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157] ABSTRACT

A method for automatically instrumenting a computer pro-
gram for dynamic debugging. Such a computer program
comprising source code written in a programming language
for executing instructions on the computer. The source code
is provided as a sequence of statements in a storage device
to the computer. Each of the statements are separated into
tokens representing either an operator or at least one oper-
and. A parse tree is built according to a set of rules using the
set of tokens. The parse tree is instrumented to create an
instrumented parse tree for indicating that an error condition
occurred in the computer program during execution. Object
code is generated from the instrumented parse tree and
stored in a secondary storage device for later execution
using an error-checking engine that indicates error condi-
tions present in the computer program.
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METHOD USING A COMPUTER FOR
AUTOMATICALLY INSTRUMENTING A
COMPUTER PROGRAM FOR DYNAMIC

DEBUGGING

REFERENCE TO MICROFICHE APPENDIX
AND PRINTED APPENDICES

A microfiche appendix is part of the specification which
includes 17 microfiche and 1585 frames.

In addition, two printed documents are part of the speci-
fication and are included as 28-page Appendix A and
17-page Appendix B. Two computer source code listings are

also part of this specification and are included as 14-page
Appendix C and 3-page Appendix D.

A portion of the disclosure of this patent document
contains material to which a claim of copyright is made. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or patent disclosure,
as it appears in the Patent and Trademark Office patent file

or records, but reserves all other copyright rights whatso-
CVer.

FIELD OF THE INVENTION

The present invention relates in general to automatic
instrumentation methods for computer programs and in
particular to automatic instrumentation methods for debug-
ging of a computer program using a compiler parse tree.

BACKGROUND OF THE INVENTION

Typically, computer programs are developed in a cycle of
writing, compiling, executing, debugging and rewriting
computer code until a satisfactory program is attained. Two
types of debugging can be performed: static debugging

whereby the source code comprising the computer program

is analyzed and corrected for errors prior to program execu-
tion, and dynamic debugging whereby runtime errors are

detected by observing the behavior of the program during

execution.

A computer program can be dynamically debugged by
employing a separate program or device to observe the
behavior of the target computer program by ‘monitoring
memory locations. A computer program can also be dynami-
cally debugged internally by introducing debug statements
or routines into the program and observing the results during
program execution. These statements can be manually intro-
duced into the source code during the writing stage of
program development. They can also be automatically intro-
duced by a separate program at some stage in the develop-
ment cycle prior to execution. The automatic introduction of
debug statements or routines is known as instrumentation.

Instrumentation can be used to perform tasks useful to
debugging and analyzing a computer program. These
include: analyzing code coverage to determine how often
each program statement 1s executed and how long it takes to
run; analyzing variables to determine what values are taken
on and how often different parts of memory .are accessed;
analyzing program characteristics, such as memory usage
and which functions are called using which parameters; and
analyzing the correct use of program code by checking
various assertions that ensure that what the program is doing
actually makes sense. In addition to the tasks listed above,
instrumentation can be used to automatically generate test
cases for dynamically testing the program. Test case data for
program inputs can be generated automatically by the instru-
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2

mentation which then links to a test harness program to
repeatedly execute the program with different inputs.

Instrumentation can be automatically built into a com-
puter program in a number of ways. First, instrumentation
can be introduced before compilation by manipulating the
source code and introducing instrumentation routines at
appropriate locations. A problem with this approach is that
1t 1s slow and inefficient for large or highly complex pro-
grams.

Instrumentation can also be automatically introduced
after compilation but before link editing by analyzing the
relocatable object code output by the compiler. A problem
with this approach is that the broader context of the target
program i1s lost to the earlier stages of compilation. Conse-
quently, the introduction of instrumentation must be limited
to an analysis of memory locations and address pointers.

Finally, instrumentation can be automatically introduced
after link editing by manipulating the executable program.
This approach suffers from the same problems as with
relocatable object code.

A further problem with these approaches is that the
automatic 1introduction of instrumentation constitutes an
cxtra stage in the program development cycle. Conse-
quently, there 1s a need for a method of automatically
instrumenting a computer program for dynamic debugging,
as an integral part of the program development cycle and
without introducing an extra stage.

SUMMARY OF THE INVENTION

The present invention overcomes the above problems and
pertains to a method for automatically instrumenting a
computer program for dynamic debugging. More specifi-
cally, such a computer program constitutes source code
written in a programming language for executing instruc-
fions on a computer. The programming language has a
grammar comprising operations having an operator and at
least one operand and a set of rules for relating each such
operator to its respective operand(s). The method consists of
the steps-of providing the source code as a sequence of
statements in a storage device to the computer. Each of the
statements are separated into tokens representing either an
operator or at least one operand.

A parse tree is built according to the set of rules using the
set of tokens whereby the parse tree 1s a directed acyclic
graph and constitutes a plurality of nodes connected by paths
organized into a hierarchy of parent nodes representing
operators connected to children nodes representing operands
of the operators. The parse tree contains embedded error
detection statements for communicating information to a
runtime error-checking faciiity which can test for and indi-
cate error conditions as they occur. The parse tree 1s instru-
mented to create an instrumented parse tree for indicating
that an error condition occurred in the computer program
during execution. Object code is generated from the instru-
mented parse tree and stored in a secondary storage device
for later execution using an error-checking engine that
indicates error conditions present in the computer program.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of this invention may'
be better understood by reference to the following detailed
description taken in conjunction with the accompanying
drawings in which:
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FIG. 1 is a block diagram of a process for creating and
debugging a computer prograni;

FIG. 2 is a schematic diagram of a computer system for
performing a method for automatically instrumenting a

computer program for dynamic debugging according to the
present invention;

FIG. 3 is a software block and schematic diagram for a
method for automatically instrumenting a computer program
for dynamic debugging;

FIG. 4 is a flow chart of a preferred embodiment of the
method according to the present invention;

FIGS. 5A, 5B and 5C are a flow chart of a routine for
determiming the instrumentation to augment a parse tree;

FIG. 6 1s a source code listing of a computer program
containing an uninitialized read of a memory variable;

FIG. 7 1s a diagram illustrating a parse tree representation
of the source code listing in FIG. 6;

FIGS. 8A and 8B are a flow chart for a routine for
detecting an uninitialized read of a program variable error
condition;

FIG. 9 is a diagram illustrating an instrumented parse tree
representation of the source code listing shown in FIG. 6;

FIG. 10 is a source code listing of a computer program
containing a write operation to an invalid memory address;

FIG. 11 1s a diagram 1llustrating a parse tree representa-
tion of the source code listing in FIG. 10;

FIG. 12 1s a flow chart for a routine for detecting a write
operation to an invalid memory address for a complex
memory variable error condition;

FIG. 13 is a diagram illustrating an instrumented parse

tree representation of the source code listing shown in FIG.
10;

FIG. 14 is a source code listing of a computer program
containing a dynamic memory manipulation error using a
pointer memory variable;

FIG. 15 1s a diagram illustrating a parse tree representa-
tion of the source code listing in FIG. 14;

FIGS. 16A and 16B are a flow chart of a routine for

detecting a dynamic memory manipulation error using a

pointer memory variable error condition;

FIGS. 17A and 17B are a flow chart of a routine for
performing a dynamic memory manipulation check;

FIG. 18 is a diagram illustrating an instrumented parse
tree representation of the source code listing shown in FIG.
14;

FIG. 19 is a source code listing of a program segment

containing an inappropriate use of a pointer memory vari-
able;

FIG. 20 1s a diagram 1llustrating a parse tree representa-
tion of the source code listing shown in FIG. 19;

FIGS. 21A and 21B are a flow chart of a routine for
detecting an inappropriate use of a pointer memory variable
error condition;

FIG. 22 15 a diagram illustrating an instrumented parse

tree representation of the source code listing shown in FIG.
19;

FIG. 23 is a source code listing of a computer function
containing a memory leak error;

FIG. 24 is a diagram illustrating a parse tree representa-
tion of the source code listing shown in FIG. 23;

FIG. 25 1s a flow chart of a routine for detecting a memory
leak error condition;

FIG. 26 1s a diagram illustrating an instrumented parse

tree representation of the source code listing shown in FIG.
23:
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FIG. 27 is a source code listing, including FIG. 27A,
which is a computer function to be instrumented with an
interface and FIG. 27B which 1s the interface routine;

FIG. 28 1s a diagram illustrating a parse tree representa-
tion of the program segment shown in FIG. 27A;

FIGS. 29A and 29B arec a flow chart of a routine for
inserting an interface;

FIG. 30 is a diagram illustrating an instrumented parse

tree representation of the program segment shown in FIG,
27A;

FIG. 31 is a source code listing of a computer function to
be instrumented for automatic test case generation;

FIG. 32 1s a diagram illustrating a parse tre¢e representa-
tion of the source code listing shown in FIG. 31; and

FIG. 33 is a diagram illustrating an instrumented parse
tree representation of the source code listing shown in FIG.

31.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A block diagram of a process for creating and debugging
a computer program is shown in FIG. 1. A source program
10 comprising source code written in a programming lan-
guage for executing instructions on a computer system is
translated into an executable program 13 through a compi-
lation process 11. The source program is translated into an
equivalent program that can be run on a target computer
system. The compilation process can involve compiling,
interpreting or a similar translation of the source program.

The compilation process also reports to the user the
presence of static errors 10 in the source program due to
errors in lexicography, syntax and semantics. For instance,
a string of characters can fail to form a token recognized by
the programming language (lexicographic error). Or, a set of
tokens may violate a structure rule that the parser is unable
to construct into a branch of a parse tree (syntactic error). Or,
a proper syntactic structure can be semantically incorrect
because it fails to have any meaning with respect to the
operation involved (semantic error).

After the static errors are resolved, the program is further
evaluated during the execution process 14 which detects
dynamic errors 15 based on the runtime attributes of pro-
gram operation. Dynamic errors are difficult to detect since
they stem from logical or conceptual errors in the drafting of
the source program rather than the concrete static errors
resulting from an improper expression of the program. To
detect dynamic errors, the program must be instrumented
with debug routines during some phase of the compilation
process whereby messages indicating the presence of a
dynamic error are generated for evaluation by the user.

A schematic diagram of a computer system for perform-
ing a method for automatically instrumenting a computer
program for dynamic debugging according to the present
invention is shown in FIG. 2. A main memory 23 contains
a compiler 24 in the form of a computer program for
carrying out the steps of compiling and a code instrumenter
28 for automatically instrumenting a computer program. A
microprocessor 22 runs the compiler using the source pro-
gram file 20, which contains the source program 10, and the
programming language definition file 21, which contains a
grammar comprising operations and a set of rules. The
microprocessor runs the compiler and creates an executable
program file 25, which contains the instrumented executable
program 13 in the form of object code.
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During the execution of the compiler 24, an error may
arise due to some problem with the source program. Error

messages are presented to the user on a display 26 and
collected and stored in an error file 27.

Source code listings for a computer program for use in
one embodiment of the present invention are included in the
microfiche appendix. The source code is written in C lan-
guage. A description of the C language is detailed in B. W.
Kernighan & D. M. Ritchie, The C Programming Language,

Prentice Hall (2d Ed. 1988), the disclosure of which is
hereby incorporated by reference.

The computer program of the microfiche appendix is
preferably run on a Sun Microsystems SPARCstation 20
workstation running the Unix operating system. The source
code listings are compiled using the instructions contained
in Appendix D, the disclosure of which is hereby incorpo-
rated by reference. The resulting program is executed.
Preferably, the workstation is equipped with 64 megabytes
of random access memory and 4 gigabytes of secondary
storage space.

A software block and schematic diagram for a method for
automatically 1nstrumenting a computer program for
dynamic debugging according to the present invention is
shown in FIG. 3. One embodiment of the present invention
1S described in “Compiler Intermediate Code Insertion for
Automatic Debugging and Test Case Generation,” which is
attached as Appendix A, the subject matter of which is
hereby incorporated by reference as if set forth in full. The
method uses a computer program consisting of five main
components coordinated by a main control component 30.
The source code component 31 reads a source code file 32
stored in a secondary storage device and provides it to the
computer program.,

Alexical analysis component 33 separates the sequence of
statements making up the source code in to tokens 34 by
scanning the characters comprising each statement and
grouping the characters into tokens. Each token has a
collective meaning in the context of the grammar defining
the programming language that the source program is writ-
ten 1n. In most programming languages, key words, opera-
tors, identifiers, constants, literal strings, and punctuation
symbols (such as parentheses, commas and semicolons) are
treated as tokens. The tokens 34 are stored in the main
mMEmory.

A parsing and semantic analysis component 35 groups the
tokens into grammatical phrases that are used to represent
the instructions to be performed by the source program.
These grammatical phrases are represented by a parse tree
36, which is stored in main memory.

The parse tree describes the syntactic structure of the
source program. A description of the data structures used for
representing a parse tree in one embodiment of the present
invention is attached as Appendix C and the subject matter
of which 1s hereby incorporated by reference. It is a hier-
archical representation of the instructions making up the
program structured as a directed acyclic graph comprising a
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An imstrumentation component 37 reads the stored parse
tree and augments the parse tree with instrumentation for use
in dynamic debugging. The details of the instrumentation
component are described in more detail below. It generates
an instrumented parse tree 38. In a preferred embodiment of
the present invention, eight categories of instrumentation are
used. These include detecting a read operation to an unini-
tialized memory variable, detecting a read or write operation
to an invalid memory address for a complex memory
variable, detecting a dynamic memory manipulation error
using a pointer memory variable, detecting an inappropriate
use of a pointer memory variable, detecting a memory leak
error, and detecting a function call argument error. These
also include a user definable instrumentation routine known
as an interface and an automatic test case generation routine.

For each category, an analysis 1s performed to determine
which check or operation is appropriate and instrumentation
is embedded into the parse tree. Some categories require
instrumentation to be introduced in several locations in the

parse tree. The result is an instrumented parse tree, which is
stored 1n main memory.

A code generation component 39 reads the instrumented
parse iree and generates an object code file 40 with the
instrumentation incorporated. This component is sometimes
divided into an intermediate code generator, a code opti-
mizer, and a code generator. The intermediate code genera-
tor transforms the instrumented parse tree into an interme-
diate representation representing a program for an abstract
machine. This representation is useful for computing expres-
stons, handling flow of control constructs and procedure
calls. The code optimizer attempts to improve the perfor-
mance of the intermediate code by decreasing the running
time of the executable program. Finally, the code generator
creates relocatable machine code or assembly code to be
output as the object code file 40, Memory locations are
selected for each variable used and the intermediate instruc-
tions are translated into a sequence of machine instructions
that perform the same task. These are combined and output
as object code.

Throughout the operation of each component shown in
FIG. 3, reference 1s made to a language file 41 containing the
definition of grammar rules for the programming language.
Similarly, errors in the source program that are detected are

output to the user through error messages 43 and error file
42,

A preferred embodiment of the compiler 24 is shown in
FIG. 4. A file containing source code comprising the com-
puter program to be instrumented 1s provided to the compiler
(block 51). The source code is written in a programming
language for executing instructions on a computer.

The programming language 1s defined by a grammar
comprising operations having an operator (to identify the
operation) and at least one operand (upon which the opera-
tion is performed). In addition, the grammar includes a set
of rules for relating each of the operations to their respective
operands. Preterably, the grammar is a context-free grammar
having four components: a set of tokens, known as terminal
symbols; a set of nonterminais; a set of productions, where
each production consists of a nonterminal, an arrow, and a
sequence of tokens and/or nonterminals; and a designation
of one of the nonterminals as a start symbol. The productions
define the set of operations comprising that grammar. Each
production 1s structured with the nonterminal on its left side,
followed by an arrow, followed by a sequence of tokens
and/or nonterminals on its right side. A description of a
context-free grammar is detailed in H. R. Lewis & C. H.
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Papadimitriou, Elements of the Theory of Computation,
Prentice-Hall (1981), the disclosure of which is hereby
incorporated by reference.

Each separate source code statement is separated into
tokens (block §2), each token representing a terminal sym-
bol in the grammar. A token can be either an operator or an
operand. In addition, source code comments and white space
(compnising blanks, tabs and new line characters) are
removed during this step.

The set of tokens 1s used to build a parse tree (block 53)
that represents the structure of the program operations. The
parse tree 18 structured with certain properties. This includes
having a root node labeled by a start symbol, each node
being labeled by a token or a null value, and each interior
node being labeled with a nonterminal. For each nontermi-
nal node, the children of that node correspond to the
right-hand side of the production rule for the operation
represented by the parent node. In addition to parse tree
representations, other intermediate representations for orga-
nizing tokens are possible. The same approach presented
herein applies to other intermediate representations as well.

Once completed, the parse tree s instrumented (block 54)
to communicate runtime information to the error-checking
engine to facilitate automatic detection of dynamic errors in
the source program. This step requires a two-phase
approach. During the first phase, the source code is analyzed
using a flow analysis procedure to determine the type of
instrumentation that is appropriate. During the second phase,
the parse tree 1s augmented with additional nodes compris-
ing the operations required to communicate runtime condi-
tions to the error-checking engine which include appropriate
checks for runtime or dynamic errors or programmatic
anomalies to the error-checking engine in the form of debug
output.

The instrumented parse tree is used to generate code for
the target program which not only functions as was origi-
nally intended, but also contains calls to instrumentation
procedures which provide automatic error detection of
dynamic program errors as well as an ability to automati-
cally generate test cases. This is accomplished by passing
runtime information to the error-checking engine which is
linked with the target program when the program executes.

The instrumented parse tree 1s used to generate object
code (block 55), which is stored in a secondary storage
device. The steps of separating source code into tokens
(block 52), building a parse tree (block 53), and generating
object code (block 55) are described in A. V. Aho et al.,
Compilers, Principles, Techniques and Tools, Addison-Wes-
ley (1986), the disclosure of which is hereby incorporated by
reference.

Referring to FIGS. 5A, 5B and 5C, a routine for instru-
menting a parse tree according to the present invention is
shown. A step-wise procedure is followed to insert each of
the seven categones of instrumentation into the parse tree.
Thus, nodes are inserted for detecting a read operation to an
umnitialized memory variable (block 61), detecting a write
operation to an invalid memory address for a complex
memory variable (block 62), detecting a dynamic memory
manipulation error using a pointer memory variable (block
65), detecting an inappropriate use of a pointer memory
variable (block 67), detecting a memory leak error (block
69), inserting a user-defined instrumentation routine (inter-
face) (block 73), and inserting an automatic test case gen-
eration routine (block 75).

The seven categories of instrumentation perform checks
or augment the functionality of the original source code. In
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addition, other information 1s communicated to the error-
checking engine through the instrumented code. This con-
sists of declarations of variables and pointer addresses and
their sizes, assignments of pointers, function entry and exit
point indicators, and memory allocation indicators.

The first category of dynamic memory error is the use of
uninitialized memory variables. This means that a memory
variable is declared, but is not yet assigned a value before it
1s used by some other statement in the program. Referring to
FIG. 6, a source code listing of a computer program con-
taining an uninitialized read of a memory variable 1s shown.
On line 3, an integer variable ‘1 s defined. On line 4, the
variable “1” is read. Since variable *1” is uninitialized, a
dynamic error occurs at runtime.

Referring to FIG. 7, a diagram illustrating a parse tree
representation of the source code listing 1n FIG. 6 is shown.
The function declaration (lines 1, 2 and 6) is represented by
function declaration node 80. The declaration of variables
“a” and “1” (line 3) 1s represented by variable declarations
node 81. The assignment operation (line 4) is represented by
assignment node 82 which is followed by return node 83
(corresponding to line 5). The assignment operation (line 4)
has two operands, variables *‘a” and 1", represented respec-
tively by variable nodes 84 and 85. To detect the use of the
uninitialized memory variable “1” (line 4), the parse tree
shown in FIG. 7 must be instrumented with debugging
functionality so that the attempted assignment statement
using variable “1” can be automatically detected by the error
checking engine when the program is executed.

The overall criteria for inserting such an error check is as
follows. If there is a memory variable used in a program
expression that 1s not known to have been assigned a value
previously, an error check 1s inserted into the parse tree to
check that vanable during execution. In addition, an error
check 1s inserted to let the error-checking engine know that
the variable at that particular address in memory is initially
uninitialized at the start of execution.

