host computer 12. The shell 11 Operates
under this host operating system 13 executing on a host
computing system 12 of various architectures, as seen in
FIG. 2, typically including a CPU 14 coupled to a main
memory 15 by a system bus 16, and coupled to disk storage
17 by an I/O controller 18. The shell 11 and other elements
are combined with a front end converter 20 to create a
translator or “compiler” for converting code in a first lan-
guage, e.g., VAX/VMS assembly language, into object code
for a different target architecture, e.g., and advanced 64-bit
RISC architecture.

The front end converter 20 is the only component of the
translator 10 which understands the input language being
translated (compiled). This input language 1s that used in the
file or files (module or modules) 21 which define the input
of the translator. The front end converter 20 performs a
number of functions. First, it calls the shell 11 to obtain
command line information entered by the user (person
operating the host computer 12 of FIG. 2). Second, the front
end 20 calls the shell 11 to control the listing file, write

diagnostic messages, and the like, as 1s usual for compilers.
Third, the front end 20 does lexical, syntactic, and semantic
analysis to translate the code of the input file 21 to a
language-independent internal representation used for the
interface between the front end and the back end. Fourth, the
front end converter 20 invokes the back end (remaining pans
of the translator) to generate object code modules 23 from
the information in the internal representation. Not included
in the translator 10 of FIG. 1 is a linker 24 which links the
object code modules or images 23 (with runtime library, etc.)
to form an executable image to run on the target machine 23.

The target machine 25 for which the back end 12 of the
compiler creates code is a computer (generally of the form
of FIG. 2) of some specific architecture, i.e., it has a register
set of some specific number and data width, the logic
executes a specific instruction set, specific addressing modes
are available, etc. Examples are (1) a RISC type of archi-
tecture based upon the 32-bit RISC chip available from
MIPS, Inc., as part number R2000 or R3000 and described
by Lane in “MIPS R2000 RISC Architecture”, Printice-Hall,
1987, and (2) an advanced RISC architecture with 64-bit
registers as described in copending application Ser. No.
547 589, filed Jun. 29, 1990. Various other architectures
could be likewise accommodated, employing features of the
invention.

In general, the front end converter 20 need not consider
the architecture of the target machine 25 upon which the
object code 23 will be executed, when the front end 20 is
translating from source code 15 to the internal representa-
tion, since the internal representation 1s independent of the
target machine 25 architecture.

The back end of the translator 10 functions like a compiler
to translate the internal representation constructed by the
front end 20 into target system object code 23. To this end,
the back end performs the basic functions of optimization
26, storage and register allocation 27, and code generation
and object file emission 28. The optimization function 18
performed on the code when it is in its internal representa-
tion.

When the user (that is, a user of the computer system of
FIG. 2, where the computer system 1s executing the oper-
ating system 13) invokes the translator of FIG. 1, the shell
11 receives control. The shell 11 invokes the front end

.converter 20 to compile an input stream from input module

21 into an object file 23; the front end 20 invokes the back
end to produce each object module within the object file 23.
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The front end 20 parses the input code 21 and generates
an intermediate language version of the program expressed
in the input code. This intermediate language version 1s
stored 1n intermediate language tables 30 (including a sym-
bol table), which are updated and rearranged by the stages
of the compile functions as will be described. The elemental
structure of the intermediate language is a tuple. A tuple 1s
and expression which computer programming language per-
forms one operation. For example, referring to FIG. 3, an
expression which might be written in a high lever computer
language as

I=k+1
would appear in the assembly-language input file as

ADDIL3 #1,J,1

that is, add “1” to the contents of memory location J and
place the result in memory location 1. This code will be
eventually translated into object code for a RISC machine
which does only register-to-register arithmetic, and only
register-to-memory or memory-to,register stores and loads,
so 1t will appear as

LLOAD Rn,] , Load memory location J to Register N
ADD Rn #l ; Add constant 1 to Register N
STORE Rn,l ; Store Register N to memory location |

In intermediate language, however, the code is in a more
elemental (and generic) form than ever RISC assembly, and
would include five tuples, these being number $1, $2, $3, $4
and $5 in FIG. 3. This way of expressing the code in IL
includes a tuple $2 which is a fetch represented by an item
31, with the object of the fetch being a reference to symbol
J, shown in tuple #1. The next tuple is a literal, item 32,
making reference to the constant “1.” The next tuple, item
33, 1s symbol reierence to “I”, which will be the target of the
addition operator. The last tuple is an Add, item 34, which
makes reference to the source tuples $2 and $3, and to the
destination tuple $4. The expression may also be expressed
as a logic tree as seen in FIG. 3, where the tuples are
identified by the same reference numerals.

A tuple (also referred to as an n-tuple), then, 1s the
clemental expression of a computer program, and in the
form used in this invention is a data structure 35 which
contains at east the elements set forth in FIG. 4, including (1)
an operator field 36, e.g., Fete, Store, Add, etc., (2) a locator
37 for defining where 1n the input module 21 the input-code
equivalent to the tuple is located, (3) operand pointers 38 to
other tuples, to literal nodes or symbol nodes, such as the
pointers to I and #1 tuples $1 and $2 in FIG. 3. A tuple also
has attribute fields 39, which may include, for example,
Label, Conditional Branch, Argument (for Calls), or Sym-
Ret (a symbol in the symbol table. The tuple has a number
field 40, representing the order of this tuple in the block.

Referring to FIG. 4, the front end converter 20 parses the
input code 21 to identify tuples and to build an intermediate
language tuple stream 41 and associated symbol table 42.
The next step is performed by a flow analyzer 43 is to scan
the tuple stream and identify basic blocks of code, called
nodes. A block of code 1s defined to be a set sequence of
tuples with no entry or exit between the first and last tuple.
Usually a block starts with a label or routine entry and ends
with a branch to another label. A talk of the converter 20 and
flow analyzer 43 1n the front end 1s to parse the input code
21 and identify the tuples and blocks (nodes), which of
course requires the front end to be language specific. The
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tuple data structure 35 contains fields 44 and 45 that say
whether or not this tuple is the beginning of a block, or the
end of a block.

