United States Patent [

Barber et al.

US005564050A
111 Patent Number:

5,564,050

451 Date of Patent: Oct. 8, 1996

[54] SYSTEM AND METHOD FOR ENABLING AN
INTERPRETED PROGRAMMING
LANGUAGE TO BE EXECUTED IN A
DATABASE MANAGEMENT SYSTEM

ENVIRONMENT

[75] Inventors: Ronald J. Barber, Morgan Hill; Attila
J. Fogarasi, Orinda, both of Calif.

[73] Assignee: International Business Machines
Corporation, Armonk, N.Y.

[21] Appl. No.: 471,510
[22] Filed: Jun. 6, 1995

Related U.S. Application Data

[63] Continuation of Ser. No. 904,416, Jun. 25, 1992, Pat. No.
5,442.,779.

(517 Tt CLE oo GO6F 9/00: GO6F 17/30
(52] U.S. Cl oo 395/600: 395/700: 395/500

[58] Field of Searchooooooooeeoeeeeann.. 395/700, 600,
395/650, 500

[56] References Cited

U.S. PATENT DOCUMENTS
8/1995 Barber et al.ccocervvicceaennne 395/600
OTHER PUBLICATIONS

5,442,779

“E. Allman, “Interpreters, Prototypes and Optimization,”
UNIX Review, vol. 6, No. 7, pp. 79-83, 1988.

A. Schulman, “Linking While the Program is Running:
Run-Time Dynamic Linking in OS/2,” Dr. Dobb’s Journal
of Software Tools, vol. 14, No. 11, pp. 46-56, 1989.

INITIALIZE
ENVIRONMENT
AND DETERMINE
NAME OF REXX
PROGRAM TO EXECUTE

CALL IRXJCC
TO EXECUTE
THE REXX
APPLICATION EXEC

PROCESS FUNCTION
REQUESTS

H. M. Yaghi et al., “Introducing REXX into the Engineering
Curriculum,” SOUTHEASTCON °90 Proc., IEEE, pp.
825-827, 1990.

S. Chi et al., “PROFIM: Prolog for Image Management,”
Proc. of the 2nd Intl. IEEE Conf. on Tools for Artificial
Intelligence, IEEE Computer Society, pp. 856-862, 1990,

Primary Examiner—Paul V. Kulik
Attorney, Agent, or Firm—Sterne, Kessler, Goldstein & Fox
P.L.L.C.; Marilyn Smith Dawkins

[57] ABSTRACT

A computer system and method are provided for interfacing
unlike computer software environments of an interpretive
programming language (such as Rexx) and a database
management system (such as IMS), into a single seamless
environment, whereby the facilities of both original envi-
ronments can be accessed from a single application program,
without requiring any awareness of the context of the
program. In order to interface the environments, a process
and system are provided for mapping data structures of
different data types and varying composition into a format
that 1s known and can be utilized by the application program
written in the interpretive language.

24 Claims, 8 Drawing Sheets

30

52

54

36

U.S. Patent

Oct. 8, 1996 Sheet 1 of 8 5,564,050

17 MEMORY

e

' REXX '

MS

REXX APPLICATION
- PROGRAM
26

£1G. 2

U.S. Patent Oct. 8,1996 Sheet 2 of 8 5,564,050

INITIALIZE 30

ENVIRONMENT

AND DETERMINE

NAME OF REXX
PROGRAM TO EXECUTE

32

CALL IRXJCC
10 EXECUTE
THE REXX
APPLICATION EXEC

PROCESS FUNCTION S
- REQUESTS

r/G 5

— 46
IMS PROGRAM SCHEDULED

ADAPTER DETERMINES L— 48
REXX APPLICATION
NAME

34

INITIALIZE ENVIRONMENT
AND
CALL REXX INTERPRETER

50

REGISTER REXX FUNCTIONS b~ 94
PROVIDED BY ADAPTER

COMPLETE ADAPTER
INITIALIZATION

176G

U.S. Patent Oct. 8, 1996 Sheet 3 of 8 5,564,050 |

DETERMINE - 61

FUNCTION
1YPE

MAPPING
CALLS

Qso
62
DL/I CALLS

DETERMINE IMS 120
INTERFACE LEVELS

BUILD PARAMETER
LIST FOR IMS
USING A PRE-DEFINED
TYPE TABLE AND
MODIFYING PARAMETER
LIST USING CONTEXT

SENSITIVE LOGIC
SSUES DL/ o4
CALL
TRANSLATE 126
RESULTS

RETAIN 128
STATE
INFORMATION

66
o4 SERVICE CALL

PROCESS
SERVICE CALL

MAPPING
FUNCTION

122 , RETURN
RESULTS

i 5

U.S. Patent Oct. 8, 1996 Sheet 4 of 8 5,564,050

64
PROCESS DATA
K MAPPING

GET AND MANAGE
STORAGE FOR

INTERMEDIATE
WORK AREA

90
& 1ES m NO

' ' 94
7 [PARSE WRP |~ 9% g $

DEFINITION NS
\ R AP - LOCATE L ERD)

ENTRY . MAP FOR ERROR)
e

SEGMENT

CREATE FIELD 102 _
DESCRIPTORS CONVERT COCATE
' FIELDS MAP FOR
' SEGMENT
- 108
STO&EX)I(NTO FETCH FROM
SPECIFIED 10
| CONVERT DATATYPES.
STORE INTO 119

