[0 0 0 O 0

US005574911A
United States Patent [19] (111 Patent Number: 5,574,911
D’Angelo et al. [45] Date of Patent: Nov. 12, 1996
[54] MULTIMEDIA GROUP RESOURCE 4,956,773 9/1990 Saito et al.coceeeirriririersracnnnns 364/200
ALLOCATION USING AN INTERNAL 5,014,267 5/1991 Thompkins et al.cccervernrenne 370/62
GRAPH 5,025,305 7/1991 Nose et al. ...ccocieevreeererencscesenees 364/518
| - 5,058,185 10/1991 Morris et al. .ooeveeveeeererereeccccnons 382/41
(751 Inventors: StEphEll D’ Angelo, Sunnyvale; Steven 5,065,345 1171991 Knowles et al. .cceeveevvrvinrecennenn 395/154
H. Goldberg, Burlingame; Robert J 3,148,154 9/1992 MacKay et al.cevecrirecrincnnns 340/712
R.l M >, . ; . o - 3,195,080 3/1993 Baumgartner et al. 370/62
elyea, Mountain View, all of Calif.; 5,208,745 5/1993 Quentin et al. 364/188
Lars C. Wolf, Heidelberg, Germany 5,214,778 5/1993 Glider et al.ovooerreerreereerenne 395/575
_ 5,208,846 12/1993 Bonsall et al.cccooveevemeennerenee 364/514
[73] Assignee: International Business Machines 5,289,461 2/1994 de NIiS couvveeerrerereereseessensrsseens 370/58.1
Corporation, Armonk, N.Y. 5,317,732 5/1994 Gerlach, Jr. et al.eun..... 395/600
5,339,413 R8/1994 Koval et al.ooreereerereennnnennnnns 395/650
[21] Appl No.: 566,596 5,369,570 1171994 Paradooevimiiiiircnieninnrennnes 364/401

: | Primary Examiner—Wayne Amsb

22] Filed: Dec. 4, 1995 Y y ury

[22] File w6 % Attorney, Agent, or Firm—Randy W. Lacasse; David J.
Related U.S. Application Data Kappos
[57] ABSTRACT

63] Continuation of Ser. No. 101,314, Aug. 3, 1993, abandoned.

1] I0te CLE oo GOGF 17/30 .0 tntelligent system for the efficient selection and alloca-
tion of the various types of resources available in a multi-

52] U.S. CL R — 395/601; 36;1(/5]2/12%21 1, media environment. The system interrelates a combination

_ ' of user input parameters with the resident hardware and
[58] Field of Sea_rch ... 395/600 software parameters of the requestin_g multimedia resources
56] References Cited by grouping into common computing needs. In addition to

traditionally known hardware/software parameters the sys-

U.S. PATENT DOCUMENTS tem recognizes specific limitations of resources which
would effect a proper multimedia presentation to the end

jgégg;’? ?ﬁ iggg ;‘E}mhm ----------------------------------- ggjﬁ gg user. The system uses an internal graph structure to interre-
,639, 111714 113 o :

4,710,763 12/1987 Franke et al. wovooooorrooooo. 340/723 ﬁiﬁ:u:fag;“z;f;%‘g;es s they are allocated to proved for
4,821,211 4/1989 TOITES eomreerreomeeeeemseeemceremaseenens 364/521 & -

4,893,256 1/1990 Rutherfoord et al. 364/518

4,937,743 7/1990 Rassman et al.cccvvevrerennne. 364/401 16 Claims, 4 Drawing Sheets

Flow 1D Manipulation Resource
GraphDB ResourceDB . Controller

Resource Registration and Allocation

Graph
Traversal and
resource

reservation calls

The Graph

U.S. Patent Nov. 12, 1996 Sheet 1 of 4 5,574,911

COMPUTER #1 | COMPUTER #2
|
= VIDEO
(CAMERA : DECODER
. .
|
i AUDIO
VIDED ;
_ DECODER : CAMERA
: |
AUDIO ;

FIG. 1

AUDIO DATA ONLY

S AUDIO PLAYBACK
TS DEVICE
SOURCE OF AUDIO/VIDEO '
MOVIE DATA \ DECODER
' N\ i VIDEO DISPLAY
\ - I DEVICE
/
!