A flow graph 46 is generated by the flow analyzer 43 in
the front end. The flow graph 46 consists of nodes, which are
the basic blocks of the program, and edges, which represent
the flow between nodes. The flow graph is built by process-
ing the tuples 35 (intermediate language) by the front end
converter 20 of the compiler.

The process of building the flow graph 46 by the fiow
analyzer 43 includes walking the tuples sequentially for each
program section. Referring to an example of code as seen in
FIG. 6, the flow analyzer 43 adds tuples to the current fiow
node until one of the following is encountered, thus defining
when the previous node ends and a new node begins:

(a) label—branches to the label LAB1 will result in an
edge being created to this node; hence, the label LAB1
is the first tuple in the new node Node-3, ant it creates
the edge ending Node-2;

(b) routine entry point, in this case JSB__entry (the first
tuple in Node-1, which 1s treated like a label for
purposes of flow—however, the routine entry has an
additional symbol table entry Routl identifying it as a
routine;

(c) a branch instruction—the branch BEQL ends the
preceding block, Node-1, and the next instruction

CLRL begins a new block, Node-2;

(d) a return instruction, RSB, which is treated like a
branch instruction which branches to a special routine

exit node; thus RSB ends Node-3, which is only one

tuple in length.
A branch instruction such as the BEQL of FIG. 6 also results
in an edge being created, linking the node (Node-1) con-
taining the branch to the node (Node-3) containing the label
which is the branch destination (LAB1). If the branch is
conditional, as here an edge to the immediately following
node (Node-2) will also- be created, since flow may “fall
through” to it. Indeed, an edge is a bidirectional link; the
flow needs to b, traceable in both forward and backward
directions.

Accordingly, the intermediate language used 1n the code
translator of FIG. 1 is expressed in the tuple stream 41 and
a symbol table 42, along with the flow graph 46. The
primifive concept is the tuple, and the intermediate language
flow graph 46 is made up to link the tuples into node or
blocks representing the operations to,be executed, each tuple
35 having a data structure as in FIG. 4. These tuples 35
within nodes are tied together by pointers which represent
various relations. The most important relations are the
operator-operand relation (a pointer 38 from an operator to
each of its operands) and the linear ordering represented as
a tuple number field 51 on all the tuples in each basic block
of the intermediate language flow graph 46; the order of the
tuples within a node provides the execution order.

As mentioned in reference to FIG. 4, each tuple 35 has
various fields, including the following:

(a) Generic operator 36—identifying the general opera-
tion performed by the tuple, e.g., ADD, FETCH, etc.

(b) Operator type 52—a data type which, normally, deter-
mines the specific operation performed by the tuple.
The operator data type 18 primarily of interest only on
data storage tuples. Instruction tuples are by definition
self-contained, and will not be referenced in later
instructions; hence, their data the 1s null.

(c) Result type 33—the data type of the value computed
by this tuple. This is set only on data reference tuples,
e.g., those that can be used as operands of other tuples.
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(d) Operands 38—an array of pointers to the operands of
this tuple. The number of operands is determined by the
genetic operator. Each operand pointer 38 points to
another intermediate language tuple node, or, in some
cases, to a symbol or literal node in the symbol table as

in tuples $1 and $2 of FIG. 3.

(e) Next/Prev tuple 54 and 55—pointers to the next and
previous tuples in a doubly-linked list of tuples. The
next tuple order is the implicit order of evaluation.

(f) Locator 37—the textual location in the input module
21, i.e., in the program source of the token or tokens
which are compiled 1n this tuple. The locator 1s used 1n
constructing error messages, source correlation tables,
etc.

(g) Use count 56—this field is set by the analyzer to the
number of references made in data reference tuples.

Some types of tuples have additional fields, known as
attnibutes 39. Instances of attributes to the code trans-
lator in an embodiment of FIG. 1 include

(a) Reference attributes, which point to nodes in the
symbol table 42. These are always present in LITREF
SYMREF LABEL and entry point tuples, pointing to
literal nodes, symbol nodes, label nodes, and entry
nodes, respectively. A pointer to a literal node may also
be present in a COMP__QOP tuple. These symbol table
entry types are discussed in additional detail below.

(b) Instruction attributes, which are VAX 1instruction type
constants. These are present in INSTR (instruction) and
CONDBR (conditional branch) tuples, and further

specify the instruction or branch operation.

(c) Register attributes, which are simply register numbers
specified in
REGREF (register reference) tuples. Other additional
private fields may be introduced into the tuple structures by
the analyzer or code generator; these 1nclude:

(a) Condition code flags in field 87 on INSTR and
CONDBR tuples. These are used by the flow analyzer
43 to indicate that the code generator 28 must instan-
tiate one or more of the VAX condition code values for
an instruction.

(b) A register-loaded field 58 for SYMREF MEMREF
IDXREF and FETCH tuples, used within the code
generator 28 to allow re-use of addresses or values
already loaded to registers.

The flown graph 46 1s a major component of the inter-
mediate representation, and is constructed and used by the
flow analyzer 43, then later traversed by the optimizer 26,
the storage allocator 27 and code generator 28. The tuples 35
for a particular routine or program (or input module 21) are
in the tuple stream 41, linked by pointers 38, 54, 55, and
having blocks or nodes defined by fields 48, 49. The flow
graph 46 identifies the nodes or blocks by pointers to the
beginning and ending tuples of the tuple stream. Since
routines, labels, etc., will have entries in the symbol table 42,
the symbol table 1s the reference point for tracing the
program, i.e., finding the blocks and their ordering. The flow
graph of the code of FIG. 6 may be illustrated as In FIG. 7,
where it is seen that there are two paths from Node-1, that
is, to Node-3 via Node-2 if the conditional branch fails, or
directly to Node-3 if the branch is taken.