Referring to FIGS. 8A and 8B, a flow chart for a routine
for detecting an uninitialized read of a memory variable
error condition is shown. First, a memory address is
retrieved from a program stack frame (block 90) which
represents memory locations of local memory variables. A
flow analysis is performed on the source code to identify any
read operation to the memory address for which it cannot be
statically determined that the variable has been previously
initialized (block 91). If a read operation 1s found (block 92),
instrumentation nodes are inserted into the parse tree in two
locations. First, nodes are inserted after the parse tree node
corresponding to the stack frame containing the memory
address for the program variable to be checked (block 93).
These nodes are for setting an intermal indication to the
error-checking engine that the memory variable is uninitial-
ized. Second, instrumentation nodes are inserted into the
parse tree before the read operation (block 94) to indicate to
the error-checking engine that the memory variable being
read by the read operation is either initialized or uninitial-
1zed at that potnt in program execution. These nodes deter-
mine the status of the memory variable by referring to the

indication set by the instrumentation nodes for the stack
frame.

Next, a flow analysis is performed on the source code to
1dentify a write operation to the memory .address for the
program variable being checked, since any write operation
will cause the memory variable in question to be initialized
(block 95). If a write operation is found (block 96), instru-
mentation nodes are inserted into the parse tree after the
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nodes corresponding to the write operation for setting an
mdication used by the error-checking engine to indicate that
the memory variable in question is initialized (block 97).

Referring to FIG. 9, a diagram illustrating an instru-
mented parse tree representation of the source code listing
shown in FIG. 6 1s shown. The instrumentation nodes for the
stack frame are inserted as uninitialized node 100. The
instrumentation nodes for the read operation are inserted as
check variable read node 101. The instrumentation nodes for
the write operation are inserted as copy initialize node 102.
Uninitialized node 100 indicates to the error-checking
engine that the variables “a” and *1” are uninitialized. Check
variable read node 101 indicates to the error-checking
engine that an actual check for the uninitialized variable “1”’
should be performed. Finally, copy initialize node 102
indicates to the error-checking engine that the variable “a”
is being assigned a value which initializes it by copying a
value from some other memory location.

'The second category of dynamic error 1s a write operation
to an invalild memory address for a complex memory
variable. This is also known as memory corruption which
occurs when a program writes to a location in memory that
1s not valid. For instance, this can happen as a result of
writing off of the end of an array. Similarly, 1t can happen as
result of writing to a location in memory that falls outside of
the range of memory locations allocated to a complex
memory variable, such as a structure.

A complex memory variable comprises a plurality of
elements, each of which can be a constant value, a simple
memory variable or a complex memory variable. An array
comprises a plurality of identical elements, each of which
can be constant value, a simple memory variable, or a
complex memory variable.

Referring to FIG. 10, a source code listing of a computer
program containing a write operation to an invalid memory
address 1s shown. An array “A” 1s defined comprising ten

integer elements (line 3). Each of these ten elements are

initialized to O (line 5) using a loop beginning at an index
value of 1 (lines 4 and 6). The valid indices for the array “A”
are 0 through 9. However, the loop begins with an index “1”
equaling 1 that 1s incremented during each successive itera-
tion until the index “1” equals 10 (line 4). Thus, in the tenth
iteration, the program attempts to set array element A[10] to
0. This is invalid since array “A” does not have an index
value of 10 and therefore an overwrite dynamic error occurs.

Referring to FIG. 11, a diagram illustrating a parse tree
representation oi the source code listing in FIG. 10 1s shown.
The function declaration (lines 1, 2 and 8) is represented by
function declaration node 110. The declaration of index
variable “1” and array “A” which has 10 elements (line 3) is
represented by variable declarations node 111. The loop
operation (lines 4 and 6) is represented by loop node 112
which is followed by return node 113 (corresponding to line
7). The assignment operation (line §) has two operands, an
array element “Afli]” and an integer constant 0, represented
respectively by nodes 115 and 116.

To detect an array operation that is attempting to access an
imvalid memory location, the parse tree shown in FIG. 11
must be mstrumented with debugging functionality so that
the error can be automatically detected by the error-checking
engine when the program is executed. Here, the array
operation is an assignment to element A[10] on line 5 of the
program. Element A[10] is out of bounds.

The overall criteria for inserting this type of error check
1s as follows. For arrays, the array variable and its size must
be declared to the error-checking engine. For cach write
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operation to that array, the error-checking engine must check
if the index into the array is valid. For complex memory
variables, a similar declaration must be made to the error-
checking engine; however, the engine must perform a test
for whether the memory address being written to falls

outside of a valid memory address range defined by the
dimension operand used to declare the memory block size
for the complex memory variable.

Referring to FIG. 12, a flow chart for a routine for
detecting a write operation to an invalid memory address for
a complex memory variable error condition 1s shown. This
involves a more general error check than for an array and is
therefore presented 1initially.

First, a flow analysis is performed on the source code to
identify a declaration operation for a complex memory
variable (block 120). Such a variable comprises a plurality
of elements, each of which can be a constant value, a simple
memory variable or a complex memory variable. A decla-
ration operation for a complex memory variable comprises
two components: an identifier operand for identifying the
variable and a dimension operand for identifying a memory
block size. If a declaration operation is found (block 121),
instrumentation nodes are inserted after the parse tree node
corresponding to the declaration operation (block 122).
These nodes are for storing the dimension operand for use by
the error-checking engine during execution.

Next, a flow analysis is performed on the source code to
identify a write operation using the complex memory vari-
able being checked (block 123). If a write operation is found
(block 124), instrumentation nodes are inserted into the
parse tree before the nodes corresponding to the write
operation (block 125). During execution, the error-checking
engine can indicate that the write operation is writing to an
invalid memory address falling outside of the memory
address range defined by the stored dimension operand.

To check for a write to an invalid array memory location,
an additional step is required to those shown in FIG. 12. It
comprises augmenting the last step with inserting instru-
mentation nodes into the parse tree to further indicate to the
error-checking engine that a write operation is being per-
formed on an array element falling outside of the range of
valid array indices.

Referring to FIG. 13, a diagram illustrating an instru-
mented parse tree representation of the source code listing
shown 1n FIG. 10 is shown. The instrumentation nodes for
the declaration operation are inserted as declare node 130.
The instrumentation nodes for the write operation are
inserted as check array access node 131. Declare node 130
indicates to the error-checking engine that the array “A” 1s
declared and contains ten elements. Since the present pro-
gram is written in C language and array indices begin with
0, the range of valid indices for array “A” are from O through
9. The check array access node 131 indicates to the error-
checking engine that a write operation is being performed on
an element of array “A” and that the value of the index, here
index “1”, should be.checked to determine whether it falls
within the range of valid array indices.

The third category of dynamic error is a dynamic memory
manipulation error using a pointer memory variable. This
occurs when memory pointers no longer reflect the actual
layout of memory due to problems with dynamic memory
manipulation. This often involves a “dangling pointer”
which i1s a memory pointer which points to a block of
memory that has since been “freed,” that is, deallocated.
While the memory pointer still points to the address of the
same freed memory block, the address i1s no longer a
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representative of the dynamic state associated with the
original pointer assignment. Six types of errors can occur,
such as reading from or writing to a dangling pointer,
passing a dangling pointer as an argument of a function,
returning a dangling pointer from a function, freeing the
same memory block multiple times, freeing stack memory
(local variables), and attempting to free a memory block
using a pointer that does not point to the beginning of a valid
memory block.

Refernng to FIG. 14, a source code listing of a computer
program containing a dynamic memory manipulation error
using a pointer memory variable is shown. A pointer
memory variable “ptr’”’ is defined (line 3). Next, a 10-char-
acter memory block 1s allocated and its pointer assigned to
pointer memory variable “ptr” (line 4). The pointer memory
variable “ptr’” is incremented (line 5) and an attempt is made
to free the memory block that it points to (line 6). However,
the attempt can ultimately lead to memory corruption since
pointer memory variable “ptr” no longer points to the start
of the memory block that was originally assigned to it.
Theretore, a dynamic memory manipulation error occurs.

Referring to FIG. 15, a diagram illustrating a parse tree
representation of the source code listing in FIG. 14 is shown.
The function declaration (lines 1, 2 and 8) is represented by
function declaration node 140. The declaration of pointer
memory variable “ptr” (line 3) 1s represenied by variable
declaration node 141. The allocation of the 10-character
memory block is represented by call expression node 147,
which has two operands, a function declaration and an
argument, represented respectively by nodes 148 and 149.
The result from this function call is assigned to the pointer
memory vanable (line 4), which 1s represented by assign-
ment node 142. This node has two operands, a pointer
memory variable and the function call, represented respec-
tively by nodes 146 and 147. The pointer increment opera-
tion (line 5) 1s represented by node 143. The free memory
block operation (line 6) is represented by node 144, which
has two operands: a function call declaration and an argu-
ment, represented respectively by nodes 150 and 151. The
return operation (line 7) 1s represented by node 145.

Referring to FIGS. 16 A and 16B, a flow chart for a routine
for detecting a dynamic memory manipulation error using a
pointer memory variable error condition is shown. This
involves a more general error check than for the six specific
types of memory manipulation errors listed above and is
therefore presented initially.

First, a flow analysis is performed on the source code to
identify a declaration operation for a pointer memory vari-
able (block 160), comprising an identifier operand for iden-
tifying the variable. If a declaration operation is found
(block 161), instrumentation nodes are inserted after the
parse tree node corresponding to the declaration operation
(block 162). These nodes are for storing in a pointer record
a value field for a memory address contained in the pointer
memory variable during execution. Initially, the pointer
memory variable points to nothing and the pointer record is
therefore empty.

A flow analysis is then performed on the source code to
identify a memory allocation operation for allocating a
memory block to the pointer memory variable being
checked (block 163). If a memory allocation operation is
found (block 164), mstrumentation nodes are inserted into
the parse tree after the nodes corresponding to the memory
allocation operation (block 165). These nodes are for storing
an allocation record for use by the error-checking engine
during execution. Each allocation record contains the fol-
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lowing information: block size, starting memory address for
the block, addresses of memory pointers that point to the
memory block, a list of memory pointers that are contained
within the memory block, and state information regarding
the memory block.

Next, a flow analysis i1s performed on the source code to
identify an assignment operation to the selected pointer
memory variable (block 166). If an assignment operation is
found (block 167), instrumentation nodes are inserted into
the parse tree after the nodes corresponding to the assign-
ment operation (block 168). These nodes are for indicating
to the error-checking engine that the pointer memory vari-

able may contain a different and possibly invalid memory
address.

The previous steps having been accomplished, the routine
can therefore perform a dynamic memory manipulation
check (block 169). Referring to FIGS. 17A and 17B, a flow
chart for a routine for performing a dynamic memory
manipulation check is shown. This performs the six types of
dynamic memory manipulation checks listed previously.

A flow analysis 1s performed on the source code to
identify a read operation or a writec operation using the
pointer memory variable being checked (block 180). If a
read operation or a write operation is found (block 181),
instrumentation nodes are inserted into the parse tree before
the nodes corresponding to the read operation or the write
operation (block 182). During execution, the error-checking
engine can indicate that the read operation or the write
operation is attempting to operate on a pointer memory

variable when it contains a dangling pointer, this is, a
memory address for a freed memory block.

Next, a flow analysis 1s performed on the source code to
identify a function call operation using the pointer memory
variable being checked (block 183). If a function call
operation is found (block 184), instrumentation nodes are
inserted into the parse tree before the nodes corresponding
to the function call operation (block 185). During execution,
the error-checking engine can indicate that the function call
operation 1s calling a function using a pointer memory

variable containing a memory address for a freed memory
block.

Next, a flow analysis is performed on the source code to
identify a function call return operation using the pointer
memory variable being checked (block 186). If a function
call return operation 1s found (block 187), instrumentation
nodes are inserted into the parse treec before the nodes
corresponding to the function call return operation (block
188). During execution, the error-checking engine can indi-
cate that the function call return operation is returning a
memory address for a freed memory block to the calling
function in the computer program.

Finally, a fiow analysis is performed on the source code
to 1identify a free memory block operation using the pointer
memory variable being checked (block 189). If a free
memory block operation 1s found (block 190), instrumenta-
tion nodes are inserted into the parse tree before the nodes
corresponding to the {ree memory block operation (block
191). During execution, the error-checking engine can indi-
cate that the free memory block operation is attempting to
iree a memory block multiple times by using a pointer
memory variable pointing to an already freed memory block
or 1s attempting to free a stack frame (local variables) or is
attempting to free a memory block when the memory
address does not equal the starting memory address of the
memory block.

Referning to FIG. 18, a diagram illustrating an instru-
mented parse tree representation of the source code listing in
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FIG. 14 is shown. The instrumentation nodes for the decla-
ration operation are inserted as declare node 200. The
instrumentation nodes for the assignment operation are
inserted as pointer assignment node 201. Similarly, the
instrumentation nodes for a further assignment operation are
inserted as reassign node 202. Finally, the instrumentation
nodes for the pre-memory block operation inserted as check
arg to deallocate node 203. Declaration node 200 indicates
to the error-checking engine that the pointer memory vari-
able “ptr” 1s declared and uninitialized. The pointer assign-
ment node 200 and reassign node 202 indicate to the
error-checking engine that the pointer memory variable
“ptr’” has been initialized and incremented, respectively. The
check arg to deallocate node 203 indicates to the error-
checking engine that the program is attempting to free the
memory pointed to by the pointer memory variable “ptr.”

The fourth category of dynamic error is an inappropriate
use of a pointer memory variable. Five types of errors can
occur, comprising a pointer operation on a null pointer, a
pointer operation on an uninitialized pointer, a pointer
operation on a pointer that does not point to valid data, a
pointer operation attempting to compare or otherwise relate
memory pointers that fail to point to the same type of data
object, and an attempt to make a function call using a
function pointer that does not point to a function.

Referring to FIG. 19, a source code listing of a program
segment containing an inappropriate use of a pointer
memory variable is shown. Two long integer pointers “a”
and “b” and a pointer to a function returning a long integer
“foo” are defined (line 1). Next, the memory address of
variable “a” is assigned using a cast to a pointer to a function
returning a long integer “foo” (line 2). Finally, the return
value of a function call to “foo” is assigned to variable “b”
(line 3). This code segment is problematic because the
function pointer “foo” actually points to a location in the
program stack representing the memory block assigned to
variable “a” instead of an appropriate entry point in the code
segment. Therefore, the function pointer “foo” has been
inappropriately used and a pointer memory variable error
condition occurs.

Referring to FIG. 20, a diagram illustrating a parse tree
representation of the source code listing in FIG. 19 is shown.
The long integer variable declarations (line 1) are repre-
sented by variables declared node 210. The assignment
operatton (line 2) is represented by node 211, which has two
operands, a variable (representing the left-hand side of the
assignment) and an address expressions (representing the
right-hand side of the assignment), represented respectively
by nodes 212 and 213. The address expression node 213
operates on variable “a”, which is represented by variable
node 214. The assignment node 211 is followed by assign-
ment node 213, which represents the assignment to variable
“b” (line 3). This node has two operands, a variable and a
function call to “foo” represented respectively by nodes 216
and 217. The call expression node 217 has one operand, a
variable, represented by node 218.

Referring to FIGS. 21A and 21B, a flow chart for a routine
for an inappropriate use of a pointer memory variable error
condition 1s shown. First, a flow analysis is performed on the
source code to 1dentify a declaration operation for a pointer
memory variable (block 230), comprising an identifier oper-
and for identifying the variable. If a declaration operation 1is
found (block 231), instrumentation nodes are inserted after
the parse tree node corresponding to the declaration opera-
tion (block 232). These nodes are for storing in a pointer
record a value field for a memory address contained in the
pointer memory variable during execution. Initially, the
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pointer memory variable points to nothing and the pointer
record 1S therefore empty.

Next, a flow analysis is performed on the source code to
identify an operation using the pointer memory variable
being checked (block 233). If an operation is found (block
234), instrumentation nodes are inserted into the parse tree
before the nodes corresponding to the operation (block 235).
These nodes are for performing the five types of error checks
listed above, including checking for operations on a null
pointer, an uninitialized pointer, a pointer to invalid data,
mismatched pointer types, and an invalid function call
pointer.

Referning to FIG. 22, a diagram illustrating an instru-
mented parse tree representation of the source code listing in
FIG. 19 1s shown. The instrumentation node for the function
pointer declaration operation is inserted as declare function
“ptr’” node 220. The instrumentation node for the function
pointer check is inserted as func ptr—check node 221. The
declare function “ptr” node 220 is used by the error-
checking engine for runtime pointer tracking. The func__
ptr__check node 221 is the actual check for a bad function
pointer. During runtime, the error-checking engine deter-
mines that the value assigned to the function pointer “foo”

1s an address on the stack and is not an appropriate function
address.

The fifth category of dynamic error is a memory leak
error, which occurs when a dynamically allocated memory
block is no longer referenced by a memory pointer and
consequently can never be freed (deallocated). There are
three types of errors. The first, a leak while {reeing memory,
can occur when a block of memory is freed which contains
memory pointers that point to other allocated memory
blocks. Any references to those allocated memory blocks are
lost, The second, a leak return value, occurs when a function
call returns an allocated memory block but the calling
function does not assign that memory block to a pointer
memory variable. The third, leak scope, occurs when a local
pointer memory variable points to a memory block that is
also local in scope and the function does not free the
memory which it uniquely references before it goes out of
SCOpE.

Referring to FIG. 23, a source code listing of a computer
function containing a memory leak error is shown. A
10-character memory block is allocated and its pointer
assigned to pointer memory variable “ptr,” which is a local
variable defined in the same statement (line 3). The function
“foo” uniquely references the memory block allocated
whose memory address is assigned to the local pointer
memory variable “ptr.” The function returns (line 4) with
“ptr”’ going out of scope. Consequently, the memory block
formerly pointed to by “ptr’” is leaked since “ptr” is no
longer accessible. Therefore, a memory leak error occurs.

Referring to FIG. 24, a diagram illustrating a parse tree
representation of the source code listing in FIG. 23 is shown.
The function declaration (lines 1, 2 and §) is represented by
function declaration node 240. The declaration of local
pointer memory variable “ptr’” (line 3) is represented by a
variable declaration node 241. Similarly, the allocation of
the 10-character memory block is represented by call
expression node 245, which has two operands, an argument

and a function declaration, represented respectively by
nodes 246 and 247.

The function declaration calls a memory allocation rou-
tine for dynamically allocating a block of memory. Such a
routine could be the “malloc()” function call or the like in C
language. The result from this routine is assigned to the local
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pointer memory variable (line 3), which 1s represented by
assignment node 242. This node has two operands, a pointer
memory variable and the function call, represented respec-
tively by nodes 244 and 245. The return operation (line 4) is
represented by node 243.

Referring to FIG. 25, a fiow chart for a routine for
detecting a memory leak error condition is shown. First, a
flow analysis 1s performed on the source code to identify a
declaration operation for a pointer memory variable (block
250), including an identifier operand for identifying the
variable. If a declaration operation is found (block 251),
instrumentation nodes are inserted after the parse tree node
corresponding to the declaration operation (block 2352).
These nodes store a pointer record indicating information
about the block of memory that it points to.

Next, a flow analysis 1s performed on the source code to
identify an exit from scope operation, such as a return from
a function call (block 253). If such an operation is found
(block 254), instrumentation nodes are inserted before the
parse tree node corresponding to the exit from scope opera-
tion (block 255). These nodes are for detecting memory
leaks. Thus, when the function exits or the pointer goes out
of scope, the error-checking engine is informed by a “pop
scope” directive. Upon that occurrence, the engine can
examine the list of pointers declared in that scope. For each
pointer, if the block of memory that it is pointing to is only
pointed to by a local pointer variable, the memory is leaked
when the pointer goes out of scope.

Memory leaks can be detected in one of two ways. The
first 1s during an assignment of a new address to a pointer
variable. If the memory block that used to be pointed to by
the pointer is being reassigned and the memory block is only
pointed to by that pointer, the block is leaked by the
assignment operation. Second, a memory leak can occur
upon the exiting of a scope. If there 1s a memory block which
is pointed to only by a pointer declared locally in scope

within the function being exited, the memory block is
leaked.