DESTINATION
REXX
VARIABLE

r/G 6

U.S. Patent Oct. 8, 1996 Sheet 5 of 8 5,564,050

\ EMP | EMP EMP | EMP DEPT
NAME 10 | SALERY | MGR ID

SMITH | 2246 | 3050050 | 3492 -

FIG 7

FREE WORK AREAS |— 130

AND MAP
DEFINITIONS-

. 25 133
ENVIRONMENT ‘ REXX |
END|N'G |NTERPRETER

] 34

FREE STORAGE

15T
1G85

- U.S. Patent

Oct. 8, 1996 Sheet 6 of 8 5,564,050

FLOW OF INITIAL CALL
J0

7
DFSREXXO |

132

134
7)
YES

f 156
CALL INITIALIZATION

Ia
RAN NO

_ 138 '
BEFORE CLEAR USER EXIT WORK AREA

YES 140
CALL USER EXIT (DFSREXXU)

IF 140 LOAD needed IRX routines
' add REXXTDL! as Environment

NO '
Bg@;g CALL PRE_LOAD_AND_BUILD {{Add REXXIMS as Environment

ldentify DFSREXX1 and REXXIMS
143 for external function

YES
CALL INQUERY
CALL EXEC_INITIALIZATION

CALL RUN_EXEC
Free Maps
CALL EXEC_TERMINATION [Free Non—KEEP Storage Tokens
- - 145
CALL DROP_ENVIRONMENT (BMP & BATCH)
146

RETURN TO [IMS : chj 9

144

U.S. Patent Oct. 8, 1996 Sheet 7 of 8 5,564,050

@ FLOW OF ADDRESS ENVIRONMENT

From either:

REXX Address "REXXTDLI"

Address "REXXIMS”

-

150

YES

152
CALL HOST_IMS [

154

CALL READ_COMMAND
CALL PROCESS. PARM_ENTRY 196
. SS_ _F /

For each

CALL LOOKUP_DLI_VERB |
NO 158

s ol AT o A
w LPerform necessary tracing
NO ' 162

PROCESS REXXIMS COMMAND

164
YES
CALL PROCESS_PARMS_EXIT|
NO

CALL UPDATE_HOLD_DL 55
_ /
RETURN_TO EXEC

r1G 70

U.S. Patent Oct. 8, 1996 Sheet 8 of 8 5,564,050

FLOW OF REXXIMS() FUNCTION

REXX [FROM A REXXIMS() FUNCTION CALL
DFSREXX1 |
170

& @

CALL EXTERN AL_FUNCTION

1/6
YES
CAL INQUERY
NO 174

RETURN TO EXEC

FIG 77

5,564,050

1

SYSTEM AND METHOD FOR ENABLING AN
INTERPRETED PROGRAMMING-
LANGUAGE TO BE EXECUTED IN A
DATABASE MANAGEMENT SYSTEM
ENVIRONMENT

This application is a continuation division of application
Ser. No. 07/904,416, filed Jun. 25, 1992, now U.S. Pat. No.
5,442,7779.

FIELD OF THE INVENTION

This invention relates to interfacing unlike computer
software environments into a single seamiess environment.
More particularly, this invention relates to using an inter-
pretive programming language to retrieve data from a data-
base.

BACKGROUND OF THE INVENTION

A database management system (DBMS) refers to a
computer software program which manages a set of files,
called a database, and a set of application programs, called
transactions. The database files are stored in a data storage
device, such as a diréct access storage device (DASD),
connected to a computer. The files of a database are accessed
through names or other identifiable data specified by the user
1n a prior definition process. In some DBMSs, a database
user can update, delete, and retrieve data using an applica-
tion program that interacts with the DBMS. The application
programs are written independent of the specific physical
" data orgamization and physical devices. Application pro-
grams can be written in a supported common high level
programming language. The speed and efficiency by which
data can be retrieved from a database depends on how
effectively an application programmer is able to use an
application programming language.

The IMS database software product from IBM which has
been commercially available for many years, is a database
manager and a transaction manager. IMS consists of a set of
program modules that intercept all requests that an applica-
tion program makes when accessing data from a database or
other terminals. There are two parts to IMS, IMS DB
(database) and IMS TM (transaction manager). IMS uses an
interface language called DL/I (Data Language/I) for
describing the DBMS-requests. The IMS database runs on
the MVS (Multiple Virtual Storage) operating system.

An application program that runs on the same operating
system as IMS, uses the DL/I language to access the
database. In IMS, DL/l is used as a data manipulation
language that provides a common high-level interface
between an application program and IMS. DL/I uses a set of
control blocks to define a database’s structure. Control
blocks are storage areas used by a computer program to hold
control information. The two main control blocks used and
established by DL/I are the database description (DBD) and
the program specification block (PSB). The database is set
up and maintained by these and other blocks.

The DBD describes the compiete structure of a database,
including how the data is physically stored on the storage
device and how that data can be accessed. The DBD also
specifies the database name, segment names, segment
attributes, relationships, field names and access methods.
The DBD is specified through the execution of a set of
macro invocations which create a predefined description that
is stored for use during program execution. The database has

10

15

20

25

30

35

40

43

50

55

60

65

2

a single physical structure as defined by its DBD. Therefore,
an enterprise must create one DBD for each IMS database.

The application programs can have more than one logical
view of any one database. The views are defined by the PSB
(program specification block) which specify which data-
bases a program can access, the data elements within each
database that can be accessed, and the processes that the
program can do to those elements. Each logical database is
defined and the mapping to the physical database is stored in
a program communication block (PCB). APSB is a set of all
PCBs for one program. The PSB identifies which pieces of
data an application program can access and in what ways
that data can be accessed. The predefined PSB is generated
using macro invocations and is stored for reference during
program execution. The DBD and PSB are combined by an
ACBGEN (access control block) provided by IMS and
stored together as an ACB for efficiency reasons.