A routine such as that of FIG. 7 has an entry or node 59
in the symbol table 42 as seen in FIG. § which includes a
pointer 60 to the flow node 61 in the flow graph 46, and this
node 61 includes pointers 62 and 63 to the beginning and
ending tuples 35 of the tuples stream 41. Each fiow node 61
also has a number of other fields, e.g., for stack usage,
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register usage and condition code usage, as will be
described.

Once a pass over the tuples by the flow analyzer 43 has
created the flow graph 46, the flow for each routine can be
walked by the flow analyzer 43 for computing the stack,
register, and condition code information of interest for
certain features of the invention.

A Pass is made by the flow analyzer 43 through each
routine in the module 21 as represented in intermediate
language as illustrated in FIG. 5. The routine node 59 1in the
symbol table 42 points to the flow node 61 for the entry point
of the routine. The flow graph 46 is recurstvely traversed
starting at this node; first, the tuples 35 of a node as
referenced in the tuple stream 41 will be walked looking for
constructs described below. Then, the graph traversal routine
is called for each of its successors (nodes 61 linked by a
forward edge) which has not already been visited. The
recursive walk ends at nodes which have only routine exit
nodes as successors. The tuples 35 of each node 61 are
scanned looking for the following:

(a) Register references—if the reference is a “read”

reference, and the register has not yet been written in

the current node, it is recorded as part of the node 61

as an “‘input register”’ to the current node, in a field 64

for input registers. If 1t has been written, 1t 18 removed

from the “output register” set, i.e., from a field 65 for
output registers.

If 1t 1s a “write” reference, it 1s added to the “output

register’ set of field 63, and the “written register” set of field

66 for the current node 61.
The “output register’” set of field 65 1s passed on to each

of the successor nodes 61 visited. Then, when the flow graph
46 walk completes, this set of field 65 represents the
registers which are written but not subsequently read in the
routine. This set 1s reported to the user in a “hint” message,
as possible output registers of the routine. The user may use
this information to add the correct OUTPUT register clause

to the routine entry point declaration.

b) Stack references and modifications—modifications to
the stack may be the result of explicit instructions, such
as PUSH/POP ADD, etc., or due to the VAX addressing
mode used, such as (SP)+, which implicitly pops the
stack pointer.

At the end of the tuples 35 for the current node 61, the net
change to SP duel to the tuples 1n this node 1s stored 1n a field
67 in the flow node. The total depth thus far in the routine
flow is also computed. This 1s passed to the node processing
routine with each recursive call, and stored in the node in a
field 68.

Thus, at every point during this walk, the compiler has
available the total stack change since routine entry. This
allows it to detect code which:

(1) reads the return address from the stack
(11) modifies the return address on the stack
(111) removes the return address from the stack

(1v) issues a jump-subroutine JSB procedure call through
the return address to implement a co-routine linkage

(v) makes an up-level stack reference
(vi) makes an unaligned stack reference

(vi) modifies SP such that it is no longer longword aligned

These are all flagged with specific errors. The first five are
machine architecture and calling standard-specific coding
practices which must be changed manually in the source
code. The latter two are flagged due to the performance
penalties of unaligned stack references.

As mentioned above, successor nodes 61 in the flow graph
46 which are already marked “visited” in a field 69 are not
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re-visited; however, the flow analyzer 43 checks the initial
stack depth stored with the node in field 68. If that depth is
different than the total depth at the end of the current node
61, the compiler reports a message indicating that this point
in the code can be reached with different stack depths. This
may indicate a source code error, where the stack was not
correctly adjusted by the user on some code path. A simpli-
fied example of this might be:

pushl r]
beql labl

;instructions which do not modify SP
pushl r2

, instructions which do not modify SP

labl: popl 2 ; This point may be reached with 1

, or 2 new longwords on the stack.

rsb ; In this case, 1t 1s probably an

: error, because the RSB instruction
; expects the return address
; to be on top of the stack.

The flow analyzer 43 the makes a second pass through
each routine in the module. This time, the walk 1S 1n reverse
flow order, starting at the routine exit node, and walking
backward through all paths back to the routine entry point.
This 1s also a recursive graph walk, using the edges which
link each node 61 to its predecessors. This time, nodes 61
may be re-visited multiple times.

The tuples 35 of each node 61 are scanned in reverse
order, looking for the following:

(a) instructions which read the VAX condition codes. For
example, conditional branch instructions. A set of
which condition codes (CCs) are currently “required”
as recorded in a field 70 is updated. For example, when

a BEQL is seen, the Z bit will be added to this set.

(b) instructions which set the VAX CCs which are cur-
rently in the “required” set of field 70. When found, a
flag 57 corresponding to the particular CC 1s set in the
instruction tuple 35, and it is removed from the
“required” set of field 70. This fiag 57 in the tuple tells
the code generator phase 28 that it must realize the
value of that condition code for this instruction. This
allows the compiler to calculate CC information only
when it is absolutely required.

(c) JSB instructions. If the “required” set of field 70 is not
empty when a JSB instruction 1s encountered, the
source code as written relies on a CC being set by the
JSB target routine, and still intact upon return. Since the
CCs are not hardware bits on some advanced RISC
architectures, for example, as they are on VAX, this
architecture specific coding practice must be
changed—so an error message 1S generated.

At each call to process a nodes predecessor, the current
“required” set of field 70 is passed, and stored in field 70 of
the predecessor node. The node is then processed as above.
If the node is encountered later in another backward flow
path, but the “required” set is a subset of the set previously
stored, the node (and its predecessors) does not need to be
revisited. However, if the new “required” set contains CCs
not previously searched for, the node must be re-processed
to insure the CC flag is set on the correct instruction.