\

\
MIXED AUDIO & VIDEQO DATA ‘

VIDEO DATA ONLY
FIG. &

2

U.S. Patent Nov. 12, 1996 Sheet 2 of 4 5,574,911

MOVIE. 1 DEVICE
C D -
MIXER DECODER -
MOVIE 2 DEVICE

G
STORAGL

FIG. 4

FIG. ©

U.S. Patent 'Nov. 12,1996 Sheet 3 of 4 5,574,911

Traversal and S _
resource Resource Registration and Allocation

reservation calls

| Flow 1D Manipulation Resource .
GraphDB ResourceDB . Controller
Graph (o

The Graph

FIG. ©

U.S. Patent Nov. 12, 1996 Sheet 4 of 4 5,574,911

- User Si;urts Application

Application creates the set of objects (Devices) and connects
| them as desired

Application requests that resources be cllocated
Graph Manager requests a flow ID from the Resource Manager

Graph Manager collects the Contro! Value Definitions
from each of the objects for future use

Graph Manoger traverses the groph in the order required
by the system

Graph Manager

Onebgoulcj calls the "Resource Manager” Failure Occurs
modified to balonce the resources Process Stopped

Successful Reservation Made

Graph Manager calls each object to confirm their acceptance
of the granted resources

Graph Manager calls each object to allocate resources

Resource allocation complete. Graph Manager calls the Resource
Manager to free the flow ID

System does whatever other tasks are required of it

Application requests that resources be dedllocoted

Graph Manoger traverses/calls each object

Process Completed

Fig. 8

5,574,911

1

MULTIMEDIA GROUP RESOURCE
ALLOCATION USING AN INTERNAL
GRAPH

This is a continuation of application Ser. No. 08/101,314,
filed Aug. 3, 1993, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an apparatus and method
for the allocation of multimedia system resources. More,
particularly, the present invention relates to an intelligent
mechanism for group allocation of multimedia system
resources based on device access requests. The invention
incorporates the particular limitations of the end user as well
as the constraints and priorities of the requesting multimedia
devices.

2. Description of the Prior Art

Multimedia can be represented by a variety of devices
which produce or use video, audio/voice, graphical, textual/
alphanumeric data, sensoral input or many other types of
input/output. Because of the various hardware and software
requirements necessary to implement each type of multime-
dia resource, the simultaneous or concurrent use of multiple
types of devices can create serious problems with compat-
ibility in timing, memory allocation, CPU allocation, band-
width, etc. The proper operation of multimedia devices
requires precise timing in delivery of data. An example of
the narrow range for compliance for multimedia systems
would be a video conferencing environment where it would
be 1intolerable to allow the audio to precede or follow the
motion of the speaker’s lips as presented in the accompa-
nying video. A half second delay of the audio would be
immediately perceived by the user and would be unaccept-
able for high quality communications.

As can be readily seen from the above example, a definite
need exists for the proper management of a multiplicity of
multimedia requesting devices to match the needs of the user
- with the computing resources available. To insure a high
quality of playback, the system needs to be able to promise
the multimedia requesting devices enough computing
resources to complete each of their respective tasks.

The systems currently available in the prior art do not
make the required promises to the various resources and
therefore the quality of presentation has suffered. Audio
clips often skip like a scratched record, and video clips are
grainy or skip frames. In addition, because of the inability of
prior art systems to properly integrate multimedia devices,
the ability of the end user to interact with the system has
been greatly limited. |

Some prior art systems have attempted to make piece-
meal resource allocations. They allow each device to request
resources, but since each request is separate, resources
allocation occurs with only mixed benefits to the end user.
Other prior art systems have made specially coded objects
which are tightly coupled in order to make better commit-
ments to resources. This attempt at resource allocation
severely limats future development and expandability.

The apparent standard prior art answer to resource allo-
cation 18 to use existing operating system mechanisms to
solve the problem. Most operating systems, for instance,
will allow system resources (1.e. memory) to be allocated to
a single device/user on a first come basis. This typical prior
art mechanism has been common for over 20 years. This
method, referred to as a default type allocation, cannot

5

10

15

20

25

30

35

40

45

50

55

60

63

2

efiiciently and properly interrelate a multiplicity of simul-
taneous or copending multimedia devices.

One step better than the default mechanism has been
implementing a special purpose dedicated CPU scheduler or
a special network bandwidth allocator to manage resources.

This particular solution allows limited intelligence to be

integrated into resource allocation, but fails to account for
user and device specific constraints.

The following patents are examples of prior art system
resource allocation methods. While the references show
resource allocation methods, they fail to account for the
hardware, software and user constraints as required in a
multimedia application versus the discrete data requirements
in a non-multimedia application.

U.S Pat. No. 5,148,154 to McKay, et al. admits to the
concept of resource management but focuses on the inter-

face a user would interact with to schedule the use of
resources in a special three-dimensional manner. The objects

in McKay’s patent refer to data objects and their place in the
display and time dimensions. This i1s very different from the
instant invention which defines an internal automated man-
ner by which a collection of objects could request resources
and have them granted.

