1l
United States Patent i

Kakuta et al.

| 0 1 0 00D YO

US005579474A _
(11] Patent Number: 5,579,474
451 Date of Patent: Nov. 26, 1996

[54] DISK ARRAY SYSTEM AND ITS CONTROL
METHOD

[75] Inventors: Hitoshi Kakuta, Tokyo; Yoshifumi
Takamoto, Fuchu, both of Japan

[73] Assignee: Hitachi, Ltd., Tokyo, Japan
[21] Appl. No.: 248,452
[22] Filed: May 24, 1994

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 173,557, Dec. 22, 1993.

FOREIGN PATENT DOCUMENTS

4-230512 8/1992 Japan .
6-19632 1/1994 Japan .
WQ091/20076 12/1991 WIPO .

OTHER PUBLICATIONS

“A Case for Redundant Arrays of Inexpensive Disks
(RAID)”, Proc. of ACM SIGMOD Conference, Jun., 1988,

D. Patterson et al, pp. 109-116.

“Nikkei Watcher IBM Verson”, No. 1992, 9.14, pp. 14-15.
(no translation).

Primary Examiner—Robert W. Beausoliel, Jr.

Assistant Examiner—Phung M. Chung

(30] Foreign Application Priority Data Attorney, Agent, or Firm—Fay, Sharpe, Beall, Fagan, Min-
nich & McKee
Dec. 28, 1992 [JP] Japaneceecircercrcconnninenecns 4-348301
May 27, 1993 [JP] Japanreveviivicnniiinieneen 5-125766 [57] ABSTRACT
[51] Int. (:l..rl:i .. GO6F 11/34 In a disk array system of RAID (leve] 5) irﬂproving the
52] US.Cl . ceenreneans 395/182.04; 371/37.1 system performance by distributing data, duplicated fields
y P Y
58] Field of Search 3957575, 182.04; are allocated in a parity group in order to reduce an overhead

371/10.1, 40.1, 40.4, 40.2, 37.1

[56] References Cited
U.S. PATENT DOCUMENTS
3,568,153 3/1971 Kurtz et al. ..eoecervrnnenriennnnnn. 340/146.1
4,625,081 11/1986 Lotito et al. ..oooeeveevereerereeneniennees 379/88
47761,785 8/1988 Clark et al. ..ccoeeeeeireeererereenee, 371/51
5,309,451 5/1994 Noyaet al. ..ooceevevcecvenneennas 371/40.4

of data write. In the data write process, write data 1s
tentatively and duplicately written in the duplicate fields. At
this time, a write completion is reported to the CPU. The
parity is generated later at a proper timing and written in a
SCSI drive. Generating a parity and writing data can be
efficiently scheduled.

16 Claims, 15 Drawing Sheets

CHECK DUPLICATED FIELDS
LOGICAL GROUP

(SPACEFIELDS)OF | | &gp

PRESENCE OF DUPLICATED
FIELDS

WRITE NEW DATA DUPLICATELY |
(SPACE FIELDS)

N DUPLICATED FIELDS [

WRITE PROCESS AS
VIEWED FORM CPU

UPDATE TABLE (LOGICAL ADDRESS, CD FLAGON) []

500
REPORT WRITE COMPLETION TO CPU -—208
) 512
0 MONITOR I/0 REQUEST STATE (1) "
O
O
EE
" READ OLD DATA AND PARITY WHEN NO I/0 REQUEST | ___- 514
£ Z IS ISSUED TO LOGICAL GROUP
o
< <
e
516
=z GENERATE NEW PARITY —~
Z O
510
UPDATE TABLE {CACHE ADDRESS, CACHE FLAG ON, INVALID
FLAG OFF, DRIVE FLAG OFF)
518
Ly LLl
£ 2 | WRITE NEW PARITY WHEN NO I/0 REQUEST ISISSUED | 522
g 5 | TOPARITY SCSI DRIVE
L=
c R : 524
< UPDATE TABLE {INVALID FLAG OFF, DRIVE FLAG ON) | ——
O
< 0
W e
2 0O {1)
soo | REGISTER DUPLICATED FIELDS IN TABLE (SCSI DRIVE |—— 526
S NUMBER, INVALID FLAG ON)

(1) OLD DATA AND ONE OF DUPLICATED DATA HAVING SMALLER
SD# ARE RELEASED TO PREPARE TWO DUPLICATED FIELDS

U.S. Patent Nov. 26, 1996 Sheet 1 of 15 5,579,474

FIG.1

CHANNEL PATH DIRECTOR

b-2
CHANNEL|CHANNEL CHANNEL|CHANNEL
PATH PATH PATH PATH -
2 3 4 . 6-4
- 13-2
CACHE MEMORY

RIVE DRI DRIVE
PATH 3 PATH 4

PATH1

10

10

10

U.S. Patent Nov. 26, 1996 Sheet 2 of 15 5,579,474

FIG.2

CPU

N O O O A =~
II FAdeIF IF Adpl[IF Adp]|IF A 19
5

CHANNEL PATH SWITCH 18

Drlv IF

28 2‘

| Loaical
GROUP
- — e <.
L-.AL-_A NN 10
35-1 35-2 35-3 35-m

12 12 12 12

5,579,474

Sheet 3 of 15

~ Nov. 26, 1996

U.S. Patent

FIG.3A

D: DATA P:PARITY S:SPACE

5,579,474

Sheet 4 of 15

Nov. 26, 1996

U.S. Patent

¢S be|
Bej ol Be|4| ssalppy HHHDD
SALIC -m>:._mcomo ayoen

6 8¥ Ly HIGNAN IAIHG IOVIS ¢ 'ON 9ALJS

_ HIGWNN IAIEA ALIHVd - 'ON 2Aldd
[o]+ Jresavdewav)~

9%

o
-~
-

!moma Imomam., |
gl #ejeq| ooedg| Awed = =ejeqls 2 asfe £AS|y £ AS
Zi=eeq) L zeeapt £Eeq] eoedg] Aed eoedsg= QS| 0S|2S

[#eeq| eoeds| AuedPEasjg£ds|L£aAs

=dsiy=ds

w1
mp—

U.S. Patent " Nov. 26, 1996 Sheet 5 of 15

FIG.4A

(WRITE PROCESS)
(1)

(2) (2) (2) (2). (4)
-1l e ¥ -atllll 2T <uill N e
) (s)) 2

SD#1 SD#2 SD#3 SD#4 SD#5 SD#x6
PARITY GROUP

FIG.48

BEFORE WRITING OF PARITY NP#1 TO SCS! DRIVE OF SD#6 (4)
DUPLICATED PAIR

-—- --;—-
SD#1 SD#Z SD#S SD#4 SD#S SD#S
PARITY GROUP

FI1G.4C

AFTER WRITING OF PARITY NP#1 TO SCSI DRIVE OF SD#6 (4)

== es Eoms coo

SD#1 SD#2 SD#S SD#4 SD#5 SD#E6
PARITY GROUP

U.S. Patent Nov. 26, 1996 Sheet 6 of 15 5,579,474

FIG.S

)
< CHECK DUPLICATED FIELDS (SPACE FIELDS) OF 50
2O LOGICAL GROUP _
2 PRESENCE OF DUPLICATED
O O FIELDS
X A 504
& O || WRITE NEW DATA DUPLICATELY IN DUPLICATED FIELDS [
— = || (SPACE FIELDS) |
T W -
<S> 506
UPDATE TABLE (LOGICAL ADDRESS, CD FLAG ON)
500 _
REPORT WRITE COMPLETION TO CPU l 208

") 512

2 MONITOR /O REQUEST STATE (1)

@,

Q .

&
. © READ OLD DATA AND PARITY WHEN NO I/0 REQUEST 514
- Z IS ISSUED TO LOGICAL GROUP
r e
g <
o & -
< Z 516
L W GENERATE NEW PARITY
F G -
010

UPDATE TABLE (CACHE ADDRESS, CACHE FLAG ON, INVALID
FLAG OFF, DRIVE FLAG OFF)
018

g M
= 2 | WRITE NEW PARITY WHEN NO I/O REQUEST IS ISSUED 509
ﬂg: e TO PARITY SCSI DRIVE |
> P
z 9 . 524
< & UPDATE TABLE (INVALID FLAG OFF, DRIVE FLAG ON})
0
< O
u
£og | REGISTER DUPLICATED FIELDS IN TABLE (SCSI DRIVE 026

NUMBER, INVALID FLAG ON)

(1) OLD DATA AND ONE OF DUPLICATED DATA HAVING SMALLER
SD# ARE RELEASED TO PREPARE TWO DUPLICATED FIELDS

5,579,474

Sheet 7 of 15

Nov. 26, 1996

U.S. Patent

FIG.6

SD#3 SD#4 SD#5 SD#6

SD#2

SD#1

E
-

L1}
®
<
o
)

L1 TH T
~1Ollu OO
HEHE
Olonlla|ln|n
L1] Wi~ O
< 5| &l
S 1all Hl| off o

W itmjo | O N
ntO}l—}fr— | — | N
AR B DA B b
o |5 lolo|o|o

_

SD£3 SD#4

SD#2

SD#1

U.S. Patent Nov. 26, 1996 Sheet 8 of 15 5,579,474

FIG.7

GPU 1

- r—r—rrrf{r
CHANNEL PATH DIRECTOR

CHANNEL|CHANNEL| ., |CHANNEL|CHANNEL
PATH PATH b- PATH PATH

CACHE MEMORY 7
DRIVE DRIVE DRI DRIVE
PATH 1 F’ATH 2 PATH 3 PATH 4

LOGICAL
GROUP

o
12

P
N

10

LOGICAL
GROUP

Sub DKC LOGICAL

-------- GROUP

i
i
!
i

5,579,474

Sheet 9 of 15

- Nov. 26, 1996

U.S. Patent

FIG.8

CACHE MEMORY
Sub DKC

U.S. Patent Nov. 26, 1996 Sheet 10 of 15 5,579,474

I -
[obar 30
MP3 —_—ﬁ
[v IL \
SCA| ISCA}] ISCA| |ISCA
39
36

PG -. Sub Cache

Drwe Drlve Drlve Drlve
Adp Adp Adp
34-1

35-17 35-2/ 35-3° 35-m

U.S. Patent Nov. 26, 1996 Sheet 11 of 15 5,579,474

FIG.10

-
1N
Q0O

46 61 47

L

GPU DESIGNATED| 1iiin 'é%g'&f"- CACHE | CACHE
| FLAG
DRIVE NO O < | ADDRESS

ADR 1 LADR 1

ADR 2 LADR 3
Drive ff 1

ADR 3 LADR 8

ADR1 | LADR? =

ADR 2 LADR 1 CADR15
Drive # 2

ADR3 | LADR5 | CADR1,8

ADR 4 LADR 4 { CADR1

II0dhy
TR

1
1
1

U.S. Patent Nov. 26, 1996 Sheet 120f 15 5,579,474

FIG.11

CPU

--

PARITY

WRITE DATA AT | GENERATION
2.2
DATAWRITTEN | | [PARITY WRITTEN
AT 2.2 AT 2.2

‘-——_----—-——---ﬂ Bk A Ve e W Eaik Sni GEE WD SN UEE EES AN SR WER NN ey - gy vey e sl .