The DL/ control blocks are typically created by an
enterprise’s database administrator (DBA). The DBA gen-
erates the control blocks that are stored in the computer
memory or on the storage device. In that way, the DBA
defines the database and also controls who has access to each
part of the database and the type of access that is allowed,
such as whether a user can query the database, or modify
data stored in the database.

When processing application programs, the IMS applica-
tion program communicates with the DL/l component of
IMS through call statements to access the database. Upon

recetving a call from the program, the DL/l component

reierences the DBD and PSB control blocks to verify the
validity of the request and to obtain descriptive information
on the data requested by the program. The DI/l component
provides an interface with the program. In IMS, the inter-
pretation of the call from an application program can be
qualified by means of gqualifier codes or parameters, so that
the call parameters are not bound until execution which
enables a different-type of record to be retrieved by a call
statement.

Currently, DBAs and application programmers can access
IMS using Cobol, C, Pascal and PL/I (Programming Lan-
guage/l) which are compiled languages where the entire
program has to be fully translated to machine readable form
before 1t can be executed. Whenever a program is modified,
it has to be recompiled before the programmer can deter-
min¢é whether the program will run as it was intended. These
languages also have other limitations which make program-
ming for a DBMS time consuming and difficult.

An interpretive programming language called Rexx
(Restructured Extended Executor) is available from IBM
which runs in TSO/E (Time Sharing Option Extension). The
TSO/E provides enhancements to the MVS operating sys-
tem.

Rexx 1s an easy-to-learn procedural language that allows
for structured programming. Rexx is designed to be inde-
pendent of the operating system on which it runs, but can
also make calls to that system. Rexx can run interpretively,
where each source language statement of a Rexx computer
program 1s translated to machine readable form and
executed before the next statement 1s translated and
executed. The interpretive Rexx language 1s highly interac-
tive and permits rapid program development. It can also be
compiled for faster execution after it has been determined
that the program runs as intended without errors.

Rexx 1s basically a character manipulation language. The
Rexx language can be used for developing applications
quickly by using instructions which translate easily to func-

3,564,050

3

tions or routines expressed in other high-level languages.
The Rexx language is also casily interfaced to systems
utilities-for display and for data input and output. Rexx can
also be used as a command programming language and as a
macro language.

There 18 no software that provides an interface from Rexx
on MVS to a DBMS like IMS. There is also no software for
emulating an environment within IMS in order to permit
execution of a function not provided by IMS.

The use of an interpretive language such as Rexx in a
DBMS environment such as IMS would provide a signifi-
cant increase 1n application programmer productivity since
the speed of writing and debugging Rexx programs is
greater than for any other programming languages that
currently exist in the IMS environment,

This 18 particularly significant since the late binding of
DL/I calls and the deferred binding of application logic
(until interpretation of the Rexx statements at execution
time) can create a synergism to permit context-sensitive
apphication function and allows rapid exploration of data-
base content and structure.

SUMMARY OF THE INVENTION

A computerized method 1s provided for retrieving data
from a database stored in a data storage device of a data
processing system also having a central processing unit
(CPU), memory, an operating system and a database man-
agement system (DBMS), using an application program
written In an interpretive programming language. A data
processing environment is initialized for processing the
application program by means of the CPU implementing a
set of commands. The application program is executed using
an interpreter for the application program that is stored in the
data processing system memory. Function calls contained
within the application program are processed by means of
the CPU 1mplementing a set of commands. Function calls
include mapping call instructions for mapping constructs of
the DBMS to constructs of the programming language,
operating system call instructions, DBMS call instructions
for extracting data from the database, and requests for
functions provided by the invention as extensions to the
normal DBMS or application program language environ-
ments.

In one form of the invention, the process of initializing the
programming language environment comprises designating
areas of the data processing system’s memory for work area
storage during the processing of the application program and
imtializing data processing system variables for use during

10

15

20

23

30

35

40

435

50

the processing of the application program. The processing of

the mapping call instructions comprises constructing a map-
ping data structure stored in the data processing system
memory as a key to data types of a plurality of data fields of
a DBMS record, specifying a name, a storage location, a
length, and a data type for each of the DBMS record fields.
The processing of the DBMS call instructions comprises
mapping parameters of the programming language to DBMS
parameters using a predefined parameter type table, modi-
fying said DBMS parameters by using context-sensitive
logic; running the function in the DBMS with the DBMS
parameters; and mapping output from the function to the
application program format using the parameter type table
and context-sensitive logic.

In a preferred form of the invention the DBMS system is
IMS, the operating system is MVS, and the interpretive
programming language is Rexx.

35

60

65

4

In another form of the invention a computerized system is
provided for retrieving data from a database using an
application program written in an interpretive programming
language. Means are provided for initializing a data pro-
cessing environment for processing the application program.
Means are provided for executing the application program
using an application program interpreter. Means are pro-
vided for processing mapping call instructions for mapping
constructs of the DBMS to constructs of the programming
language. Means are provided for processing operating
system call instructions. Means are also provided for pro-
cessing DBMS call instructions for extracting data from the
database.