U.S. Pat. No. 4,937,743 to Rassman, et al. covers the
scheduling of resources over time. These resources are
allocated to one owner at a time, and provisions are made for
automatic rescheduling if conflicts occur. This kind of
resource management differs from the one presented herein,
and does not address the issue of time, but rather addresses
partial ownership and division of resources at any given
point in time. The patent implies (through its use of data-
base) that access and decision making is distributed. That is,
that each scheduling application makes the decisions nec-
essary and the only central information is the database itself.

U.S. Pat. No. 5,208,745 to Quentin, et al. concemns the use
of an interface, scripting language and. expert system to
solve end-user problems. No mention is made of resource
allocation and\or management thereof.

U.S. Pat. No. 5,025,395 to Nose, et al. addresses the idea
of objects and the need for objects to have resources
associated with them. Its focus is completely on the presen-
tation of these objects in a user interface and the method by
which an end-user associates resources with an object. The
applications described in the patent allow the user to select
a group of objects, but these applications rely on the default
or existing system mechanisms for the allocation of these
resources, and they do not specily any collaboration or
grouping of the objects internal to the system.

OBJECTS OF THE INVENTION

As illustrated above, the prior art has failed to fully
integrate a multiplicity of multimedia requests. Therefore, it
is an object of this invention to accurately, efficiently and in
a timely manner, allocate multimedia computing resources
to a plurality of multimedia devices or groups of devices
which are requesting access to the system resonrces.

Another object of the invention i1s to provide for a
centralized entity and a heuristic procedure by which com-
puter resources can be requested and allocated.

Another object of the invention is to allow knowledge of
particular multimedia device limitations as well as user

defined parameters to be integral with the computer resource

selection process.

It is a further object of the invention to provide for a graph'
type data flow structure to properly allocate system
rESOUICes.

5,574,911

3

Other objects and advantages of the present invention will
become apparent from the detailed description when viewed
in conjunction with the accompanying drawings, which set
forth certain embodiments of the invention.

SUMMARY OF THE INVENTION

The present invention specifies a technique for allocating
system computing resources to groups of requesting multi-
media objects or processes. By collecting all knowledge
about the constraints of a particular data processing element,
of a group of elements or those as imposed by the user,
effective allocation of computing resources can take place.

A centralized graph data flow structure represents the
collected constraint information and is used to properly
construct a data flow path which may then be traversed to
sequence each ot the requesting elements. Having an entity
with centralized knowledge frees objects from the need to
know about each other, or to be specifically coded to each
other. Once the specific graph structures are known they can
be collapsed into simple forms for storage and manipulation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a teleconferencing setup showing group-
ng.

FIG. 2 1illustrates a multimedia movie playback scenario.

FIG. 3 illustrates a graph representation of FIG. 2.

FIG. 4 illustrates a graph of a movie mixer multimedia
system. -

FIG. 5 1illustrates a linear collapsed version of the graph
structure as shown in FIG. 4.

FIG. 6 1illustrates the relationships between data process-
ing elements in the present invention.

FIG. 7 illustrates a graph structure using feedback.

FIG. 8 illustrates a flow diagram of the method of the
present invention. .

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The detailed embodiments of the present invention are
disclosed herein, however, it is to be understood that the
disclosed embodiments are merely exemplary of the inven-
tion, which may be embodied in various forms. Therefore,
the details disclosed herein are not to be interpreted as
limited, but merely as the basis for the claims and as a basis
for teaching one skilled in the art how to make and/or use the
invention.

OVERVIEW

In order to get optimal multimedia computing resource
allocation the processing element (object) requests are to be
grouped by type. A good example of a case where grouping,
1s useful 1s a teleconference as shown in FIG. 1. This figure
shows two computers on a network sending video and audio

back and forth. The two graphs are obviously disconnected,

but should be considered as grouped because of the need for
allocation of common system resources for each graph. The
allocation of computing resources to groups of multimedia
processes and objects often depends on system and user
constraints and/or limitations. If these constraints are
ignored, poor resource allocation will ultimately occur. The
system of the instant invention collects the particular con-
straint information germane to each device, groups of
devices and/or applications together to form a centralized

5

10

15

20

25

30

35

45

50

35

60

65

4

management entity, which for this application will be
referred to as a “Resource Manager”.

COLLECTION OF KNOWLEDGE

The procedure for collection of constraints starts when the
user passively places constraints on the resource allocation
by selection of particular devices or programs. The end user
1s meant to be as unaware as possible about resource needs.
The user makes decisions about resource constraints by
selecting a given application to run. For instance, if the user
chooses to play a movie from a server, one set of constraints
1s 1mplied. If the user had chosen to video-conference with
someone other constraints would have been implied. In
some cases, the user has other controls such as a video
control panel where the user can request what quality of
video to use (for example, number of frames per second and
frame size).

