United States Patent (19
Schmidt _

O AR B0 O Y A R

US005564049A
111 Patent Number:

5,564,049

451 Date of Patent: Oct. 8, 1996

[54] INDUSTRIAL CONTROLLER
PROGRAMMING METHOD USING

EXTERNAL CONNECTION DATABASE
[75] Inventor: Michael W. Schmidt, Franklin, Wis.

[73] Assignee: Allen-Bradley Company, Inc.,
Milwaukee, Wis.

1211 Appl. No.: 283,083

122] Filed: Jul. 29, 1994
[S1] Int. CLO oo eee e eeess s eenans GO6F 17/30
[52] US. Cl ..o 395/600; 395/800; 364/147
[58] Field of Searchcccocevviveveeeenann 395/600, 650,
395/800; 364/147
[56] References Cited
U.S. PATENT DOCUMENTS
4,722,043 1/1988 Nagamine et al.ccceeevereeenns 364/147
4,907,190 3/1990 Sasaki et al. ...covvorrmeverrcerrerens 395/800
4,908,746 3/1990 Vaughnccccnmnnnonn., 364/147
5,058,043 10/1991 Skeirik ..cvveeinieeiincrrennoivecersennen 364/550
5,283,896 2/1994 Temmyo et al.covveeeeeeee. 395/650
5,325,522 T7/1994 Vaughnccemmmciiiiviiiceciinnnn. 395/600
OTHER PUBLICATIONS

Korth and Silberschatz, Database System Concepts,
McGraw-Hill Book Company (New York, 1986), pp.
391-402. |
IBM Personal Computer Professional FORTRAN Reference,
(Ryan McFarland, 1987) pp. 2-9, 2-20,2-28 -2-33, 2-141
—2-142.

33

33

SUBPROG. 4

Donald J. Modell, “PLC-Based DCSs Make The Most of
Existing Control Equipment”, I&CS (Instrumentation and
Control Systems), vol. 63, No. 10, Oct., 1990, pp. 41-44,

Joseph R. Crum, “Clusterwide Intertask Communication
Using the Lock Manager”, VAX Professional, vol. 14, No. 5,
Sep.—Oct., 1992, pp. 21-25.

Primary Examiner—Thomas G. Black

Assisiant Examiner—Paul R. Lintz

Attorney, Agent, or Firm—Keith M. Baxter; John M. Milier;
John J. Homn

[S57] ABSTRACT

Subprograms together making up an industrial controller
program are encapsulated in shells which make explicit the
connection relationships and data flow directions of the
subprogram normally implicit in the sharing of variables.
The shells also i1dentify the consumer/producer relationship
of the variables as may be used to identify data contention
problems. Actual connections between subprograms along
which variables may be shared are externalized in a con-
nection database that permits ready cross-referencing of
such data sharing. Connection information stored in the shell
may be used when a shell is cut and pasted to provide an
initial suggestion of how to connect the new pasted shell.
The automatic reconnection of the pasted shell refers to the
previous connections and makes use of a hierarchical
arrangement previously determined by the programmer
reflecting the logic of the program.

9 Claims, 3 Drawing Sheets

CONNECTION

DATABASE

5,564,049

Sheet 1 of 3 '

Oct. 8, 1996

U.S. Patent

35

33

CLAMP

SCHED.

STATION 1

1 1
- , Q)
- =
) —)
{Y)
3_
. I
(S
< - T
<)
[\S
o
o)
/2
=
O
=
P

CLAMP

[e e s e e

FlG. 4

U.S. Patent Oct. 8, 1996 Sheet 2 of 3 5,564,049

PRIOR ART

/29

CONNECTION
DATABASE

l’f

?