During operation, the error-checking engine initializes a
pointer record for each pointer in a function upon activation.
For any assignment of an address to a pointer, the pointer
record is updated to indicate that the pointer contains the
address of an allocated memory block. Similarly, the
memory block record pointer list is updated to indicate that
the pointer is pointing to that block. Finally, upon the exit
from the routine, all pointer records are cleared.

Referring to FIG. 26, a diagram illustrating an instru-
mented parse tree representation of the source code listing in
FIG. 23 is shown. The assignment of the local allocated
memory block to the local pointer memory variable in
assignment node 242 indicates to the error-checking engine
that variable “ptr’” 1s pointing to a particular memory block.
Subsequently, when the pointer goes out of scope, the
pointer record maintained by the error-checking engine is
removed from the memory block record. Since that record
now has an empty list of pointers pointing to it, the error-
checking engine can detect that memory has been leaked.
‘The instrumentation nodes for the declaration operation are
inserted as declare local pointer node 270. The instrumen-
tation nodes for the pop scope operation are inserted as pop
scope node 271. Declare local pointer node 270 indicates to
the error-checking engine that the local pointer memory
variable “ptr” is declared and uninitialized. The pop scope
node 271 indicates to the error-checking engine that “ptr”
has gone out of scope due to a return operation from the
function.
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Instrumentation routines can also be used to introduce a
user-definable instrumentation routine known as an inter-
face. This type of routine enables a user to add their own
rules for transforming the source code. An interface routine
can have the same behavior as the source code it 1s replacing
or it can do something completely different, such as check-
ing values of variables, simulating errors or performing any
other type of dynamic tasks.

Typically, user-defined interfaces allow the user to add
custom error checking to function calls as a means of
enforcing rules on the way that the function is called and the
side effects that it has on memory. These types of interfaces
check that all parameters are of the correct data type, that
memory pointers point to memory blocks of the appropriate
size, and that each parameter value is within its correct
range.

Referring to FIG. 27A, a program segment of a computer
function to be instrumented with an interface is shown.
Here, the interface 1s for a memory allocation call using the
“malloc()” function (linc 1). Referring to FIG. 27B, the
interface routine is shown. In this example, the interface is
similar to a complicated macro definition because the given
function call is replaced by a user defined 1interface.

The “iic__" prefixed functions are expanded into function
calls to the runtime back-end processor. Two such function
calls are employed in this example. The “iic__error()”” func-
tion call communicates error messages to the back-end
processor (lines 5 and 10). The “iic_ alloc()” function call
communicates to the back-end processor that a block of
memory of size “size” has been allocated and is pointed to
by pointer “a” (line 8).

In addition, two further error checks are performed by the
interface. First, it checks to see whether the size of the
memory block being allocated 1s a positive number (lines
4-5). If it is, the memory allocation “malloc()” function call
1s allowed to go forward (line 6). Next, the pointer memory
variable ““a” is checked to determine if the memory alloca-
tion function call failed, and if so, the back-end processor is
so informed (lines 7-10).

Referring to FIG. 28, a diagram illustrating a parse tree
representation of the program segment shown in FIG. 27A
1s shown. The assignment operation (line 1) is represented
by assignment node 280, which has two operands, a variable
operand (representing the left-hand side of the assignment)
and a function call expression operand (representing the
right-hand side of the assignment), represented respectively
by nodes 281 and 282. In turn, the call expression node 282
has two operands, a function declaration for a “malloc()”

function and an integer constant, represented respectively by
nodes 283 and 284.

Referring to FIG. 29, a flow chart for a routine for
inserting an interface is shown. Before an interface can be
used, 1t must first be pre-processed to convert it from source
code 1nto an intermediate form and then stored in a database
for later use (block 29). A flow analysis is then performed on
the source code to identify function calls having a corre-
sponding interface description to that stored in the database
(block 291). If a matching function call is found (block 292),
the interface 1s inserted into the parse tree in a multi-step
process.

This process includes the step of first removing the
existing function call from the parse tree (block 293). Next,
the stored intermediate form for the corresponding interface
is read {rom the database (block 294). The stored interme-
diate form is inserted as interface nodes in the parse tree in
place of the node corresponding to the original function call
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(block 293). The original function call arguments are sub-
stituted into placeholders in the interface nodes (block 296).
This enables the interface to actually perform the original
function which is called within the interface function itself.
Finally, the return statement and the interface node are
replaced with an assignment of the result of the interface
routine to the actual call to the original function call (block
297). This enables the original calling function to receive the
result that was expected without the interface.

Referring to FIG. 30, a diagram illustrating an instru-
mented parse tree representation of the program segment
shown 1n FIG. 27A 1s shown. This parse tree differs from
those used in other parts of the invention. The original parse
tree node representation has been broken into two sections
and gratted onto the intermediate form for the interface
routine. The entire parse tree shown in FIG. 30 is grafted in
place of the parse tree shown in FIG. 28.

The grafted parse tree segment shown in FIG. 30 reflects
the program structure of the interface routine source code.
The conditional check for a positive memory block size is

inserted as ““if conditional” node 300 with the conditional
test represented by node 301 (line 4). The body of the

conditional statement is represented by error notify node 302
and error string node 303 (line 5) which communicate to the
runtime back-end processor the occurrence of a dynamic
runtime error condition. The original function call to the
- memory allocation routine “malloc()” (line 6) is represented
by assignment node 304 which has two operands, a variable
and an expression call, represented respectively by nodes
305 and 282. Note that nodes 282, 283 and 284 are substi-
tuted into the interface intermediate form in the place of
placeholders.

The error check for a memory allocation operation failure
is represented by “if conditional” node 306 with the condi-
tional test represented by node 307 (line 7 and 9). The body
of the “then™ condition 1s represented by allocation notify
node 308 (line 8) which tells the runtime processor that a
block of memory of size “size” has been allocated and is
pointed to by pointer “a”. The body of the “else” condition
1§ represented by error notify node 309 (line 10) which has
one operand, error string node 310. Finally, an assignment
condition 1s grafted to the end of the intermediate form to
assign the result from the interface, represented by variable
node 311, to the original function call.

Instrumentation routines can also be used to insert support
for automatic test case generation. One embodiment of the
present invention 1s described in “Overview of the Design of
TGS System,” which is attached as Appendix B, the subject
matter of which is hereby incorporated by reference as if set
forth in full. By performing a flow analysis of the source
code, a two-fold criteria can be satisfied. First, instrumen-
tation routines can be inserted to automatically generate
program inputs to achieve full testing of all flow paths in the
executable program. Second, instrumentation routines can
be used to identify inputs that cause the program to perform
incorrectly.

The method involves analyzing the source code to iden-
tify points where input data is needed. Next, varicus tech-
niques are employed, ranging from random number genera-
tion to heuristic flow analysis techniques, to generate a set
of 1input cases that satisfy the two-fold criteria stated above.
The resulting executable program is linked to a test harness
which repeatedly runs the program with different input
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values and adds unique test cases to a database of test case
data. The testing algorithm converges when the two-fold
criteria 1s met or when no new test cases can be generated
in a reasonable amount of time.

Referring to FIG. 31, a source code listing of a computer
function to be instrumented for automatic test case genera-
tion is shown. The purpose of this function is to accept an
input character and determine whether it 1s an integer. Three
character memory variables are declared, “b,” “c” and
pointer “ptr”’ (line 3). An input function “getchar()” is called
to obtain an input character whose value is assigned to
variable “c” (line 4). That value is checked to determine
whether it falls in the numeric range of ASCII codes for
integer characters (iine 5). If it does not, the pointer memory
variable “ptr” is set to O (line 6). The variable “b” is assigned
the difference of a “0” ASCII character code subtracted from
the input character stored in variable “c” (line 8). A problem
with this function is that the pointer memory variable “pir”

is not yet initialized before it is dereferenced by setting it to
0.

Referring to FIG. 32, a diagram illustrating a parse tree
representation of the source code listing in FIG. 31 is shown.
The function declaration (lines 1, 2 and 9) 1s represented by
function declaration node S00. The declaration of variables
“a” “b” and “ptr” (line 3) is represented by variables
declared node 501. The assignment of the input character is
represented by assignment node 502, which has two oper-
ands, a variable and a function call, represented respectively
by nodes 503 and 504. The function call, represented by call
expression node S04, has a single operand, function decl
node 505 which contains the identifier for the “getchar()”
function. The conditional statement (line 5) 1s represented by
if stmt node 506, which points to a node containing the
conditions to be tested, represented by node 507. The body
of the condition node contains an assignment statement (line
6) represented by assignment node 508, which has two
operands, a pointer reference and an integer, respectively
represented by nodes 509 and 510.

Referring to FIG. 33, a diagram illustrating an instru-
mented parse tree representation of the source code listing in

FI1G. 31 is shown. The instrumentation nodes for the decla-

ration operation are inserted as declare node 520. The
instrumentation nodes for the character input generation
operation are¢ inserted as input generator node 521. The
instrumentation nodes for the uninitialized pointer check
operation are inserted as check pointer node S22. Declare
node 520 indicates to the error-checking engine that the local
pointer memory variable “ptr” is declared and uninitialized.
The input generator node 521 indicates to the error-checking
engine that the function call to “getchar()” is replaced by a
test case generator function which generates random inputs
between 0 and 255. The check pointer node 522 indicates to
the error-checking engine that the function 1s attempting to
use a pointer memory variable that may not have been
initialized previously and is probably pointing to an invalid
memory address.

As will be realized, the present invention is capable of
other and difierent embodiments and its several details are
capable of modifications in various respects, all without
departing from the spirit and scope of the present invention.
Accordingly, the drawings and detailed description of the
preferred embodiment are to be regarded as illustrative in
nature and not as restrictive.
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1 Overview

Compiler technology, as it exist today, is basically concerned with translating an input

source program, into an equivalent program of another form. A compiler may involve several
phases, which include: |

* lexical analyzer
* syntax analyzer

* semantic analyzer
» intermediate code generator

* code optimizer
* code generator

In this paper, an extra step in the compiler process is introduced, known as Intermediate Code
Insertion or Intermediate Code Instrumentation, which allows extra functionality to be

embedded into the original program, while still preserving the functionality of the original pro-
gram. This extra step is performed after the intermediate code generator completes, and the result-
ing “Instrumented intermediate form” is sent on to the code optimizer, or code generator. The
instrumented code, then interacts with some “back-end processing engine” which can then per-
form some type of analysis on the running program. Specifically, this back-end processing engine
may take the form of automatic debugging processor, or test case generator. Each of these could
then be linked in with the instrumented program to add the given functionality.

The instrumentation of the intermediate code is typically done “in memory” meaning, the
entire intermediate code, for a particular file being compiled is resident in the computers random
access memory (RAM). This need not be the case, however, since a compiler could in fact write
its intermediate form to some file or database, the code instrumentor could then read the interme-
diate code, process, and write the instrumented version back to the data-base. The compiler could

then complete the compilation by generating the target code from this instrumented intermediate
form. |

2 Intermediate Code Insertion

Intermediate Code Insertion, or Instrumentation is concerned with analyzing the interme-
diate form that a compiler produces, in order to embed added functionality. In the particular cases
that we are concerned with, this added functionality takes the form of embedded debugging func-
tion calls, as well as test coverage analysis information. When the compiler generates code for the
target machine, the program not only functions as it was originally intended, but also contains
calls to procedures which provide automatic error detection of program errors, as well as the abil-
ity to automatically generate test cases for the program. This is accomplished by passing run-time
information to the “back-end processing unit”, which is linked with the program, when the pro-
gram executes.

The format of the intermediate code may vary widely from one compiler to the next, however, the
intermediate code insertion is sufficiently general as to apply to any intermediate form the com-
piler may produce.
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2.1 Compiler Intermediate Code Insertion for Automatic Debugging

It 1s possible to analyze a compilers intermediate code, and instrument this code, embed-

ding debugging function calls which allow automatic run-time debugging. There are, many types
of checks that can be performed, which roughly fall into the following categories:

* Uninitialized Memory

* Memory Corruption

* Dynamic Memory Manipulation

* Inappropriate use of Pointers

* Memory Leaks

* Function Call Argument Checking

For each category of error, an analysis phase determines which checks are appropriate, and
debugging code is embedded into the intermediate code. The following sections will describe
each category of error, at length, and where appropriate, specific code examples will be presented.
Examples will consist of an original source file, the corresponding compiler generated intermedi-
ate form and finally the instrumented intermediate code. Instrumented code consists of the origi-
nal intermediate code, with embedded calls to the error-checking back-end processor, which will
be linked into the program. In most cases, the functional blocks will just be described in the block
diagram, with the details of the calls being dependent on the compiler intermediate code calling

conventions. A brief explanation of the analysis phase, describing how information is passed to
the error checking engine, will also be given for each example.

2.1 .1 Umnitialized Memory Checking.

Use of unimtialized variables in a program is common error. By uninitialized, it is meant
that the variable is declared, but is not yet assigned a value before it is used in some other state-
ment. The following example contains an uninitialized read of variable “i” at line 4.

int main ()

{
int a, i;
a = 1

return 0;

}

Y N W o

This code could be represented by the compiler in the intermediate form shown in Figure 1. The
intermediate form shown is a parse tree, which, for simplicity, closely resembles the original form

of the source file. The intermediate code could, however, look drastically different from the origi-
nal source.

Once given the intermediate form, the problem then becomes how to instrument the code
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Function declaration Assignment
Name: main =
Scope Body next operands |
., . Variable: a
Variable declarations

a, 1

Vanable:; i I

Return
Argument

Figure 1: Intermediate form from Compiler

in order to add extra debugging functionality, so that the uninitialized variable “i” can be automat-
ically detected when the program is run. For this particular type of error checking, The criteria for
inserting a check 1s quite simple. If there exist a variable in any expression that would be read at
the current point of execution, and it is not known to have been assigned previously, a check is
inserted to check that variable at run-time. In addition, in order to initialize the state of the vari-
able as “uninitialized” at the start of the program (since variable i is presumably on the stack),
code must be inserted to let the error checking engine know that the variable at this particular

address is 1n fact uninitialized to start. To summarize, the analysis phase for uninitialized variable
checking 1s as follows:

1. Identity any addresses in the stack frame that represent local variables, and set their sta-
tus to be uninitialized.

2. Perform flow analysis on the code, in order to determine accesses of these stack loca-
tions for which it cannot be determined that the location has been previously initialized.

3. Insert checks into the intermediate code, just before each location in question is about
to be used.

4. Identify any places in the code where the memory locations in question are being writ-

ten, and insert operations into the intermediate code, which update the status of this
location from uninitialized to initialized.

Figure 2 shows the instrumented intermediate code which includes the checks for the
uninitialized variable. Blocks that are tagged with numbers indicate embedded code, added to the
original code. In block (1) the variables “a” and “i” are being reported to the back-end as loca-
tions on the stack which represent variables that are uninitialized. (2) indicates the actual check
for the uninitialized variable “i”. (3) shows that the error-checker is being informed that variable
“a” is being assigned, by a copy of some location.
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Function declaration
Name: main
Scope Body

Uninitialize a, 1
next somt

—

I S

Check Variable Read: 1 @

Variable declarations next stmf _
a, 1 i
Assignment
next stmt operands

Variable: a

Yariable: i

| Copy Initialize: *“a” | @
L ‘ —

| Return

| Argument 0

Figure 2: Instrumented Intermediate form, with embedded debugging code

2.1.2 Memory Corruption

Memory corruption occurs when a program writes to a location in memory, that it did not

intend to write. This typically happens as a result of writing off the end of an array. Consider the
following example:
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| Function Declaration Loop

Name: main- stait: 1=0

scope body check i<= 10
- _ INCT: 14

next body
Assignment |
Variables declared: next operands

i, A[10] - I

Array Access: Ali]

Return statement

Argument: ()
Integer: O '

Figure 3. Intermediate form from compiler

int main ()
{
int 1, A[10];
for (1 = 1; i<= 10; i++) {
Al1] = 0;
}

return 0;

}

O ~-J O b W to

In this example, it is observed that the array “A” will be written, and in the process, 4 memory
location, just beyond the end of the array is written, which is considered an overwrite error, since
valid indices for the array are A[0] to A[9]. In the case of arrays, the code analyzer must declare
the array variable and its size to the error checking engine, and then for each write to that array, it
then tests if the index into the array is valid. Figure 3 shows the original intermediate code from
the compiler. Figure 4 shows this same intermediate code after instrumenting with debugging
information to check for array access violations. In block (1), the array is being declared to the
error-checker as an array of 10 elements, starting from location “A”. The block marked by (2)
shows the actual check of the writing to the array at the index “i”.
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Function Declaration Declare “A[10]” I
Name: main | @
scope body next
Loop
start: 1=0
check: i <= 10
Variables declared: Iner, 14+
i, A[10] next body
Check Array Access:
Location: Aji]
{ next
Assignment
next operands

Integer: O

Array Access: Ali]

Figure 4. Instrumented Code Checking for Array Access Violation
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2.1.3 Dynamic Memory Manipulation

Dynamic memory manipulation often leads to problems involving the use of pointers that
no longer reflect the actual layout of memory. The following types of errors can occur:

* Reading from or writing to “dangling pointers”

* Passing “dangling pointers” as arguments to functions. .

* Returning “dangling pointer” from functions.

* Freeing the same memory block multiple times.

* Freeing stack memory (local variables)

* Passing a pointer to free that does not point to the start of a block.

Ponters which point to a block of memory, that has since been freed, are know as “Dangling
pointers”. While the pointer still points to the same location, this location is no longer representa-
tive of the dynamic state associated with the original assignment of pointer. Checking errors hav-
ing to do with dynamically allocated memory requires a great deal of support from the error

- processing back-end. In such cases, every block of memory which is “allocated”, usually through
the use of malloc, must be included into an allocation map, which is a special list holding infor-

mation about any allocated blocks at run-time. Each allocation record contains the following
information:

* Block size

» Starting address of the block

* Addresses of pointers that point to the block

* List of pointers that are contained within the block
* State information about the block of memory.

-As an example, consider the following code:

1 1int main ()

{
char *ptr;
ptr = malloc(10); -
pLr++;
free(ptr);
return 0;

}

O I O U i W N

This example will be used to both describe the record keeping of the back-end error checking
engine, and to illustrate how the code must be instrumented in order to detect the casz of trying to
free a pointer that does not point to the beginning of a block.

To understand how the intermediate code is to be instrumented, an understanding of what
types of information and checks will be needed. First, in the case of pointers, the error checking
engine will have to be told, at the start of the function (or current scope) what variables, or mem-
ory addresses represent pointers. This allows the back-end to create a pointer entry, which does
not yet point to anything. Additionally, the back-end must be informed of any call to malloc (the
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memory allocation function) so that it can create an allocation record for the memory. The back
end must also be told about any assignments of pointers, so that the pointer can be associated with
the allocation block record in the back-end. Having this allocatton record, the back-end then can
perform checks on thus allocated block, and associated pointers. In this particular example, the
pointer being freed, no longer points to the beginning of the block, and the back-end could check
this, since it knows the address of the pointer, and using this can figure out that the value of the

pointer actually points to somewhere in the block other than the beginning, and thus report the
erTor.

Figure 6 shows a representation of the original intermediate code generated by the com-
piler. In the analysis of the code, there are a few key points that the code analyzer recognizes:

. The current scope contains a pointer “ptr” which is assigned and used.

. There 1s a call to the memory allocation mechanism {malloc in this case).
. “ptr” 15 assigned to point to the allocated block.

. “ptr” 1s being incremented

There 1s a call to the memory deallocation mechanism (free in this case).
. The argument to the deallocation function is pointer “Ptr”.

m}nhmmh-*

First, the analyzer observes, in the declarations section, that a ptr is to be used. This pointer would
then need to be declared to the error checking back-end as a pointer which is not yet assigned a
value. Second, the analyzer sees that there is a call to the memory allocator, and that “ptr” is
assigned to point at the allocated memory. This would result in some special calls to the back-end
to letting 1t know that there 1s pointer “ptr” which points to the beginning of the block returned by
the memory allocator. The analyzer then observes that the pointer “ptr” is incremented (reas-
signed to “ptr + 1”). The back-end is told of the reassignment to “ptr” which basically amounts to
“ptr” pointing to the same block, however, now it no longer points to the beginning of the block.
The analyzer then sees the call to the memory deallocation function, and checks the argument
“ptr” which is supposed to hold the beginning address of an allocated memory block. The error-
checking back-end could then, at run-time, check that the argument to the memory deallocator
points to the beginning of a block, which in this case, it does not, and could report the appropriate
error message. Figure 6 shows the Instrumented version of the intermediate code, afier the ana-
Iyzer has run. The inserted blocks are: (1) declare the “ptr” as a pointer address, (2) relate the
assignment of the pointer to the allocated block, (3) indicate that the pointer now points to the
location “ptr + 17, which is still in the same block, but no longer pointing to the beginning, and
finally (4) check the argument to the deallocation function, to check for a valid top of block.