The selected application is the important place where .
decisions are made. Common application level decisions in
the multimedia environment have traditionally been in the
area of limitations of network bandwidth, quality-of-deliv-
ery, and end-to-end delay. Network bandwidth limitations
stem from the size of the data. For video, this information
can be decided upon by the application or by the user.
End-to-end delay, however, is often important to the appli-
cation. For video conferencing, it is important that a delay of
less that %2 a second be in place in order to maintain the
feeling of interaction with the person on the other end of the
connection. This delay is so important that it is okay to use
a low quality-of-delivery setting in which video frames
could be discarded. Note that playing a movie from a server
does not imply any short delays. Instead, it implies that
higher quality delivery is more important. The application
may make additional specific requests to constrain resource
use other than the above examples and therefore should not
be limited to the above examples.

The actual multimedia objects/processes are then respon-
sible for using the application, its constraints on perfor-
mance and user given constraints to calculate details about
actual resource usage. For playing a movie, a lot of memory
might be required to do buffering and remove jitter. For
doing video conferencing, only small buffers would be
required, but getting CPU time may be very important.

Applications are expected to know about priorities and be
able to place them on requests of all types. Any request to
allocate resources can request priorities be given to certain
constraints. A common example to this is that, besides
specifying the end-to-end delay bounds, the application can
request that the delay be considered the most important
factor in resource allocation. Hence, priorities can be placed
on resource types by the application. In addition, control
panel applications may be written which expose to the user
details of various objects. Users can to control network
priorities Or assign relative priorities to applications. With
such a control panel the user may set an alarm buzzer to have
a higher priority than a mood music player, and the system
would account for this.

Requests for ways to optimize resource use can be
included. Each object reports the bounds on resource needs
that are acceptable for its proper execution. Each object then
describes any special parameters (control values) which can
be modified to improve or degrade resource needs or data
quality. This description also informs the Resource Manager
as to what resources are affected by each parameter.

Priorities applying to Control Values are only meaningful
to the processing objects, and are not controllable unless that

5,574,911

S

object wishes to expose them. High priority processes, such
as the above example “alarm buzzer”, can reclaim resources
from other multimedia processes.

GRAPH MANAGER

The minimum solution of solving the problems with
delays and other multimedia elemental constraints such in a
general case system is to provide a central entity, which at
minimum has a list of all the objects to be involved in the
allocation. This hist contains the Group of objects which are
under consideration. The central entity can then check to see
if each processing element has been attended to, and wait
exactly the amount of time 1t takes to attend to each element.

The best solution to solving problems associated with
delays is to introduce a full-fledged central entity called a
“Graph Manager”. This Graph Manager not only knows the
list of objects being Grouped, but also the connectivity
between the objects. This allows for ordered sequencing and
automatic detection of common groupings. The creation and
destruction of each object or process in the data stream is
reported to the Graph Manager. This can be done by the
object itself, or by an application acting as a client of that
object. The preferred embodiment performs this by auto-
matically grouping all objects that are interconnected into a
Graph. This frees the application from the need to explicitly
group objects.

By placing knowledge of the data flows in a graph, a
Graph Manager performs traversals of the graph, and knows
when each node and\or edge has been accounted for in a
given operation. Without this graph structure knowledge, it
would not be easy to know when all the objects had been
operated on. The Graph Manager is informed to traverse the

10

15

20

235

30

graph and perform an operation on each node and/or edge of

a graph. The most common kind of traversal with multime-
dia data streams i1s from the source of the data to the
consumer of the data. This kind of traversal is particularly
usetul 1n the reservation of computing resources.

To allocate resources without graph knowledge, the
objects would have to talk among themselves and come to
a consensus within some external resource allocator. There
would be no easy way to determine when all the objects had
reported in, so if for any reason (say one of the objects was
across a network link) an object reported in late, the system
would have to wait an indefinite period of time for comple-
tion. In addition, by giving the knowledge of connectivity to
another entity, objects are {reed from the need to know how
they are connected. This leads to other benefits when imple-
menting the solution (such as simplified interfaces).

Alternatively, a Graph Manager is used simply to record
which objects have reported back. This reporting is per-
formed by the object itself or by the application acting as
client to the object. The application is then able to query the
Graph Manager to discover which objects have not yet
reported 1n.