(2)

E -1 NEW PARITY

(3)

Drive # 1 Drivef 2 Drive# 3 Drive & 4 Drive# 5

U.S. Patent Nov. 26, 1996 Sheet 13 of 15 5,579,474

FIG.12A

READ LATENCY| | WRITE LATENCY TIME OF 1

TIME OF 0.5 REVOLUTION
REVOLUTION
READ DATA / WRITE DATA /
GENERATE PARITY WRITE PARITY
INDEX
RECORD ADDRESS
(R)
INDEX TRACK

)

CYLINDER
ADDRESS ' ‘-‘
(CC) \.l "'
v HEAD ADDRESS
)

READ 7/ WRITE HEAD

MAGNETIC RECORDING DISK

U.S. Patent Nov. 26, 1996 Sheet 140f 15 5,579,474
FIG.13

FIELDS) OF LOGICAL GROUP
ABSENCE OF
DUPLICATED FIELDS

READ DUPLICATED WRITE DATA AND 1304
OLD PARITY FROM LOGICAL GROUP

WRITE GENERATE PARITY
PROCESS FOR PREVIOUS

AS VIEWED WRITE PROCESS

FROM CPU| 'GENERATE PARITY FOR PREVIOUS WRITE
500 PROCESS

UPDATE TABLE (CACHE ADDRESS, CACHE FLAG
ON INVALID FLAG OFF, DRIVE FLAG OFF)

1306

1308

WRITE NEW PARITY WHEN NO 170 REQU-
EST IS ISSUED TO PARITY SCSI DRIVE

UPDATE TABLE (INVALID FLAG OFF,
DRIVE FLAG ON)

1)
REGISTER DUPLICATED FIELDS IN TABLé
(SCSI DRIVE NUMBER, INVALID FLAG ON}

1310

1312

— 1314

WRITE NEW DATA DUPLICATELY IN
DUPLICATED FIELDS (SPACE FIELDS)

UPDATE TABLE (LOGICAL ADDRESS, SD
FLAG ON)
REPORT WRITE COMPLETION TO CPU . 1320

(1) OLD DATA AND ONE OF DUPLICATED DATA HAVING SMALLER
SD# ARE RELEASED TO PREPARE TWO DUPLICATED FIELDS

— 1316

1318

Oz dS NI L =d
ANV € #3dS ANV ¢z dS NI
0 ANV Z2EA HDNISN Ad
L #AdS NI L 2A adlind3d

v.ivVa a3ivolldnd
40 INO WOH4
viva gling3y

5,579,474

| 801 | 1v 3HN1Ivd

SdA

S3AIHA
AVWHON NI ALIHVAd ANV

vivad DNISN A9 3AIHA
d37ivd NI vivd 11ing3y

. €#as oVl

ANV'2Zads t #As 4C
INO 1V 3HN1IvVd 30
JON3IHHNDO0

Sheet 15 of 15

(V1va a3lvoindnd) ON

S3A

= 901 |
S ZACQVIYHIV NILLIHM
;) (3LVLS IAILVLINIL ON ALIHVd M3N
m cOrl

00% | —| FONIHHNOOO

4N 11V

Ol

U.S. Patent

3,579,474

1

DISK ARRAY SYSTEM AND ITS CONTROL
METHOD |

CROSS-REFERENCE TO RELATED APPLICATIONS

This is a Continuation-in-part of application Ser. No.
08/173,557 filed Dec. 22, 1993 the subject matter of which
is incorporated herein by reference.

This application is related to U.S. applications Ser. No.
07/979.275 filed Nov. 20, 1992 and Ser. No. 08/034,389
filed Mar. 18, 1993 and U.S. application entitied “FILE
DATA MULTIPLEXING METHOD A DATA PROCESS-
ING SYSTEM” based on Japanese patent application No.
5-125773 filed May 27, 1993, the contents of which are

incorporated herein by reference.

BACKGROUND OF THE INVENTION

The present invention relates to a computer system, and
more particularly to a disk file system capable ot providing
a high performance of input/output operation.

In present computer systems, data requested by a higher
hierarchy such as a CPU is stored in a secondary storage.
When it becomes necessary, the CPU reads data from, or
writes data to, the secondary storage. A non-volatile storage
medium such as a magnetic recording medium or optical
disk, typically a disc drive (hereinafter simply called a
drive), is used as such a secondary storage.

In a computer system, a secondary storage of high per-
formance has been desired because information processing
technology has recently become highly sophisticated. As a
solution for this, a disk array has been proposed which 18

constructed of a number of relatively small capacity drives.

Reports on the performance and reliability of disk arrays
(levels 3 and 5) are presented in “A Case for Redundant
Arrays of Inexpensive Disks (RAID)”, by D. Patterson, G.
Gibson, and R. H. Kartz, at pp. 109-116, June, 1988. In the
disk array (level 3), data is divided and processed in parallel,
and in the disk array (level 5), data is distributed and
processed independently. The present disk array 1s consid-
ered to be a most general disk array.

A disk array (level 5) will be described in which data 1s
distributed and processed independently. In the level 5 disk
array, data is not divided but distributively stored in a
number of relatively small capacity drives and processed
independently. A secondary storage of a mainframe system
presently used is generally a drive having a large capacity.
It therefore occurs frequently that while the drnive 1s used by
one read/write request, another request 1s required to stand
by until the first request is completely processed. Instead of
the large capacity drive used as the secondary storage of a
mainframe system, a level 5 disk array uses a number of
relatively small capacity drives. It is therefore possible to
deal with an increased number of read/write requests
because the disk array has a number of dnves, thereby
shortening the wait time of each read/write request. How-
ever, the disk array has a number of disks and hence a
number of components so that the possibility of failure
increases. To improve reliability, it becomes necessary to use
parities.

Data stored in a failed drive can be rebuilt by using
parities. A parity is generated from corresponding data and
stored in a drive of the disk array, and the data are stored in
different drives of the disk array.

Like a presently used general mainframe system, the
storage location (address) of data in a disk array of the
secondary storage is fixed, and the CPU accesses this fixed

10

15

20

25

30

35

40

43

30

55

60

65

2
address for data read/write. Intemational Patent WO
01/20076 discloses a method of dynamically translating a
write address in units of track for the basic architecture of
the level 5 wherein a table of dynamically changeable
addresses 1s provided and compressed data 1s written.

JP-A-4-230512 discloses a method of writing data and a
correspondingly changed parity into different locations of a
level 5 disk array. IBM Corp. has announced a level 5 disk
array (9337) provided with a WAD (write assist device)
(refer to “Nikkei Watcher, IBM Version”, Sep. 14, 1992
1ssue, pp. 14-15).

SUMMARY OF THE INVENTION

In a presently used general mainframe system or other
systems, the storage location (address) of data in a drive of
a secondary storage is fixed and the CPU accesses this fixed
address for data read/write. A disk array also uses fixed
addresses. Fixed addresses pose no problem in the case of a
disk array (level 3) in which data is divided and processed
in parallel. However, in the case of a disk array (level 5) in
which data is distributed and processed independently, fixed
addresses resulf in a large overhead of data write. This will
be clarified in the following.

FIG. 11 1s a schematic diagram explaining the structure of
a RAID of the level 5 in which data is distributed and
processed independently, and which has been proposed by
D. Patterson et al in the above cited paper. Data at each
address is a unit processed by one read/write operation, and

is independent from other data. In the RAID architecture,
each data address is fixed. As described earlier, it 1S essential

for this system to use parities in order to improve the system
reliability. In this system, a parity is formed from data at the
same address of respective drives. For example, a parity is
formed from data at the address (1, 1) of the drives #1 to #4
and stored in a parity drive #5 at the address (1, 1). Like a
presently used mainframe system, data 1s accessed from a
corresponding drive of this system,

For example, in updating data in the drive #3 at the
address (2, 2) of this disk array, the data before update in the
drive #3 at the address (2, 2) and the corresponding parity 1n
the drive #5 at the address (2, 2) are first read (indicated by
(1)). A new parity is formed from an exclusive logical sum
of the read data and new update data (indicated by (2)). After
the new parity is formed, the new update data is stored in the
drive #3 at the address (2, 2) and the new parity is stored 1n
the drive #5 at the address (2, 2).

As shown in FIG. 12A, the old data and parity are read
from the corresponding drives of the level 5 disk array by
waiting for half a revolution of drives on average, and then
a new parity is calculated. Another revolution is required to
write this new parity, resulting in one and a half revolutions
in total at a minimum for updating data. A wait time of one
and a half revolutions is a very large overhead for drives.
However, method of dynamically translating a write address

sO as to reduce the data write overhead is disclosed in the
above-cited WO 91/20076.

Also disclosed in the above-cited JP-A-4-230512 1s a
method of writing data in a drive at an address different from
the write address in order to reduce the data write overhead.
Immediately after the write data i1s sent from the CPU, a
parity is updated and written in a drive. As compared to data
read, the overhead of generating and wiring a parity 18 very
large. As a result, if the CPU requests a large number of
read/write requests, a large overhead of dealing with the
requesis becomes a main factor of lowering the system
performance.