Figure 7 depicts typical values for the information that is stored in the error-checking data
base. A separate record exists for any block allocated (data record) and for any pointer declared
(pointer record). The top portion of the diagram shows that there is a block starting from location
60c0 and ends at 60c9 (10 bytes). It shows that there is one pointer pointing to this block, whose
last known value was 60c0, the beginning of the block. The bottom portion of Figure 7 shows the

run-time state after the “ptr” is incremented, and the last known value of “ptr” 1s now 60c1, which
1S no longer pointing at the beginning.
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Function Declaration
Name: main Assignment
scope body next operands

Yanable: ptr
- next
| Variables declared:
X .
char Tptr; Call Expression
next operands

ry

Increment: “ptr” Function Decl
next name: malloc
next operands
Call Expression '
next operands Argument: 10

next

| Function Decl
name: free

next

Argument: ptr
next

Figure 5: Intermediate code of Original Memory Manipulation Problem
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Function Declaration

Name: main Declare “ptr” as a
cope bods pointer variable @
next
S —
Variables declared: J—
char *ptr; Assignment —I
- ] next operands
Pointer Assignment: @ Variable: ptr
ptr next
—

vy

Increment: “ptr” Call Expression |
next next operands

Reassign “ptr’” to “ptr+1” @ Function Decl
next name; malloc
next operands

Argument: 10
next

Check arg to deailocate . @ I

Call Expression
next operands

Function Decl
name: free

next

- Argument: ptr

Figure 6: Intermediate Code with Dynamic Memory Checking Instrumentation
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After call to malloc

Memory Block Record
top: 60cO
end; 6(c9 |

tatus mnfo: -
status mfto Pointer Record

' . : Hpn_!‘!
Pointer List address: effff830
Value: 60c0
Block
Sub Pointer List

After reassigning “ptr” to “ptr + 1”

Memory Block Record B
t0p: 6050 to next record
end: 60c9
status 1nfo: '
Pointer Record
Pointer List t Dame: “ptr”
address: effff830
Value: 60cl
Block
Sub Pointer List “NIL

Figure 7: Example dynamic memory data base information
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2.1 .4 Inappropriate Use of Pointers

On many occasions, errors occur due to the inappropriate use of pointers. Such types of
errors include:

* Operations on NULL pointers.

* Operations on uninitialized pointers.

* Operations on pointers that don’t actually point to valid data.

* Operations whach try to compare or otherwise relate pointers that don’t point at the same
data object.

* Attempts to make function calls through function pointers that don’t actually point to
functions.

Consider the following code fragment:

1 long a, b, (*foo) ();
2 foo = (long (*)())e&a;
3 b = fool);

This example, although admittadly contrived for simplicity, illustrates the use of function a
pointer that does not actually point to a function. In this particular case, the function pointer actu-
ally points to & location in the programs stack, instead of to an appropriate entry point in the code
segment, and this error can be detected.

In this example, the instrumentor realizes that the program is using a function pointer, and inserts
the appropriate checks before any use of the pointer. Each check will determine wheather the

pointer actually points to a valid entry point in the code segment, or is actually pointing to some
other area of memory which is inappropriate.

Figure 8 shows the intermediate code for the fragment of code. Figure 9 shows the instrumented
version of the intermediate code. Two insertions are shown, (1) is the declaration of the function
ptr “foo” to the runtime ptr tracking. (2) is the the actual check for the bad function pointer. In this
case, the runtime checking would determine that the value of the pointer, is an address on the
stack, and 1s not an appropriate function address.
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body

Variables declared: | Vanable: foo
long a, b; next
long (*fo0)();

-

Address Expression
next operands

Yanable: a

Assignment next
next operands
Variable: b
next
Call Expression
next operands

Yanable: foo
next operands

Figure 8: Original intermediate code for bad function pointer
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scope body __ wl Declare Function Ptr |

= ©
next |

Vanables declared: Assignment
long a, b; | next operands
long (*foo)(); |
Variable: foo
next
Address Expression
next operands
- _ Variable: a
Func_Ptr_Check: foo next
next
Assignment
next operands
Via ble: b
next
Ca]l. Expression
next operands

Variable: foo
next operands

Figure 9: Instrumented intermediate code for bad function pointer
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2.1.5 Memory Leaks

Memory leaks occur when a dynamically allocated memory block, is no longer referenced
by any pointer, and thus can never be freed. Memory leaks can be categorized as follows:

* Leak while freeing memory.
* Leak return value.
* Leak Scope.

A leak while freeing memory can occur when a block of memory is freed, which contains pointers

that point to other allocated memory, thus losing any references to the memory. Leaking a return
value happens when a function call returns allocated memory, but the calling function does not
assign it to a pointer. Leak scope will occur when a pointer to memory in local scope, does not
free the memory it uniquely references, before it goes out of scope.

Consider the following code fragment:

voilid foo ()

{
char *ptr = malloc(10);
return; | _ }

) ST - N ' IS o B S

}

Here, there is a local variable “ptr” which is assigned the value of the memory allocator. The func-
tion foo then returns (with ptr going out of scope) and the memory pointed to by “pt-” is leaked,
since “ptr” is no longer accessible. Figure 8 shows the intermediate code for this code fragment.
The mstrumented code, shown i1n Figure 9 shows how the pointer is declared to the run-time as a
local pointer. It 1s assigned the return value of the allocation function. Since it is the only pointer
to reference the memory returned by the allocation function, when it goes out of scope, the mem-
ory is leaked. The check then, comes just before the scope is about to be left (right before the
function returns in this case). The error-checker keeps a record for each pointer on the stack (local
pointers) with each record indicating the block of memory that it points to. Now when the func-
tion exits (or the pointer goes out of scope), the error-checker is informed, by the “POP SCOPE”
directive. When a pop-scope happens, the error-checker can then look at the list of pointers,
declared at that scope. For each pointer, if the block of memory that it is pointing at, is only
pointed to by this pointer, then when the pointer goes out of scope, the memory is leaked

Instrumenting code to detect memory leaks follows several steps:
1. Inmitialize a pointer record for each pointer.
2. For any assignment of a pointer, update the pointer record, to indicate that the pointer
points to the rhs (right hand side) of the assignment.
3. Update the memory block record’s pointer list, to indicate that the pointer is pointing at
it. |
4. Upon exit from a scope, clear any pointer records.
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Function Declaration

Name: foo Aﬂignménz
scope body next operands
Yariables declared: Yariable: ptr

I char *ptr; next

Call Expression
next operands

| Return: “no value” Variable: “ptr”
! next
v

| Function Decl
name: malloc
| next

Figure 10: Original Intermediate Code for Memory Leak Example.

Leaks are then detected if any of the following is true:
1. During an assignment of a pointer, if the memory that used to be pointed to by this
pointer, 1s only pointed to by this pointer, that block is leaked.
2. Upon exiting a scope, if for any pointer that will now leave scope, there is a memory
block which is only pointed to by this pointer, that memory block is leaked.

In Figure 9, block (1) indicates the code insertion which declares the local pointer to the error
checker, and block (2) shows the pop-scope call, which checks for blocks uniquely pointed to by
pointers in the immediate scope of the local stack frame. Figure 10 shows the run-time data base
for the allocated block, associated pointers, and local pointer stack. As is shown in the diagram,
the pointer record is included in the local pointer stack, as well as on the pointer reference list of
the allocated block it points to, including a back pointer to the block. The pop-scope, in this case
then removes the pointer from the pointer stack, and it removes it from the reference list of the
block it points, at which time it recognizes and reports the leak scope error.
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Function Declaration R
Name: main Declare local pointer: ptr
scope body next

Vanables declared: Assignment
char *ptr; next operands

Variable: ptr
next

Call Expression
next operands

Pop Scope Variable: “ptr”
next next
Return: “no value” Function Decl l
name: malloc
| next

Figure 11: Instrumented Intermediate Code with Leak Checks
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Memory Block Record TOp of Stack
:1121:: %3 Local Pom@~_|
status info: name - |
Pointer List mﬁvelzzl 30
Block —

Calling function

local pointers

Figure 12: Run-time data base showing pointer stack and allocated block records
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2.1 .6 User Defined Interfaces

User defined interfaces allow the user to add custom error checking to function calls. An
Interface 1s essentially a means of enforcing rules on the way that a function can be called, and the
side-effects 1t has on memory. Typically interfaces check that all parameters are of the correnct

data type, that pointers point to memory blocks of the appropriate size, and that parameter values
are in correct ranges.

User defined imnterfaces look just like regular C code, and consist of the following:
1. The declaration for the function (ANSI or K&R style)
2. The body of the interface, which may contain error checking or iic_ function calls.
3. A seemingly recursive call to the function itself.

The function declaration is used in order to do strong type checking on the function arguments.
This 1s useful for programs that are written and normally compiled using a K&R varient of C,

which does not do strong type checking. The iic_ prefixed functions are used to inform the run-
time back-end about conditions of memory, pointers, etc... that the function effects. Finally, the

interface contains what appears to be a recursive call to the function itself.

Consider an interface for malloc(), a memory allocator:

1 char * malloc(size t size)

2 |

3 char *a;

4 if (size <=0 )

5 - iic erxror (“Bad malloc size”);
6 a = malloc(size) ;-

7 1f (&)

3 1ic_alloc{a, size);

> else

10 iic error(™malloc failed”);
11 return a;

12}

An interface is sort of like a complicated macro definition, in that for a given function call
observed in the intermediate code, the parse tree, for the original function call is replaced by the
user defined interface for that call, with the exception that the iic_ prefixed functions are
expanded into calls to the run-time back-end. iic_alloc(a, size) tells the runtime that a block of
memory of s1ze “size” has been allocated, and is pointed to by pointer “a”. Before an interface can
be used by the instrumentor, it is first processed, and saved in an intermediate from oa disk. Then,
when a function is incountered in the code being instrumented, that has a preprocessed interface
stored on disk, this file is read, and the interface is inserted into the intermediate code, replacing
the previous call to the function.
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Assignment
next operands
Variable: ptr Call Expression
operands operands
Function Decl: malloc
next
Integer: 10
next
Figure 13: Intermediate code for function call to malloc
The code fragment:

1 ptr = malloc(10);

origmnally has the intermediate form shown in Figure 13. After the expansion of the interface, by
the instrumentor, the intermediate code shown in Figure 14 results.

The instrumentor processes an interface as follows:

1. Identify a function call that has a corresponding interface description in the interface
database.

. remove the existing function call from the parse tree.

. read the interface intermediate code from the data base.

insert the interface intermediate code in place of the original function call.

. substitute the actual function call arguments into the appropriate place-holders in the

interface intermediate code. (similar to a macro expansion).

replace the return statement of the interface with an assignment to the result of the

actual call to the function. '

O
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T il

If Conditional cond S1ze <= () .

next - then -
Error Notify Error String '
next <to end> “Bad malloc size”

Assignment
next operands
Variable: a Call Expression :
operands - operands
Function Decl: malioc
If Conditional  cond Variable: a next
else then next

Integer: 10
next

Error Notify | Allocation Notify

next operands next

Error String
| “malloc failed™

Assignment:
next operands

Variable: ptr Variable: a I

Figure 14 Intermediate form after instrumenting malloc interface
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2.2 Intermediate Code Insertion for Automatic Test Case Generation

Another useful application for compiler intermediate code insertion, is for purposes of
automatic test case generation. This is a process by which test case data, for program inputs, is
generated automatically, which will attempt to achieve:

1. Full testing of all flow paths in the executable program.
2. Identify inputs that cause the program to perform incorrectly.

This technique involves analyzing the code to identify points where input data is needed, and then
to use various techniques, ranging from random number generation to heuristic flow analysis
techniques, to generate a set of input cases that satisfy the criterion above. The resulting program
i1s then linked to a “test harness” which repeatedly runs the program, with different inputs, adding
unique test cases to a data base of test case data. The algorithm converges when the criterion
above are met, or no new test cases can be generated, in a reasonable amount of time.

Since it is desired to identify cases that cause the program to generate a fault, or perform
incorrectly, the embedded debugging functionality of the previous sections is employed. Then as
test cases are being generated, any case for which the error-checker reports a problem, is added to
the test-case data-base. Figure 10 shows the block diagram of an example program. Here it is seen
that the program takes its input from various input sources, such as a computer keyboard, or a file
on disk, and generates certain outputs. Figure 11 shows the a block diagram of the instrumented

Input
Source
Example Program

Figure 15: A Typical Program with Input and Output
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code, and run-time support blocks, that the instrumented code interacts with, Additionally, the
input sources have been replaced by the input generated, which uses information from the run-
time error checker, and heuristic test case generator, to generate new test cases. The output ana-
lyzer evaluates the outputs of the original program, and that of the error-checker to evaluate the
result from the current set of inputs. If an error is detected, or if at least one new fow path has
been executed in the example program, this test case is added to the data base. If the set of inputs
does not generate an error, or there are no new paths executed, it is discarded, and the system

moves on to another test case.

Consider the following code:
l wvoid foo()
2 |
3 char b, ¢, *ptr;
4 Cc = getchar();
5 1f (¢ < M || ¢ >
6 *otr = 0; |
7 }
8 b =¢ - YW;
5 }

\9!)

{

In this code, the programmer expects the input to be an integer, and if it is not, there is some

Test Case
Data Base

Test Case
Generator

Tool Driver

I

Figure 16: Test Case Generator Block Diagram

Error Checker

Example
Program

{ Run-time ' |

| Analyzer —

Output
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default operation, which in this case would not function properly. Typically, however, exception
conditions happen rarely, and the code that handles the exception is often times never tested, since
in practice, they rarely occur. In this case, the exception condition would cause the program to
fail, since “ptr” 1s not yet initialized before it is dereferenced. An internal representation of the
program is shown in Figure 12. '

The analyzer now must locate points where the program is getting input, in addition to the embed-
ding error-checking code. This allows the Tool Driver to choose inputs, at run-time, that will force
the program to execute paths that may previously have never been tested. For the simple example
1n this case, if the input function “getchar()” returns any character whose ascii value does not fall
within the numeric range (ascii 48 - 57), the program would fail. The test case generator, would
then replace the input call to getchar() with a character generator, which could take random val-
ues. This would quickly lead to execution of all paths, after sufficient sample inputs have been

| Assignment
next operands

P e el

Function Decl
name: foo

SCOpe

Variables declared:
char a, b, *ptr;
c<48 or c>57 . If stmt | | Call Expression
cond operands
body next |

a3

Function Decl
name: getchar

body

Vanriable: ‘c’ I

next

Assignment
operands next

Pointer Reference: ‘ptr’ |
next |

Figure 17: Intermediate Code for Untested Exception Handling Code
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tried. Figure 13 shows the instrumented version of the code. As is denoted by the numbers, some
code has been added to the code, and in one case, some code has been replaced. At the start of the

program, a declaration for pointer ‘ptr’ is added, which is essentially a procedure call to the error-
checker, informing it that there is a pointer in this scope. In order to have control over inputs that
are received by the program, the call to getchar() is replaced by the Input Generator, which in this

Function Decl

name: foo Declare: ‘ptr’

scope body next

‘ PR

Variables declared: j ﬁ::gnmm e
char a, b, *ptr; | b=

Variable: ‘c’
next
c<48 or ¢c> 57 : Input Generator
next type: character
method: random

@ Check Pointer: ‘ptr’

- next
Assignment
operands next
| Pointer Reference: ‘ptr’
Integer: O
]

Figure 18: Instrumented Code with Test Case Generation Calls
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case generates random inputs between 0 and 255. Finally, there is an error test for the dereferenc-
ing of the pointer ‘ptr’, which in this case would probably fail, since ‘ptr’ was never initialized,
and is probably pointing to some invalid address.

The compiled instrumented version, is then linked with the error checker run-time, as well
as the tool driver, output analyzer and data-base control. The tool driver will then run the program
repetitively, using different inputs, until all paths in the program are executed.

After the test case generator has run to completion, the data-base now contains a set of test data,
each of which either results in the program taking a unique set of paths through the program, or
results in a failed run of the program. Test data for which the program fails, can then be analyzed,
and the code corrected, so that future runs of the code are more robust.
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3 Concluding Remarks

Extending a compilers functionality to include the embedding of code for automatic run-
time debugging and for automatic test case generation is a novel invention, currently being devel-
oped at Parasoft Corporation. Given the rich amount of information that a compilers intermediate
code contains, 1t has been shown, that such added functionality is not only feasible, but truly rep-
resents the next generation of compiler technology. By augmenting the intermediate code, the
resulting program, generated by the code generator, will allow the program to not only function as
it was originally intended, but will contain the added functionality of automatic run-time debug-
ging. This will greatly improve the quality of the final version of the code, as run-time errors have
been automatically detected by simply running the program. In addition, test case data can be
automatically generated, to insure that maximum testing can be performed.
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8. Overview of the Design of TGS System

The TGS system attempts to automatically generate test case data for a given program with
the following criteria in mind:

» Full testing of all flow paths in the executable program.

* Identify inputs that cause the program to perform incorrectly.

The technique involves analyzing the program’s code to identify points where input data is
needed. The input instructions are then replaced with special functions which are able to
simulate input using various techniques, ranging from random number generation to
heuristic flow analysis techniques, to generate a set of input cases that satisfy the criterion
above.

The resulting program is then linked to a “test harness” which repeatedly runs the program,
with varying input, adding unique test cases to a database of test case data. The algorithm
converges when the criterion above are met, or no new test cases can be generated in a
reasonable amount of time.

Figure 1 shows the block diagram of an example program. It can be seen that the program

Example Program

Figure 1. A Typical Program with Input and OQutput

takes its mnput from various input sources, such as a computer keyboard, or a file on disk,
and generates certain outputs. In order to automatically generate input for this program the
TGS System has to analyze the program’s source code, find which instructions of the
program correspond to the mput, and replace them with code which can simulite inpu.

APPENDIX B
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This is done using the technique of source code instrumentation. We will describe the
details of this technique in the following example:

void foo ()

{
char b, c, *ptr;
Cc = getchar();

1f (¢ < 0" || ¢ > '9) {
*PLr = 0;

}

b=c¢~ '0/;

In this code, input is done through the function getchar. The programmer expects the
input to be an integer ranging from 0-9. If the input value received is not in that range, the
program 1s designed to take the default operation, which in this case would not function
properly. This is called an exception condition. Typically, however, exception conditions
happen rarely, and the code that handles the exception is often times never tested, since in
practice, exception conditions rarely occur. In this case the exception condition would

cause the program to fail, since “pt r” is not yet initialized before it is de-referenced.

An internal representatlon of the program is shown in Figure 2. The boxes in the picture
represent different nodes in the programs’s “parse tree”. Statements in the program are
represented by one or several nodes in the parse tree. Each node has the field “next”. This

field points to the next nodc in the parse tree, or if the node is a leaf this field is 0. Consider.
the statement:

¢ = getchar();

This statement is represented by the “Assignment” node. The “next” element of that node
points to an if statement. The “operands” element points to two operands of the
assignment: “c” - left side and “getchar” - right side.

The parse tree is generated from the source code of the program through a process called
parsing. The parser is a tool which is specifically designed to read the source code of a

program written in a specific language and convert it into a parse tree. In our Phase I work
we were able to use the standard ParaSoft C parser, therefore we didn’t have to develop a

new parser. In Phase Il when extending the tool to work with C++ we will use our standard
ParaSoft C++ parser.