FIG. 21llustrates a typical movie playback, including both
audio and video. The terminology of graph theory will be
explained using the information of the above figure and will
be illustrated in FIG. 3. F1G. 3 shows a simple graph which
consists of “nodes” and “edges”. For convenience, a node is
to be a point of processing, such as the audio/video decoder
and an edge is to be a type of connectivity, such as the mixed
audio and video data path. It is possible to do an equivalent
drawing with the edges being used for processing and the
nodes for connectivity (they may thought of as hubs). This
kind of reversal of terms is purely semantic and does not

35

40

45

50

55

60

65

6

aftect the solution. FIG. 7 illustrates a graph structure as

~ described above with the addition of feedback loops.

Graph theory also allows for two kinds of edges: directed
and undirected. Undirected Edges are ones in which only
connectivity is important, not direction. Directed Edges
imply only a single direction of flow.

The collection of nodes and edges comprising a graph
may be represented in storage in many ways, including
arrays and linked structures. Typically graphs are used
because the data flow path must be traversed (often in .a
particular order) to make sure all nodes are visited. When
only one kind of traversal 1s performed, the graph can be
“collapsed” and represented in a simple data structure. For

instance, when it 1s desirable to traverse the graph from the
source of the data flow to the end of the data flow (or
visa-versa) the graph can be “collapsed” into a single-
dimensional array. This compression is possible since a
traversal can be represented as a series of nodes to be visited.

FIG. 4 shows a common graph for a movie mixer. Two
movies are mixed together, stored, and decoded for display
on the editing workstation. The graph in FIG. 4 is “col-

lapsed” into the array shown in FIG. § because visiting the

nodes in the given order guarantees that no node is visited
before all the nodes to its left (closer to the source of the
data) have been visited. Other array orderings are possible.
The arrows are shown on the “array” representation to show
that no information about connections between objects is
lost. An “array” is simply a matrix of one or more dimen-
sions, and “linked structure” is a set of structures in memory
or in a database that have pointers or indexes to one another.

The use of the Graph Manager’s information for other
traversal problems 1s also valuable. For instance, it may be
useful to be able to query an entire group of objects for
status.

A system can make exclusive use of Groups without
graph knowledge (that means no edges, just nodes). A
system implemented this way gets the benefits of allowing
traversals of all the objects and almost all the benefits of a
full graph implementation. Groups are extremely important
and require a centralized manager.

The following 1s an example using the movie graph found
in FIGS. 3 & 4.

Step 1. an application creates Device ‘A’ for processing
data. Device ‘A’ reports its existence to the Graph Manager.

In the preierred embodiment, this 1s done with “Open
Device Notify™.

Steps 2—4: Repeat step 1 to create Devices ‘B’, ‘C’, and
‘D’. Order of Device creation 1s not important.

Step 5: The application creates Connection ‘1’ between
Devices ‘A’ and ‘B’. Connection ‘1’ reports its existence
(and details of how it is connected) to the Graph Manager.
In the preferred embodiment, this is done with “Open
Connection Notify’.

Steps 6-7: Repeat step S to create Connections ‘2’ and ‘3’.
Order of Connection creation 1s not important.

Step 8: At this point, the Graph Manager knows all about
the Graph. The application can now do any operations on the
graph that it considers valuable. In the present, the primary
operation is resource allocation. This is done with “Prepare
Device” function.

When done with the objects, the steps should be reversed.

Step 9: The application disconnects the various objects. In
the present system this is done by destroying the Connection
objects which results in “Close Connection Notify” being
called on the Graph Manager.

5,574,911

7

Step 10: The application destroys the various Device
objects. In the present system this results in “Close Device
Notify” being called on by the Graph Manager.

RESOURCE MANAGER

Once all the requests are collected, as determined by the
Graph Manager, the Resource Manager balances the various
constraints on resource allocation and attempts to come up
with a successful match. When the number of constraints is
known 1n advance, the algorithm for allocation is determin-
able in advance. When allowing any number of resources
(N) and any number of parameters (M) to affect the solution,
a more generic algorithm must be used. The instant inven-
tion proposes an iterative, heuristic approach to solving the
allocation problem.

As discussed above, if all the possible resources were
known 1n advance, 1t might be possible to generate a solution
space or algorithm for resource allocation in advance. Many
systems for handling specific resource constraint sets have
been proposed, but general purpose solutions cannot rely on
the knowledge of the resource constraints at the time of the
writing of the resource management code. In the general
case, the Resource Manager needs to handle some unknown
number of resources with an unknown number of con-
straints.

If the constraints can be met with available resources on
the system, the Resource Manager can allocate the resources
to the various objects at that time.

It one or more of the constraints asks for a computing
resource to be allocated at greater than what is currently
available for allocation, or if the constraints are to limiting
with regards to a resource, one of the parameters that affects
that resource is modified and another check is made against
the constraints.