An objective of the invention is t0 maximize transparency
for a transaction monitor shell for Rexx acting as a pass-
through for either IMS or MVS. In doing so, there is a
reduction in the release-level dependency on components in
Rexx or IMS. The application programming interface pro-
vided at the Rexx application program protocol boundary is
in the normal Rexx format and the remapping to the API
(application program interface) needed at the IMS and MVS
protocol boundary 1s provided which maximizes the Rexx
application productivity by providing an intuitive interface.
The 1interface system is open-ended and allows the addition
of more services without affecting the form or function of
the existing services.

In general, a benefit is provided by enabling application
programs for a DBMS such as IMS to be written more easily
using an interpretive language such as Rexx where program
development requires relatively minimal amounts of time
and resources.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of the hardware used in the
interface system;

FIG. 2 is an overview of the interface system;

FIG. 3 is a flowchart of the process for processing a Rexx
program in conjunction with an IMS database or IMS
transaction request;

FIG. 4 1s a flowchart of the process for initializing the
interface system;

FIG. 5 is a flowchart of the process for processing
function calls;

FIG. 6 is a flowchart of the process for mapping data;
FIG. 7 1s a schematic diagram of an IMS record:;

FIG. 8 is a flowchart of the process for terminating the
interface;

FIG. 9 is a flowchart for initial calls;
FIG. 10 1s a flowchart for an address environment: and

FIG. 11 is a flowchart for function calls.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1, the data processing system hardware
used 1n the interface system is shown. A set of files organized
as one or more databases 15 is stored in a data storage device
such as a direct access storage device (DASD) 16. The
storage device 16, is connected to a central processing unit
(CPU) 17. The CPU is connected to internal memory area 18
and a termunal 19 for interfacing with an application pro-
grammer or other database user.

5,564,050

S

Referring to FIG. 2, an overview of the interface system
between an IMS environment 20 and an interpretive Rexx
environment 22 shows the flow of control between systems.
The IMS database management and transaction manage-
ment system 1s a software program that 1s executed by the
CPU in a data processing system such as the one shown in
FIG. 1. The IMS program manages transactions on one or
more databases 15. When an eligible application program 1s
selected for execution, the initial call is passed to the
Adapter interface 24. The Adapter 24 1s set of instructions
stored in memory 18 that are executed by the CPU 17. The
Adapter 24 initializes the environment for the Rexx inter-
preter 22 to process the Rexx application program 26. The
Rexx application 26 can contain IMS calls and Rexx func-
tions. The Rexx functions are processed by the Rexx inter-
preter 22, The IMS calls are processed through the Adapter

24. The Rexx application can also contain function calls for
the operating system MVS 28, which are also processed

though the Adapter 24.

In the preferred embodiment of the invention, application
programs written in the Rexx programming language are
enabled to be executed in an IMS environment. Rexx
constructs are mapped to IMS constructs and the Rexx
constructs are also mapped to the MVS constructs.

Control blocks are constructed and information is main-
tained in these blocks essential to the correct processing of
the Rexx application program in an IMS environment. The
creation and maintenance of these blocks is transparent to
the Rexx application program. Addittonal storage 1s man-
aged to provide the interface required by MVS, IMS and the
Rexx interpreter. All storage used by the interface for control

blocks and other data areas 1s in extended private storage in
the same address space as the Rexx application program.

The Adapter 24 handles initialization, execution services,
error handling and tracing. The initialization process con-
sists of getting storage, calling Rexx to register the envi-
ronment, and preparing to execute the application progr

“exec’— all application programs in Rexx are called
execs). The main service provided by the execution services
are the mapping functions. Rexx format variables are

10

15

20

25

30

35

40

mapped to IMS format variables which includes parameter

list construction for IMS, and state retention. Database
segments are mapped to Rexx variables, using the segment
definitions.

Referring to FIG. 3, the steps in processing a Rexx
program in an IMS environment consist of initializing a
Rexx application program processing environment 30 prior
to starting the Rexx application program. This includes
determining the name of the Rexx application program to
execute 32. Next, the Rexx application program is executed
using the Rexx interpreter 34. During the execution of the

45

50

Rexx application program, functions called by the program

are executed 36. These function calls include calls to IMS,
calls which provide for the mapping of data constructs
between IMS and Rexx, and service calls.

Referring to FIG. 4, the initialization process is prompted
with the scheduling for execution of the IMS program 46.
When a Rexx application is to be executed, the control 1s
given by IMS to the adapter to identify the name of the Rexx
application program 48. The name of the Rexx application
program, i.e., the name of the Rexx exec to be executed, 18
derived from the IMS system, and may be modified by an
environment-specific exit routine. The Adapter issues a call
to IMS to determine the name of the program that the IMS
transaction wants to schedule, and uses this name as the first

choice of Rexx Exec name. This name can be changed by a

55

60

65

6

user exit that 1s called by the Adapter to make the final
choice of Rexx Exec name.

The environment for processing the Rexx program is
initialized 50. As i1s well known by those skilled in the art,
the 1nitialization process consists of getting storage (desig-
nating areas of memory) for work areas used by the Adapter,
and setting initial values for system variables internal to the
Adapter. The TSO/E Rexx interpreter is called to build the
Rexx environment by using the IRXINIT function. A sub-
command environment 18 added, using the IRXSUBCM
function of TSO/E Rexx. This enables the Rexx application
to access the Adapter as a standard extension of the Rexx
programming language. Any Rexx functions specially pro-
vided by the adapter are also registered 52.

After the data areas and parameter list required for the
Rexx interpreter 1s completed, the Rexx interpreter is called
by passing control to IRXJCL 34. The Rexx interpreter will
in turn give control to the Rexx application, and execute it.
The Adapter remains available to process function requests

from the application program.