The representation of a program in terms of a parse tree is unique and has a oue to one
correspondence to the original source code. In fact it is possible, and we use this technique,

to generate source code out of the parse tree. A tool which does this is called a code
reconstructor, and it works inversely to the parser.
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It should be mentioned that the representation of a program in terms of a parse tree has
several advantages. The most important one is that a parse tree is easy for computers to
operate on. The second advantage is that a parse tree representation of the program is
language independent, and any operations or tools which operate on it do not have language
dependencies. This means that most of the work which is done during the Phase I I research
1s useful for other languages as well as C and C++. In fact internal tools do not need to be
changed when the prototype is modified to work with other languages.

| Function Decl

| name: foo _ Assignment
scope body nexit operands

Variables declared:
char a, b, *ptr; Variable: ‘¢’
| next
c<d8orc>57 If statement Call Expression
cond operands
. | body |

Function Decl
name: getchar

Assignmeni
operands next

U —|

Pointer Reference: ‘ptr’
next

Integer: O
Rest of Code...

Figure 2. Intermediate Code for Untested Exception Handling Code
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Once the program is translated to a parse tree the TGS tool applies the code analyzer to

locate points where the program is getting input. This allows the Tool Driver to choose
inputs, at run-time, that will force the program to execute paths that may have previously
never been tested. For the simple example in this case, if the input function “getchar () ”

returns any character whose ascii value does not fall within the numeric range (ascii 48 -
57), the program would fail. The test case generator, would then replace the input call to
getchar () with a character generator, which could take random values. This would
quickly lead to execution of all paths, after sufficient sample inputs have been tried.

The code analyzer not only analyzes the code, but also instruments it to replace input
functions with input generation functions.

Figure 3. shows the instrumented version of the code. As is denoted by the numbers, some
code has been added to the code, and in one case, some code has been replaced. In order to
have control over inputs that are received by the program, the call to getchar () is

replaced by the Input Generator, which in this case generates random inputs between 0 and
2535.

During the instrumentation phase, in addition to the instrumentation needed for input
generation, three additional instrumentations are performed:

* Instrumentation for coverage analysis.
* Instrumentation for block flow.
* Instrumentation for branch condition analysis.

Instrumentation for coverage analysis is necessary. The information provided by it is used
as a criterion for accepting or dismissing a test case.

The instrumentation for block flow monitors the flow of thé program, stores it, checks if
the desired flow is taken, and makes the decisions regarding continuing execution of the
program or not.

In the instrumentation for branch condition analysis, the branch conditions are replaced by
an equivalent real valued function plus a call to the run-time that monitors its value.

The parse tree modified in this way represents an “instrumented parse tree”. This ree is the
passed to the code reconstructor to build the instrumented source code for the routine. The
instrumented code is consequently passed to the language compiler The compiled version
i1s then linked with the 7GS input generation library into a final program ready for test
generation.

During code instrumentation, information about program flow, input statements, and
branch condition form is stored in the database files. This information is used during the

test generation process, and helps to decide which paths need to be analyzed and how to
generate nput to force a program to take a specific path.
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Function Decl Declare: ‘ptr’
name: foo next
body
Assignment
Variables declared: next operands
char a, b, *ptr; '
Yanable: ‘¢’
next
If statement
cond
— body Input Generator
next type: character
method: random

Assignment
operands
next

Pointer Reference: ‘ptr’ Rest of Code...
next ' -

Iner: 0

Figure 3. Instrumented Code with Test Case Generation Calls

Once the program is generated the TGS tool driver will then run the program repetitively,
using different inputs, until all possible paths in the program are executed.

During that process every set of inputs which is generated is analyzed by the “output
analyzer”. This tool checks to see if the input set increases the overall coverage of the
program. If this 1s the case then the set is included in the test-suite. If it does not then the
nput set is discarded. In the current version of the tool when making decisions about the
input set we use block coverage criteria. This can be changed in the future to use other
criteria, such as instance path coverage.
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After the test case generator has run to completion, the test-suite now contains a set of test

data. Each piece of data either results in the program taking a unique set of paths through
the program, or results in a failed run of the program. Test data for which the program fails
can then be analyzed, and the code corrected, so that future runs of the code are more
robust.

Figure 4 shows the block diagram of the TGS System. The instrumented code interacts
with the run-time support blocks. Additionally, the input sources have been replaced by the

Test Case Run-time
Database -

Test Case Examme - { Output
Generator | | Program I Analyzer

Tool Driver

Figure 4. Test Case Generator Block Diagram

input generator which uses information from the output analyzer. The input generator uses
different techniques to generate new test cases. The output analyzer evaluates the outputs
of the original program to evaluate the result from the current set of inputs. If at least one
new flow path has been executed in the example program, this test case is added to the

database. If the set of inputs does not cause new paths to be executed, it is discarded, and
the system moves on to another test case.

The design described above is the skeleton around which we are going to work. The
research which we will perform in Phase II is involved in finding new algorithms or
enhancing the existing ones which are parts of the different blocks in Figure 4.
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9. Technical Description of the Phase I
- Prototype.

A limited prototype for the Test Generation System (TGS) was built during the Phase I
research. The prototype takes a C program as input and automatically generates input for
the program that satisfies a given coverage criteria (i.e. builds a test-suite for the program).
The prototype was built with the following goals in mind:

* The system has to be as automatic and general as possible.
'« The system has to be modular and expandable.

This was done so that the system can be easily experimented with, both with a variety of
applications and input generation techniques. The prototype was built in such a way that it
1s a skeleton of a possible real system.

When developing the system we tried to minimize the dependency of the specific language,
which is C. The language dependency is located in the code parser and code reconstructor.
If these two modules are replaced, the system can work with any other language. The parse
tree which we used is the standard ParaSoft tree format and it is used to support C, C++,
Fortran77, and Fortran90. We also investigated the suitability of that tree to support Ada
and we are confident that the tree structure is capable enough to support this language as
well.

Modularity of the prototype is quite extensive. Modules interact with each other through
well defined interfaces which are module independent. Replacement of modules and
extensions to modules is easy and does not require modifications of other parts of the
system.

First we will describe the basic functionality of the prototype and afterwards the different
techniques we implemented to improve the generation of input.

9.1 Basic Input Generation System

The prototype generates test-suites using two basic steps:

* Analysis and instrumentation of the original program.
* Execution of the instrumented program.
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9.1.1 Analysis and Code Instrumentation

During the instrumentation phase the program is parsed and analyzed, the results of the
analysis are stored in a database for the program, and an instrumented equivalent version
of the original program is generated. The instrumented C program is compiled and linked
with a run-time library. The instrumented program has extra calls in it, the purpose of those
calls 1s to:

* Automatically generate input for the program. The original input
statements are replaced by calls to a run-time library that will generate
the input.

* Record information about the program that is not available at
compile-time. For example the flow taken by the program. This
information is also stored in the database for the program.

This phase has been implemented by extending the functionality of /nsight, which is our
run-time error detection tool. The TGS tool is implemented as a new switch “-Ztgs” to
insight.

We will describe the operation of the analysis and instrumentation of the program on a
simple example. Consider that we have a program which has its source code stored in files
fool.c fooZ.c foo3.c. In order to build an executable from it the user normally
performs the following steps:

cc —¢ fool.c
cc —-¢ foo2.c
cc —c foo3.cC
cc —¢c food.c
cc -0 foo fool.o foo2.0 foo3.0 food.o

Analysis and instrumentation is performed in a very similar fashion. The cc has to be
replaced with insight and an extra switch “~Zt gs”™ has to be added. Thus in order to

prepare a program to work with the 7GS system the user needs to change the previous
commands to:

insight -Ztgs -c¢ fool.c

insight -2tgs -c foo2.c

insight -2tgs -¢ foo3.c

insight -Ztgs -c¢ foo4.c

insight -2tgs -o foo fool.o foo2.0 foo3.o foo4d.o

Notice that the changes are minimal. The syntax of the changes was chosen to be of that
form in order to minimize changes required in users makefiles. It should be noted that these

type of changes can be done by changing the one line in the makefile which defines the
compiler from cc to insight. For example:

CC=cc becomes CC=insight
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In the above example the first 4 lines perform analysis and instrumentation on independent
source files. During that phase files with . ¢ extensions are converted to . o instrumented
object files. Notice that at that stage the following actions were performed:

* Analysis of the program.

* Instrumentation of the parse trees

* Reconstruction of the instrumented source code.
* Compilation with the compiler.

At the same time the tool generates information database files with . db extensions. These
files contain specific program information needed by 7GS and flow analysis.

At the last step the programs object files are linked together along with the library which
contains the input generation routines and run-time support routines for TGS. The resulting
object code is ready to be used by the second part of the T3S system.

We would like to stress here that we designed the system in such a way that it will be very
easy to use. The design is based on our past experience with other development tools. The
system 1s designed to be used frequently. This requires a very simple user interface and easy
modifications from standard compilation to compilation for the TGS system. This should
encourage users to use it. It does not matter how useful a system is, if it’s complicated and
has an awkward user interface it is not going to be used.

9.1.2 Searching for the Test Cases.

In the second step the program is executed repeatedly. This step is completely automatic
and done by a tool driver. The tool driver continues executing the program using the
different input techniques and analyzing the results of the execution. It stops execution
when 1t finds complete (100%) coverage or is told to stop by the user. The tool driver
organizes the results obtained and produces the following output: -

* Areport showing the progress of the input generation. Among other
things 1t has information su as: the number of inputs generated, the
program coverage they achieved, a summary of the actions taken, time
spent, Input generation techniques used, etc.

* A test-suite for the program consisting of the successful inputs
generated, a set of inputs for which the program shows bugs. i.e. inputs
for which the program crashed.

We will continue the description of the functionality of the prototype using the foo
example which was begun in the previous subsection (9.1.1). The executable of the

program ready to be executed by the tool is stored in the file foo. In order to start test-suite
generation the user executes:
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tgs foo

In this command tgs 1s the name of the tool driver. The tool takes several arguments and

various flags. All possible options which can be passed to the tool are described in
Appendix H which contains the t gs manual page.

Once the t gs command is executed the user is presented with the screen shown in Figure 5.

When TGS starts, it reports information on where the program was run and in which way
it was invoked. Then it proceeds to generate test inputs. For every new input generated,
TGS reports:

* - Number of runs - attempts to generate input. This number is split into
three numbers: total number of runs, number of test cases saved in the
test-suite, number of test cases which reported run-time errors and are
saved 1n the “Bugs Test-Suite”.

* (Code coverage information.This is reported as three percentage figures:
Code coverage of this specific test, total coverage of the program which

1s stored in the test-suite, total coverage including the test-suite and the
Bugs test-suite.

* Action which was taken regarding the input. If the input expanded
coverage of the program, it is added to the test-suite. If the input forced
the program to encounter an error, it is saved in the Bugs test-suite,

Test Generation System:

Directory: /home/lion2/quality/test
Command : tgs -heu foo
Date : Mon Nowv 28 12:07:51 1994

Testbed : sundc SunoS 2 4.1.3_U1
Host : lion

RUNS Coverage Action Elapsed Time
Tot in TS bugs run TS Total Run Total

110 3% 3% (3%} added to test-suite 0:25 [0:30]
220 6% 7% [7%] | added to test-suite 0:18 {0:52]

Figure 5. Sample TGS Output
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otherwise it 1s discarded.

* Elapsed time of TGS execution in seconds. This is again reported as two
numbers. The first number is the time spent executing the specific test
case. The second number is the total elapsed time from the beginning of
TGS execution.

During execution, TGS generates several directories and files where the output from the
tool 1s stored. In the current directory where the program was executed, TGS generates a
tgsdir directory which contains the results of the runs. In this directory the tool creates
a subdirectory "t s" which contains the generated test-suites. Inside the t s directory each
test case 1s stored in a separate subdirectory named t # where # is the consecutive number
of the test-case. Each t # directory contains a subdirectory in and out. The in directory
contains input files which the program will use to run the test case. These files can be
passed both to instrumented and non-instrumented versions of the program, to run the
specific test-case. The out directory contains the output from running the specific case.
The files are stored so that the user can check if the execution of the program was correct.
They are not used in subsequent parts of the system.

In addition to input files the TGS system generates an rtest.scr file in the tgs
directory. This file is the script file which is used by the automatic test-replay tool “rtest”
to automatically run the test-suites. “rtest” is our internal regression testing tool which
we use torun our test-suites. Generation of the rtest . scr file is an extra benefit of using
TGS. It automates the testing procedure to the highest possible extent.

9.1.3 Basic Modules of the Prototype

The prototype consists of four basic software units that are used by all of the input
generation techniques. These units are:

* Compile-time unit: this is the unit that takes the original program, makes
a static analysis of it, generates the instrumented program, and compiles
it to produce the instrumented executable. This unit is based on Insight
and uses much of /nsight’s technology. The other three parts are

completely new modules and were developed specifically for this
project.

* Run-time unit: this is the run-time for all instrumented calls added by the
compile-time unit:

* Tool-driver unit: automatic driver for the test-generation system, keeps
executing the program while analyzing the input and resulting output
and interacts with the run-time and the database for the program to apply
the dufferent input generation techniques.

* Database unit: database of the program first created by the compile-time
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unit and accessed by all units.

The most effort during our research was put into the Run-time unit and Tool-driver part
which interacts with mput and chooses different algorithms for test-generation. These parts
are also constructed modularly so we can add new test generation techniques and

experiment with new algorithms. In this research we tested the feasibility of 5 techniques
described in the following section.

9.2 Input Generation Techniques

This section describes the different input generation techniques we implemented in our
Phase I research. They correspond to increasing levels of sophistication and allowed us to
see if automatic input generation is feasible. Each technique has only implemented the
basic algorithm. Each of them is quite large and implementation of them in full detail was
beyond the scope of our Phase I research. The main goal was to see if all or some of them
in combination can be a basis for the creation of a real test generation system. The full
implementation of the techniques is part of the Phase II proposal. We believe it is
impossible to have prototype working on “real world’ problems without full
implementation of all the described techniques.

9.2.1 Random Input Generation

This 1s the most basic input generation used. It generates random input whenever the
program requests any 1nput. The values are random, but of the appropriate type. Input here
and for all the other techniques is generated for anything except graphical input. For
example the program may read from stdin, then open some files and read them, etc. The

prototype In this case will create stdin and the other files and fill them with suitable
values.

The prototype generates input while the program executes and at the same time creates the
input files that would generate that input when running on the normal program. The
run-time also generates an input description file, which contains a detailed description of

all the input generated for the program. The input description file is used by other input
generation modules.

The run-time detects the data type of the input requested and generates a random value
distributed uniformly over the range of valid inputs for that data type. It also decides
randomly when to generate an end of file and when to generate inputs shorter than the
requested ones (i.e. for fgets or fread system calls). The information needed by the
run-time to generate the input is passed as parameter arguments to the run-time calls and
through a database for the program that is created while processing the source.
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9.2.2 Heuristics

The heuristics module controls which heuristics rules are activated while processing the
program or running it. Any heuristics rule can be turned on or off independently. The
current heuristics rules implemented work on the generation of input. Its purpose is to

generate inputs that have a better chance to cover more parts of the program than the
randomly distributed values generated by the random input generation module.

The rules for every kind of input (numeric or character/string based) have a relative weight.
The system first decides randomly and according to the relative weight whether to generate
input according to one of the active rules or randomly. Once the rule is decided, the system
generates input according to that rule.

Examples of rules implemented for numeric values are:

* Exponential deviate: generates values distributed with an exponential
deviate around 0.

* Uniform log values: generates values distributed uniformly in each
order of magnitude. For example in that rule it has the same probabality
- of generating 10, 100, 1000, ....

* Extreme values: generates one of a list of extreme values (0, 1, 2. -1, -2,

). '
Example of rules implemented for character/string values are:

* Extreme values: generates extreme values. For example if asking for a
siring generates the same character for each element of the string, or
strings of zero length.

* Special values: generates one of a list of special values. Examples of
special values currently included are C and basic keywords, minimal C,
Fortran and Lex programs.

9.2.3 Function Minimization Methods

Here we have implemented the function minimization methods proposed by Korel [Kor90].
These techniques associate a real valued function to all the branches of the program. The
problem of generating input so the program takes a given path is transformed with this
technique to the problem of minimizing the associated real valued function. The real
valued function allows us to use guiding techniques to find local minimums for the
function. This technique is used by the tool driver to guide the generation of input.

tach input generated by the tool corresponds to a path in the program. Each successfully
generated input is stored in a test-suite for the program. The run-time tracks the execution
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flow of the program and checks at any point whether or not the current flow leads to
unchecked parts of the program.

Given a path for the program for which we know the input, we generate input for a path that
differs by taking an alternate branch in that path using function minimization methods. This

allows us to generate more inputs for the program, given that we already have some input
for it. |

The function minimization technique we used works as follows:

The tool driver goes over an already existing path in the test-suite and traverses the path.
At each selection statement in the path it checks if the branches other than the one taken by
the existing path are already covered. If some are not covered, it tries to generate input so
that the generated path is taken up to the selection statement and at that point the alternate
branch is taken. '

To do that it takes as a starting point the input for the already existing path. The idea is to
modify this input so that the path up to the chosen selection statement is taken, but then the
alternate branch is taken. This is accomplished by associating a real valued function to that
branch. The real valued function is defined in such a way that the branch will be taken if

the function becomes zero or negative. Thus the problem is transformed into a function
minimization problem.

The tool driver then proceeds to execute the program repeatedly, monitoring the path taken
by the program and the resulting value for the real valued function associated to the branch.
While doing that it loops over all input variables and uses guided function minimization
methods to modify the input so that the function becomes zero or negative.

It the search succeeds, the input that forces that branch is added to the test-suite of inputs
for the program. If the search fails, the branch is marked as unfeasible. Afterwards the tool
driver proceeds to find another uncovered branch in the existing paths in the test-suite. The
algorithm can fail to find the input either because it takes too long or because the path
condition gets broken (i.e. changing the input value makes the program take a path that
doesn’t lead to the selection statement we are concerned with.)

9.2.4 Dynamic Data Flow

Another technique proposed by Korel [Kor90] is to use dynamic data-flow along with
function minimization. The purpose of this technique is to allow us to find out what specific
input influences a given branch. The guided function minimization methods are thus
optimized because the amount of input to try is reduced. Here we have implemented a
variant of the method proposed by Korel. The tool driver monitors the actual flow for a
given input of the program and calculates the data-dependence for that flow. This
information, along with the actual values generated at every point in the program (also
available to the tool driver) allows us to calculate dynamic data-flow information.
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Dynamic data-flow techniques are used to reduce the volume of input variables one needs
to search when finding input for a given branch. The dynamic data-flow module is invoked
when using the function minimization methods. After the tool driver decides to fry to search
for input to force a given branch, it calls the dynamic data flow module to determine which
puts influence that branch. That information is given with reference to the input
description file. The guided search method is then optimized because it only needs to
change 1nput values associated with the branch.

To calculate the dynamic data-flow information we used a variant of the algorithm
proposed by Korel. In our tool we also wanted to include symbolic execution, so we used
a generalized algorithm for symbolic execution that also allows the calculation of dynamic
data-flow information. The symbolic execution algorithm allows us to calculate the
data-dependence along any flow in the program. To calculate the dynamic data flow
dependence it calculates the data-dependence along the flow actually taken by the program,
and that leads to the branch condition we want to force. All this information is calculated
every time the program is executed and is available to the tool driver because it is stored in
the test-suite along with the input generated and the input description file. The tool driver
combines the information of the data dependence for the actual path with the actual values
found in the input description file to obtain the dynamic data dependence.

9.2.5 Symbolic Execution

Symbolic execution is a technique studied in the literature [Off91] to generate input for a
given program. In this technique the program is executed symbolically and the condition
for a given branch to be taken is transformed into some set of symbolic expressions
satisfying specific conditions. This technique doesn’t require the actual execution of the
program. We chose to base our system on actual execution because we believe that actual
execution is the only practical way of executing real programs. Symbolic execution has
difficulties with standard constructs appearing in any appreciable real program (arrays,
pointers, external functions, loops). Nevertheless whenever symbolic execution is possible
1t 15 a very efficient technique. For this reason we added symbolic execution to our
prototype so we could use a mixture of both techniques and get the best of each of them.
The compilation-time unit was extended to perform symbolic execution of simple
constructs and to add the results to the program database. Using this technique, when trying
to satisfy a given branch condition the tool driver first looks to see if symbolic execution

was possible for that branch, if so, it uses symbolic execution techmques {Off91] to
determine what input is needed to ensure that the branch is taken.