SUBPROG. 4

SUBPROG 5

FIG. 2

ADVANCE
CLAMP
(HEADER)

RETRACT] (SUBPROGRAM)

4

37

FIG. 5

U.S. Patent

Oct. 8, 1996 Sheet 3 of 3 5,564,049

SHELL DATA

SHELL NAME
SHELL KEY

PARENT SHELL KEY
PROCESSOR KEY
CODE FRAGMENT KEY

CABLE DATA

CABLE NAME
CABLE KEY

CONNECTION IMAGE
AUTHOR KEY

PRODUCER /CONSUMER

WIRE DATA

WIRE NAME
WIRE KEY

INPUT /OUTPUT
DATA TYPE
ADDR

MANUALLY ASSIGNED :Y /N

FIG. 6

3,564,049

1

INDUSTRIAL CONTROLLER
PROGRAMMING METHOD USING
EXTERNAL CONNECTION DATABASE

FIELD OF THE INVENTION

The present invention relates to industrial controllers for
the real-time control of industrial processes, and in particu-
lar, to a method of programming industrial controllers where
the sharing of variables by different portions of the program
is explicit in a shell structure that reveals the consumer/
producer and input/output relationship of the variables.

BACKGROUND OF THE INVENTION

Industrial controllers are special purpose computers used
for controlling industrial processes and manufacturing
equipment. Under the direction of a stored program, an
industrial controller examines a series of inputs, reflecting
the status of the controlled process, and changes a series of
outputs controlling the industrial process. The inputs and
outputs may be binary, that is on or off, or analog, reading
or providing a value within a continuous range.

An industrial controller differs from a conventional com-
puter in two respects. First, unlike a conventional computer,
the hardware of the industrial controller changes substan-

10

13

20

25

tially tor different applications. This reconfiguration is facili-

tated by assembling the industrial controller from a number
of standard modules each performing a different function.
Different combinations of modules are selectively linked
together on a backplane or connected together by one or
more communication links to customize the industrial con-
troller to the particular process or equipment being con-
trolled. The modules may include, for example, various
processors, power supplies, communication interfaces and
input and output interfaces as well as specialized controllers
such as motor controllers or temperature controllers.

The second difference between industrial controllers and
conventional computers is that the software run by an
industrial controller is often “one of a kind”, that is, unique
to a single location. This follows both from the variability of

30

35

40

the hardware and more generally from the wide range of

different processes and equipment controlled by industrial
controllers.

Because most industrial controller applications require
the writing of original software, it is important that such
software be easy to write, troubleshoot and maintain. One
successful method of writing software is that of dividing the
program nto a series of smaller subprograms each of which
may be separately written and tested.

Industrial control programs often lend themselves to
subdivision along the lines drawn by the physical, controlled
processes. For example, if a factory includes a conveyor

belt, a punch press and two clamps for holding work to be

punched, a logical division of the software may be into
control routines for each of the punch, conveyor belt and
clamp.

A given clamp, for example, will have inputs controlling
whether it 18 to be advanced or retracted and output signals
indicating that it has achieved those particular states. A
controlling routine will detect contradictory commands and
may permit the imposition of internal states such as delays
to accommodate the physical operating characteristics of the
clamp.

With the partitioning of a large program into subpro-
grams, it becomes desirable to be able to re-use those
subprograms in the creation of other programs either for the

45

50

35

60

63

2

same or different processes. Ideally, manufacturers of par-
ticular physical equipment that is controlled could provide

subprograms for controlling that equipment much in the
same way that the manufacturers of computer printers now
provide printer “drivers” for those printers, the drivers being
short programs to permit the interface of a particular com-
puter to that particular printer.

Nevertheless, such reuse of subprograms is not common
in the industrial control field. Although portions of an
industrial controller program may be copied into a new
program, that portion will generally not function without
further modification because its variables, as identified by
variable addresses, will normally be different from the
addresses of those variables in use in the new program.

Reconciling the addresses of the variables of the copied
subprogram to match those of the larger incorporating
program 1s nearly impossible, however, because it requires
a sifting through of both programs to identify all variables
that may be read or written to by the copied fragment.
Because it is not necessarily the case that the names of the
variables used in either of the programs will indicate their

proper connection, the set of shared variables must be

1dentified through their context in the program, an extremely
difficult exercise.

The difficulty of this task is compounded by the fact that
many languages for the programming of industrial control-
lers simply do not permit the generation of a list of variables
cross-referenced by functional subprograms.