5,579,474

3

It is an object of the present invention to reduce a data
write overhead and improve the performance of a level 5
disk array system.

It is another object of the present invention to effectively
use drive resources by improving the system performance by
using a spare drive which rebuilds data in a failed drive.

According to the present invention, a logical group is
constituted by drives of a parity group and duplicated fields
(space fields). By using the space fields efficiently, a parity
update process in the write process can be delayed, and the
parity can be generated later when the number of read/write
requests by the CPU is reduced, while maintaining a high
reliability.

Specifically, in the write process, data to be written (new
data) is duplicately stored in the space fields of the SCSI
drives 12 constituting a logical group 10. At this time, a
tentative write completion 1s reported to the CPU.

Generating a parity and writing it in a SCSI drive 12 is
performed at a timing independent from the timing of
writing new data into the SCSI drives 12. Specifically, MP1
20 of ADC 2 counts the number of read/write requests by the
CPU relative to the logical group 10. If the number 1s smaller
than that presct by a user or a system manager and if no
read/write request is issued presently to the SCSI drive 12,
the parity is generated and written in the SCSI drive 12.

In another method of writing a parity, it may be written in
response to an interrupt process issued at a predetermined
time 1nterval. The times of a day, or days in a month, during
which the number of read/write requests by CPU becomes
small, may be pre-scheduled.

If a failure occurs at one of the SCSI drives of a logical
group 10 prior to the completion of generating a parity and
writing it in a SCSI drive 12 and the data in the SCSI drive
12 cannot be read, this data can be rebuilt by the old parity
and the data in the other SCSI drives if the failed SCSI drive
12 stores data other than the duplicated data, or this data can
be rebuilt by using one of the new duplicated data in the

SCSI drive if the failed SCSI drive stores the other of the
new duplicated data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic diagram showing the overall struc-
ture of a disk array system according to a first embodiment
of the present invention.

FIG. 2 is a schematic diagram showing the internal
structure of the cluster of the first embodiment.

FIGS. 3A and 3B show examples of the contents of an
address translation table.

FIGS. 4A, 4B, and 4C are schematic diagrams showing
the data flow in the write process.

FIG. 5 is a flow chart explaining the operation of a first
write process.

FIG. 6 a schematic diagram explaining the operation of a
data rebuilding process and the positions of data and parity
constituting a parity group according to a second embodi-
ment of the present invention.

FIG. 7 1s a schematic diagram showing the overall struc-
ture of a disk array structure according to a third embodi-
ment of the present invention.

FIG. 8 1s a schematic diagram showing the internal
structure of the cluster of the third embodiment.

FIG. 9 1s a block diagram showing the subsidiary DKC of
the third embodiment.

10

15

20

25

30

35

40

45

50

53

60

65

4

FIG. 10 shows an example of the contents of logical group
table.

FIG. 11 is a schematic diagram explaining the update
process in a RAID of level 3.

FIGS. 12A and 12B are a timing chart of the write process
in a RAID of level 5 and a schematic diagram of a drive.

FIG. 13 1s a flow chart explaining the operation of a
second write process.

FI1G. 14 1s a flow chart explaining the operation of a data
rebuilding process.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The first embodiment of the present invention will be
described with reference to FIGS. 1-5 and FIG. 13.

Refemring to FI1G. 1, the system embodiment 1s constituted
by a CPU 1, adisk array controlier (ADC) 2, and a disk array
unit (ADU) 3. ADU 3 includes a plurality of logical groups
10 each having m SCSI drives 12 and drive paths 9-1 to 9-4
interconnecting the SCSI drives 12 and ADC 2. The number
of SCSI drives 12 is not limited to a particular number, but
any number may be set with the same advantageous effects
of the invention. Each logical group 10 constitutes a data
rebuilding unit, and a parity is generated from data in the
SCSI drives 12 of each logical group 10. In this embodi-

ment, a parity is generated from data in the (m—1) SCSI
drives 12.

‘The internal structure of ADC 2 will be described with
reference to FIG. 1. ADC 2 is constituted by a channel path
director 5, two clusters 13, and a non-volatile semiconductor
cache memory 7 backed up by a battery. The cache memory
7 stores therein data and an address translation table. The
cache memory 7 and its address translation table are used in
common by the two clusters 13 of ADC Z. Each cluster 13
i1s a set of paths operable independently in ADC 2, and 1is
provided with a separate power source and circuit. Each
cluster 13 has two of channel paths 6-1 to 6-4 between
channels and the cache memory 7 and two of drive paths 8-1
to 8-4 between the cache memory 7 and SCSI drives 12. The
channel paths 6-1 to 6-4 and the drive paths 8-1 to 8-4 are
connected together via the cache memory 7. A command
issued from CPU 1 1s sent via an external interface path 4 to
the channel path director § of ADC 2. ADC 2 has two
clusters 13-1 and 13-2 each having two paths, making four
paths 1n total. It is therefore possible for ADC 2 to receive
four commands at the same time from CPU 1. When a
command is issued from CPU 1, the channel path director 5
of ADC 2 judges whether the command can be received or
not.

FIG. 2 i1s a schematic diagram showing the internal
structure of the channel path director 5 and one cluster 13-1.
As shown 1n FIG. 2, a command sent from CPU 1 to ADC
2 1s received by an interface adapter (IF-Adp) 15. A micro-
processor. MP1 20-1 checks whether there is any usable path
in the cluster 13-1. If there is any usable path, MP1 20-1
causes the channel path director 5 to select a channel path
switch 16 to thereby receive the command. If there is no

usable path, a reception inhibition response is returned to
CPU 1.

In this embodiment, the SCSI drive 12 constituting ADU
3 uses a drnive compatible with a SCSI interface. If a
mainirame such as an IBM system 9000 1s used as CPU 1,
CPU 1 issues a command conforming with the command
system of a channel interface running on an IBM operating

3,579,474

S

system (OS). It is therefore necessary to convert a command
from CPU 1 into a command conforming with such a
command system. This command conversion is classiiied
mainly into protocol conversion and address translation. The
address transiation will be described next.

As shown in FIG. 12B, an address supplied from CPU 1
identifies the position of a cylinder to which a data storing
track belongs, a head address for determining the data
storing track at that cylinder, and the position of a record of
the track. Specifically, the address identifies the serial num-

ber (drive serial number designated by the CPU) of a data
storing drive, and CCHHR including a cylinder address
(CC) representing the cylinder number of the drive, a head
address (HH) representing the serial number of a head
selecting a track of the cylinder, and a record address (R).

In a magnetic disk sub-system (IBM 3990-3390) of a
conventional CKD format, each drive is accessed by using
such an address. However, in this embodiment, the magnetic
disk sub-system of a conventional CKD format is logically
emulated by a plurality of SCSI drives 12. In other words,
ADC 2 operates so that CPU 1 can see the plurality of SCSI

drives 12 as one drive used by the magnetic disk sub-system
of a conventional CKD format. To this end, an address (CPU
designated drive number and CCHHR) supplied from CPU
1 is translated by MP1 20-1 into an address of a SCSI drive.
For this address translation, an address translation table 40
(hereinafter simply called an address table) shown 1n FIG.
3A is used.

The address table 40 shown in FIG. 3B 1s stored in the
cache memory 7 of ADC 2. In this embodiment, a drive
designated by CPU 1 is a single drive corresponding to the
CKD format. According to the present invention, since a
single drive recognized by CPU 1 is constituted by the
plurality of SCSI drives 12, the singie drive 1s required to be
recognized as a logical drive. To this end, MP1 20-1 of ADC
2 translates a CPU designated address (including CPU
designated drive number 41 and CCHHR 46) supplied from
CPU 1 into a SCSI drive address 42 (including a SCSI drive
number 43 and an address 44 of a data location of the SCSI

drive, hereinafter abbreviated as SCSI Inter-Addr).

The address table 40 stores combinations of CPU desig-
nated drive numbers 41 and SCSI drive addresses 42. A
SCSI drive address 42 includes a SCSI drive number 43 of
SCSI drives 12, a SCSI Inter-Addr 44 representing the
address of a data location in the SCSI drive, a SCSI drive
number (parity drive number) 50 of a SCSI drive in which
a parity of a parity group in the logical group 10 determined
by the SCSI Inter-Addr 44 is stored, and SCSI drive numbers
(space drive numbers 51) of SCSI drives to which duplicated
fields (space fields) are allocated. By using a logical address
45 stored in the address table 40, the SCSI drive number 43
and SCSI Inter-Addr 44 are determined. Each logical group
10 is constituted by SCSI drives 12 having SCSI drive
numbers 43 registered in the SCSI drive address 42 of the
address table 40.

The SCSI drive number 43 of a SCSI drive storing a parity
for the same SCSI Inter-Addr 44 in each logical group 10 is
registered as the parity drive number 50, and the SCSI dnive
numbers 43 allocated with space fields are registered as the
space drive numbers 51. The field of each space drive
number 51 stores an SD flag 53 as well as the space drive
number 51. The SD flag 53 turns on (becomes *1”) if the
space field stores valid data and cannot be used for data
write, and turns off (becomes “0”) if the space field stores
invalid data and can be used. Each logical group 10 is
constituted by a parity group including data and its parity,
and space fields.

10

15

20

25

30

35

40

45

50

35

60

65

6

Each logical address 45 field stores a CPU designated
drive number 41 and a CCHHR 46. It also stores a cache
address 47 indicating a data location in the cache memory 7
if the same data at the logical address 45 is stored in the
cache memory 7, a cache flag 48 which tums on (becomes
“1”) when the same data at the logical address 45 1s stored
in the cache memory 7, an invalid flag 49 which turns on
(becomes “17) if space fields have been allocated at the
logical address 45, and a drive flag 52 which turns on
(becomes “17) if data in the cache memory 7 has been
written in the SCSI dnve.

In the above manner, by using the address table 40, a CPU
designated drive number 41 and CCHHR 46 are converted
into a logical address 45 to thereafter determine a SCSI drive
number 43 and SCSI Inter-Addr 44 where data 1s actually
stored.