A symbolic execution is performed for the entire program while processing the source. To
perform the symbolic execution the tool goes over all of the source code for the program
and calculates for all possible paths the path conditions and symbolic expressions for the
variables. While going over non-selection statements the expressions in the program are
used to obtain symbolic expressions for the relevant variables. Whenever a selection
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statement is found the path flows independently on every branch with a different path
condition for each. When the paths join at the end of the selection statement we have

multiple paths flowing at the same time each with its own symbolic expressions and path
conditions.

In real programs there are many constructs that prevent symbolic execution or make it
inefficient. Some of these constructs are arrays, pointers, external function, loops. etc. In
some of these cases the symbolic expressions and path conditions are not calculated and as
a result we have unknowns for those expressions. The results of the symbolic execution are
stored 1n the database for the program. We are particularly interested in the symbolic
expressions for branch conditions along with the associated path conditions.

At the same time that the tool calculates the symbolic expressions it also calculates the
data-dependence information. The data-dependence information is just like a symbolic
expression but with missing information regarding the form of the dependence. The plain
data-dependence information is simpier to calculate than the explicit symbolic expression
and for some branch conditions the tool is able to get data-dependence information, but not
the symbolic expression.

When using the function minimization techniques to force a given branch the tool driver
looks in the database to see if a symbolic expression is available for the branch condition
for that branch. If the symbolic expression information is available it uses it to directly
deduce an input that will force the taking of that branch. If a symbolic expression is not

available for that branch it uses the normal function minimization techniques described
above.

9.3 Application of Input Generation Techniques.

During the course of our Phase I research we tried to see if a combination of specific
techniques leads to better coverage results. In Phase I we tested only one combination, This
is the area where we plan to perform a majority of the research in Phase II. We believe that
the ability to change and adapt different methods to different programs is critical to the
success of the project. We will have to develop technology and algorithms which help us
in deciding which techniques to use to improve coverage.

The particular technique which we used is described in the next subsection.

In the Phase I proposal we described only one algorithm which we wanted to apply to the
test-generation problem. During the course of our research however, we realized that this
1s not possible, and that we need to implement each step of the algorithm as an independent
module and then put them together as one of the possible options. The design which we
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have now 1s better than the one we originally proposed. The system is more expandable and
ready to be tested with different algorithms. A similar process will probably occur during
the Phase II research. During the course of the project we may discover that some parts of
our current design can be done better and we may be forced to change them.

9.3.1 The Combined Algorithm

The prototype developed in Phase I uses a combination of all the algorithms explained
above to generate input for any given program.

The algonthms are used in the following way:

* The tool used random input generation plus heuristics rules to generate
as many different inputs as possible for the program. The generated
inputs are added to the test-suite along with all the information about the
path taken and the input description file. Note that for any program the

random input generation plus heuristics will always be able to generate
at least one input.

* Once nomore input is found by random input generation and heuristics,
the tool switches to guided function minimization methods to derive
new paths starting from the ones already in the test-suite. The tool loops
over the existing paths and looks for alternate branches that are not
covered. Once 1t finds one, it first looks to see if it has symbolic
expression information for it, if so that information is used to deduce the
input needed so that the branch is taken. If no symbolic expression
information is available for the branch condition it uses the function
minimization methods along with dynamic data flow information to try
to generate input to force that branch.

* Next the TGS driver starts the process of generating input variables.
This process is carried out in a loop using information generated in the
previous stages. The starting input set for the generation of input data is
the one which was used for execution of the program. The tool goes to
the end of the execution path and backs up to the last branch. The
information from the dynamic data flow analysis tells which input
variables have influence on the branch condition in question. The too}
then generates random inputs for only those input variables, and uses
constraints from the symbolic execution of the program to see if the
branch will be taken, If the satisfying set is found in the predefined time,
the generated input set is added to the set of test inputs. If the solution is
not found, the path is marked as not feasible.

* TGS next considers the path opposite the branch taken. If this branch
does not have any more leaves, the tool backs up to the branch above it.
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parse tree data s. .eturts [ Se (ree data structures
STRULCTUNRES PARS(E

#ifndef aspincTREESdotH
#define aspincTREESdotH (1)
#include <sys /proto.h>

f* Get definition of enum func_ana_result. * |
#include <aspinc /p-mode.h>

f* This type is used everywhcre to refer to a tree node. *f
typedef union tree node *tree;

#define DEFTREECODE{(SYM, STRING, TYPE, NARGS) SYM,
enum tree code { f** Set ENUM of MACROs ** [
#include "aspincftree.def”
LAST_AND_UNUSED_TREE CODE  /* A convienent way to get a value for
} | NUM_TREE CODE. * |/
#fundef DEFTREECODE
#define NUM_TREE_CODES ((int)LAST_AND_UNUSED_TREE CODE)

ﬁ*#***# o 200 e e 3k ok e e o e ke ook ke e ok ook ok koK

Common & MACROS

e e sk e ol R o afe o kol K e el gk 2k kol e o ko f

struct atinb {
{* attr for parser * |
unsigned att_external : I;
unsigned att_static = : |;
unsigned att_global  : 1;
unsigned att_volatile : 1;
unsigned att_readonly : I,

unsigned att_normal  : I f* this is for STMT FOR_NORMALIZED * |
unsigned att_regdecl : 1; * this is also for STMT COMPOUND * {
unsigned att in i

f* attr for aspar * | |

unsigned att simplified : 1; /f*his is also for EXPR SIMPLIFIED* [
unsigned att_normalized : 1. B

unsigned att_opened : 1,

unsigned att_parallel : 6;

upsigned att_main 1,

unsigned att dumped : l;

unsigned att_recursive: 1; /* not well defined... * [

unsigned att non ¢

unsigned att language : 3; rC, F77, LISP, Ada, F90, etc* /
unsigned att reached  : I;

f* suw . e3 of DO loop mangled by search_and_substitwte F77() * ]
unsipned att_e3subst : 1; )

unsigned att bogus 1 f* "Fake" convenience nodes * |/
* suw : F77 only */

unsigned att sfsoe : I

unsigned att iostmt  : 1;

unsigned att bracket : I,

unsigned att_misordered struct : 1;

I

f* —rss: for C++ */

unsigned att_overload : 1

unsigned att_friend : I,

unsigned att fake friend : 1, /™ friend att. was just passed to it * {

unsigned att_virtual : 1; /* Overloaded STMT _TRANSPARENT *

unsigned att delete has bracket: 1; /* delete [} address, reused for T XREF TAG * [

unsigned att has cc . 1. /* l.delete or :‘new, reused for T IS POINT _OP * [

unsigned att intermixed : 1; /* scope mem. first of intermixed stmt * [

APPENDIX C
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[ se _tree data structures

parse_tree data § ctures

STeuUcTLRES DARS (=
unsigned att_anonymous: 1; /* anonymous union * |/
unsigned att_anonymous last: 1,  /* last member of anonymous union * [
unsigned att_implicit_typedef: 1,  /* rypedef added for "struct A" * [
unsigned att_constructor: 1;  /* function is constructor, reused * |
unsigned att destructor: 1;  /* function is destructor * |/
unsigned att public: 1;
unsigned att_private. 1,
unsigued att _protected: 1,

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsipned
unsigned
unsigned

att_no_access: 1,

att_pure: 1;  /* pure virtual function * [

alt_nested: 1, /* nested class * [

att_post const: 1, [/* fun () const */

att_post volat: 1; /™ fun () volatile * J

att_template: 1, /* template declaration * /

att_instance: 1, f* template instance * [

att_member_func: 1, /* function is a member function * [

f* operator for type conversion func, not completed!!! * [

att_op_type_func: I;
att_mutable: 1;
att_no_proto: 1;
att_inst _path: 1.
att_hidden: 1;
att__uscd .1
att_reconst : 1;

/* no prototype existed for the function* [

f* Replaces TREE RECURSIVE for TREE USED * |
I* Replaces TREE RECURSIVE for reconstructor * |

b

struct tree_common

{

long uid, code;
long ref;

union
union
union
union

tree_node
tree_node
tree_node
tree _node

#ifdet TGS

union

#endif

s

#define
#define
#define
#define
#define
#define

* for
#define
#define
#define

struct

#define
#define
#define
#define
#define
#define
#define
#define
#define

tree node

attrib attr

TREE PARENT(NODE)
TREE _UID(NODE)

TREE . CHAIN(NODE)
TREE . KEYWORDS(NODE})
TREE _TYPE(NODE)

TREE , REF(NODE)
artributes * |/

TREE ATTRIBUTE(NODE)
TREE_CODE _UDNODE)
TREE CODE(NODE)

TREE EXTERNAL(NODE)

TREE , STATIC(NODE)

TREE  MUTABLE(NODE)
TREE_GLOBALMNODE)

TREE_ ~ VOLATILE(NODE)

TREE _IN_ANONYMOUS_UNION(NODE)
TREE READONLY(N ODE)

TREE _REGDECL{NODE)

TREE_INLINE(NODE)

((NODE)->common.parent)
((NODE)->common.uid)
{((NODE)=>common.next)

((NODE)~>common.keywords)
(INODE)->common.type)
((NODE)=>common.ref)

((INODE)=>common.attr)
(INODE)->common.code)

((enum tree code)(NODE)~>common.code))

((NCDE)->common.attr.att_external)
((NCDE)->common.attr.att_static)
(NODE)->common.attr.att_mutable)
(NODE)->common.attr.att_global)
((NODE)->common.attr.att_volatile)
((NODE)~>common.attr.att_volatile)
((NODE)->common.attr.att_readonly)
((NODE)->common.attr.att_regdeci)
((NODE)->common.attr.att_in)
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f* ~rss: for C++ */

#define
#defme
#define
#define
#define
#define
#define
#deline
#define
#define
#define
#define
#define TREE

#define
#define

#define
#define
#define
#deine TREE
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

TREE OVERLOAD(NODE)
TREE_FRIEND(NODE)
TREE_FAKE FRIEND(NODE)
TREE_ VIRTUAL(NODE)
STMT TRANSPARENT(NODE)
TREE XREF TAG PLAIN(NODE)
TREE_DELETE HAS BRACKET(NODE)
TREE_XREF TAG(NODE)
TREE_EXPLICIT PATH(NODE)
TREE_HAS CC(NODE)
TREE_IS_POINT OP(NODE)
TREE_LINKAGE NB(NODE)

INTERMIXED(NODE)
TREE PAREN EXPR(NODE)

TREE_ANONYMOUSMNODE)
TREE_STATIC NO(NODE)
TREE_ANONYMOUS LAST(NODE)
TREE_IMPLICIT TYPEDERNODE)
TREE CONSTRUCTOR(NODE)
TREE_FIELDS DECLNODE)

TREE DESTRUCTOR(NODE)
TREE_XREF_TAG_FOR_CONST(NODE)
TREE PUBLIC(NODE)

TREE PRIVATE(NODE)

TREE PROTECTEDXNODE)
TREE_NO_ ACCESS(NODE)

TREE PURE(NODE)

TREE_SIZECF NO_PAR(NODE)
TREE_TYPE DEFINED(NODE)
TREE_PVAL_MAY CHANGE(NODE)
TREE NESTED(NODE)

TREE POST CONST(NODE)
TREE_FORWARD IS STRUCT(NODE)
TREE_POST VOLAT(NODE)
TREE_FORWARD IS CLASS(NODE)
TREE TEMPLATE(NODE)

TREE INSTANCENODE)

IIIIIIIIIIIII

{
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((INODE)->common.attr.att overload)
((INODE)=>common.attr.att friend)
((NODE)—>common.attr.att_fake friend)
(NODE)->common.attr.att virtual)
((NODE)->common.attr.att_virtual)
((NODE)~>common.attr.att_virtual)
((INODE)=>common.attr.att delete has bracket)
({(NODE)—>common.attr.att dclcte “has _bracket)
{((INODE)—>common.attr.att dcletc has _bracket}
((INODE)—>common.attr.att has cc)
((NODE}=>common.attr.att has . . CC)
((NODE)->common.attr.att has . _CC)
((NODE)~>common.attr.att mtertmxed)

((INODE)=>common.attr.att intermixed)
((NODE)-~>common.attr.att anonymous)

(NODE)->common.attr.att_anonymous)
((NODE)->common.attr.att_anonymous last)
((NODE)->common.attr.att_implicit _typedef)
(NODE)—=>common.attr.att_constructor)
((NCDE)—>common.attr.att constructor)
(INODE)~>common.attr.att_destructor)
((NODE)->common.attr.att_destructor)
(NODE)—->common.attr.att_public)
(NODE)->common.attr.att private)
((NODE)->common.attr.att_protected)
(NODE)->common.attr.att_no_access)
((NODE)->common.attr.att pure)
(NODE)~>common.attr.att_pure) /[*reuse* /
(NODE)=>common.attr.att_pure) [*reuse* [
(NODE)~>common.attr.att_pure) freuse* f
((NODE)—>common.attr.att nested)
(NODE)}>common.attr.att_post const)
((NODE)->common.attr.att_post const)
(INODE)->common.atir.att_post_volat)
(NODE)}->common.attr.att_post volat)
((NODE)->common.attr.att _template)
((NODE)=>common. atir.att mstance)

f* CAST _EXP-E was in form of functional cast, reused * ]

#define

TREE FUNC CAST(NODE})

#define TREE MEMBER FUNC(NODE)
#define TREE OP TYPE FUNC(NODE)
M can be reused because OP TYPE FUNC is actually not used * [
#define TREE EXPLIC EXTERN(NODE)

((NODE)~>common.attr.att_post_const)
(INODE)=>common.attr.att member func)
((NODE)}->common.attr.att op type func)

#define TREE NO PROTO(NODE)
#define TREE - PARM ~ TEMP(NODE}
#define TREE INST PATH(NODE)
#define TREE H]DDE‘T(N ODE)

f* iic_used can be fixed better... * [
#define TREE IIC USED(NODE)

#define FUNC NORMALIZED(NODE)
#define STMT FOR NORMALIZED(NODE)
#define STMT COMPOUND(NODE)
#define TREE REACHED(NODE)

#define EXPR SIMPLIFIED(NODE)
#define TREE NORMALIZED(NODE)

f**in order to reconstruct ‘typedef correctly** f

#define NON_FIELD(NODE)

((NODE)->common.attr.att op type func)

(NODE)->common.attr.att_no_proto)
(NODE)->common.attr.att no proto)

(NODE)~>common.attr.att_inst path)
((NODE)~>common.attr.att_hidden)

((NODE)=>common.atir.att_recursive)

(NODE)~>common.attr.att_normal)
((NODE)=>common.atir.att_normal)
((NODE)—->common.attr.att_regdec])
((NODE)—>common.attr.att_reached)
(NODE)—>common.atir.att _simplified)

((NODE)—>common.attr.att_normalized)

((NODE)->common.attr.att_non)
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P* for the converter ** [

f* In FORTRAN, we need to distinguish stmt function stmt and enty from ordinary
* function or subroutines

*/
#define STFUNC OR ENTRY(NODE) ((NODE}~>common.attr.att_sfsoe)
#define F77 IO STMT(N ODE) (NODE)}=>common.attr.att_iostmt)
#define F77_BRACKET(NODE) ((NODE)}->common.attr.att _bracket)
[** for ASPAR ** [
#define TREE OPENED(NODE) ((NODE)->common.attr.att_opened)
#define TREE . PARALILEIL{NODE) ((NODE)=>common.attr.att_parallel)
#define TREE - MAIN(NODE) ((INODE)~>common.attr.att _main)
0~ C, I — Fortran * |/
#define TREE LANGUAGE(NODE) ((NODE)}->common.attr.att language)
#define TREE - DUMPED(NODE) ((NODE)->common.attr.att_dumped)
#defne TREE_RECURSIVE(NODE) ((NODE)=>common.attr.att_recursive)
#define TREE ~ RECONST(NODE) ((NODE)->common.attr.att_reconst)
#define TREE USED(N ODE) ((NODE)}->common.attr.att_used)
/** for mapv ** {
#define TREE BOGUS(NODE) ((NODE)->common.attr.att _bogus)
f* suw : e3 of DO loop mangled by search_and_substitwe F77() * [
#define E3_SUBST(NODE) ((NODE)->common.attr.att_e3subst)

#define RECORD_OUT_OF__ORDER(N ODE) ((NODE)->common.attr.att_misordered_struct)

ﬂ!*##*####**#**##***#*#*##**#**#**##**#*#

Integer Constant & MACROS

A0 2 e e e e ook o ok ool e ok e e Sk sk e o sl ok e 2k e e e e o ok sk s ok sk SR ok }

#define TREE_INT CST(NODE) (NODE}->int_cst.int_cst)
#define TREE INT _STR(NODE) ((INODE)=>int_cst.str)
#defme INT CST _LT(A, B) (TREE_INT_CST(A) < TREE_INT CST(B))

#define INT CST LT UNSIGNED(A, B) \
((unsigned) TREE INT CST(A) < (umsigned) TREE INT CST(B))

struct tree_int_cst

{
char common{sizeof (struct tree common)];
long int cst;
char *str;

h

f*####*#**** e 35 2 2 e e 20 3k 2 ol o ok A e ke g ok Sk ol s o 3 e i e ok s o

Real constant & MACROS

e ok Ak Sk ok e 3 e sfe 2 sl e ofe 2 g sie sk ool sk e ol ok sl e ok ol s ok ke s ok sk ok K ok ok ,

#define REAL VALUE TYPE double
#define TREE "REAL CST('NODE) (NODE)}=>1esl_cst.real cst)
#define TREE REAL . STR(NODE) ((NODE)}->real cst.str)

#define REAL VALUES EQUAL{xy) ((x} = (¥))
#define REAL™ _VALUES LESS(x,y) (X)) < (V)
#define REAIL ™ - VALUE ATOF(X) atof(x)

struct tree real cst
{

char common[sizeof (struct tree_common)];
REAL VALUE TYPE real cst;

char *str;
).
#define TREE REAL PART(NODE) ((NODE)->complex_cst.real part)
#define TREE IMAG _PART(NODE) (INODE)->complex cst.imag part)
#define TREE REAL PART STR(NODE) ((NODE)—>complex_cst.rstr)

#define TREE_IMAG__PART__STR(N ODE) (NODE)->complex cst.istr)
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struct tree complex cst

{
char common(sizeof (struct tree common)];
tree real part, imag part;
char *rstr, *istr;

};
f#*#*#*****#***##### e 2 2 2 A e ok i ke e ol ook i ok R Rk s s e

STRING_CST & MACROS
***#**##*#*##***#**##**####*#*##*#*#***#**#f
#define TREE STRING LENGTH(NODE) ((NODE)->string.length)
#define TREE STRING ~ POINTER(NODE) {(NODE)—:»strmg Jpointer)

struct treg_string

{
char common(sizeof (struct tree common)];
long length: [* length = strlen(pointer) * |
char *pointer;

|
f#*******#*# it i 3 ok e e e ale e e e e obe sl S s e sl e s ol e e o ol e o o sl e ak

Identifier & MACROS -
e 20 o 2k 3 2 e e 2k ok ohe ali sk e 2k 2 o s ool o ik 3l ok A o 2k st el i sl el ki e s ok ok e ‘{
#define IDENTIFIER LENGTH(NODE) ((NODE)=>identifier length)
#idefine IDENTIFIER POINTER(NODE) ((NODE)—>1dentifier pointer)
#define IDENTIFIER GLOBAL_VALUE(NODE) ((NODE)->identifier.global value)
#idefine IDENTIFIER LOCAL VALUE(NODE) (NODE)—>identifier.Jocal value)
#idefine IDENTIFIER LABEL . VALUE(NODE) ((NODE})}->identifier.label value)

struct tree identifier
{
char commonisizeof (struct tree common)l;
long length;
char *pointer;
union tree_node *global value;
union tree “node *local valuc,
unon tree node *label | value;

};
f**# S 20 20 2k e b 2 3 i e e Sl e ok i 3 e 2t 2k e A alk ok e i ol e ol o e ke o ek sk