The problem of coordinating variables when copying
subprograms into new larger programs is particularly acute
in the context of industrial control programs which by their
nature have many variables representing both input and
output data from sensors and controllers physically con-
nected to the controlled process or machine. A method that
permitted the ready reuse of previously written subprograms
in the creation of a new, larger industrial control program
would be highly desirable.

SUMMARY OF THE INVENTION

The present imnvention permits subprograms to be practi-
cally reused either in the same or different industrial control
programs. Key to this invention is a data structure which
makes explicit the paths of data fiow between the subpro-
grams through “shells” encapsulating the subprograms and
which identifies the variables both as input or output and as
consumer or producer. In particular, knowledge about the
classification of the variables as consumers and producers
provides a more complete view of the data exchange nec-
essary to detect data contentions arising in the reconnection
of a subprogram to a larger program.

Specifically, in an industrial controller having a processor
that may execute a first and second program portion sharing
a value between a first and second variable, the invention is
a data structure that contains the first and second program
portions in shells. The first shell associated with the first
program portion includes a list identifying the first variable
and whether the variable 1s a consumer or producer with
respect to that program portion and whether the variable is
an input or output with respect to that program portion.
Similarly, the second shell associated with the second pro-
gram includes a list identifying the second variable and
whether that vaniable is a consumer or producer with respect

. 1o the second program portion and whether that variable is

an input or output with respect to the second program
portion. Each of the first and second shells has a unigue
identifying key number.

5,564,049

3

A connection database shared by the shells stores data
indicating that the first variable of the first shell identified by
its key number shares its value with the second variable of
the second shell as identified by its key number,

Thus, 1t 1s one object of the invention to make explicit the
paths of data flow between the various portions of a program
and the relationship of the variables sharing data. The
connection database provides a simple source of connection
information that may be used to establish a cross-reference
table of shared variables. This cross reference may be used
in trouble-shooting the complete program. The producer and
consumer information permits data contentions to be iden-
tified as vanables are shared among additional shells.

It 1s another object of the invention to provide a clear
demarcation between functional elements of a program of an
industnial controller to facilitate “cutting” and “pasting”
such functional elements from and to other industrial con-
troller programs. The shells hold all the inputs and outputs
needed by the particular program element and the connec-
tion database provides an indication as to the type of
connections required for those inputs and outputs.

The shells may be linked in a “tree’ diagram of arbitrary
configuratton but reflecting the overarching logic of the
interaction between the programs of the various shells. The
path names may be given to the shells reflecting their
position within that tree diagram.

Thus, 1t 1s another object of the invention to provide a
structural association between shells independent of the
paths of data flow but which incorporates additional infor-
mation about the operation of the overall program that may
be useful in reconnecting the program portions contained
within the shells, when those portions are cut and pasted to
another location. The use of a tree hierarchy increases the
chance that the interconnections required of a particular
shell that has been cut and pasted to a new location can be
automatically identified. In particular, once a paste location
of a pasted program portion is identified within a tree of
shells, the list of the shell of that pasted program portion may
be reviewed to identify input and output variables for that
shell. The connection database may be queried for the path
names of shells and variables of other program portions
sharing values with the identified input and output variables
of the shell of the pasted program portion. Then a search of
the tree of shells from the paste location may be undertaken
to 1dentify corresponding shells to those identified in the
connection database and a connection database may be
written to establish new connections for the shell of the
pasted program portion to those shells identified in the tree.

Thus, 1t 1s another object of the invention to use the
information contained in the tree structure to automatically
reconnect, cut and paste program portions {0 one or more
other shells in a larger program with minimum human
intervention.