The application program as part of its execution may issue
function call requests that are processed by the Adapter. A
preferred embodiment for the processing of function calls is -
shown in 60 in FIG. 3. First, the type of function call 1s
determined 61. The function requests to the Adapter consist
of three types: DL/I calls (also referred to as DBMS or
interface calls) 62, Mapping calls 64, and Service requests
66.

DL/T calis 62 cannot be processed from the Rexx appli-
cation since it is 1mpossible in the Rexx programming
language to construct the DL/I call parameter list with the
right data types, as required by IMS. Rexx is limited to
character constructs while a DBMS such as IMS requires
various data field types including numerical and address
values for a variety of reasons. For example, allowing query
operations needing to be performed on these fields such as
determining salary ranges or item cost ranges for records to
be output. This problem 1s solved by providing a language
extension, as an address environment, to specify the DL/I
calls in the Rexx program. The DL/I call request 1s translated
by the Adapter into the required IMS format.

In order to pmvide compatibility between a Rexx appli-
cation program and the IMS database for the DL/I calls, the

data structures used in IMS must be reconciled. This 1is
accomplished through the Mapping calls 64.

The Mapping calls 64 in FIG. 6 are for a data mapping
service. This data mapping has the purpose ol allowing
access to an IMS database record’s data contents in a way
that is familiar to Rexx application programmers.

Referring to FIG. 7, an IMS database record 80 consists
of a concatenated series of fields 82, of differing data types.
For example the EMPloyee NAME field 85 contains char-
acters of a finite predetermined length, while the EMPloyee
ID field 86 and the EMPloyee SALARY field 87 contains a
fixed length of numeral values. The numeric fields cannot be
considered as character fields since operations may need to
be performed on these fields during a query operation, such
as identifying all employees whose salaries are in a certain
salary range.

The mapping function allows the Rexx programmer to
define the names, location, length, and data type of fields
within the IMS record, and to map the data from Rexx
variables to and from the IMS database. The Mapping calls
consist of MAPDEF 90, MAPGET 92, and MAPPUT 94.

The MAPDEF call 90 defines the map, establishing its
initial conditions. An internal data structure 1s constructed

3,564,050

7

representing the information provided by the parameters
supplied with the MAPDEEF call. The map definition that is
provided 1s parsed 96 and the map entry is created including
an 1identifying name and field descriptors 97. The data
structure for the map definition is in the form of a linked list
of variable length data clements, with each element repre-
senting a map name (the implementation of which is well
known to those skilled in this field). The elements are
variable length as they consist of a fixed length portion
followed by an n-tuple representation of the map fields,
where n 1s determined by the number of fields contained in
a given map.

The MAPGET call 92 uses a map name, previously
defined in a MAPDEF call and stored in the internal repre-
sentation described above, to transform data from a single
stream of characters (such as an IMS database record,
encapsulated 1n a single Rexx variable), into the multiple
fields represented by multiple Rexx variables (one for each
field). The transformation is governed by the map definition
as to data position, length, and data type conversion. During
processing of the Mapping call, the applicable map segment
18 located 100, the IMS fields are converted to the Rexx data
type 102 and stored into Rexx variables specified with the

call 104.

The MAPPUT call 94 is analogous to the MAPGET call
92, but moves data in the opposite direction. A set of Rexx
variables, specified on the call, are used to construct a single
data segment using the format specified in the map being
used. In processing the MAPPUT call, the map segment is
located 106, the Rexx variables to be converted are fetched
108, the data types are converted 110, and stored in the
destination Rexx variable 112.

Examples of unusual data transformations that are nec-
essary in order to make the DL/I calls work are the special
handling of the ZZ field used by IMS for communication of
rarely used information, and the generation of the IMS
prefixed length fields where the Rexx standard is separate
length fields, an extension of the length field, which occurs
in several different formats based on context.

DL/T calls are processed 62 as follows: The values of
Rexx varniables specified on the DL/I call are extracted 120
and used to build the correct parameter list passed to IMS.
This consists of copying the supplied parameters and chang-
ing their values to the format required by IMS for that
specific DL/ call 122. The programming language (Rexx)
parameters are mapped to the DBMS (IMS) parameters
using a predefined parameter type table that is contained in
the Adapter. The mapping of parameters and the mapping
service calls are distinct. The DBMS parameters are also
modified based on the context of the DBMS call to provide
context-sensitive logic.

Next, a call 1s 1ssued to DL/I 124. After completion of the
DL/I call, the output parameter(s) from the call are copied
back into their corresponding Rexx variables 126, including
any appropriate data transformations which are well known
to those skilled in the art. State information about the call is
also retained 128. The Adapter maintains a state machine for
DL/ calls, and keeps information on the last call available.

There is also a translation of the DL/I status code in order
to indicate the “success” result for all appropriate values.
This makes it easier for the Rexx application to check for
successful DL/I call completion by being able to check for
a single value, rather than for several different values, which
are context-sensitive (and liable to change with IMS
releases).

DL/I calls from the Rexx application are supported using
either an application interface block (AIB) or program

10

15

20

25

30

35

40

45

50

35

60

65

8

communication block (PCB). The parameter list as required
by IMS 1s constructed for the DL/I calls. This is controlled
by a table defined within the Adapter, that determines which
parameters are used for input, output, or both, and their data
types, and 1s context sensitive. The context-sensitivity is

implemented in the Adapter code, and is necessary since
some IMS calls require different data types for the same
operand based upon the context of the call. In that way the
need for the application program to somehow allow for this
anomalous behavior of IMS is avoided.