TREE LIST node & Macros
sk N AR KA AR Rk ok o oh ook
#define TREE_PURPOSENODE) ((NODE)->list purpose)
#defme TREE VALUE(NODE) (NODE)=>list.value)

struct tree list

{
char common(sizeof (struct tree common)];
union tree noxie *purpose;
union tree node *value,

IR
skt ot s ool ke Sl ok o el o o o s o ook o s ok ook

PLAIN TEXT node & Macros

s s S o s e e o ol oo o e ol ol o o e o ool o 2 oo o 3 Skl o ok e ok o o e o /

#define TREE TEXT(NODE) ((NODE)~>text.text)

#define TEXT LABEL(NODE) ((NODE)->text.label) |
#defme TEXT SOURCE LINE(NODE) ((NODE)->textlinenum)
#define TEXT SOURCE  FILE(NODE) ((INODE)->text.filename)

struct tree text

{

char common[sizeof (struct tree common)j;
char *text;
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union tree_node *label;
char *filename,
long linenum;

;lll**#*#=l=#**###******#*****‘t‘-‘h#*#*#*******#**#

INCOMPLETE FUNC node & Macros

S o e ok e e i o R ol ok e e e e ol o ke o SR K e ko kol sk ol ol ok ok skok ke sk e o ok ok sk f

#define IFUNC DECLSPECS(NODE) ((INODE}->ifunc.declspecs)

#define IFUNC DECLARATOR(NODE) ((NODE)}=>ifunc.declarator)

#define IFUNC BODYTEXT(NODE) ((NODE)~>ifunc.bodytext)

#define IFUNC PARMTEXT(NODE) ((INODE)=>ifunc.parmtext)

#define JFUNC LINENO(NODE) ((INODE)~>»ifunc.lineno)

#define IFUNC_LINENO BODY(NODE) (INODE)—>ifunc.lineno_body)

struct tree_ifunc
{
char common[sizeof (struct tree common)];
union tree node *declspecs;
union tree_node *declarator;
char *bodytext;
char *parmtext;
int lineno;
mt lineno_body;
b

f****** o 2k 3 e ok e 2 ol e ol e e ke et Ak she ot ok e sieote dfe siosde i e et Nk dekokok

DAG NODE Macros

s e o A ok o ok 2 ek ok e ok 3 ok o ok ok ok ok e oK e o 2 o e o 4 e wc s e e e o ok e f

#define DAG_CLASS(NODE) ((NODE)—>exp.operands{0])
#defwwe DAG FIELD(NODE) ((INODE)->exp.operands[1])
#define DAG_PATHS(NODE)  ((NODE)->exp.operands[2])
#define DAG BASE(NODE) ((NODE)~>exp.operands{3])

ft**#****#****##**#****# 3.3 3 3 e e o ol vk sk e o e s ke ok o

EXPRESSION node & Macros
e a0 ol i e e ok A ol e o ol o ok e e 3k e b 2k b ok e sl R 2k o ale ok sl e ol 2k sk alk ol e e e ok o !
#defme TREE EXPR MATCH(NODE) ((INODE)~>exp.match)
#define TREE OPERANDNODE, I) ((NODE)}->exp.operands(I])
#define CONSTRUCTOR _ELTS(NODE) TREE OPERAND(NODE, 1)

¥ C++ */
#define DELETE ADDRESS(NODE) ((NODE)->exp.operands{0])
#define DELETE SIZENNODE) ((INODE)—>exp.operands{1]}

#define NEW_TYPE ID(NODE) ((INODE)~>exp.operands{0])
#define NEW ARGS(NODE) ((NODE)~>exp.operandsf1])
#define NEW_INITIALIZER(NODE) ((NODE)}->exp.operands(2])

#define NEW_NEW_TYPE IIDXNODE) ((NODE)->exp.operands(3])
#define NEW CTOR(NODE) ((INODE)—->exp.operands[4])

struct tree_exp
{

char common(sizeof (struct tree common)];
union tree node *match;

union tree_node *operands[l];  /* it’s expandable * |
I

#define TREE CAST TYPE(NODE) ((NODE)->cast expr.type)

struct tree cast_expr
!
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char common(sizeof (struct tree_common));
union tree_node *match, /* Provided _only_ for easy compatibility with

above * f

union tree node *operands[2]:

#define TYPE TEMP_PARAM LISTWNODE) ((NODE)->typetemp_param _list)
#define TYPE_SIGN'ED(NODE) ((NODE)->type.extra.signed type)
#define TYPE EXTRAMNODE) ((NODE)}->type .extra)

#define TYPE IMP TDEF(NODE) ((NODE)->type.minval)

#define TYPE_FRIEND CLASS(NODE) ((NODE)—>type.maxval)

#defme TYPE SCOPE(NODE) (NODE)=>common.parent)

#define TYPE TABLE(NODE) (NODE)->type.table)

#define TYPE DAG(NODE) ((NODE)->type.dag)

struct trec type

A

char commonisizeof (struct tree_common)];
char *filename;

long linenum,;

union
union
union
union
union tree
union
union
union
union
union
union
union
union
union
union
struct

tree node
tree node
tree node
tree node
node
tree node
tree node
tree node
tree node

free node
tree node
tree node
tree node
tree node
tree _node

*values;

*Sim;

*pointer_to;

*reference_to;

*name;

*maxval;

*minval;

*base, /* C++: list of base classes * |/
*scope path; /* C++: explicit path to type if any * /[
*label;, f* C++: lobel *f

*nested; M C++4: chain of nested classes * |-

*linkage, /* C++. chain of nested classes * [
*temp_param_Lst, /* C++: template parameter list * [
*pclass;

*dag,

Entry **table;

122

St tree data structures

for POINTER TYPE * |

unsigned char type: /* 0 = dynamic, I = const, 2 = static, 3 = reinterpret * [
b _
JAk ko koo ko okokkoRokok R kakoR okl sk Rk ok ok kok R R
Tree TYPE node & Macros
***#*#**##*##*****#****#************#*#****i
#define TYPE SOURCE FILE(NODE) ((NODE)->type.filename)
#defme TYPE SOURCE _LINE(NODE) {(INODE)~>type.linenum)
#define TYPE SIZE(NODE) ((NODE)->type.size)
#define TYPE VALUES(NODE) (NODE)->type.values)
- #define TYPE DOMAIN(NODE) (INODE)=->type.values)
#define TYPE FIELDS(NODE) ((NODE)->type.values)
#define TYPE_ARG_TYPES(NODE) ((NODE)->type.values)
#define TYPE CLASS(NODE) ((NODE)}->type.pclass)  M*—rss: class::*
#define TYPE POINTER TO(NODE) ((NODE)->type pointer_to)
#define TYPE REFERENCE TO{NODE) ((NODE)->type.reference to)
#define ACTUAL TYPE(NODE) ((NODE)}->type.reference_to)
#define TYPE MIN - VALUE(NODE) (NODE)->type.minval)
#define TY'PE MAX _VALUE(NODE) ((NODE)}->type. maxval)
#define TYPE_PRECISION(NODE) ((NODE)=>type.precision)
#define CHAR_ TYPE _LEN(NODE} ((NODE)—->type precision)
#define _NAME(N ODE) ((NODE)—->type.name)
#define TYPE C SIZE(NODE) ((NODE)->type.extra.c size)
#define TYPE UNSIGNED(NODE) ((NODE)->type.extra.unsigned type)
#define TYPE EXTRA(NODE) ((NODE)->type.extra)
#define TYPE BASE(NODE) (NODE)=>type.base)
#define TYPE SCOPE PATH(NODE) (NODE)->type.scope_path)
#define TYPE LABEL(NODE) ((NODE)}=>type.label) |
#defme TYPE NESTED(NODE) {(NODE)}~>type.nested)
#define TYPE LINKAGE(NODE) (INODE)}~->type.linkage)
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unsigned char precision:
struct {
uasigned c_size 2 0 ==> shonr, I ==> normal, 2 ==> long * [
unsigned unsigned type : 1;
unsigned signed type : I; [* By keyword * |
} extra;

struct decl base {
char *filename,
long linenum;
union tree node *size; f* size & common * |/
union tree_node *implicit, *equiv, *data, *param;
union free node *name;

union tree_node *context; f* context & calling~funcs * |/
union tree node *initial; f* nitial & body * /[

union tree node *arguments; fr C++: "Class var (3);" *{
union tree node *linkage: ¥ C++: linkage {..} */

unmion tree node *scope path; & C++: explicit path to type if any * /
union tree node *label; f* C++: label * [

union tree_node *temp_param list, /* C++: template argument list * |
union tree node *stmts; [ C++. extra stmts attached to decl * /

union tree_node *post_stmts; /> C++: extra post_stmts attached to decl * [
union tree_node *over chain, M C++: overloaded list * [

union tree_node *field dag; /* C++: pointer to dag where field was found * |
union tree node *friend class; * C++: list of friend classes */

struct binding_level *level;, /* C++: for namespaces * |

!

Pk#*#hh**************#****#*#***#****#*******#*****#**** e o 5k e

Declaration node & Macro
********************###**#*###**#**##*“***####********#**# [

#define DECL SOURCE FILE(NODE) ((NODE)->decl.dbase.filename)

#define DECL_SOURCE LINE(NODE) (NODE)->decl. dbase.linenum)

#define DECL SIZE(NODE) ((NODE)~->decl.dbase size)

#define DECL COMMON(NODE) ((NODE)~>decl.dbase.size)

#define DECL EQUIVAL(NODE) ((NODE)~>decl.dbase.equiv)

#define DECL IMPLICIT(NODE) ((NODE)}~>decl.dbase.implicit)

#define DECL DATA(NODE) ((NODE)=>decl.dbase.data)

#define DECL BL NAMES(NODE) (INODE)->decl dbase.data) *C++. reused *
#define DECL_PARAMETER(NODE) (INODE)~>decl.dbase param)

#define DECL. EXCEP(NODE) (NODE)=>decl.dbase.param) /* C++. reused * [
#define DECL NAME(NODE) (INODE)->decl.dbase.name)

#define DECL CONTEXTINNODE) ((INODE)=>dec].dbase.context)

#define DECL_FIELD CONTEXT(NODE) ((NODE)->decl.dbase.context)
#define DECL_CALLING FUNC(NODE) ((struct a elm *)((NODE)->decl.dbase.context))

i

{

#define DECL ARGUMENTS(NODE) ((INODE)=>fdecl.arguments) f* In F UNC DECL * [
#define DECL INITIAL(NODE) ((NODE)~>decl.dbase.initial)

#define DECL_FUNC_BODY(NODE) ((NODE)->decl dbase initial)

#define DECL_AIIASES(NODE) ((NODE)—>decl.aliases)

** for C++ **

#define DECL_TYPE SCOPE_PATH(NODE) ((NODE)->decldbase.scope_path)

#define DECL_SCOPE REF(NODE) ((NODE)=>decl.dbase.scope _path)

[*¥* for C++ ** |
#define DECL_TEMP_PARAM_LIST(NODE) ((NODE)->decl.dbase.temp param list)

#define DECL_LABEL(NODE) ((NODE)}->decl.dbase.label)

#define DECL._OVER CHAIN(NODE) ((INODE)->decl.dbase.over chain) /*C++*/
#define DECL_CONS_ARGS(NODE) (INODE)->decl.dbase.arguments) /* X a(3); * /
#define DECL_CONS_LIST(NODE}) ((NODE)}->decl.dbase.arguments) /* X a(3), * /
#define DECL_ILINKAGE(NODE) ((NODE)~>decl.dbase linkage)

#define DECL_BINDING LEVEL(NODE) ((NODE)->decl.dbase.level)

#deiime FUNC CLASS(NODE) ((NODE)->fdecl pclass)
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#define ACTUAL_ DECL(NODE) ((NODE)~>fdecl.actual_decl)

#define DECL. STMTS(NODE) ((NODE)=>decl.dbase. stmts)

#define DECL_POST_STMTS(NODE}) ((NODE)~>decl.dbase.post_stmts)

#define DECL NESTED(NODE) ((NODE)—>decl.dbase.arguments)  *reused* /

#define INSTANCE_PATH(NODE) (NODE)~>decl.dbase.label)

#define DECL FIELD - DAG(NODE) ((NODE)->decl.dbase field dag)

P list with all the friend classes of the FUNCTION - DECL * |
#define DECL FRIEND CLASS(NODE) ((NODE)->decl.dbase.friend _class)

f** for aspar ** [
#define FUNC FLOW_ GRAPHMNOQDE) ((NODE)—>fdecl.graph)
#define FUNC TNFO(NODE) ((NODE)->fdecl.fnc_info)

#define IS MEMBER FUNCTION(NODE) ((NODE)&&(NODE)->fdeclpclass)
#define NOT_ IS MEMBER ™ _FUNCTION(NODE) (INODE!NODE->fdecl.pclass)
#define IN MF.‘N‘.[BER FUNCTION (current_funchon_decl&&curcent functlon _decl=>fdecl.pclass)

struct free decl
{

char common(sizeof (struct tree common)],
struct decl base dbase;
upion tree_node *aliases;

¥

struct tree_func_decl {
char common[sizeof (struct tree common));
struct decl base dbase;
union s_flow_node *graph,
union tree node *arguments;
struct s_ func info *fnc_info;
union trce node *pclass;
union tree node *actual decl;

};
f**#***#**#*****###*#* i 3 2 e 2l i ol s o o e i sk sk okt 2 o S ol i e ok ok ok ok

Statement node & Macros
e 2 2je e 3 e e e ke e 2 e e je e i e e i sl s o e o e e ke s i e oe de ho ol de e ol N i e s sl ol ok o ol !’

M* For GOTO STMT, RETURN STMT,
COMPOUND STMT, ASM STMT, BREAK _STMT, BLOCK STMT, DIRECTIVE. */
#define STMT SOURCE L[NE(N ODE) ((INODE)~>stmt.base linenum)
#define STMT SOURCE _ END(NODE)}  {((NODE)}->stmt.base.endline)
#define STMT SOURCE FILE(NODE) ((NODE)~>stmt.base filename)

#define STMI‘_BODYWODE) ((NODE)=>stmt.base.body)
#define STMT_ALIST(NODE) ((INODE)->stmt.base. Alist)
#define STMT FLOW NODE(NODE) ((NODE)=>stmt.base.frode)
#define STMT SCOPE(NODE) ((NODE)—>stmt.base.scope)
#define STMT LABEL(NODE) (NODRE)~>stmt.base.label)
#define STMT COMMENT(NODE) ((NODE)->stmt.base.comment)

#define STMT PREVIOUS(NODE) ((NODE}—>stmt.base.previous)

struct stmt base
{
| char *filename,

long linenum, endline;

union s_flow_node *inode,

struct a list *Alst;

union tree node *body, *scope, *label, *previous;
char *comment;

}e

struct tree_stmt
{

char common(sizeof (struct iree common)];
struct stmt base base;
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};

f******##*** For WH[LE STMT ##*#**#*#***####*##***/

#define STMT_WHILE COND{NODE) (NODE)~>while stmt.cond)
#define STMT_DO_WHILE CONDNNODE) ((NODE)=->while stmt.cond)
#define STMT DO _ WHILE - LABEL(NODE) (INODE)->while stmt.label)
#define STMT END DO WHILE(NODE) (INODE)—->while_stmt.enddo)

struct tree_while stmt
{

char commonisizeof (struct tree common)];
struct stmt base base,

unton tree _node *cond, *label, *enddo;

e

f*#*#***#***## For IF STMT‘ *#**###**#****#*#*#*##!

#tdefine STMT COND(NODE) (NODE)->if stmt.base.body)
#define STMT_THEN(NODE) (NODE)}—>if stmt.thenpart)
#define STMT_ ELSEIF(NODE) (NODE)~>if_stmt elseif)
#define STMT ELSE(NODE}) ((NODE)->if_stmt.elsepart)
#define STMT ENDIF(NODE) ((N ODE}-mf stmt_endif)

#define STM’I‘ SOURCE ELSE(NODE) ((NODE)—mf stmt.else_line)

struct tree if stmt
(

char commonisizeof (struct tree_common)];
struct stmt base base;

union tree node *thenpart, *elseif, *elsepart, *endif;
long else_line; /* to keep lineno for ELSE * [
b

f*#***#*#**##* F{}f MSC TR}-" SmT *###****#*****#t#*#*#t/

#define STMT MSC TRY(NODE) ((NODE)}->msc_try_stmt.base.body)
#define STMT EXCEP'T(NODE) (NODE)->msc_try “stmt.handler)
fidefine STMT _EXCEPT_ARGS(NODE) ((NODE)}~>msc _try ~stmt handler _args)

struct tree_msc_try stmt
{

char common(sizeof (struct tree_common)];
struct stmt_base base;

union tree_node *handler, *handler args;
i

f*********** For FOR STMT *#************;

#define STMT EI(NODE) (INODE)}=->for stmt.el->stmt.base.body)
#define STMT _ EZ(NODE) (N ODE)—:z-fur stmt.e2->stmt.base.body)
#define STMT _E3(NODE) (('NODE)—:-fm stmt.c3—>stmt.base.body)
#define AHST_EI(NODE) (NODE)=>for_stmt.el~>stmt, base. Alist)
#define ALIST E2(NODE) (N ODE}—)for__stmt.ﬂ-:»sLmease.Alist)
#define ALIST E3(NODE) (NODE)~>for simt.e3->stmt base. Alist)

#define STMT_El1_STMT(NODE) (NODE)->for stmt.el)

#defme STMT E2 _ STMT(NODE) ((NODE)—>for_stmt.e2)

#defme STMT E3 S'IMI‘(NODE) ((INODE)}->for stmt.e3)

#define STMT ENDDO(NODE) ((NODE)=->for_stmt.enddo)
#defme STMT FOR LABEL(NODE) ((N ODE)—>for_stmt.label)
#define STMT_FOR_LOOP INFOMNODE) (INODE)}—>for_stmt. Ip_info)
#define STMT FOR DIRECT(NODE) ((NODE}—>for stmt.duecnves)
#define STMT FOR V(NODE) ((NODE)->for _stmt.v)

#define STMT FOR DECL(NODE) ((NODE)->for _stmt.decl)

struct tree for_stmt
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char common(sizeof (struct tree common)];

struct stmt base base;

union tree node *el, *e2, *e3, *decl;
union tree . node *label, *v, *enddo;
struct s_loop_info *Ip info;

char *directives;

};

ﬁ!***

common node which has 2 children.
Kk f

P+ For SWITCH StmT *** [
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f* for Fortran * {

#define STMT _SWITCH_INDEX(NODE) ((NODE)}->stmt plusl.index)

p* For CASE_StmT including DEFAULT ** |

#define STMT_CASE INDEX(NODE) ((NODE)}->stmt plusl.index)

* For DECL StmT (C++) ** [

f* pointer within scope to the intermixed member * { -
#defme STMT_DECL_SCOPE(NODE) ((NODE)->stmt _plusl.index)

f** For TRY BLOCK StmT (C++) ** /

#define STMT TRY_HANDLER(NODE) ((NODE)->stmt_plusl base.body)
#define STMT TRY COMP(NODE) (NODE)->stmt_plus].index)

M** For ASSIGN StmT (f77) */

#define STMT _ ASSIGN _VAR(NODE) ((NODE)->stmt_plus].base. body)
#define STMT ASSIGN _LABEL(NODE) ((NODE}—>stmt _plusl.index)

f** For ASSIGNED_GOTO _StmT (f77) **

#defme STMT ASSIGNED GOTO - NAME(NODE)

((NODE)}~>stmt_plus!.base.body)

#define STMT ASSIGNED GOTQ _LABELS(NODE) ((NODE)~>stmt _plusl index)

M* For COMPUTED _GOTO StmT (f77) ** |

#define STMT COMPUTED GOTO -~ EXPR(NODE)

((NODE)->stmt_plusl.base.body)

#define STMT COWUTED GOTO -~ LABELS(NODE) (WODE)-—:-stmt _piusl.index)

** For ENTRY StmT (f77) *** f
#defme STMT_ ENTRY - NAME(NODE)
#defime STMT ENTRY _ARG _LIST(NODE)

p* For STMT FUN _StmT (f77) *** |
#define ST FUNC NAME(N ODE)
#define ST FUNC_EXPR(NODE)