It is likely that lowering the use of one kind of resource
may increase the use of another kind, and that this process
of modifying parameters and rechecking resources is
repeated a number times before a solution is found or before
it 1s discovered that not solution can be found. If no solution
1s found, then the resource allocation request is rejected.

Heuristics can be involved in the selection of which
parameters to modify. The Resource Manager may notice
that as one resource need is decreased, another increases,
and learn some relationship which will speed the arrival at
a solution or the answer that no solution is possible.

The algorithm described in this invention approaches
resource allocation as a problem in which ‘N’ resource types
are available for objects to share. This set of resources is
unlikely to change between attempts to allocate resources.
Each resource type has an allocation algorithm associated
with it. These algorithms are encapsulated into objects called
“Resource Controllers™. It 1s the job of a Resource Control-
ler to dole out the resource it controls. A Resource Controller
could control a computing resource (such as CPU time or

10

15

20

23

30

33

40

45

50

35

memory space) or a physical resource (such as a disk drive

or audio playback adapter). This object is expected to
implement a useful algorithm for reservation and allocation.
There are many instances of prior art for such algorithms,
and this disclosure does not attempt to cover the subject of
such algorithms. The important statement is that there are
‘N’ resources, each with some object managing its alloca-
tion. - |

For any given attempt at allocation, a group of one or
more objects may be interested in resources. Each of these
objects may place constraints on their resource needs. These

60

65

8

constraints are usually specified in terms of bounds. For
example, an object could say that it desires the use of 2.0
megabytes of RAM and that it will accept a minimum of 1.3
megabytes of RAM. Thus, bounds are placed on the allo-
cation of various resources, and it is up to the Resource

Manager to take a global view of all the requests and find a
solution where all the objects meet their desired value if
possible, but at least meet their minimum value.

If we say there are ‘A’ objects which may want resources,
and that each object can request some portion of each of the
‘N’ resources, then there can be up to ‘A * N’ requests given
to the Resource Manager. This makes a straightforward
solution space problem with ‘N’ variables, and up to ‘A
constraints on each variable.

If the number of resources ("N’) 1s known in advance or
the number of objects (‘A’) is small, then it 1s possible to
experimentally and analytically determine an algorithm to
solve this problem efficiently. An example would be algo-
rithms for proper scheduling of a set of disk heads. If the
numbers for ‘A’ and ‘N’ are not bounded or known in
advance, other algorithms can be executed which solve the
‘A* N’ equations with ‘N’ unknowns problem. There should

be prior art on these kinds of problems.

The preferred embodiment of the instant invention uses
parameters called Control Values (as previously mentioned).
A Control Value 1s an alterable parameter on a object which
will cause it to modity its resource needs. Each object may
report as many Control Values as it wants to the Resource
Manager. A Control Value is defined by specifying the
desired value for the parameter, a worst-case value for the
parameter, a priority, and a list of what resource types it will
affect. Thus, the Resource Manager is given information as
to what “knobs™ on the object can be turned, and when one
18 turned, what resource type’s usage will decrease.

Let us say that the Resource Manager receives ‘M’
Control Value definitions during a given allocation. Control
Values can be used by an object to control any facet of its
operation. For example, a video capture object may offer a
Control Value that varies the level of video compression.
The desired value would be set for high-quality capture,
while the worst-case value would be set to the minimum the
user likes to see. The resource types affected by this param-
eter might be CPU time, memory space, and bandwidth.
Other possible Control Values include video frame rate,
quality-of-delivery, or any internal parameter which might
affect or be affected by resource use.

With the introduction of Control Values, the Resource
Manager now has to solve a problem with ‘M’ parameters
which can nonlinearly affect the up to ‘A * N’ resource
requests. This complication deviates from simple math-
ematical solutions and necessarily dictates a more compli-
cated algorithm.

The preferred embodiment uses a heuristic algorithm.
During each allocation phase, the Resource Manager col-
lects the information (as above) and then attempts to make
an allocation using the desired values for each resource (via
calls to the Resource Controller). If this succeeds, then the
current allocation is completed. If, however, there was not
enough of one or more resources, then the Resource Man-
ager looks at the list of failed resource types, and compares
it to the list of Control Values. Since each Control Value
specifies what resources it can decrease the resource needs
of, this eliminates many of the Control Values from deter-
mination in solving the problem. Once the smaller list of
Control Values that actually affects the failed resource types
1s determined, the lowest priority Control Value is lowered

- 5,574,911

9

from its desired value toward its worst value. Then, resource

requests are collected again and another attempt at allocation

1s made. This kind of process is iterated on until either
successful solution is reached, or all the Control Values
affecting a scarce resource are at their minimum values and
still no solution has been found.