At the initial setting of the address table, SCSI drives 12
constituting each logical group 10 and SCSI Inter-Addr 44
are registered. Next, logical groups 10 are allocated to each
CPU designated drive number 41. After these settings are
completed, data can be written.

A method of reglstenng information 1in the address table
when data is written in a SCS1 drive will be described. When
a write request of Data#1 is issued, Data#1 1s written 1n the
SCSI drive 12 of SD#1 at SCSI Inter-Addr 44 of DADRI1
because no data has been written in SCSI drives of SD#] to
SD#6. Parity#1 is calculated assuming that other data are all
0, and written in the SCSI drive of SD#6 at DADR 1. SD#6
is registered as the parity drive number. When a write
request of D#2 is issued, D#2 is written in the SCSI drive 12
of SD#2 at DADR 1, and a parity P#1 is updated. In this
manner, data is written. At the initial settings, the SCSI
drives of SD#4 and SD#5 are all registered as the space
fields in the space drive number 51, and the SCSI drives of
SD#6 are all registered as the parity fields in the parity drive
number 50.

Referring to FIGS. 3A and 3B, when CPU 1 issues a data
read/write request by designating Drive#1 as the CPU

designated drive number 41 and designating the data at ADR
8 as CCHHR 46, logical address 43 ficlds of the address
table 40 at the CPU designated drive number 41 of Drive#l
are checked to search a logical address 45 whose CCHHR 46
is ADR 8. In the example shown in FIG. 3B, the logical

address 45 whose CCHHR 46 is ADR 8 corresponds to
Data#23 (D#23).

From the address table 40, it can be found that Data#23
(D#23) corresponds to DADR 8 of the SCSI Inter-Addr 44
of the SCSI drive 12 having the SCSI drive number SD#2.
In this manner, the logical address is converted into a
physical address. From the parity drive number 50, it can be
found that a parity for Data#23 (D#23) is stored in the SCSI
drive 12 of SD#4 at the same SCSI Inter-Addr 44 as that for
Data#23 (D#23). From the spare drive number 31, it can be
found that data stored duplicately in SCSI drives of SD#4
and SD#5 at the SCSI Inter-Addr 44 of DADR 8 are valid
and these fields are inhibited to be used as the duplicated
fields (space fields).

In the above manner, the CPU designated address is
converted into a logical address 45 which is 1n turn con-
verted into a physical address of a SCSI drive 12 to and from
which data is actually transferred. Thereafter, a read/write
request for Data#23 (D#23) in the SCSI drive 12 of SD#2 18
issued. In the above example of the address table 40, the
cache flag 48 is on (““1”) at the logical address 45 corre-
sponding to Data#23 (D#23). This means that the data is
present in the cache memory 7 at CADR (2, 1). If the cache

5,579,474

7

flag 48 is off (“07), the data is not present in the cache
memory 7 at CADR (2, 1). Also in the above example of the
address table 40, the invalid flag 49 is off (*0”) so that the
data is valid, and the drive flag 52 1s on (*17°) so that the data
has been written from the cache memory 7 to the SCSI drive

12.

The address table 40 1s automatically read from a par-
ticular SCSI drive 12 of a logical group 10 into the cache
memory 7 under the control of not CPU 1 but MP1 20, when

the system power is turned on. On the other hand, when the
system power is to be turned off, MP1 20 automatically
stores the address table 40 of the cache memory 20 into the

particular SCSI drive 12 at a predetermined area without the
help of CPU 1.

An I/O process to ADC 2 will be described with reference
to FIGS. 1 and 2. A command issued by CPU 1 1s received
via an IF-Adp 15 by ADC 2, and MP1 20 analyzes the
command whether it i1s a read request or a write request.
First, the I/O process for the read request will be described.

If MP1 20 judges a command as a read request, MP1 20
converts a CPU designated drive number 41 and CCHHR 46
(hereinafter collectively called a CPU designated address)
into a logical address 45 for the data to be read by referring
to the address table 40, and checks the cache flag 48 at the
logical address to determine whether or not the data 1s
present in the cache memory 7.

If the cache flag 48 is on and the data is present in the
cache memory 7 (in the case of cache hit), MP1 20 starts the
control operation of reading the data from the cache memory
7, whereas if the data is not present 1in cache memory 7 (in
the case of cache miss), MP1 20 starts the control of reading
the data from the SCSI drive 12

In the case of a cache hit, MP1 20 converts the CPU
designated address supplied from CPU 1 into a logical
address 45 by referring to the address table 40, and in
accordance with the logical address 45, the cache address of
the cache memory 7 is obtained to read the data from the
cache memory 7. Specifically, under control of MP1 20, a
cache adapter (C-Adp) 24 reads the data from the cache
memory 7.

C-Adp 24 1s a circuit for reading/writing data from and to
the cache memory 7 under control of MP1 20, by monitoring
the state of the cache memory 7 and executing an exclusive
control of a read/write request. The data read by C-Adp 24
is transferred to a channel interface (CH-IF) 21 under
control of a data control circuit (DCC) 22. CH-IF 21 changes
a protocol into a protocol matching a channel interface
between CPU 1 and ADC 2 10 thereby adjust a data transter
speed so as to match the channel interface. Specifically, if an
optical interface is used as a channel interface between CPU
1 and ADC 2, an optical interface protocol 1s converted into
an ¢lectrical interface protocol in ADC 2. After the protocoil
change and transfer speed change by CH-IF 21, a channel
path switch- 16 of the channel path director 5 selects an

external interface path 4 to transfer data from {F-Adp 15 to
CPU 1.

In the case of a cache miss, a CPU designated address is
converted into a logical address 45 by referring to the
address table 40 similar to the case of a cache hit, and in
accordance with the logical address 45, the SCSI drive
number and SCSI Inter-Addr 44 indicating the data location
in the SCSI drive are obtained. MP1 20 1nstructs Drive-1F 28
to issue a read request to the SCSI drive 12 at the SCSI
Inter-Addr 44. In accordance with a SCSI read procedure,
Drive-IF 28 issues a read command to the SCSI drive 12 via
a drive unit path 9-1 or 9-2. Upon reception of the read

10

15

20

25

30

35

40

45

50

35

60

65

8
command from Drive-IF 28, an access process including a

seck and latency is performed for the SCSI dnive 12. After
the completion of the access process, the data is read from

the SCSI drive 12 and transferred to Drive-IF 28 via the
drive unit path 9.

The data transferred to Dnive-IF 28 is sent to a cache

adapter (C-Adp) 14 on the SCSI drive side which stores 1t in
the cache memory 7. In this case, C-Adp 14 reports the MP1
20 that the data has been stored in the cache memory 7. In

response to this report, MP1 20 turns on (*1”’) the cache flag
48 in the address table 40 at the logical address 45 corre-
sponding to the CPU designated data read address issued by
CPU 1, and stores the cache address 47 of the data location
in the cache memory 7. After the data has been stored in the
cache memory 7, after the cache flag 48 in the address table
40 has been turned on (1), and after the cache address 47
of the data location in the cache memory 7 has been updated,
the data is transierred to CPU 1 in the manner like the case
of a cache hit.

Next, the I/O process for the write request will be
described.

The characteristic feature of this embodiment 1s as fol-
lows. When data is to be updated, this data is duplicately
written 1n two SCSI drives 12 at the space fields, other than
the SCSI drive in which the old data has been stored. At this
time, a completion of data update 1s tentatively informed to
CPU 1 so as to allow the update of the parity of the level 5
to be delayed while maintaining an operation reliability. In
this manner, the update of the parity of the level 5 such as
shown in FIG. 11 can be delayed until the number of
read/write requests from CPU 1 decreases, while maintain-
ing operational reliability. In the conventional operation of
the level 5, a parity 1s updated each time a write request is
processed even if an increased number of write requests are
issued. The parity update of the level 5 shown in FIG. 5 has
a large overhead, resulting in a bottleneck of the operation.

In the data write procedure, a user designates a data write
address (CPU designated address) and conceives data to be
written at this address. That is, the user conceives the
address to represent a fixed location.

It 1s assumed that CPU 1 issues a data write command
relative to a designated address, e.g., ADR 8 of CCHHR 46
of Drive#1 of the CPU designated drive number 41 in the
address table 40. After receiving the write request command
relative to ADR 8 of CCHHR 46 of Drive#l from CPU 1,
MP1 20 of ADC 2 checks whether the data write can be
processed at a channel path 6 of the corresponding cluster
13. If possible, a response indicating that the data write can
be processed is returned back to CPU 1. Upon reception of
this response, CPU 1 transfers write data to ADC 2. Under
control of MP1 20 of ADC 2, the external interface path 4
and IF-Adp 15 are connected to the channel path 6 via a
channel path switch 16 of the channel path director 5 to
thereby establish a connection between CPU 1 and ADC 2.

After the establishment of the connection between CPU 1
and ADC 2, data transfer from CPU 1 is permitted. CH-IF
21 changes the protocol into a protocol matching a channel
interface for ADC 2, and adjusts the data transfer speed at
the external interface path 4 so as to match the data transfer
speed at ADC 2. After the protocol change and speed change
by CH-IF 21, the write data (hereinafter called new data)
sent from CPU 1 is transferred to C-Adp 24 and stored in the
cache memory 7 under the data transfer control by DCC 22.

The CPU designated address is sent from CPU 1 always
prior to sending data, and 1s translated into a logical address
by referring to the address table 40 similar to the case of a

5,579,474

9

data read. The new data sent from CPU 1 i1s stored in the
cache memory 7. In this case, the address of the new data in
the cache memory 7 is registered in the cache address 47
field at the logical address 435 identified by the address
translation. If the new data is to be maintained in the cache
memory 7, the cache flag 48 at the logical address 43 1s
turned on (“17), whereas if not to be maintained, if 1s turned

Oﬁ‘ (iiO!!).

If another write request is issued from CPU 1 relative to
the new data maintained in the cache memory 7, the new
data in the cache memory 7 1s overwritten.