Also at each call to process a node’s predecessor, the
current node’s “input register” set of field 64 (computed in
the forward walk) is passed. The “input register’” set of field
64 for the predecessor is then updated to include those
registers in the passed set which are not in 1ts own “written
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registers” set of field 66. As a result, the “input register” set
for a node will eventually reflect all registers read by this
node or any of its successors which are “input” to this point
in the flow. Also for each node, the node’s “written registers”
set of field 66 is added to the “written™ set for the current
routine.

After all reverse paths through a routine have been
processed thusly, the information stored in the fiow node 61
for the routine entry point is examined. If the “required” CC
set of field 70 is not empty, it implies that the corresponding
condition codes are expected as input to this routine. This 1s
a VAX architecture specific coding practice, and it therefore
flagged as an error; it is undesirable on some architectures
and impossible on others. (This may also be indicative of a
coding error, rather than an intentional interface.) The par-
ticular CCs required as inputs are reported to the user 1s the
printout. If the “input register” set stored in this node at field
64 is not empty, those registers are reported in a compiler

“hint” message as possible input registers to the routine.
These registers can then be added to the entry point decla-
ration as input registers. (Again, this may also detect a
coding error, where an uninitialized register 1s inadvertently
used.)

The “written” set of field 66 for the routine is used in
conjunction with the OUTPUT register declarations for the
routine, to determine which registers the compiler must
generate code to save. The original values of these modified
registers may be saved In the source code, using, for
example, PUSHL and POPL instructions. However, these
instructions will only save the low 32-bits of the register
value. Since the code will be executing in a 64-bit environ-
ment if code is being generated for the advanced 64-bit
RISC architecture, the compiler must generate 64-bit regis-
ter saves in routine prologue code, and restore them in
routine epilogue code. The compiler saves those in the
“written set” which are not declared to be OUTPUT (or
SCRATCH) registers. (ROA 2)

The following program is used to illustrate these con-
cepts:

Test: Jsb__entry
push] 10
beql lab2
add]3 rl, r2, —(sp)
blss labl
movl (spH+, 13
brb lab2
labl: addl2 #4, sp
lab2: popl rd
rsb

This same program is also shown in FIG. 8, where it is seen
that the tuples are numbered $22 to $31, and the nodes are
numbered Node-4 to Node-9. The fiow of the nodes for this
program is seen in FIG. 9. For this program, the output of the
front end converter 20 1s shown in Appendix A, showing
how the program is represented as the tuples $22—-$31 in the
intermediate language. The numbers such as 1723024 are
the byte addresses of the data location for the present part of
a tuple, the previous part and the next part, so the data
structure of FIG. 4 for a tuple 35 may be found in memory,
and the ordered sequence of tuples 1s traceable. Also, it is
seen that the operands (fields 38 of FIG. 4) are identified by
pointers to the actual memory location of the specification of
these elements. Next, the flow analyzer 43 output 1s given in
Appendix B, showing the flow nodes and their linkages.
Note that the tuples are re-ordered somewhat. The output
code generated for this program as a result is given in
Appendix C.
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In Appendix D, a listing 1s given for a different program
(not that of FIG. 6) showing some of the compiler messages
mentioned above. This listing is printed out by the facility
ordinarily included in a compiler for producing a source
code listing for use in error checking and correction.

Referring to FIGS. 10-135, logic flow charts are 1llustrated
which represent a view of the flow analysis involved in
methods having features of the invention. The calling struc-
ture is summarized in the following paragrapns.

The procedure referred to as Build__Flow__Graph, 1llus-
trated in FIG. 10, is called once per compilation, and
functions to build all of the routine flow graphs for the entire
module being comptled.

The procedure referred to as Analyze Flow_ Graph,
illustrated in FIG. 11, 1s called after Build_ Flow__Graph,
also once per compilation, and functions to perform the
analysis on all the routines in the moduie.

The procedure referred to as Traverse__Graph_ Forward,
illustrated in FIG, 12, is called by Analyze_Flow__Graph,
and itself calls Process_ Forward Node of FIG. 144, to
process the tuples of the current node in forward order, and
then calls itself recursively for each successor of the current
node which has not already been visited.

The procedure referred to as Traverse Graph_ Back-
ward, illustrated in FIG. 13, 1s called by Analyze_ How__
Graph, and itself calls Process_ Backward_ Node of FIG.
15, to process the tuples of the current node 1n reverse order,
and then calls itsell recursively for each predecessor of the
current node, unless 1t has been visited and the register and
condition code information stored in it indicate that a re-visit
1S not necessary.

The procedure referred to as Process_ Forward Node,
illustrated in FIG. 14a-14b, is self-contained, and functions
to stmply walk the tuples in forward order.

The procedure referred to as Process_ Backward_ Node,
illustrated in FIG. 15, is self-confined, and functions to
simply walk the tuples in reverse order.

The “pseudo-variables” used in the flow charts of FIGS.
10-15 will be described, before describing the flow charts in
detail. The pseudo-variables are represented in the flow
charts as names in quotes, and reference to the fields of

FIGS. 4 or 5 is also given: g

“Input__CCs” or input condition codes (field 71)—for a
flow node, “Input_ CCs™ are the set of condition codes
which are “required” at entry to the flow node. That is,
some instructions either in this node or one of its
successors read these condition codes, and the instruc-
tions which set them precede this node.

“Input__regs” or input registers (field 154)—for a flow
node, “Input__regs” are the set of registers which are
read in this node or one of 1its successors, and the
instructions which wrnte into these registers proceed
this node.

“Output__regs’” or output registers (field 65)—for a flow
node, “Output__regs™ are the set of registers which are
written in this node or one of its predecessors, but not
subsequently read by this point in the flow graph.