The foregoing and other objects and advantages of the
invention will appear from the following description. In the
description, reference is made to the accompanying draw-
ings which form a part hereof and in which there is shown
by way of illustration, a preferred embodiment of the
invention. Such embodiment does not necessarily represent
the full scope of the invention, however, and reference must
be made therefore to the claims herein for interpreting the
scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a simplified industrial
controller having two clamps controlled by a first program

10

15

20

25

30

35

40

45

30

55

60

65

4

portion running in a processor within an industrial controller
rack and communicating with a diagnostic program within a
workstation;

FIG. 2 is a schematic representation of prior art data
sharing between various program portions of an industrial
controllier program;

FIG. 3 1s a schematic diagram similar to that of FIG. 2
showing the use of a connection database to make explicit
the interconnections between various program portions of an
industrial controller program, each now encapsulated in a
shell;

FIG. 4 1s a tree structure showing interrelations between
vartious shells of a hypothetical industrial controller pro-
gram,

FIG. 5 1s a representation of a single shell “cut” from a
larger program having arrows representing severed connec-
tions made explicit by the shell and database structure; and

FIG. 6 is a table showing the information contained in the
shells of FIG. 3.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Hardware Environment

Referring now to FIG. 1, an industrial controller 10
suitable for use with the present invention provides a rack 12
holding a number of functional modules 14 electrically
interconnected by a backplane 16 running along the rear of
the rack 12. Each module 14 may be individually removed
from the rack 12 thereby disconnecting it from the back-
plane 16 so that the industrial controller may be customized
as to which modules 14 are used.

The modules 14 within the rack 12 may inciude, for
example, a power supply module 18, a processor module 26,
a communication module 24 and one or more /O modules
20, among others.

Power supply module 18 receives an external source of
power (not shown) and provides regulated voltages to the
other modules 14 by means of conductors on the backplane

16.

The processor module 26 processes information provided
by the communication module 24 and the I/O modules 20
according to a stored program contained in its memory (not
shown).

The communication module 24 provides a high speed
interface between the backplane 16 and an external link 27
which may connected to a workstation 30, the latter which
provides a means of programming the industrial controller
10 and of displaying various diagnostic messages and dia-
grams.

The I/O modules 20 convert input signals on lines 22
connected to the external equipment to digital words for
transmission on the backplane 16. Conversely, the I/O
modules also convert digital words from the backplane 16 to
the necessary signal levels for the control of the equipment.
In this example, the controlled equipment includes clamps
23 which may be advanced or retracted by signals provided
from the I/0 modules 20 and which produce open and close
signals verifying their state which may be received by I/O
modules 20.

Industrial Controller Software

Referring now to FIG. 2, a program for the industrial
controller 10, such as may be entered on the workstation 30,
typically includes a program portion 32 having computer

5,564,049

S

instructions for arithmetic and logical operations on various
variables as 1s well understood in the art. The program 29,
as depicted in FIG. 2, represents the source code of the
program such as would be entered by a programmer in
distinction to the object code which is actually executed by
the processor 26. The object code would typically have a
different configuration reflecting the efficiencies of the pro-
cessing unit. |

Typically, the program portion 32 may be broken into one
or more subprograms 33 which represent distinct functions
of the program. These program divisions may be made
arbitranly but preferably are selected by the programmer to
1lluminate the logic and construction of the program 29.

As was previously mentioned, frequently a subprogram
33 will be associated with a particular piece of equipment
being controlled such as a clamp 23. The clamp subprogram
may pass data among other subprograms by the sharing of
one or more global variables 34 often designated at the
beginning of the program listing. For example, data gener-
ated by the clamp subprogram would be stored at global
variables 34 and other subprograms can read this giobal
variable to obtain input data from the clamp subprogram.
Importantly, because communication between subprograms
18 1mplicit in this technique of sharing variables, it is
normally difficult to ascertain the paths of data flow by
inspection of the source program itself.

Shells

Referring now also to FIG. 3, the present invention places
each subprogram 33 into a separate shell 35 having a header
preceding the subprogram as will be described. The header
identifies in one place all the variables of the particular
subprogram which are shared with other subprograms.

Although these variables, like the prior art, may have
variable names, these variable names need not be identical
to the variable names of other subprograms even if the data
of those variables is common between those subprograms.
Instead, the relationship between the variables described in
each header of the shells 35 is made explicit in a separate
connection database 36 which links variables of different
shells to each other. Thus, for example, a variable named
“open” for a clamp 23 may share its data with a variable
named “‘state” in another shell and a variable named “ready”
in yet a third shell. The equivalence of these variables is
established in the data of the connection database 36 which
effectively groups these three names.