As per FIG. 6, the key objects in the instant invention are
called Devices (they represent logical system devices) and
are 1dentified by an ID. Device objects use “Open Device
Notify” and “Close Device Notify” functions. Devices are
used as Nodes in the discussions of graphs below.

The other important object is called a Connection. These
are 1dentified by an ID as well, but the Graph Manager needs
to also be told which Device IDs are associated with the start
and end of the Connection (since Connections have a
direction). On top of that, we have the concept of a “port”
or “connection point” on a Device and this information also
needs to be conveyed when connection is opened.

Through the use of the Device and Connection open and
close notifications it is possible for the Graph Manager to
track all the connectivity among graphs without the user or
any other application becoming involved. An additional
interface has been provided for cases where objects that are
not connected explicitly need to be considered grouped for
an operation. The “Open Group Notity” function 1s used to
creatc a group. When creating a group, the application
program which is creating and connecting Devices specifies
a list of Devices that it wants to have grouped. As above,
Devices are identified with IDs. This concept is powerful
and useful in cases where two unconnected graphs need to
be considered for a single resource reservation or other
operation.

As shown in FIG. 6, the various processing elements in
the system interact in order to complete the resource allo-
cation phase.

FIG. 8 illustrates a typical set of steps might go as follows:
1. User starts application

2. Application creates the set of objects (Devices) and
connects them as desired. During this process, the Graph
Manager collects connectivity information.

3. Application requests that resources be allocated. This
results 1n a call to the Graph Manager to do reservation, then
allocation of resources.

4. The Graph Manager requests a FlowlD from the
Resource Manager. This identifier 1s used in all reservations
and allocations from objects in this graph or group.

J. The Graph Manager collects the Control Value defini-
tions from each of the objects for future use.

6. The Graph Manager traverses the graph in the order
required by system. This is usually from start of data stream
to end.

a. The first object gets called with a notice that it should
request any resources it needs to request of the
Resource Manager.

b. The object calls the register functions on the Resource
Manager to request resources. The Resource Manager
uses Resource Controllers to complete this task.

c. Steps ‘a’ and ‘b’ are repeated for each other Device

object in the graph or group.

7. The Graph Manager calls the “Resource Manager™ to
balance the resources. If failure occurs, the “Resource
Manager” returns the list of resource types that failed. The
“Graph Manager” then modifies the appropriate Control
Value(s). If no Control Values are appropriate to the resource
type, then the resource allocation returns failure. If at least

10

15

20

25

30

35

45

30

55

60

65

10

one could be modified, then return to step 6 and try again,
Reservation of resources actually marks them as being “in
use” but does not allocate them. |

8. Once a successiul reservation has been made, the
Graph Manager calls each object (in a traversal like that of
step 6) to let them confirm their acceptance of the granted
resources. If any object disagrees with what it is granted,
then resource allocation fails.

9. The Graph Manager calls each object to allocate
resources (in a traversal like that of step 6). Each object uses
the a Get Resources function of the Resource Manager to

actually allocate the resources and return information about

the resources to the object. The Resource Manager uses the
Resource Controllers to complete this task.

10. Resource allocation is now complete, so the Graph
Manager calls the Resource Manager to free the FlowlD.

11. The system does whatever other tasks are required of
it. For example, it could display a movie in a window.

12. The application requests that resources be deallocated.
This results in a call the Graph Manager to do the deallo-
cation.

13. The Graph Manager traverses/calls each object (in a
traversal like that of step 6). Each object uses a Free
Resources function of the “Resource Manager” to deallocate
its resources. The “Resource Manager” uses the Resource
Controllers to complete the task.

CONCLUSION

A system and method has been shown in the above
embodiments for the effective grouping and allocation of
computing resources to a plurality of requesting multimedia
objects or.elements. While various preferred embodiments
have been shown and described, it will be understood that
there is no intent to limit the invention by such disclosure,
but rather, 1s intended to cover all modifications and alter-
nate constructions falling within the spirit and scope of the
invention as defined in the appended claims.

We claim:

1. In a computer-based multimedia system, a computing
resource allocation system having dynamic allocation of
requests by a plurality of objects comprising:

means for creating said plurality of objects and connec-

tion thereof:.

means for grouping said requests;

means for collecting hardware, software or flow limita-
tions and constraints associated with each of said
plurality of objects and associated connections;

means for determining the allocation of said computing
resources based on said grouping and said collected
limitations and constraints:

internal graph means to coordinate said allocation of said
requests for said computing resources with each of said
computing resources responding to said internal graph
means, and

means responsive to said internal graph means to allocate

said computing resources to said requesting objects.

2. A computing resource allocation system as in claim 1,
wherein if sufficient resources are available to satisfy the
requests of a given group, the means to allocate allocates the
requested resources to each requester.