“Written__regs” or written registers (field 66)—ifor a flow
node, “Written__regs” are the set of registers which are
written to in this node itself.

“Required_ CCs” or required condition codes (field 70)—
at each point during backward flow analysis, the set of
condition codes which are read by some subsequent
instruction. They are “required” because some previous
instruction must set them.

“Required__regs’” or required registers (field 72)—at each
point during backward flow analysis, the set of registers
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which are read by some subsequent instruction, which
have not yet been written by any instructions.

Note that for the “Required_ CCs” and “Required__regs”
the reference to ‘‘subsequent” means subsequent in the
normal routine flow, not subsequent in the processing pass.
“Previous” means earlier in the normal routine flow. The
routine is being processed backward, so reference to ““sub-
sequent” and “‘previous” must be clearly kept in mind.

Referring now the FIG. 10, when Build Flow__Graph 1s
invoked, the selected program section, i.e., tuple stream 41,
is examined, and the decision point 80 examines to see if
there are more tuples in this section. If not, the procedure 1s
exited at point 81; if so, then the next tuple 1s fetched as
indicated by the item 82. This next ruble is examined to see
if it is a label or entry point tuple, at decision point 83. If so,
then the current node 1s ended at the previous tuple, at item
84, and this tuple is noted as starting a new node, at item 885,
after which control returns to the decision point 80 via path
86. If, at decision point 83, the tuple is found not to be a label
or entry point, it is examined at point 87 to see 1if it 1S an
unconditional branch or return tuple. If so, the current node
is ended with this tuple, as indicated by item 88, and the next
tuple is noted as starting a new node, at item 89. A flow edge
is created from the current node—to the branch target
node—as indicated by the item 90, alter which conitrol
returns to the decision point 80 via path 86. If, at decision
point 87, the tuple 1s found to be neither an uncond:tional
branch or a return tuple, then it 1s examined to see 1f it 1s a
conditional branch tuple, indicated by decision point 91. If
so, again the current node 1s ended with this tuple, as
indicated by item 92, and the next tuple is noted as starting
a new node, at item 93. A flow edge is created from the
current node—to the new node—as indicated by the item 94.
The a flow edge 1s created from the current node—to the
branch target node—as indicted by the item 95, after which
control returns to the decision point 80 via path 86. If, at
decision point 91, a conditional branch was not found, then
control returns to point 80.

Referring to FIG. 11, the procedure Analyze_ Flow__
Graph begins by getting the head of the routine list for the
module being processed, as indicated by the item 100. Then,
the list is checked to see if there are more routines in the
module, at decision point 101. If so, then the procedure
Traverse_ Graph__Forward 1s called for the next routine, as
indicated by the item 102; the Traverse_ Graph_ Forward is
discussed below with reference to FIG. 12. If not, then again
the head of the routine list 1s fetched, at item 103, and again
a check is made at decision point 104 of whether here are
more routines in the module. If yes, then the Traverse__
Graph__Backward procedure 1s called for the next routine, as
indicated by the item 1035 of the fiow chart, passing empty
Required-CCs” and “Required-regs”. As indicated by the
item 106, the “Output-regs” value returned by Traverse__
Graph__Backward is stored as output registers for the rou-
tine. If no is the result at decision point 104, then again the

- head of the routine list for the module is fetched, at item 107,

and a test is made to see if there are more routines in the
module at point 108. If not, control returns to the calling
procedure at point 109; if so, the flow node at head of routine
is fetched at item 110, and this data 1s examined at decision
points 111, 112 and 113 to see if the “Input-regs”, “Output-
regs” and Input-CCs” are non,zero. Each of these showing
non-zero results in a report hint at items 114, 115 or 116 as
indicated. This is done for each flow node at head of each
routine, and after the last routine control returns at point 109.

Referring to FIG. 12, the Traverse__Graph__Forward rou-
tine, called from item 102 of FIG. 11, begins at item 120 by
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calling the Process__Forward_ Node procedure of FIG. 144,
- for this node. After return from the Process_ Forward_ Node
call, for each node, a check is made at decision point 121 to
see if there are any successor nodes. If not, control returns
to item 102 of FIG. 11 via point 122. If so, information about
the successor node is fetched at item 123, and checked to see
if it has already been visited at decision point 124, If already
visited, then at decision point 125 the initial stack depth of
successor node (isd,) is compared to a value of he final stack
depth of the current node (isd ); if these are equal then
control returns to the item 121 via path 126, but if not the
item 127 reports a “runtime stack difference” message,
indicating that this code point can be reached with different
stack depths. If at point 124 the successor node is found not
previously visited, the item 128 is entered where the imitial
stack depth of the successor node (isd,) is set to the imtial
stack depth of the current node (1sd.) plus the total stack
change in the current node. Then, the Traverse_ Graph__

Forward procedure is called for the successor node, at item
129. Return from Traverse__Graph_ Forward passes control
back to the point 121, checking for any successor nodes.

The Traverse_ Graph_ Backward procedure iliustrated in
FIG. 13 begins by calling the Process_ Backward_ Node
procedure at item 130, passing “Required-CCs” as a param-
eter. Upon return from Process__Backward__Node, the item
131 is entered; in item 131 the operation is to add registers
which are in “Required-regs” (but are not in the “Written-
regs’’ set for the current node) to the “Input-regs” set for the
current node. Next, at decision point 132, a check i1s made
to see if there are any predecessor nodes. If not, the control
returns to the call Traverse_ Graph_ Backward point, with
“Output-regs’ as a parameter, via point 133. If so, informa-
tion for the predecessor node is fetched at item 134, and a
check is made at point 135 of whether the predecessor node
has been visited already. If already visited, a check 1s made
at point 136 of whether the “Required-CCs” or “Required-
regs’ sets are different for this visit; if non control returns to
point 132 to see if there are any predecessor nodes, but if so
then item 137 is entered to call Traverse__ Graph__Backward
for the predecessor node, passing the Input-regs” set and
“Input-CCs” set as parameters. The returned “Output-regs”™
which are not in the “Input-regs” or “Written-regs™ sets are
added to the “Output-regs” set for this node, at item 138.
Control is returned to the point 132 to determine if there are
any predecessor nodes.