Importantly, each variable in the shell is identified in a
number of ways: its status as an input or output, its status as
a producer or consumer, its author, and its connection image.
As will be described, these additional dimensions of infor-
mation facilitate the reuse of previously written subpro-
grams.

Producer Consumer

The identification of a variable as an input or output is
well understood. An input variable receives data from
another subprogram while an output variable provides data
to another subprogram. In contrast, a given variable’s status
as a consumer or producer 1s independent of whether it is an
input or output. That is, there may be consumer-input
vaniables as well as consumer-output variables and pro-
ducer-input variables as well as producer-output variables.
Generally, a variable is a producer if “but for” the subpro-
gram of the shell of that vanable there would be no reason
for the connection. |

10

15

20

25

30

35

40

45

50

55

60

65

6

This general philosophy is reflected in simple rules that
cover connections between shells involving more than three
variables, i.e. the interconnections of three or more variable
together. Such connections fall into one of two categories:
(1) a single output connected to multiple inputs or (2) a
single input connected to multiple outputs. The producer is
always the single “odd” variable, that is, the single input or
output variable among the many output or input variable .
Thus, in the first case, the output is a producer and in the
second case, the input is a producer. Without the producer,
there would be no communication whereas without one
consumer, communication could still be envisioned.

This concept can be expanded to include also the case of
two variables connected together by evaluating whether a
new variable would be an input or an output according to the
context of the program, thus making one variable a producer.

The significance of the producer/consumer categorization
18 that it provides information beyond that provided by input
and output information. In particular, knowledge of the
variable’s producer or consumer status permits identification
of data contention in the second case described above, where
one 1nput 1s connected to multiple outputs. In this situation,
data contention problems occur if the multiple outputs
connected to the single input have different values. Such
situations must be identified so that a rule can be adopted to
resolve any ambiguity in the data received by the input.

A number of different rules can be used depending on the
desires of the programmer. For example, a first-in time rule
allows the first output to communicate with the single input
and to set a flag blocking all other outputs from communi-
cation with that input thus eliminating contention. Only
when that first output relinquishes its communication with
the iput, by resetting the flag, can other outputs provide
values to the input.

Alternatively, each of the multiple outputs may be given
a numerical priority and the output value provided by the
output of highest priority, when two or more outputs are
contending, may be adopted. Producer/consumer informa-
tion permit such contentions to be identified, facilitating the
automatic connection of code fragments for industrial con-
trollers.

 Author

As mentioned above, each variable also provides an
author key which is the identifier (key) of the shell which
“authored” that connection between variables. The author of
a particular connection reflects the historical connection of
that variable with the variables of other shells. In particular,
the author identifies the variable defining the connection to
the other shell, that is the variable that served as a model in
variable type (Boolean, integer, etc.) and direction (input
and output) for the authored variable.

The significance of the author information is that when
the subprogram of the shell is cut and pasted to a new
environment, the author information can identify when new
variables must be created in other shells to permit the
connection of the present shell’s cables.

Connection Image

Each variable also has a connection image list which
describes all the shells having variables connected to that
variable (thus sharing data with the subprogram of the
instant shell). These shells are identified by their names and
paths. The connection 1mage is used when a subprogram is
copied and pasted to a new program or a different location

5,564,049

7

in the same program. The connection image provides initial
guidance (subject to the confirmation of the programer) as to
what shells the pasted shell might be connected. The con-
nection image 1dentifies the shells by their path names and
thus implicitly makes use of the information as to control
logic contained in the programmer’s initial decomposition of
the program 1nto shells and the allocation of the shells 1ato
the hierarchy of a tree structure. Thus when a cut and pasted
subprogram is placed into an environment with shells having
similar names and tree locations as that from which it was
cut, as may occur if the program has a repetitive structure,
then the connection image will provide considerable help in
reconnecting the pasted subprogram to the correct shells.