The parity is updated by the new data stored in the cache
memory 7 (updated parity is called a new parity). The new
data and new parity are stored in a SCSI drive 12 of the
logical group 10 in the following manner.

As shown in FIG. 3A, space fields and parities are dealt
with in the same manner as data, and distributedly stored in
SCSI drives 12 constituting the logical group. A parity group
is constituted by data in the SCSI drives 12 of each logical
group 10 in the row direction (same SCSI Inter-Addr 44) and
a parity. A parity is calculated from data in each parity group.
In other words, the parity group is constituted by data and a
parity, and the logical group is constituted by a parity group
and space fields.

A specific example of data, parities, and space ficlds is
shown in FIG. 3A. For the SCSI Inter-Addr 44 of DADR 1,
a parity is calculated from data #1 (D#1) in the SCSI drive
12 of SD#1, Data#2 (D#2) in the SCSIdrive 12 of SD#2, and
Data#3 (D#3) in the SCSI drive of SD#3. This parity 1is
stored in the SCSI drive 12 of SD#6. These data and parity
constitute a parity group. The logical group 10 is constituted
by the parity group and a space field (S) at the SCSI drive
12 of SD#4 and a space field (S) at the SCSI drive of SD#5.

MP1 20 recognizes the SCSI drnives which store data,
space fields, and a parity, by referring to the address table 40.
Specifically, MP1 20 checks the address table 40 at the
region corresponding to the CPU designated drive number
41 and searches the logical address 45 registered in the SCSI
drive address 42 and having the same CCHHR 46 desig-
nated by the CPU designated address. After the CPU des-
ignated address is translated into the logical address 45, MP1
20 translates the logical address 45 into the SCSI drive
number 43 of the drive storing the logical address 45 and
into the physical SCSI Inter-Addr 44 of the data location in
the SCSI dnive 12.

A parity is calculated from data in the SCSI drives of a
logical group 10 at the same SCSI Inter-Addr 44, and stored
in the drive at the same SCSI Inter-Addr 44. In the fields of
the parity drive number 50 and space drive number 31 of the
address table 40, only SCSI drive numbers 43 are stored. As
a result, MP1 20 can determine from the address table 40 the
parity drive number 50 and space drive numbers S1. That is
to say, by determining the parity drive number 50 and space
dnve numbers 51, the addresses of the SCSI drives storing
the parity and space fields at the same SCSI Inter-Addr 44
can be identified. After the SCSI dnives 12 storing data,
space fields, and a parity are recogmzed, MP1 20 instructs
Drive-IF 28 to perform a write operation relative to the
corresponding SCSI drives.

The write process in this invention includes a series of
processes of writing the new data stored in the cache
memory 7 into a SCSI drive 12 of each logical group 10,
calculating the new parity by reading the data before the data
write (hereinafter called old data) and reading the parity
before the data write (hereinafter called old parity), and
writing the new parity in the SCSI drive 12. FIG. S is a flow

10

135

20

25

30

35

40

435

50

55

60

65

10

chart showing the series of processes after the new data is
stored in the cache memory 7.

As shown in FIG. 4A, when CPU 1 1ssues a write request
of new data ND#1 into the SCSI drive 12 of SD#1 at the
logical address of Data#1 (D#1), this new data 1s temporarily
stored in the cache memory 7 as described previously. Aiter
the new data is stored in the cache memory 7, the write
operation is executed in the following manner. After the new
data (ND#1) has been stored in the cache memory 7, MP1

20 acquires a use right of the SCSI drives 12 of SD#4 and
SD#5 having the space fields at the SCSI Inter-Addr 44 of
DADR 1 of the logical group 10 to which the SCSI drive 12
of SD#1 for Data#1 (D#1) belongs.

After the use right of the SCSI drives 12 of SD#4 and
SD#5 has been acquired, a write process 500 shown in the
flow chart of FIG. 5 is executed. First, MP1 20 checks the
SD flags 53 in the space drive number 31 of the address table
40. If the SD flags 53 are off (“0”), 1t is judged that the space
fields can be used, whereas if the SD flags are on (*17), 1t 15
judged that they cannot be used (Step 502). From these SD
flags 53, MP1 20 judges whether the SCSI drives 12 of SD#4
and SD#5 have available space fields. If the SD flags 33 are
off (“°0”"), ND#]1 stored in the cache memory 7 is duplicately
written in the SCSI drives 12 of SD#4 and SD#5 (Step 504),
the logical address of ND#1 i1s registered in the fields of
SD#4 and SD#5 of the address table 40, and the SD flags 53
are turned on (“1’) at SD#4 and SD#5 of the space drive

number 51. Thereafter, MP1 20 reports a write completion
to CPU 1 (Step 508).

If the SD flags are on (*1’) at Step 502, as shown 1in the
flow chart of FIG. 13, after the new data (ND#1) has been
written in the cache memory 7, MP1 20 instructs preferen-
tially to generate a parity at the preceding write process, and
this parity is written in the SCSI drive 12 (Step 1310). After
the parity at the preceding write process has been generated
and written in the SCSI drive 12, MP1 20 turns off (*0”) the
SD flags 53 in the space drive number 31 of the address table
40 (Step 1308), duplicately writes the new data (ND#1)

stored in the cache memory 7 (Step 1316), and reports a
letion to CPU 1 (Step 1320).

write comp.
Next, a method of writing the new data (ND

drives 12 will be described.

After confirming that the SD filags 33 in the address table
40 are off (*0”"), MP1 20 instructs Drive-IF 28 to write the
new data (ND#1) into the SCSI drives 12 of SD#4 and SD#3
having the available space fields. In accordance with a SCSI
write procedure, Drive-IF 28 issues a write command to the
SCSI drives 12 of SD#4 and SD#35 via two of the drive unit
paths 9-1 to 9-4.

The SCSI drives 12 that have received the write command
from Drive-IF 28 translate the CPU designated address sent
from Drive-IF 28 into the logical address of Data#l, and
perform an access process including a seek and latency for
DADR 1 at the SCSI Inter-Addr 44 corresponding to the
logical address. When the SCSI drives 12 of SD#4 and SD#5
complete the access process and when it becomes possible
to write data, C-Adp 14 reads the new data (ND#1) form the
cache memory 7, and transfers it to the Drive-IF 28 which
in turn transfers the new data (ND#1) to the SCSI drives 12
of SD#4 and SD#5 via the two paths of the drive unit paths
9-1 to 9-4. After the new data (ND#1) has been written in the
SCSIdrives 12 of SD#4 and SD#5, the SCSI drives 12 report
a write completion to Drive-IF 28. Drive-IIF 28 reports MP1
20 to the effect that the write completion has been received.

At this time, the invalid flags of the logical addresses 45
of old Data#1 (D#1) before the write process are turned on

1) into SCSI

3,979,474

11

(*1°*). The addresses in CCHHR 46 of the logical addresses
45 of old Data#1 (D#1) are registered in CCHHR 46 of the
two logical addresses of the space fields in which the new
data (ND#]) has been duplicately written. Thereafter, the
invalid fiags are turned off (**0”) and the drive flags 52 are
turned on (““17). If the new data (ND#1) 1s held in the cache
memory 7, the address of the new data (ND#1) in the cache
memory 7 is registered as each cache address 47 of the two
logical addresses 45 after the write process, and each cache
flag 48 is turned on (*‘1”). If the new data (ND#1) 1s held not
to be held in the cache memory 7, MP1 20 responds to this
instruction and turns off (“0’) each cache flag 48 of the
address table and turns on (1) each SD flag of the space
drive number 51 of the written data iogical group 10 at the
SCSI Inter-Addr 44.

If CPU 1 issues a read request for the duplicate update
data before the parity is updated in the manner described
later, the following process is executed at the time of address
translation in the above-described read process. First, MP1
20 checks the cache flags in the address table 40 for the data
which CPU 1 wants to read, whether the data 1s present in
the cache memory 7 or not. Although two flags for the data
are registered in the address table 40 because the data has
been duplicately stored, MP1 20 checks the flag for the data
having smaller SCSI drive number 43. If the cache flag for
‘the data in the address table 40 checked by MP1 20 is on
(““17), the data is read from the cache memory 7 by the cache
hit read process of the above-described read process. On the
other hand, if the cache fiag is off (*'0”), one of the duplicate
data is read from the SCSI drive 12 having the smaller SCSI
drive number 43 by the cache miss read process of the
above-described read process. The data not duplicately
written is read by the above-described read operation.

When the address table 40 has been updated in the manner
described above and MP1 20 has received the completion
reports from the SCSI drives 12 of SD#4 and SD#5, MP1 20
reports a tentative write completion to CPU 1. Even after the
new data (ND#1) has been stored in the SCSI drives 12 of
SD#4 and SDi##5, the new data (ND #1) 1s still in the cache
memory 7 so that updating the parity is performed by using
the new data (ND#1) in the cache memory 7.

After MP1 20 has reported the tentative write completion
to CPU 1, CPU 1 recognizes the write completion. However,
on the side of MP1 20, the write process is not still
completed because MP1 20 is required to generate the new
parity and store it in the SCSI drive 12. As a result, after
MP1 20 has reported the tentative write completion to CPU
1, MP1 20 generates the new parity and writes 1t in the SCSI
drive. This method will be described next.

After MP1 20 has reported the tentative write completion
to CPU 1, MP1 20 monitors the read/write requests (I/O
state) of CPU 1 as shown in the flow chart 5000 of FIG. §
(Step 512). MP1 20 counts the number of read/write requests
per unit time issued by CPU 1 relative to the subject logical
group 10. If this number 1s smaller than the number preset
by a user or a system manager and if CPU 1 does not
presently issue a read/write request relative to the logical
group to which the SCSI drives 12 for the parity generation
and writing belong, the operation starts for generating the
parity and writing it in the SCSI drive 12.

The old data and old parity at the write address designated
by CPU 1 are read to generate the new parity and store it in
the SCSI drive 12. In this case, MP1 20 issues a tentative
read/write request, like a read/write request from CPU 1, to
the SCSI drives from which the old data and parity are read
and to the SCSI drive to which the new parity is written. It

10

13

20

25

30

35

40

45

50

35

60

65

12

CPU 1 issues a read/write request to the SCSI drives 12 to
which the tentative read/write request has been 1ssued, MP1
20 receives the read/write request of CPU 1 and holds it as
a process wait queue.