The application program can also make service requests
66 for any additional functions that are provided by the
Adapter. These functions can provide the Rexx application
program with services that are useful for its execution in an
IMS environment, and do so in a way that is compatible with
the IMS management of the execution environment. For
example, storage is obtained and managed in the same way
as IMS manages its applications. A particular value for
applications is the ability to get persistent storage that is
sharable between transaction instances in the same depen-
dent region.

Referring to FIG. 8, the termination of the processing
comprises freeing work areas and map definitions 130
returning to IMS 131. When the Rexx environment is ending
132, the interpreter is deleted 133 and storage is freed 134.

A further explanation of a preferred implementation is
shown with reference to FIGS. 9 through 11. The adapter
system for implementing Rexx in an IMS system is called
REXXTDLI. There are two modules (DFSREXX0 130 and
DFSREXX1 132) that support the interfacing between IMS
and the Rexx application program (the exec).

Referring to FIG. 9, the flow of the initial call to establish
an adapter for processing Rexx programs in an IMS envi-
ronment begins with a call to the DFSREXX0 module 130,
which 1s a “stub” module. This module provides an interface
that complies with the interface required by IMS. That is, an
object module that uses general purpose register 1 (R1) to
address an IMS specific parameter list. IMS only supports
object modules as applications. This module serves as an
initial link to the Rexx exec. This module then calls DFS-
REXX1 132 indicating it is an “Initial” (or schedule) call
134. The DFSREXX0 module is small so that the user can
copy 1t to take on the desired name of the application they
are writing in Rexx. The DFSREXX1 module 132 is more
complex, and serves a number of purposes.

Still referring to FIG. 9, for an initial call to DFSREXX1,
an initialization procedure is followed 136. If the DFSR-
EXX1 module had been executed before in this address
space, the work areas that were used are cleared 138. A user
exit DFSREXXU is called 140. If the Adapter had never
been called before, a procedure is followed to load all
needed Rexx interpreter components (IRX routines), add
REXXTDLI as an environment, add REXXIMS as an envi-
ronmerit, and 1dentify DFSREXX1 as REXXIMS for exter-
nal functions 142. An inquiry call is made 143, and the
initialization is made for running the REXX exec 144. After
all of the initialization procedures are followed, the appli-
cation program is run 146.

The DFSREXX1 module sets up the necessary Rexx
environment when IMS calls it via DFSREXX0. The DFS-
REXX1 module calls the Rexx interpreter provided by
TSO/E, passing the name of the user’s EXEC to execute and
any parameters 140. During execution of the Rexx program,
DFSREXX1 provides parameter mapping between the Rexx
standard parameter specification of passing variable names
as parameters on the “Address REXXTDLI” commands and

3,564,050

9

the IMS DL/I call parameter specification of passing point-
ers to the parameter data 148. The database segment map-
ping to Rexx variables is also provided using the segment
definitions as defined by the MAPDEEF, MAPGET, and
MAPPUT services. There is also support for any extended
commands and the external function (REXXIMS). Error

handling and Tracing of DL/I calls is also handled. After the
Rexx application program is finished executing (the EXEC

ends) the memory work areas are cleared 144 and control is
returned to IMS 146.

Referring to FIG. 10, when a non-initial call is made to
DESREXX1 from an address environment, non-external
functions, which may require mapping function calls, are
processed 1350. The address environment processes DL/I
calls, Map calls such as MAPDEF MAPGET MAPPUT
(discussed previously), and some service calls. A call is
made to the host IMS 152 and the function call and its
operands are read 154. The parameters that accompany the
command are processed for transformation to a form that
can be used by IMS 156, using the mapping tables that had
already been set up for these parameters. |

The command 1s then processed using the mapped param-
eters 158. After the command is successfully processed, the
parameters are remapped back to the form understandable
by the Rexx interpreter 164 and control is returned to the
Rexx Adapter 166. It is determined whether it is a DL/I

command which is processed by IMS 160, otherwise it is a
REXXIMS command which is processed 162.

The following commands were added to by the Adapter
system which are called service requests: interfaces to MVS
Operator Communications macro (WTO, WTP, WTL, and
- WTOR) and interfaces to IMS CPI-RR interface routines
(SRRBACK and SRRCMIT). Another service is DLIINFO
that queries the status and state information of the last DL/I
call 1ssued. This can commonly be used in a sophisticated
general purpose application error routine to report on or
possibly correct from an error condition. Another service is
STORAGE which obtains and releases storage that can be
used by the Rexx application, for example, directly as
parameters on DL/I calls. The storage is named by a “token”
name and 1s freed automatically at exec termination, unless

an option is specified to keep for later executions.

Referring to FIG. 11, external functional processing
(REXXIMS Function) through DFSREXX1 is shown 170
where the external function is called 172 and function results
set 174. The external function named REXXIMS is used to
query both global and DL/I specific information within the
Rexx application’s exec. Most information is obtained from
internal state variables; however, some is queried from IMS
at the time of the function’s execution. In the preferred
embodiment, functions to allow query of global Information
within Users Rexx exec 176 are: REXXIMS(‘TRAN-
CODE’), REXXIMS(‘USERID’), REXXIMS(‘IMSRX-

TRC’), and REXXIMS(‘'token’). Functions that allow

access to prior DL/l call information are: REXXIMS-
(‘FEEDBACK’), REXXIMS(‘REASON"), REXXIMS(‘SE-
GLEVEL'), REXXIMS(‘SEGNAME’), REXXIMS(‘STA-
TUS’), and REXXIMS(‘ZZ’).