3. A computing resource allocation system as in claim 1,
wherein if sufficient resources to satisfy said requests of a
given group are not available, the means for determining
determines a scenario which enables the resource allocation
system to comply with all of said requests while remaining

5.574.911

11

within the bounds of each requestors hardware/software
constraints.

4. A computing resource allocation system as per claim 1,
wherein said means for determining is implemented with a
heuristic algorithm.

5. A computing resource allocation system as per claim 1,
wherein said internal graph means comprises a plurality of
nodes and edges.

6. A computing resource allocation system as per claim 1,
wherein said internal graph means 1s collapsed and stored as
arrays or linked structures.

7. A method of allocation of multimedia computing
resources to a plurality of requests from a plurality of
processing elements comprising:

collecting hardware, software or flow constraints associ-
ated with said requesting elements;

collecting variable parameters associated with each of
said requesting elements;

collecting user specific constraints associated with
selected applications to be run during said allocation of
said multimedia computing resources;

grouping all of said requests by type;

determining the allocation of said multimedia computing
resources based on said hardware and software con-
straints, said variable parameters, said user specific
constraints and said request types;

creating an internal graph structure representing said
allocation;

traversing said internal graph to coordinate the proper
sequence of sald requesting elements, and contacting
each of said requesting elements to confirm acceptance
of said sequence and, upon acceptance, allocating said
computing resources to said requesting objects.

8. The method of resource allocation as per claim 7,
wherein said determining step is implemented with a heu-
ristic algorithm.

9. The method of resource allocation as per claim 7,
wherein said variable parameters represent a range of
acceptable operation. |

10. The method of resource allocation as per claim 9,
wherein said method provides for flexible allocation and
deallocation of said resources based on said range of accept-
able operation.

10

15

20

25

30

35

40

12

11. The method of resource allocation as per claim 10,
wherein said constraints of each requesting device are
dynamically modified based on said flexible allocatlon and
deallocation.

12. The method of resource allocation as per claim 7,
wherein said internal graph structure comprises a plurality of
nodes and edges.

13. The method of resource allocation as per claim 7,
wherein said internal graph structure is collapsed and the
collapsed graph is stored as arrays or linked structures.

14. In a computer-based multimedia system, a computing
resources allocation method having dynamic allocation of
requests by a plurality of objects comprising the following
steps:

selection of a computer application;

said application creating a set of objects and connecting
them;

said application requesting allocation of said computing
resources irom a resource manager;

said graph manager collects flow 1dentification from said
resource manager;

said graph manager collects control values from said
objects;
said graph manager interacts with said resource manager

to optimize balancing of said computing resources
based on said flow identification and control values;

said graph manager requests acceptance of said optimized
balancing from said objects, and

upon acceptance, said graph manager calls each object to

allocate resources.

15. In a computer-based multimedia system, a computing,
resources allocation method having dynamic allocation of
requests by a plurality of objects, as per claim 14, wherein
satd optimize balancing step 1s implemented with an artifi-
cial intelligence method.

16. In a computer-based multimedia system, a computing
resources allocation method having dynamic allocation of
requests by a plurality of objects, as per claim 14, wherein
saild optimize balancing step 1s implemented with a heuristic
algorithm.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENTNO. : 5,574911 Page 1 of 2
DATED : November 12, 1996
INVENTOR(S) © D’Angelo et al.

it is certified that error appears in the above-indentified patent and that said Letters Patent is hereby

corrected as shown below:

ON THE TITLE PAGE:

IN THE ABST 1
Line 7, after “parameter” insert --,--.

Line 11, “proved” should read --provided--.

Col. 2, line 36, after “and” delete “." .

Col. 2, line 57, “resonrces” should read --resources--.
Col. 3, line 54, after “allocation” insert --,--.

Col. 4, line 54, after “can” delete “to”.

Col. 5, line 66, after “may” insert --be--.

Col. 7, line 32, “to” should read --too--.

Col. 7, line 40, “not” should read --no--.

Col. 9, line 36, after “steps” insert --which--.

Col. 10, line 11, after “the” delete “a”.

Col. 10, line 20, after “call” insert “to”.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 5,574,911 Page 2 of 2
DATED - November 12, 1996
INVENTOR(S) :

D'Angelo et al.

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

Col. 12, line 22, “said” should be --a--.

Signed and Sealed this
Thirteenth Day of May, 1997

Artest: @ﬁd W

BRUCE LEHMAN

Attesting Officer Commissioner of Parents and Trademarks

= ralris v i

At e & el B S L A Sy -y} gl] WP o g T YT

L ke AR e N

o b B ol bl

I el & e SN T

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