Next, the method of generating a new parity and writing
it in a subject SCSI drive 12 will be detailed.

MP1 20 instructs Drive-IF 28 to issue a read request of the
old data from the SCSI drive of SD#1 and a read request of
the old parity from the SCSI drive 12 of SD#6 (Step 514).

The SCSI drives 12 that have received the read command
from Drive-IF 28 perform an access process including a seek
and latency to the SCSI Inter-Addr 44 sent from Drive-IF 26.
Updating the parity is performed by using the new data
(ND#1) stored in the cache memory 7.

IT the new data (ND#1) 1s not present in the cache memory
7, the data duplicately written in the space fields is read and
written in the cache memory 7.

When the SCSI drives 12 of SD#1 and SD#6 have
completed the access process including a seek and latency
and when it becomes possible to read the old data (D#1) and
old parity (P#1), the old data (D#1) and old parity (P#1) are
read and stored in the cache memory 7. Thereafter, MP1 20
instructs PG 36 to generate the new parity (NP#1) by an
exclusive logical sum of the old data (D#1) and the new data
(ND#1) in the cache memory 7. The new panty (NP#1)

generated by PG 36 is stored in the cache memory (Step
516).

After the new panty (NP#1) has been stored in the cache
memory 7, MP1 20 registiers the address of the new parity
(NP#1) in the cache memory 7 as the cache address 47 of the
logical address 45 at which the new parity (NP#1) 1s to be
stored, turns on (““1”) the cache flag 48, and turns off (*0”)
the invalid flag 49 and drive flag 52 (Step 518). After MP1
20 recognizes the completion of generating the new parity
(NP#1) and when an I/O request is not presently issued to
the SCSI drive 12 of SD #6, 1t instructs Drive-IF 28 to write
the updated new parity (NP#1).

The method of writing the updated new parity (NP#1) in
the SCSI drive 12 of SD#6 1s the same as the method of
writing the new data (ND#1) into the SCSI drives of SD#4
and SD#6. After the new parity (NP#1) has been generated,
MP1 20 instructs Drive-IF 28 to issue a write command to
the SCSI drive 12 of SD#6 so that the SCSI drive 12
performs an access process including a seek and latency of
the SCSI Inter-Addr 44. If the new parity (NP#4) has been
generated already and stored in the cache memory 7 and the
access process by the SCSI drive 12 of SD #6 has been
completed, C-Adp 14 reads the new parity (NP#1) from the
cache memory 7 and transfers it to Drive-IF 28 which in turn
transfers 1t via one of the drive unit paths 9-1 to 9-4 to the

SCSI drive 12 of SD#6 (Step 522).

When writing the new parity (NP#1) into the SCSI drive
12 of SD#6 is completed, the SCSI drive 12 of SD#6 reports
a write completion to Drive-IF 28 which in turn reports the
reception of this write completion to MP1 206. In response to
this report, MP1 20 turns off (**0”") the cache flag 48 1i the
new data (ND#1) is not to be held in the cache memory 7,
and turns on (“1”) the cache flug 49 if the new data (ND#1)
1s to be held in the cache memory 7. The invalid flag of the
address table 40 at the logical address of the written new
parity (NP#1) is turned off (“0”), and the drive flag 52 is
turned on (*17) (Step 524).

After the new parity (NP#1) has been written in the SCSI
drive, the old data (D#1) 1n the SCSI drive 12 of SD #1 and

one of the duplicate new data (ND#1) in the SCSI dnve
having the smaller SCSI drive number of SD#4 than SD#6

5,579,474

13

are released to form space fields which are registered as the
space fields for the next write process. To register these
space fields, MP1 20 turns on (“1”) the invalid flags of the
address table 40 at the logical addresses at which are stored
the old data (D#1) in the SCSI drive of SD#1 at the SCSI
Inter-Addr 4 of DADR 1 and one of the duplicate new data
(ND#1) in the SCSI drive having a smaller SCSI drive
number of SD #4, registers SD#4 and SD#6 as the space

drive numbers 51, and turns off (“0°’) the SD flags (Step
526).

As described above, the new data (ND#1) is duplicated
and temporarily stored in the logical group. Thereatter, the
new parity (NP#1) is generated when the number of read/

write requests by CPU 1 becomes relatively small, and
stored in the SCSI drive. Accordingly, a response time
during the write process can be reduced, and the number of
read/write operation standbys to be caused by the generation
of the new parity (NP#1) becomes small as compared to the
conventional method.

The characteristic feature of this embodiment is that after
the parity of the level 5 has been updated, the old data and
one of the duplicate new data written in the space fields are

released to form new space fields for the next write opera-
tion.

JP-A-6-19632 filed by IBM Corp. discloses a method of
delaying a parity update process in which a drive called
WAD is provided, and in the write process, data is written
both in a cache memory and WAD. WAD is a non-volatile
drive for backing up data in a volatile cache memory. If a
power failure or the like does not occur, the normal parity
update process of the level 5 is performed by using the data
in the cache memory, and the new data is overwritten on the
data to be updated. If a power failure occurs, the new data
in the cache memory has been erased so that the new data in
WAD is read. Accordingly, in the write operation, two write
operations are required, including writing the new data in
WAD and overwriting the new data on the old data aiter the
parity is updated. For these two write operations, an over-
head of two seeks and latencies is required.

According to this embodiment, new data is duplicately
written in the write process so that after the parity update, it
is necessary only to release space fields and register them in
the address table. Although it requires two write operations
in duplicately wiring the new data, as in the case of using
WAD, these write operations are processed in parallel so that

the overhead of seeks and latencies corresponds generally to
on¢ write operation,

Furthermore, according to the embodiment, the addresses
of data and space fields change dynamically so that it is
possible to uniformly distribute read/write requests by CPU
1 into respective SCSI drives in a logical unit 10.

Still further, according to the embodiment, the addresses
of data, space fields, and a parity change dynamically at the
same SCSI Inter-Addr 44, facilitating the address manage-
ment. Obviously the same advantages of the embodiment

are attained even if addresses are dynamically changed at
different SCSI Inter-Addr 44.

Next, a method of dealing with a failure of an arbitrary
SCSI drive in a logical group 10 will be described.

If a failure occurs in one of SCSI drives of a disk array and
data in the SCSI drive cannot be read, this data can be rebuilt
from the other data and a parity. The characteristic feature of
this embodiment is that new data is duplicately written 1n
two space fields of two SCSI drives to allow the parity
update to be delayed while ensuring the rehiability. If a
failure occurs in a SCSI drive 12 in a logical group 10 prior

10

13

20

25

30

35

40

435

50

35

60

65

14
to writing a new parity (NP#1) to a SCSI drive 12, the
rebuilding process is performed in the manner shown in the
flow chart of FIG. 14. In the rebuilding process, a failed
SCSI drive 12 is replaced by a normal SCSI drive 12, and
data in the failed SCSI drive 12 is rebuilt and stored 1in the
normal SCSI drive 12. If a reserved SCSI drive is prepared,

the SCSI drives are not replaced but they are only switched.

In this embodiment, data in a failed SCSI drive can be
rebuilt either by using the data and parity stored in the other
SCSI drives in the same logical group 10 or by copying one
of the duplicated data. The rebuilding process will be
described more in detail below.

As shown in FIG. 4B, if a failure occurs in one of SCSI
drives of SD#1, SD#2, and SD#3 (Step 1406) prior to
writing a new parity (NP#1) in the SCSI drive 12 of SD#6
(Step 1402), it is possible to rebuilt the data in the failed
SCSI drive by using the data and old parity in the other SCSI
drives (Step 1410). For example, if a failure occurs in the
SCSI drive 12 of SD#1, D#2 and D#3 in SD#2 and SD#3
and the old parity (P#1) are transferred to PG 36 which
calculates an exclusive logical sum of the data and parity to
rebuild D#1 in the failed SCSI drive 12 of SD#1. If a failure
occurs in one of the SCSI drives of SD#4 and SD#5 storing
the duplicate new data (ND#1), one of the duplicate new
data is copied to rebuild the new data (Step 1412).

If CPU 1 issues a read/write request to the data in the
failed SCSI drive 12 to which the data rebuilding process 1s
not still performed, the following process 1s carried out.

In the case of a read request by CPU 1, similar to the
rebuilding process, the read requested data is rebuilt and
read. If the data can be rebuilt by using the parity, data and
a parity necessary for rebuilding the data are read from the
normal SCSI drive 12 of the logical group 10, and PG 36
calculates an exclusive logical sum thereof to rebuild the
data and transfers it to CPU 1. If the data is one of the
duplicate data, the other of the duplicate data is read and
transferred to CPU 1.

In the case of a write request by CPU 1 and if the failed
SCSI drive is allocated with a space field in which one of the
duplicate data has been written, a general parity update of
the level 5 is performed, and the new data is overwritten on
the old data and the new parity is overwritten on the old
parity. If the failed SCSI drive is not allocated with a space
field, the new data is written in the manner like the normal
operation even if the old data is in the failed SCSI drive 12.

As shown in FIG. 4C, if after the new parity (NP#1) for
the data (D#2, D#3, ND#1) in the SCSI drives 12 of SD#2,
SD#3. and SD#5 has been written in the SCSI drive 12 of
SD#6, one of the SCSI drives 12 of SD#2, SD#3, and SD#5
fails, then the data in the failed SCSI drive 12 can be rebuilt
by using the data in the other SCSI drives 12 and the parity
in the SCSI drive 12 of SD#6.

For example, if a failure occurs at the SCSI drive 12 of
SD#2, the data (D#2) in this SCSI drive 12 can be rebuilt by
using the data (D#3 and ND#1) in the SCSI drives 12 of
SD#3 and SD#4 and the parity in the SCSI drive 12 of SD#6.