REXXIMS(*TRANCODE’) retrieves IMS Transaction

code currently executing. REXXIMS(‘USERID’) retrieves
the IMS Userid who originated the currently executing
transaction. REXXIMS (‘IMSRXTRC’) retrieves current
Adapter tracing level as set by the “IMSRXTRC” command.
REXXIMS(“!token’) retrieves the address and length of a
storage token obtained by the “STORAGE” command.
REXXIMS(‘FEEDBACK’) retrieves information on the

10

13

20

235

30

35

40

435

50

55

60

65

10

IMS DL/I Feedback Area. REXXIMS(‘'REASON’) retrieves
the IMS Reason Code from the AIB. REXXIMS(‘SEG-
LEVEL) retrieves the IMS Database segment level from the
PCB. REXXIMS(‘SEGNAME’) retrieves the IMS Database
segment name from the PCB. REXXIMS(‘STATUS’)
retrieves the IMS Status Code from the PCB. REXXIM-
S(ZZ’) retrieves the IMS ZZ field from the I/O area.

- An objective of the invention is to maximize transparency
for the transaction monitor shell services in which it is acting
as a pass-through for either IMS or MVS. In doing so, there
is a reduction in the release-level dependency on compo-
nents in Rexx or IMS. The application programming inter-
face provided at the Rexx application program protocol
boundary 1s in the normal Rexx format (and therefore
familiar to application programmers), and the remapping to
the API needed at the IMS and MVS protocol boundary is
provided by the Adapter which maximizes the Rexx appli-
cation programmer productivity by providing an intuitive
interface.

The interface system is open-ended and allows the addi-
tion of more services without affecting the form or function
of the existing services.

In general, a benefit is provided by enabling application
programs for a DBMS such as IMS to be written more easily
using an interpretive language such as Rexx where program
development requires lesser amounts of time and resources
than similar program development in other programming
languages supported by the DBMS.

While the preferred embodiment of the present invention
has been illustrated in detail, it should be apparent that
modifications and adaptations to that embodiment may
occur to one skilled in the art without departing from the
scope of the present invention as set forth in the following
claims. |

- What is claimed is:

1. A computer program product for use with a database
stored in a data storage device of a data processing system
having a central processing unit (CPU), memory, an oper-
ating system and a database management system (DBMS),
said computer program product comprising:

a computer usable medium having computer readable
program code means embodied in said medium for
causing an application program to be executed in the
DBMS, wherein the application program written in an
interpretive programming language, said computer
readable program code means comprising:

a computer readable first program code means for causing
the data processing system to initialize by means of the
CPU implementing a set of commands, a data process-
ing environment for processing the application pro-
gram,

a computer readable second program code means for
causing the data processing system to execute the
application program using an application program
interpreter stored in the data processing system
memory; and

a computer readable third program code means for caus-
1ng the data processing system to process mapping call
instructions for mapping constructs of the DBMS to
constructs of the programming language, operating
system call instructions, and DBMS call instructions
for extracting data from the database, contained in the
application program.

2. 'The computer program product of claim 1, wherein said

computer readable first program code means for initializing
the data processing environment further comprises:

3,564,050

11

a computer readable fourth program code means for
causing the data processing system to designate areas
of the data processing system memory for work area
storage during the processing of the application pro-
gram; and

a computer readable fifth program code means for causing
the data processing system to initialize data processing
system variables for use during the processing of the
application program.

3. The computer program product of claim 1, wherein said
computer readable third program code means for processing
mapping call instructions comprises a further computer
readable program code means for causing the data process-

10

ing system to construct a mapping data structure stored in -

the data processing system memory as a key to data types of
a plurality of data fields of a DBMS record, specifying a
name, a storage location, a length, and a data type for each
of said DBMS record fields.

4. The computer program product of claim 1, wherein said
computer readable third program code means for processing
mapping call instructions comprises a further computer
readable program code means for causing the data process-
ing system to map parameters of the programming language
to DBMS parameters using a predefined parameter type
table, modifying said DBMS parameters using context-
sensitive logic, running the function in the DBMS with said
DBMS parameters, and mapping output from the function to
the application program format using said parameter type
table and context-sensitive logic.

5. The computer program product of claim 1, wherein the
DBMS system 1s IMS and the operating system 1s MVS.

6. The computer program product according to claim 1,
wherein said application program interpreter 1s Rexx.

7. A program storage device readable by a machine,
tangibly embodying a program of instructions executable by
the machine to pertorm method steps for causing an appli-

cation program to be executed in a database management

“system (DBMS) associated with a database stored in a data
storage device of a data processing system having a central
processing unit (CPU), memory, an operating system and the
DBMS, wherein the application program is written in an
interpretive programming language, said method compris-
ing the steps of:

initializing by means of the CPU implementing a set of

commands, a data processing environment for process-
ing the application program;

executing the application program using an application

program interpreter stored in the data processing sys-
tem memory; and

processing mapping call instructions for mapping con-
structs of the DBMS to constructs of the programming
language, operating system call instructions, and
DBMS call instructions for extracting data from the
database, contained in the application program.
8. The method according to claim 7, further comprising
the steps of:

designating areas of the data processing system memory
for work area storage during the processing of the
application program; and

inttializing data processing system variables for use dur-

ing the processing of the application program.

9. The method according to claim 7, wherein said step of
processing mapping call instructions comprises a further
step of constructing a mapping data structure stored in the
data processing system memory as a key to data types of a
plurality of data ficlds of a DBMS record, specifying a name,

15

20

29

30

35

40

43

50

33

60

65

12

a storage location, a length, and a data type for each of said
DBMS record fields.