Referring to FIGS. 14a and 140, the Process_ Forward__
Node procedure is illustrated in flow chart form. First, at
point 140 of FIG. 14a, a check i1s made to see if there are
more tuples in the node. If not, control is returned to the
calling procedure, item 120 of FIG. 12. If so, the next tuple
is fetched at item 141, and the next tuple 1s checked at point
142 to see if it is a register reference. If so, then the tuple 1s
checked at points 143 and 144 to see if it is a read or write
reference. If neither a read reference nor a write reference,
control returns to point 140 via path 145. If the tuple is aread
reference, the tuple is checked at point 146 to see if it is in
the “Written-regs” set, and, if so, it 18 removed from the
“Output-regs” set at item 147, but 1f not then the register 1s
added to the “Input-regs” set at item 148. If the tuple 1s a
write reference, then the register 1s added to the “Written-
regs’” set at item 149, and added to the “Output-regs” set at
item 150, before returning to point 140 via path 145.

If, at point 142 of FIG. 144, it is found that the tuple 1s not
a register reference, then flow goes to the stack check
beginning point 151 of FIG. 14b. The tuple is chewed at
point 152 to see if it indicates a stack pointer SP modifica-
tion, and if so the stack pointer SP change 1s added to the
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total stack change for this node, at item 153, after which
control is returned to the point 140 via path 154. 1f the tuple
does not indicate a SP modification, then it is checked at
point 155 to see if it is a stack pointer reference with offset
less than ¢, where offset here indicates (offset specified in
tuple plus the total offset at this point in the routine tlow). If
s0, an “uplevel stack reference’ error is reported at item 156,
then return via path 154. If not, then the tuple 1s checked at
point 157 to see if it is a stack pointer reference with offset
equal to ¢; if so the tuple 1s checked at point 138 to see if
it 18 a “write” reference, and if a write reference a ‘“‘return
address modification” error 1s reported at item 159, but 1f not
a write reference then a “return address reference” error 1s
reported at item 160, before returning via path 154 in either
case. A negative result from the check at point 157 results in
control passing to the check at point 161 where the tuple is
examined to see if it is a return-subroutine RSB instruction.
If an RSB instruction, a check is made at point 162 to see if

the current stack offset plus the initial stack value is greater
than ¢, and if so an “alternate return address on stack™ error
is reported at item 163, but if not then a check is made at
point 164 to see if the current stack offset plus the initial
stack value is less than ¢, in which case an “uplevel return”™
error is reported at point 165. If the tuple is not an RSB
instruction, then it is checked at point 166 to see if 1t 1s a
jump-subroutine JSB instruction, in which case it is checked
at point 167 to see if the JSB target is a stack pointer based
location, with offset plus current stack offset plus initial
stack value equal to ¢, in which case a co-routine call” error
is reported at item 168. If none of the tests at points 152, 155,
157, 161, or 166 is positive, the stack is not invoived, and
control passes back to the point 140 of FIG. 14a via path
154.

The Process_ Backward Node procedure illustrated in
FIG. 15 begins by checking to ee if there are more tuples in
the node, at point 170. If not, control returns via point 171.
If so, the next tuple is fetched at item 172. Then the next
tuple 1s examined at point 173 to determine if it represents
an instruction which sets the conditional codes. If so, then
the condition codes which this instruction sets are removed
from the “Required-CCs” set, as indicated by the item 174.
A flag 1s set (item 175) the tuple indicating which condition
codes which were required must be realized for this instruc-
tion. If the tuple does not represent an instruction which sets
condition codes, then control passes to a decision point 176
where the tuple is checked to see if it represents an instruc-
tion which reads condition codes. If so, then the condition
codes which the instruction reads are added to the
“Required-CCs™ set at item 174. If the tuple does not
represent an instruction which either sets or reads condition
codes, then it is checked at point 178 to see 1f it represents
a jump-subroutine JSB instruction, and if so then it 1s
checked at point 179 to see if the “Required-CCs” set 18
empty and i not empty then a “Condition code required atter
JSB” error is reported at item 180. If the test at point 179 is
positive, 1.e., the “Required-CCs” set 1s empty, control
returns via path 181 to the point 170. Likewise, if the tuple
does not satisfy any of the tests of decision points 173, 176
or 178, control returns via path 181 to see if there are more
tuples.

According to another feature of the invention, argument
list references are mapped across the architectures in making
the code transiation in the system of FIG. 1. In translating
code to a different machine architecture it 1s typically the
case that the way argument list references are handled is
different. VAX assembly language routines rely on the

argument list pointer (AP) established by the VAX CALLSs/
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CALLG instructions to refer to routine parameters. Refer-
ring to the following example of VAX code:

.entry routl "M<R2Z>
tstl (AP)
beal labl
movl 4(AP),RO
mov1 8(AP),R2
lab |

This routine routl is called by, for example:

pushl #1
pushl #3
calls #2 routl

The stack thus has the literal #2 (number of arguments to be
passed) at top-of-stack, and literals #1 and #5 in the next two
longwords of the stack. In referencing these via the AP
register established by the VAX hardware for the CALLS
instruction, the code with the two movl instructions moves
the first two longwords from the stack to R0 and R2.