According to the present invention, in the write process,
new data is duplicately and temporarily stored in the space
fields, and at this stage a tentative write completion is
reported to CPU 1. CPU 1 therefore requires a write process
time equal to the time while the duplicate data is written 1n
SCSI drives. A conventional disk array requires an average
Jatency time of 1.5 revolution during the write process as
shown in FIG. 12A. However, according to the present
invention, the average latency time becomes 0.5 revolutions
if the rotations of the SCSI drives 12 constituting the logical

3,579,474

15

group 10 are synchronized. Furthermore, even if a failure
occurs at a SCSI drive of a logical group prior to writing the
new parity into a SCSI drive, a failure recovery is possible
like a conventional disk array by using the old parity and
duplicate new data.

In this embodiment, data, a parity, and space fields in the
SCSI drives 12 of a logical unit at the same SCSI Inter-Addr
44 are used. However, data, a parity, and space fields at
different SCSI Inter-Addr 44 may be used by adding the
addresses of respective logical groups 10 to the logical
address 45, parity drive number 50, and space drive number

51 of the address table 40.

In this embodiment, in order to shorten the latency time
during the write process, new data is temporarily and
duplicately stored in SCSI drives, and at a later proper
timing, the parity is updated. After the parity has been
updated, one of the duplicate data is released. According to
the present invention, apart from the above-described per-
formance improvement, the following application is pos-
sible.

Although the reliability obtained by using data duplica-
tion requires a larger storage capacity, it is higher than the
reliability obtained by using a parity. The application of this
invention uses this feature. The reliability of the new data
and the frequently wrntten data 1s made high by using data
duplication, whereas the reliability of the data not frequently
written 1s ensured by using a parity with a smaller storage
capacity. Specifically, the reliability of the data not fre-
quently written 1s ensured by using a parity although it is not
s0 high as data duplication, whereas the reliability of the
new data and the data frequently written 1S made high by
using data duplication although the larger storage capacity is
required. In this manner, two reliability levels can be set.

A second embodiment of the present invention will be
described with reference to FIG. 6. In the rebuilding process
of the first embodiment, data is rebuilt and stored by
repiacing a failed SCSI drive by a normal SCSI drive or by
switching the failed SCSI to a reserved SCSI drive. In the
second embodiment having the same drive array system of
the first embodiment, if a failure occurs at a SCSI drive 12,
data in the failed drive 1s rebuilt, and space fields are used
for storing the rebuilt data.

According to the present 1invention, as shown in FIG. 3A,
a parity group is constituted by data at the same SCSI
Inter-Addr 44 in the SCSI drives 12 of a logical group.
Specifically, PG 36 generates a parity (P#1) by using
Data#1, Data#2, and Data#3 (D#1, D#2, D#3) in the SCSI
drives 12 of SD#1, SD#2, and SD#3, and stores it in the
SCSI drive 12 of SD#5. In this embodiment, an odd parity
1s used so that if the number of 1 of the bits of Data#l,
Data#2, and Data#3 (D#1, D#2, D#3) 1s odd, a parity “0” is
used, and 1if the number is even, a parity “0” is used

(exclusive logical sum). If a failure occurs at the SCSI drive
12 of SD#1, Data#l (D#1) cannot be read therefrom.

In this embodiment, a single parity is used for one parity
group. Therefore, data can be rebuilt if one SCSI drive 12
fails. However, if another SCSI drive 12 fails before the data
1s rebuilt, this data cannot be rebuilt. In such a case, prior to
the occurrence of a failure at the second SCSI drive 12,
Data#2 and Data#3 and Parity#1 (P#1) are transferred to the
cache memory 7. MP1 20 instructs PG 36 to execute the data
building process at once. In this case, MP1 20 is required to
update a parity for the new data in the logical group 19, to
release one of the duplicate data, and to allow the rebuilt data
to be written in the space field. After Dataf#f1 (D#1) 1s rebuilt,
MP1 20 stores Data#1 in the SCSI drive of SD#4 or SD#5.

10

15

20

25

30

35

40

43

50

55

60

65

16

In the above manner, the space fields can be used either
for shortening the write latency time as in the case of the first

embodiment, or for storing the rebuilt data upon occurrence

of a failure of a SCSI drive 12. After MP1 20 has stored the
rebuilt Data#1 (D#1) in the space field, the space drive
number 51 for the stored rebuilt Data#1 (D#1) in the address
table 40 shown in FIG. 3B and stored in the cache memory
7 1s deleted, and the contents Of the logical address 45 of the
rebuilt Data#1 (D#1) are copied to the logical address 45

corresponding to the deleted drive number.

As shown in FIG. 6, the SCSI drive 12 of SD#] stores
Data#1 (D#1) as well as the parity and Data#13, Data#16,
Data#19, and Data#22 (D#13, D#16, D#19, D#22). The
space fields are not necessary to be rebuilt. The Parity#3
(P#3) is rebuilt from Data#7, Data#8, and Data#9 (D#7,
D#8, D#9) 1n the SCSI dnives 12 of SD#3, SD#4, and SD#5
and stored in the space field of the SCSI drive 12 of SD#2
or SD#6. Data#13 1s rebuilt from Data#14 and Data#15
(D#14, D#15) and Parity#5 (P#5) in the SCSI drives 12 of
SD#3, SD#5, and SD#6, and stored in the space field of the
SCSI drive 12 of SD#2 or SD#4. Data#16 is rebuilt from
Data#17 and Data#18 (D#17, D#18) and Parity#6 (P#6) in
the SCSI drives 12 of SD#2, SD#4, and SD#6, and stored in
the space field of the SCSI drive 12 of SD#3 or SD#5.
Simularly, Data#19 and Data#22 are rebuilt and stored in the
space fields in the logical groups.

After the rebuilt data of the SCSI drive 12 has been stored
in the space fields of the SCSI drives 12 of SD#2, SD#3,
SD#4, SD#5, and SD#6, each logical group has one space
field. Therefore, the write latency time cannot be shortened
as in the first embodiment so that the conventional disk array
process of RAID of the level 5 is performed. If after the data
in the SCSI drive 12 of SD#1 has been rebuilt and stored,
another SCSI drive 12 among the SCSI drives 12 of SD#2,
SD#3, SD#4, SD#5, and SD#6 fails, the data in the failed
SCSI drive 12 can be rebuilt in the manner described above.

It all the space fields of the logical groups are used, the
failed SCSI drives are replaced by normal SCSI drives 12
whose fields are all used as space fields in configuring
logical groups.

When the failed SCSI drives are replaced by the normal
SCSI drives, space fields are initially concentrated upon
particular SCSI drives. As a result, it becomes common to
wait for the use of these SCSI drives so with the result that
the effects of shortening the latency time as in the first
embodiment cannot be efficiently performed. However, as
time passes, the space fields are dispersed to restore the
normal state, gradually solving the above problem. If this
restoration time poses any practical problem, the failed SCSI
drive 12 may be replaced by a normal SCSI drive each time
a failure occurs so that a user can rebuilt the data and parity
in the failed SCSI drive and store them in the replaced
normal SCSI drive. In this case, the space fields are not
rebuilt and are reserved as the space fields themselves.

In this embodiment, MP1 20 performs the rebuilding
process and a process of writing the rebuilt data in the space
field. Accordingly, as compared to the case where a failed
SCSI drive is replaced by a normal SCSI drive and the
rebuilt data is written therein, the burden on a user can be
reduced because the user of this system need not replace the
failed SCSI drive by a normal SCSI drive immediately when
a failure occurs.

A third embodiment of the present invention will be
described with reference to FIGS. 7 to 11.

In this embodiment, as shown in FIGS. 7-9, each logical
group 10 has a subsidiary DKC 11 which has a micropro-

5,579,474

17

cessor MP3 29 for controlling the address table 40 in the
cache memory 7 in the first and second embodiments; SCAS
31:; PG 36; lines ADPs 34; and a sub-cache 32. The data
processing procedure of this embodiment is similar to the
first and second embodiments.

The primary difference of the third embodiment from the
first and second embodiment will be described with refer-
ence to FIGS. 10 and 11. As shown in FIG. 9, in the third
embodiment, the address table 40 in the cache memory 7 of
the first and second embodiments is stored as a data address

table (DAT) 30 in the subsidiary DKC 11. The format and
function of DAT 30 are the same as the first and second
embodiments. The different points are that the SCSI drive
address 42 at which data is stored is limited only to the
logical group 10 and that a dedicated memory for storing
DAT 30 is used separately from the cache memory 7 storing
the address table 40. GAT 23 in ADC 2 judges from a CPU
designated address only whether or not the location indi-
cated by a CPU designated address is which logical group 10
of ADU 3. A logical group table (1.GT) 60 such as shown in
FIG. 10 is stored in the cache memory 7 at a particular
region thereof.

As shown in FIG. 10, LGT 60 is a table by which a logical
group address 61 can be determined from the CPU desig-
nated drive number 41 and CCHHR 46 supplied from CPU
1. LGT 60 stores a cache address 47 of a data location in the
cache memory 7, and has a cache fiag 48 which turns on
(“‘1”) if data is present in the cache memory 7 and turns off
(“0”) if data is not present in the cache memory 7. At the
initial settings, a user designates the storage region of a
usable capacity. At this time, MP1 20 of ADC 2 assigns
logical groups 10 by using LGT 60. MP1 20 registers the
storage region in LGT 60, the storage region corresponding
to a CPU designated address entered by a user.

In an actual read/write process, GAT 23 can recognize a
logical group 10 corresponding to the CPU designated
address by referring to LGT 60. In a read process, GAT 23
identifies a logical group by referring to LGT 60 and
supplies the information of the identified logical group to
MP1 20. MP1 20 instructs Drive-IF 28 to issue a read
request to the logical group 10. Drive-IF 28 instructed by
MP1 20 supplies the read request and CPU designated
address to the subsidiary DKC 11 of the logical group 10.
The microprocessor MP3 29 of the subsidiary. DKC 11
receives the read request command and CPU designated
address. Like the first embodiment, DKC 11 refers to DAT
30 and translates the CPU designated address supplied from
Drive-IF 28 into a logical address 45 of the logical group 10
storing the subject data. In accordance with the logical
address 45, the SCSI drive address 42 (SCSI drive number
43 and SCSI Inter-Addr 44) 1s 1dentified.