10. The method according to claim 7, wherein said step of
processing mapping call instructions comprises a further
step of mapping parameters of the programming language to
DBMS parameters using a predefined parameter type table,
modifying said DBMS parameters using context-sensitive
logic, running the function in the DBMS with said DBMS
parameters, and mapping output from the function to the
application program format using said parameter type table
and context-sensitive logic.

11. The program storage device according to claim 7,
wherein said application program interpreter 18 Rexx.

12. A computer program product for use with a database
and data processing system memory, said computer program
product comprising:

a computer usable medium having computer readable
program code means embodied in said medium for
interfacing between a data processing environment for
executing a Rexx program with a data processing
environment for an IMS database management system
(DBMS), said computer readable program code means
comprising:

a computer readable first program code means for causing
a computer to designate areas of the data processing
system memory tor work area storage during the pro-
cessing of the Rexx program, and initializing data
processing system variables used during the processing
of the Rexx program;

a computer readable second program code means for
causing the computer to execute the Rexx program
using a Rexx program interpreter;

a computer readable third program code means for caus-
ing the computer to process mapping call instructions
for mapping IMS constructs to Rexx constructs, by
constructing a mapping data structure stored in the data
processing system memory as a key to data types of a
plurality of data fields of an IMS record; and

a computer readable fourth program code means for
causing the computer to process IMS call instructions,
for extracting data from the database, by mapping Rexx
parameters to IMS parameters in a DBMS parameter
format using a predefined parameter type table, modi-
fying said IMS parameters using context-sensitive
logic, running a function in IMS with said IMS param-
eters, and mapping output format said function to the
Rexx format using said parameter type table and said
context-sensitive logic.

13. The computer program product of claim 12, compris-
ing a further computer readable program code means for
causing the computer to specify at least one of a name, a
storage location, a length, or a data type for each of said IMS
record fields.

14. The computer program product of claim 12, compris-
ing a computer further readable program code means for
causing the computer to process operating system calls.

15. A program storage device readable by a machine
having a database and data processing system memory,
tangibly embodying a program of instructions executable by
the machine to perform method steps for interfacing
between a data processing environment for executing a Rexx
program with a data processing environment for an IMS
database management system (DBMS), said method com-
prising the steps of:

designating areas of the data processing system memory
for work area storage during the processing of the Rexx

5,564,050

13 14

program; and initializing data processing system vari- of the data processing system memory for work area storage
ables used during the processing of the Rexx program:; during the processing of the application program; and ini-

executing the Rexx program using a Rexx program inter- tializing data processing system variables for use during the
preter; | processing of the application program.

prﬂcessing mapplng call 1instructions for mapplng IMS 3 20. The method of claim 18 wherein the pl’OCESSng of the
constructs to Rexx constructs, by constructing a map- mapping call instructions comprises constructing a mapping
ping data structure stored in the data processing system data structure stored in the data processing system memory
memory as a key to data types of a plurality of data as a key to data types of a plurality of data fields of a DBMS
fields of an IMS record; and - record, specifying a name, a storage location, a length, and

: . : . 10 .

processing IMS call instructions, for extracting data from a data type for each of said DBMS record fields.
the database, by mapping Rexx parameters to IMS 21. The method of claim 18 wherein the processing of the
parameters in a DBMS parameter format using a pre- DBMS call instructions further comprises mapping param-

defined parameter type table, modifying said IMS eters of the programming language to DBMS parameters

parameters using context-sensitive logic, running a {5 using a predefined parameter type table, modifying said

function in IMS with said IMS parameters, and map- DBMS parameters using context-sensitive logic, running the
ping output from said function to the Rexx format using function in the DBMS with said DBMS parameters, and
said parameter type table and said context-sensitive mapping output from the function to the application program
logic. _ - format using said parameter type table and context-sensitive

16. The method of claim 18, further comprising the step 20 logic.
of specifying at least one of a name, a storage location, a 22. The system of claim 18 wherein the DBMS system is

length, or a data type for each of said IMS record fields.

17. The method of claim 15, further comprising the step
of processing operating system calls.

18. A computerized method for retrieving data from a
database stored in a data storage device of a data processing
system having a central processing unit (CPU), memory, an
operating system and a database management system
(DBMS), using an application program written in an inter-
pretive programming language, comprising the steps of:

IMS and the operating system is MVS.
23. A computerized system for retrieving data from a
database stored in a data storage device of a data processing
25 system having a central processing unit (CPU), memory, an
operating system and a database management system
(DBMS), using an application program written in an inter-
pretive programming language, comprising:

means for initializing a data processing environment for

30

(a) initializing by means of the CPU implementing a set processing the application program;
of commands, a data processing environment for pro- means for executing the application program using an
cessing the application program; application program interpreter;

(b) executing the application program using an applica- means for processing mapping call instructions for map-
tion program interpreter stored in the data processing 35 ping constructs of the DBMS to constructs of the
system memory; and programming language;

(¢c) processing mapping call instructions for mapping means for processing operating system call instructions;
constructs of the DBMS to constructs of the program- and means for processing DBMS call instructions for
ming language, operating system call instructions, and extracting data from the database.

DBMS call instructions for extracting data from the 40 24. The computerized system according to claim 31,
database, contained in the application program. wherein said application program interpreter is Rexx.

19. The method of claim 18 wherein initializing the data
processing environment further comiprises designating areas ¥k x x X

	Front Page
	Drawings
	Specification
	Claims