In contrast, on an advanced 64-bit RISC machine, there 1s
no architected argument list pointer (AP), and the calling
standard dictates that parameters are passed in registers, ofr,
if necessary, on top of the stack. A RISC machine has a large
number of registers, e.g., thirty-two 64-bit registers, and
these are used in passing arguments, instead of memory
references to stack as VAX uses. For example, the argument
information may be designated to be in register-25 (R25),
and R16-R21 used for arguments. Then, if there are more
than six arguments to be passed, the calling routine eaves the
remainder of the arguments on top of the stack. Thus, an
example of code to set up for a jump to a subroutine for this
type of machine, assuming there are eight arguments, is as
follows:

1L.DQ R16,argl
L.DQ R17,arg2
LDQ R21,argb
SUBQ SP#16,SP
STQ R5,8(SP)
STQ R6,0(SP)
JSR R28,R24

The code translator, according to another feature of one
embodiment of the invention, resolves this difference in the
way argument lists are passed, without requiring all argu-
ment list references to be modified by hand by the user
through editing the source code.

The compiler examines all AP-based memory references
in the input code to determine how the same argument
reference may be made 1n the target environment. Element
0 of the argument list vector represents the argument count
on VAX; 1n the target RISC architecture, the argument count
appears in a defined register, e.g., the Argument Information
Register (R25). Hence, in this instance, a memory reference
of the form O(AP) will be compiled to an R25 reference. The

first six arguments are received in registers R16—R21 on in
the target RISC architecture, so that 4(AP) will be compiled
to use R16, 8(AP) to use R17, etc.
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If there are variable offsets for the arguments in the VAX
code, other steps must be taken. For example, if the VAX
code 18 of the form

MOVL 4(AP)[RO],R1

so that a run-time indexed reference is made, it is necessary
to make a different translation. In this case, the compiler
mimics VAX argument lists by packing the quadword reg-
ister and stack arguments into a longword argument list on
the stack. This 1s referred to as argument list “homing”, and
occurs if the compiler detects any AP uses which may resulit
in aliased references to the argument list, any AP references
with variable indices, or any non-longword aligned AP
offsets. In this case, argument list references are compiled
into FP (frame pointer) based references to the homed list,
which is built by code generated for the routine entry point.

Thus, when a CALLS (call subroutine) instruction is
encountered in the input VAX code, the storage allocator 27

of the compiler generates code to copy arguments from the
stack, where they have been placed by the original source
code, into the RISC argument registers. If there are more
than six arguments (requiring more than R16-R21), the
seventh and beyond must be copied to consecutive aligned
64-bit slots on top of the stack. The argument information
register R235 receives the argument count, which, on VAX,
would have been at O(FP). Corresponding code to clean the
stack after the called routine returns is also generated.

Referring to FIG. 16, a logic flow chart of a procedure
used in the storage allocation phase for mapping argument
list references in {ranslating VAX code to advanced 64-bit
RISC machine architecture is illustrated, as used in the
method of one feature of the invention, according to one
embodiment. A tuple is fetched at item 190, and examined
to see if it is a memref at decision point 191. If not, the
control returns via path 192. If so, it memref is checked to
see if the base register is AP at point 193, and if so, checked
at point 194 to see if the argument list has been homed; if not
then checked at point 195 to see if the offset is <28 (meaning
the number of longword 1s less than seven). When the result
at point 193 1is yes, this means the argument is going to a
register location, so at item the oifset 1s divided by four to
get the argument index in the registers R17 to R21, and the
memory reference 1s changed to a register reference. If the
result at point 193 is no, that means the argument is to be in
the stack frame, so in item 197 the offset is divided by four
to get the argument index, and 8*index 1s added to the stack
frame size; also the memory reference is changed to an offset
and the register reference 1s changed to the frame pointer. If
it 1s found in decision point 194 that the argument list has
been homed, then the operation in item 198 is to change the
argument pointer AP to a frame pointer FP 1n the register
reference, and add the offset to the homed list in the frame,
to the offset.

While this invention has been described with reference to
specific embodiments, this description 1s not meant to be
construed in a limiting sense. Various modifications of the
disclosed embodiments, as well as other embodiments of the
invention, will be apparent to persons skilled in the art upon
reference to this description. It is therefore contemplated that
the appended claims will cover any such modifications or
embodiments as fall within the true scope of the invention.

What is claimed 1is:

1. A method of processing input computer code by a
computer in a code translator to produce transiated code,
comprising the steps of:

accessing and parsing said code by said computer to
generate a flow graph in an intermediate language from
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sald code, the flow graph being a data structure com-
posed of blocks, and the blocks being composed of
intermediate__language elements, where each element
represents a single expression in said code, and where
each block represents a sequence of one or more

clements with no intermediate entry or exit;

tracing through each said block of elements in a reverse
direction from its exit to its entry to detect any elements
which read or set condition codes, where said condifion
codes represent bits set in a status register in a proces-
sor executing said computer code;

producing from those detected elements which read con-
dition codes a first set of condition codes;

rcmoving from the first set those condition codes which
are set by other detected elements to produce a second
required set of required condition codes; and

generating from the required set instructions in said
translated code to set the required condition codes to
simulate reading and setting of the condition codes.

2. A method according to claim 1 further comprising
tracing all paths in aid flow graph from the end of said code
to the beginning of said code even if some blocks are visited
more than once in said tracing.

3. A method according to claim 2 wherein said step of
removing said condition codes includes resetting bits in said
first set which have previously been set.

4. A method according to claim 3 wherein said step of
tracing includes the step of searching said flow graph to find
any elements defining jump-to-subroutine instructions
where the required set is not empty, and reporting such

occurrence to a user of said computer as non-transportable -

code.

5. A method according to claim 4 wherein said step of
searching is responsive to any elements defining routine
entry points where the required set i1s not empty, and
reporting such occurrence to a user of said computer as a
possible error in said code.