After the SCSI drive address 42 1s identified, a read
request is issued to the SCSI drive 12 from MP3 29. The
SCSI drive 12 then performs an access process including a
seek and latency to SCSI Inter-Addr 44. When 1t becomes
possible to read the data, the data 1s read and transierred to
Drive-Adp 34 which stores it in the sub-cache memory 32.
After the data has been stored in the sub-cache memory 32,
Drive-Adp 34 reports a storage completion to MP3 29 which
in turn turns on (“17) the cache flag 48 in DAT 30 at the
logical address 45 of the data. Similar to the first embodi-
ment, if a read/write request is 1ssued later to the data having
the cache flag 48 turned on (*17), MP3 29 informs a data
transfer permission to Drive-IF 28 of ADC 2, and Drive-IF
28 responds to this and supplies information to MP1 20.

Upon reception of this information, MP1 20 instructs
Drive-IF 28 to transfer the data to the subsidiary DKC 11 if

5

10

15

20

25

30

35

40

45

50

55

60

63

18

the data can be stored in the cache memory 7. In response
to this instruction, Drive-IF 28 issues a read request to MP3
29 of the subsidiary DKC 11. In response to this read
request, MP3 29 1nstructs the sub-cache adapter (SCA) 31 to
read the data from the sub-cache me
the data and transfers if to Drive-IF 28. After Drive-IF 28

receives the data, the similar processes to the first and
second embodiments are performed.

ory 32. SCA 31 reads

Similar to the write process, in the read process, the

logical group 10 1s identified, and MP1 20 instructs Drive-IF
28 to issue a write request to MP 3 29 of the logical group
10. After MP3 29 of the logical group 10 receives the write
request and stores the data in the sub-cache
processes similar to the first and second embodiments are
executed in accordance with the flow chart of FIG. 5. The
third embodiment can also attain the advantageous effects of
the first and second embodiments.

1emory 32, the

Although a system using magnetic disks has been

described in the above embodiments, the present invention

is applicable to a system using optical disks with the same
advantageous effects.

According to the present invention, it is possible to delay

a parity update process in the data write process until the
number of read/write requests the CPU becomes small.
Accordingly, the CPU can execute a write process at a high
speed when there are a number of read/write requests,
thereby increasing the number of I/O processes per unit
time. Furthermore, a reserved SCSI drive not usually used
can be used to improve the performance by shortening the

latency time, thereby allowing the SCSI drnive resources to
be efficiently used.

What is claimed 1s:
1. A method of writing data into data storage in a disk

array system, in a form of combination of a plurality of write
data and an error correcting code, comprising: '

(a) generating at least one error correcting code from
(m—1) write data supplied from an upper unit;

(b) writing, as one data group, said (m—1) write data and
sald error correcting code in m space fields each
belonging to one of m drives within a plurality of drives
of said data storage;

(c) responsive to an update request issued by said upper
unit for old write data of said (m—1) write data, writing
new write data designated by said update request into
each of two space fields belonging to two drives within
said plurality of drives other than said m drives as a pair
of duplicated write data belonging to said data group;

(d) reading out three data inciuding one of said pair of
duplicated write data, said old write data, and said error
correcting code from three of the plurality of drives,
and holding said three data, at a proper timing after
execution of said writing step (c);

(e) generating a new error correcting code by using said
read out three data for said one data group after
updating of said old write data by said new write data;

(f) updating said old error correcting code written at said

step (b) by said generated new error correcting code;
and

(g) after the updating of said old error correcting code by
said new error correcting code, releasing a first field
holding said old write data and a second field storing
one of said pair of duplicated write data to make the
first and second fields be space fields.

2. The method according to claim 1, further comprising

the step of:

3,979,474

19

(d,) informing said upper unit of completion of updating
requested by said update request, after said step (¢) and
before said reading step (d).

3. The method according to claim 1, further comprising

the steps of:

monitoring a frequency of occurrence of read/write
requests from said upper unit to said data storage; and

controlling the timing at which said step (d) is executed in

accordance with said monitored frequency.:

4. The method according to claim 3, wherein said con-
trolling step includes a step of starting said step (d) when
said monitored frequency 1s not greater than a predetermined
value.

S. The method according to claim 1, further comprising
the steps of:

when a failure occurs at one of said m_drives after said
writing of said pair of duplicated write data at step (c)
and before said updating of said old error correcting
code by said new error correcting code at step (1),
reconstructing one of said (m—1) write data or said old
error correcting code held in said failed drive, by using
(m—1) data each being one of said (m—1) write data or
said old error correcting code, held 1n (m—1) drnives
other than said failed drive;

writing said reconstructed one of said (m—1) write data or
said reconstructed old error correcting code in a normal
drive to be used in place of said failed drive, as data to
be used in place of said one of said (m—1) write data or
said old error correcting code held in said failed drive;
and

when a failure occurs at one of said two drives holding
said pair of duplicated write data after said writing of
said pair of duplicated write data at step (c) and before
said updating of said old error correcting code by said
new error correcting code at step (f), copying one of
said pair of duplicated write data held in another of said
two drives to a normal drive to be used in place of said
failed drive, as duplicated write data to be used in place
of another of said pair of duplicated write data held 1n
said failed one of said two drives.

6. The method according to claim 1, further comprising

the steps of:

responsive to a new update request issued by said upper
unit for said one data group after execution of said
releasing step (g), executing said steps (c) to (g) for
new write data designated by said new update request;
and

responsive to a new update request issued by said upper
unit after said writing of said pair of duplicated write
data at step (c) and before said releasing step (g),
executing said steps (¢) to (g) for new write data
designated by said new update request after completion
of execution of said step (g) for an update request
preceding to said new update request.

7. The method according to claim 1, wherein said fields
and said two space fields are fields having a same physical
address of (m+2) drives.

8. A method according to claim 1, further comprising the
steps of:

executing said steps (a) to (g) for each of a plurality of
data groups each inclusive of (m-1) write data
requested by said upper unit; and

wherein pairs of space fields distributed in said drives are
used each as a pair of two space fields for holding a pair
of duplicated write data for one of said plurality of data
groups.

10

15

20

25

30

35

40

43

50

33

60

65

20

9. A disk array system having a plurality of dnives for
holding data in a form of a combination of a plurality of
write data and an error correcting code, comprising:

(a) first error correcting code generating means for gen-
erating at least one error correcting code from (m—1)
write data supplied {from an upper unit;

(b) first writing means for writing one data group consti-
tuted by said (m—1) write data and said error correcting
code in m space fields each belonging to each of m

drives;

(¢) second writing means responsive to an update request
issued by said upper unit for old write data of said
(m—1) write data by said upper unit, for writing new
write data designated by said update request 1n each of
two space fields belonging to two drives other than said
m drives as a pair of duplicated write data belonging to
said data group,

(d) means for reading out three data including one of said
pair of duplicated write data, said old write data, and
sald error correcting code from drives holding said
three data, at a proper timing after writing of said patr
of duplicated write data;

(e) second error correcting code generating means for
generating by using said read out three data, a new error
correcting code for said data group after updating of
said old write data by said new write data;

(f) means for updating said old error correcting code
written by said first writing means by said new error
correcting code; and

(g) means for releasing, after updating said old error
correcting code by said new error correcting code, a
first field holding said old write data and a second field
holding one of said pair of duplicated write data, so as
to make the first and second fields be space fields.

10. A disk array system according to claim 9, further

comprising:

means for informing said upper unit of completion of
updating requested by said update request, after said
pair of duplicated write data is written and before said
three data are read out.

11. The disk array system according to claim 9, further

comprising:

means for monitoring a frequency of occurrence of read/
write requests from said upper unit to said disk array
system; and

means for controlling start of an operation of said reading
means in accordance with said monitored frequency.
12. The disk array system according to claim 11, wherein
said controlling means includes means for starting the
operation ot said reading means when said monitored occur-
rence irequency 1s not greater than a predetermined value.
13. The disk array system according to claim 9, further
comprising:
means responsive to occurrence of a failure at one of said
m_drives after writing of said pair of duplicated write
data and before updating of said old error correcting
code by said new error correcting code, for reconstruct-
ing one of said (m—1) write data or said old error
correcting code held in said failed drive, by using
(m—1) data each being one of said (m—1) write data or
said old error correcting code held in (m-1) drives
other than said failed dnve;

third writing means for writing said reconstructed one of
said (m—1) write data or said reconstructed old error
correcting code in a normal drive to be used 1n place of

5,979,474

21 22
said failed drive, as the data to be used in place of said data and before releasing of said space fields, for
one of said (m—1) write data or said old error correcting causing said second writing means to start writing of
code held in said failed drive; and said new data designated by said new update request
means responsive to occurrence of a failure at one of said after releasing by said releasing means is over for an
two drives holding said pair of duplicated write data 3 update request preceding to said new update request.
after writing said pair of duplicated write data and 15. The disk array system according to claim 9, wherein
before updating said old error correcting code by sald s3id m fields and said two space fields are fields of a same
new error correcting code, for copying one of said pair physical address of (m-+2) drives.

of duplicated write data held in another of said two
drives, a normal drive to be used in place of said failed 10
drive, as duplicated write data to be used in place of
another of said pair of duplicated write data held in said

16. A disk array system according to claim 9, further
comprising:

means for causing said first error correcting code gener-

failed one of said two drives. ating means, said first writing means, said second
14. The disk array system according to claim 9, further writing means, said reading means, said second error
comprising: 15 correcting means, said updating means, and said releas-
means responsive to a new update request issued by said ing means to operate for each of a plurality of data
upper unit for said data group after releasing said space £TOUDPS each inclusive of (m—1) write data requested by
fields, for causing said second writing means, said said upper unit; and
reading means, said second error correcting means, said wherein pairs of space fields distributed 1n said drives are
updating means, and said releasing means to operate 2 used each as a pair of two space fields for holding a pair
for new write data designated by said new update of duplicated write data for one of said plurality of data
request; and groups.

means responsive to a new update request issued by said
upper unit after writing of said pair of duplicated write * k% k%

	Front Page
	Drawings
	Specification
	Claims