P+ For COMMON StmT (f77) *** |
#define COMMON VAR _LIST(NODE)
#define COMMON_BLOCK_NAME(NODE)

p* For DATA_StmT (f77) *** {
#define DATA STMT OBIJ(NODE)
#define DATA STMT VAL(NODE)

struct tree_stmt_plusl
{

char common[sizeof (strnct tree common)];

struct stmt base base;

umon tree node *index;

¥

(INODE)=>stmt_plus].base.body)
((NODE)=>stmt_plusl.index)

(INODE)=>stmt _plusl.base.body)
(NODE)->stmt_plusi.index)

((INODE)->stmt_plus].base.body)
(INODE)~>stmt_plusl.index)

((NODE)~>stmt_plusi.base.body)
((NODE)—>stmt plusl.index)
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p* For ARITHMETIC IF STMT (f77) *** |

#define STMT_ARITHMETIC_IF_COND(NODE)  ((NODE)->arithmetic_if stmt.base.body)
#define STMT_ARITHMETIC_IF_LABELI(NODE) ((NODE)}->arithmefic if stmt.labell)
#define STMT_ARITHMETIC_IF_LABEL2(NODE)  ((NODE)->arithmetic_if stmt.label2)
#define STMT_ARITHMETIC_IF_LABEL3(NODE)  ((NODE)—>arithmetic_if stmt.label3)

struct tree_anthmetic if stmt
{

char common(sizeof (struct tree common)];
struct stmt base base;

union tree node *labell, *label2, *label3;
)
f-t#* TGS Sﬂg ##*{
f~ accesses the TGS NODE and allocates if necessary * [
#define TREE TGS(N ODE) {((INODE)=>common. tgs?(NODE)->common.tgs:allocate tgs node(NODE))

f* only accesses the TGS NODE * |
#define TREE TGS PLAIN(NODE) ((INODE)}=->common.tgs)

f* The following access info on the TGS_NODE, but using as argument the parent

node * [
#defme TGS KEY(NODE) (TREE TGS(NODE)->tgs key)
#define TGS SE(NODE) (TREE_TGS(NODE)~>tgs.se)
#defme TGS_NUM_CALILS(NODE) (TREE_TGS(NODE)->tgs.i0)
#define TGS INDEX(NODE) (TREE _TGS(NODE)->tgs.i0)
#define TGS ELEM(NODE) (TREE TGS(INODE)->tgs.il)
#define TGSA_ACCESSED(NODE) (TREE_TGS(NODE)->tgs.attr.att accessed)
#define TGSA SE UNKNOWN(NODE) (TREE_TGS(NODE)->tgs.attr.att_se unknown)
#define TGSA PATH _DEP(NODE) (TREE_TGS(NODE)->tgs.attr.att_path dep)
#define TGSA_ERROR(NODE) (TREE_TGS(NODE)->igs.attr.att_error)

f* Like the above, but using as argument the TGS NODE itself * |

#define TGS_NODE KEY(NODE) ((NODE)}->tgs key)
#defme TGS _NODE SE NODE) ((NODE)->tgs.se)
#define TGS_NODE INDEX(NODE) ((NODE)=>tgs.i0)
#define TGS_NODE_ELEM(NODE) ((NODE)—>tgs.il)
#define TGS_MEMORY CELLS(NODE) ((NODE)->tgs.se)
#defme TGS_CELL INDEX(NODE) ((INODE)->tgs.offset)
#define TGS_CELL. VALUE(NODE) ((INODE)—>gs.se)
#defme TGS_CELL LEN(NODE) (INODE})=>tgs.len)
#define TGS_CELL MEMORY(NODE) ((NODE)}—>tgs.memory)

struct attnib_tgs {
unsigned att_accessed: 1;
unsigned att s¢_unknown: 1;
unsigned att_path dep: I;
unsigned att ecror: 1;
unsigned att_rest: 28;

i

struct tree tgs
{
char common[sizeof (struct tree common)];
int key;
tree se;
int i0;
struct attnb_tgs attr;
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tree offset;
tree len;
int 1il;

tree memory;

¥

I
* UNION
*/
union tree node
{
struct tre¢_common common,
struct tree int cst int cst;
struct tree real _cst real cst;
struct tree complex cst complex_cst;
struct tree string string;
f* struct tree_complex complex; * [
struct tree identifier identifier;
struct tree decl decl;
struct tree_func decl fdecl;
struct tree _type  type;
struct tree list list;
struct trec_text text,
struct tree ifunc ifunc;
struct tree _exp exp;
siruct tree_cast_expr cast_expr;
struct tree stmt stmt;
struct tree I.f stmt if stmt;
struct tree anthmctlc “if stmt arithmetic if stmt;
struct tree for stmt for_ _stmt;
struct tree_while_stmt while stmt;
struct tree_stmt plusl stmt plusl;
struct .tree_tgs tgs,
struct tree_msc_try stmt msc_try_stmt;

b

f*
* Binding Level
*/
struct binding level
{
tres names;
tree tags;
tree shadowed;
tree blocks;
struct binding_level *level chain;
tree using list; MC++: list of using directives in the level * {
cbar parm_flag;
char tag_ transparent;
b
#define NULL_BINDING_LEVEL (struct binding level *)0;

Pr=rss{f]: should go somewhere else: * {

#define IMPLEMENT Warning (“Implement: \"%s\", line %d at [%s:%ld\n",__FILE_,  LINE__INfilename lineno);
#define INTERNAL. Error ("Internal error: \"%s\", line %d at [%es:%ld]\n",_ FILE _, LINE INfilename lineno);
extern int IS CPP, |

#ifdef FREECHECK
#define malloc(a) malloc_prof(a, FILE ., LINE )
#define xmalloc(a) xmalloc ro(a Fll.E_,

__LINE_)

#defime _ex malloc(a) ex ma]loc _pro{a, FILE , LINE )



5,581,696

135 136
parse tree data s ctures | 'se_tree data_structures
STRUCTULES PrRsE

#define make_node(a) make_node_prof(a,_ FILE _, LINE_ )

#define buld tree_list(p,v) build tree list prof(p,v, FILE , LINE )
#endif

#endif

P+ END OF FILE ** f
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1 Source Code Build Procedure

The following is a sequence of steps that should be followed in order to build the instru-
mentation executable

1.1 Environment settings and directory structure for the source code,

Betore actually building the executable, the following environment settings must be
assigned using the setenv shell command in ¢-shell (a directory called “srcdir” is assumed to
ex1st): |

» setenv BLDROOT sredir

» setenv EXPVAR srcdir

* setenv ARCH sun4

* setenv path “$path srcdir”

The directory structure for the source files included in the listings should be arranged as
described in table 1. Each entry in the table lists the source code directory, with the corresponding
pages of source for the files which should be placed in the directory.

Source Code Directory Structure

sredir/include/aspine ) DP. 1-83
- PP

srcdir/instr/include |
srcdir/instr/do_mpf

srcdir/instr/common

srcdi;/aspar/common

pp. 724 -1518

srcdir/aspar/analy/flow pp. 1519 - 1548
srcdir/make/net/sund pp. 1549 - 1550

1.2 Compiling

To compile the source, run the script “mmnet” from each directory containing .c files. The
directories that contain .c files are, in compilation order:

* srcdir/aspar/common

* srcdir/aspar/analy/flow
 srcdir/instr/common

* srcdir/instr/do_mpf
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(C) Copyright Parasoft Corporation 1995,

$#'/bin/sh

SYSTEM=net
ARCH=‘arch®
COMP ILER=cCC

BLDRQOOT=S {BLDROOT : —SEXPVER}
SEXPVER/make/scripts/setbldtype
SEXPVER/make/scripts/verinfo

make —f Make.arh \
SYSTEM=SSYSTEM ARCH=SARCE COMPILER=S$COMPILER \
BLDROOT=SBLDROOT BLDTYPE=SBLDTYPE \

LOCK=$LOCK UNLOCK=SUNLOCK MAJOR=SMAJOR MINOR=SMINOCR \
DEFS=$SDEFS $*

mmnet
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(C) Copyright Parasoft corporation 1395. confign.def

*
# These are configuration parameters used in compiling and linking
# Express programs.

#

CC = cc

F17T = £77

LINK = ln
LINKFLAGS = -s
RM = rm
RMFLAGS = —f
AR = ar
ARFLAGS uv
RANLIB = ranlib
RANFLAGS =

|

SRCLIBDIR

LIBDIR
QCDIR

$ (BLDROQT) /srclib/$ (SYSTEM) /$ (ARCH)
$ (BLDROOT) /1ib/$ (SYSTEM) /$ (ARCH)
$ (BLDROOT) /qclib/S (SYSTEM) /S (ARCH)

i 0

IBFLAGS = —case=lower —length=end -suf=_
XCFLAGS = —DEXP SUN —-DSIGVOID -~-DH OPSYS=BSD -DVARARGS -DEXPNAME \
~DPLX DEVS=$ (PLXOPTS) -I§(EXPVER)/make/$ (SYSTEM)/$ (ARCH)/$ (COMPILER)

XLFLAGS = —-Bstatic

1

EXNLIB = $(LIBDIR)/expressN.a
CBXLIB $ (LIBDIR) /cubixN.a
PLXLIB = $(LIBDIR)/plotixN.a
PLXOPTS=PLX NOD,PLX RAS
PLXDRIVS=Ras

# The following commands are used to build Express test programs and
# executables after the dust has cleared.

NODEF /' 7=net £77

NODECC=netcc

 NCFLAGS=—kXN
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What is claimed is:

1. A method using a computer for automatically instru-
menting a computer program for dynamic debugging, such
a compuler program comprising source code written in a
programming language for executing instructions on said
computer, said programming language having a grammar
comprising operations having an operator and at least one
operand and a set of rules for relating said operations to said
at least one operand, comprising the steps of:

providing said source code as a sequence of statements in
a storage device to said computer, each such statement
representing a desired instruction expressed in said
programmuing language as one or more operations with
at least one operand each;

separating each such statement into tokens representing
either said operator or said at least one operand;

building a parse tree according to said set of rules using
said tokens, said parse tree being a directed acyclic
graph and comprising a plurality of nodes connected by
paths organized into a hierarchy of parent nodes rep-
resenting operators connected using said paths to chil-
dren nodes representing operands of said operators;

providing additional nodes to said computer for instru-
menting the computer program comprising instrumen-
tatton operations required to communicate runtime
conditions to an error-checking engine, said additional
nodes comprising a further plurality of nodes connected
by paths organized into a hierarchy of parent nodes
representing instrumentation operators connected using
said paths to children nodes representing instrumenta-
tion operands of said instrumentation operators;

instrumenting said computer program by augmenting said
parse tre¢ with said additional nodes to create an
instrumented parse tree for indicating that an error
condition occurred in said computer program during
execution using said instrumentation operations; and

generating object code from said instrumented parse tree
and storing said object code in the storage device for
later execution using the error-checking engine that
indicates error conditions in said computer program.
2. A method according to claim 1, wherein said error
condition comprises a read operation to an uninitialized
memory variable, said instrumenting step further comprising
the steps of:

determining a memory address from a stack frame cor-
responding to a memory variable sought to be checked,
said stack frame having a corresponding node in said
parse tree;

performing a flow analysis on said source code to identify
a read operation to said memory address for which it
cannot be determined that said memory variable has

been previously 1nitialized, said read operation having

a corresponding node in said parse tree;

inserting said additional nodes into said parse tree after
said stack frame node corresponding to such an instru-
mentation operation for setting an indication that said
memory variable is uninitialized;

inserting said additional nodes into said parse tree before
said read operation corresponding to such an instru-
mentation operation for indicating that said memory
variable is being read by a read operation and is either
initialized or uninitialized as indicated by said indica-
tion;

performing a flow analysis on said source code to identify
a write operation to said memory address, said write
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operation having a corresponding node in said parse
tree; and

inserting said additional nodes into said parse tree after

said write operation node corresponding to such an
instrumentation operation for setting an indication that
satd memory variable is initialized.

3. A method according to claim 1, wherein said error
condition comprises 4 memory access operation to an
invalid memory address for a complex memory variable
comprising a plurality of elements, each such clement com-
prising a constant value, a simple memory variable or a
complex memory variable, said instrumenting step further
comprising the steps of:

performing a flow analysis on said source code to identify

a declaration operation for a complex memory variable
comprising an identifier operand for identifying said
complex memory variable and a dimension operand for
declaring a memory block size for said complex
memory variable, said declaration operation having a
corresponding node in said parse tree;

inserting said additional nodes into said parse tree after
said declaration operation node corresponding to such
an instrumentation operation for storing said identifier
operand and said dimension operand;

performing a flow analysis on said source code to identify
sald memory access operation using said complex
memory variable, said memory access operation having
a corresponding node in said parse tree; and

inserting said additional nodes into said parse tree before
sald memory access operation node corresponding to
such an instrumentation operation for indicating
whether said memory access operation is accessing an
invalid memory address identified by said identifier
operand and falling outside of a memory address range
defined by said stored dimension operand.

4. A method according to claim 3, wherein said memory
access operation 1s a write operation for writing a data value
into said invalid memory address.

S. A method according to claim 3, wherein said memory
access operation 18 a read operation for reading a data value
from said invalid memory address.

6. A method according to claim 3, wherein said error
condition comprises an array access violation and said
complex memory variable is an array comprising a fixed
number of identical elements, each such identical element
being identified by an index and comprising a constant
value, a simple memory variable or a complex memory
variable, said second inserting step further comprising the
step of:

inserting said additional nodes into said parse tree before

sald memory access operation node corresponding to
such an instrumentation operation for indicating
whether saild memory access operation is accessing an
invalid memory address identified by said identifier
operand and using an index identifying an identical
element falling outside of a memory address range
defined by said stored dimension operand. |

7. A method according to claim 6, wherein said memory
access operation is a write operation for writing a data value
into said invalid memory address.

8. A method according to claim 6, wherein said memory
access operation is a read operation for reading a data value
from said invalid memory address.

9. A method according to claim 1, wherein said error
condition comprises a dynamic memory manipulation error
using a pointer memory variable, said instrumenting step
further comprising the steps
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performing a flow analysis on said source code identity a
declaration operation for a pointer memory variable
comprising an identifier operand for identifying said
pointer memory variable, said declaration operation
having a corresponding node in said parse tree;

inserting said additional nodes into said parse tree aiter
said declaration operation node corresponding to such
an instrumentation operation for storing a pointer
record for said pointer memory variable i1dentified by
said identifier operand and containing a value field for
a memory address;

performing a flow analysis on said source code to identify
a memory allocation operation for allocating a memory
block to said pointer memory variable, said memory
allocation operation having a corresponding node in
said parse tree; |

inserting said additional nodes into said parse tree after
said memory allocation operation node corresponding
to such an instrumentation operation for storing an
allocation record for said memeory block identified by
said identifier operand. and containing a size field

storing said memory block size, a starting address field
storing said memory block starting address, a pointer
address field storing memory addresses of further
pointer memory variables that point to said memory
block, a pointer list field storing pointer memory varl-
ables contained in said memory block, and a state field
storing state information regarding said memory block;

performing a flow analysis on said source code to identify
an assignment operation assigning a memory address to
said pointer memory variable, satd assignment opera-
tion having a corresponding node in said parse tree;

inserting said additional nodes into said parse tree after
said assignment operation node corresponding to such
an instrumentation operation for storing a memory
address into said value field in said pointer record; and

inserting said additional nodes into said parse tree corre-
sponding to such an instrumentation operation for
performing a dynamic memory manipulation check
using said pointer record and said allocation record.
10. A method according to claim 9, wherein said dynamic
memory manipulation check comprises checking for an
operation using a pointer memory variable containing a
memory address for a freed memory block, said method
further comprising the steps of: '

performing a flow analysis on said source code to identify
a read operation or a write operation using said pointer
memory variable, said read operation or said write
operation each having a corresponding node in said
parse tree;

inserting said additional nodes into said parse tree before
said read operation node and before said write opera-
tion node corresponding to such an instrumentation
operation for indicating whether said value field con-
tains a memory address equal to satd memory address
for said freed memory block;

performing a flow analysis on said source code to identify
a function call operation using said pointer memory
variable, said function call operation having a corre-
sponding node in said parse tree;

inserting said additional nodes into said parse tree before
said function call operation node corresponding to such
an instrumentation operation for indicating whether
said function call operation is calling a function using
said value field containing a memory address equal to
said memory address for said freed memory block;
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performing a fiow analysis on said source code to identity
a function call return operation using said pointer
memory variable, said function call return operation
having a corresponding node in said parse tree;

inserting said additional nodes into said parse tree before
said function call return operation node corresponding
to such an instrumentation operation for indicating
whether said function call return operation is returning
said value field containing a memory address equal to
said memory address for said freed memory block to a
calling function in said computer program;

performing a flow analysis on said source code to identity
a free memory block operation using said pointer
memory variable, said free memory block operation
having a corresponding node in said parse tree; and

inserting said additional nodes into said parse tree before
said free memory block operation node corresponding
to such an instrumentation operation for indicating
whether said free memory block operation is attempt-
ing to free a further memory block using said value
field containing a memory address equal to said

memory address for said freed memory block or 1s
attempting to free a stack frame or 1s attempting to free
said memory block whereby said memory address for
said freed memory block does not equal said starting
memory address.

11. A method according to claim 1, wherein said error

condition comprises an inappropriate use of a pointer
memory variable, said instrumenting step further comprising
the steps

performing a flow analysis on said source code to identify
a declaration operation for a pointer memory variable
comprising an identifier operand for identifying said
pointer memory variable, said declaration operation
having a corresponding node in said parse tree;

inserting said additional nodes into satd parse tree after
said declaration operation node corresponding to such
instrumentation operation for storing a pointer record
for said pointer memory variable identified by said
identifier operand and containing a value field for a
memory address;

performing a flow analysis on said source code to identity
an operation using said pointer memory variable, said
operation having a corresponding node in said parse
free;

inserting said additional nodes into said parse tree before
said operation node corresponding to such an instru-
mentation operation for indicating whether said opera-
tion 18 attempting to use said pointer memory variable
when said value field is equal to said null;

inserting said additional nodes into said parse tree before
said operation node corresponding to such an instru-
mentation operation for indicating whether said opera-
tion is attempting to use said pointer memory variable
when said value field is uninitialized;

inserting said additional nodes into said parse tree before
said operation node corresponding to such an instru-
mentation operation for indicating whether said opera-
tion 1s attempting to use a memory address contained in
said value field that does not point to valid data;

inserting said additional nodes into said parse tree before
said operation node corresponding to such an instru-
mentation operation for indicating whether said opera-
tion is attempting to compare or relate a plurality of
pointer memory variables not pointing to identical
types of data; and
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inserting said additional nodes into said parse tree before
said operation node corresponding to such an instru-
mentation operation for indicating whether said opera-
tton is attempting to make a function call using a
pointer memory variable not containing a valid func-
tion address.
12. A method according to claim 1, wherein said error
condition comprises a memory leak error, said instrumenting
step further comprising the steps of:

performing a flow analysts on said source code to identify
a declaration operation for a pointer memory variable
comprising an identifier operand for identifying said
point memory variable, said declaration operation hav-
Ing a corresponding node in said parse tree;

inserting said additional nodes into said parse tree after
said declaration operation node corresponding to such
an 1nstrumentation operation for storing a pointer
record for said pointer memory variable identified by
said 1dentifier operand and containing a value field for
a memory address;

performing a flow analysis on said source code to identify
an exit from scope operation, said operation having a
corresponding node in said parse tree; and

inserting said additional nodes into said parse tree before
said exit from scope operation corresponding to such an

148

instrumentation operation for checking for memory
leaks.

13. A method according to claim 1, wherein said error

condition comprises an interface routine for performing a

5> user-definable function during execution, said instrumenting
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step further comprising the steps of:

preprocessing said interface routine for creating an inter-
mediate form and storing said intermediate form in a
database;

performing a flow analysis on said source code to identify

a function call having a corresponding interface
description in said data base;

removing said function call from said parse tree;

reading said stored intermediate form for said correspond-
ing interface from said database;

inserting said stored intermediate form as interface nodes
in said parse tree;

substituting function call arguments into placeholders in
said interface nodes; and

replacing a return statement in said interface node with an
assignment of a result of said interface to an actual call
to said function call.



	Front Page
	Drawings
	Specification
	Claims