6. A method according to claim 3 wherein said step of
tracing includes the step of searching said flow graph to find
any eclements defining jump-to-subroutine instructions
where the required set is not empty, and reporting such
occurrence to a user of said computer as a possible error in
said code.

7. A method according to claim 1 wherein each said
clement i1s a tuple.

8. A method according to claim 7 wherein each said block
begins with an entry and ends in a branch or return.

9. Apparatus for processing input computer code by a
computer in a code translator to produce translated code,
COMPprising:

means for generating a flow graph in an intermediate

language from said code, the flow graph being a data
structure composed of blocks, and the blocks being
composed of intermediate language elements, where
each element represents a single expression in said
code, and where each block represents a sequence of
one or more elements with no intermediate exit or
entry;

means for tracing in a reverse direction from its exit to its

entry through each block of said flow graph to detect
any elements which read or set condition codes;

means for producing from those detected elements which
read condition codes a first set of condition codes;

means for removing from the first set those condition
codes which are set by other detect elements to produce
a second required set of required condition codes; and
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means for generating from the required set instructions in
said translated code to set the required condition codes
to simulate reading and setting of the condition codes.

10. Apparatus according to claim 9, wherein said cond:i-
tion codes include overflow, equal to zero, negative and
carry.

11. An apparatus according to claim 10 wherein said
means for removing said condition codes includes means for
resetting bits in said required set which have previously been
set.

12. Apparatus according to claim 9 wherein each said
element 1§ a tuple.

13. Apparatus according to claim 12 wherein each said
block begins with an entry and ends in a branch or return.

14. A method executed by a computer for compiling input
code written for a first computer architecture to produce
object code for a different computer architecture, said first
computer architecture including condition codes in arith-
metic and logic operation, said different computer architec-
ture not including condition codes, comprising the steps of:

accessing and parsing said code by said computer to
generate a flow graph in an intermediate language from
said input code by a converter, the flow graph being a
data structure composed of blocks, and the biocks
being composed of tuples, where each tuple represents
a single expression in said input code, and where each
block represents a sequence of one or more tuples with
no intermediate exit or entry;

tracing through each block of said flow graph in a reverse
direction from 1its exit to its entry to detect any tuples
which read or set condition codes;

producing from those detected tuples which read condi-
tion codes a first set of condition codes;

removing from the first set those condition codes which
are set by other detected tuples to produce a second set
of required condition codes; and

generating operations in said object code using said
required set to simulate setting and reading of the
condition codes in said required set.

15. A method according to claim 14 including the step of,
upon calling a predecessor block immediately preceding a
given block, passing said required set for said given block to
said predecessor block, and thereafter:

if said predecessor block 1s encountered in another back-
ward flow path, and another required set for said
predecessor block 1s a subset of said required set passed
to said predecessor block, then omitting visiting said
predecessor block again, or

if said required set passed to said predecessor block does
not include a condition code of a required set of a block
in said another backward flow path, then visiting said
predecessor block again.

16. A method according to claim 14 further comprising
tracing all paths in said flow graph from the end of said code
to the beginning of said code even if some blocks are visited
more than once in said tracing.

17. A method according to claim 16 wherein said set step
of removing includes resetting bits in said required set which
have previously been set.

18. A method according to claim 17 wherein said step of
tracing includes the step of searching said flow graph to find
any tuples defining jump-fo-subroutine instructions where
the required set 1s not empty, and reporting such occurrence
to a user of said computer as a possible error in said input
code.

19. A method according to claim 14 wherein said first
computer architecture is a CISC architecture and said dif-
ferent computer architecture 1s a RISC architecture.
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20. A method according to claim 14 wherein said input
code includes a plurality of callable routines.

21. A method of processing input computer code by a
computer in a code translator to produce translated code, for
detecting and reporting code errors and code which 1s not
compilable, comprising the steps of:

accessing and parsing said code by said computer to
generate allow graph in an intermediate language from
said code, the flow graph being a data structure com-
posed of blocks, and the blocks being composed of
intermediate_ language elements, where each element
represents a single expression in said code, and where
each block represents a sequence of one or more
celements with no intermediate exit or entry;

tracing through each block of said flow graph in a reverse
direction from 1its exit to its entry to identify elements
which read or set condition codes;

producing from those detected elements which read con-
dition codes a first set of condition codes;

removing from the first set those condition codes which
are set by other detected elements to produce a second
required set of required condition codes; and

generating from the required set instructions in said
translated code to set the required condition codes to
simulate reading and setting of the condition codes.
22. A method according to claim 21 including the step of,
upon calling a predecessor block immediately preceding a
given block, passing said required set for said given block to
said predecessor block, and thereafter, if said predecessor
block 1s encountered in another backward flow path, and
another required set of said predecessor block 1s a subset of
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said required set passed to said predecessor block, then
omitting visiting said predecessor block again.

23. A method according to claim 22 wherein, if said
required set passed to said predecessor block does not
include a condition code of a required set of a block in said
another backward flow path, then visiting said predecessor
block again.

24. A method according to claim 21 wherein said step of
removing said condifion codes includes zeroing bits in said
required set which have previously been set to one.

25. A method according to claim 21 wherein said step of
tracing includes the step of searching said fiow graph to find
any elements defining jump-to-subroutine instructions
where the required set 18 not empty, and reporting such
occurrence to a user of said computer as a possible error in
said 1nput code.

26. A method according to claim 21 wherein each said
block begins with an entry and ends in a branch or return.

27. A method according to claim 26 wherein each said
element is tuple.

28. A method according to claim 21 wherein said step of
tracing includes the step of searching for any elements
defining jump-to-subroutine instructions where the required
set 1§ not empty, and reporting such occurrence to a user of
sald computer as non-transportable code.

29. A method according to claim 21 wherein said step of
tracing includes searching for any elements defining routine
entry points where the required set is not empty, and
reporting such occurrence to a user of said computer as a
possible error in said code.
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