EXAMPLE I

Referring now to FIGS. 1 and §, an example shell 35
holding a subprogram for controlling a clamp 23 rececives
two input signals and two output signals. One producer/
input signal termed *“‘advance” causes the subprogram to
advance the jaws of the clamp 23 to a closed position by
activating a solenoid (not shown). The second producer/
input signal termed “retract” causes the subprogram to
retract the jaws of the clamp 23 by the activation of a second
solenoid. Generally, the second and first solenoid should not
be activated at the same time and one task performed by the
subprogram is the execution of logic to prevent this occur-
rence.

The two producer/output signals from the shell 35 include
an “open’” signal which derives from a limit switch (not
shown) indicating that the jaw of the clamp 23 is, in fact, in
the open position and a “close” signal indicating that the
jaws of the clamp 23 1s 1n the closed position. These signals
can be used by the module to confirm that the clamp 23 has
not jammed. The particular program of the subprogram that
uses these input and output signals will vary depending on
the particular clamp 23 as will be understood to those of
ordinary skill in the art.

Other subprograms in other shells will normally develop
the advance and retract signals used by the shell 35 and the
shell 35 will provide the open and close signals to other
shells within the program as well as to I/O modules 20
connected to the clamps 23.

Referring also to FIG. 4, the shell 35 may be arranged in
a tree structure with other shells. Generally, as will be
described, any shell may communicate data with another
shell regardless of that shell’s location within the source
code or within the tree structure. Thus, as far as communi-
cation of data goes, all shells are essentially interconnected
with each other shell. Nevertheless, often there will be a
logical or other hierarchy to the shells indicating a decom-
position of control logic within the program. Such a hier-
archy may be represented by a tree structure and indepen-
dent of the interconnections of the shells.

In the example of FIG. 4, at the root of the tree are two
“station” shells, STATION 1 and STATION 2. each corre-
sponding approximately to a manufacturing station within a
factory and holding a subprogram handling high level tasks
such as the initiation of certain manufacturing operations on
parts entering the station and the tracking of those parts.
STATION 1 forms a node for branches leading to shells of
a DIAGNOSTIC subprogram and a SCHEDULER subpro-

gram.

The DIAGNOSTIC subprogram may handle the display
of the state of the various components of the manufacturing
station on the workstation 30 to provide a constant visual

10

15

20

25

30

35

40

45

30

35

60

65

8

representation of the manufacturing process and may further
display certain errors or malfunctions such as the jamming
of a clamp or the failure of a clamp to respond within a
predetermined period of time.

The SCHEDULER coordinates the operation of the vari-
ous components of the manufacturing station controlling the
clamp to open and close in coordination with another piece
of equipment, in this case indicated to be a punch. The

SCHEDULER iorms the node for the branches leading to
the CLAMP and PUNCH subprograms. Each of the CLAMP
and PUNCH 1s logically subservient to the SCHEDULING
subprogram and the SCHEDULING subprogram 1s logically
subservient to the STATION subprogram as the former
subprograms are operating generally at what would be
considered a lower level of control. Nevertheless, the
CLAMP and the PUNCH subprograms would necessanly
communicate with the DIAGNOSTIC subprogram in order
to provide the necessary data for the visual representation
and the identification of malfunctions despite the lack of
direct connection in the tree diagram of FIG. 4.

In summary, the tree structure of FIG. 4 is independent of
the actual communications between the shells but reflects a
categorization proposed by the programmer. As shown in
FIG. 4, a second station subprogram, STATION 2 forms a
root node for a branch having a second SCHEDULER
subprogram which forms a root node for a branch having a
PUNCH subprogram.

At a given branch and level in the tree structure, that is,
any portion having a common root node, shells should have
different names but otherwise shells need not have different
names but may be identified by a path designation. For
example, the shell holding the PUNCH subprogram and
associated with STATION 2 subprogram may be designated
as: “STATION 2/SCHEDULER/PUNCH and thus be
uniquely distinguished from the PUNCH subprogram asso-
ciated with the root node of the STATION 1 subprogram.
Shells and their incorporated subprograms may thus be
identified by their location in the tree structure. Each shell
also has a unique key number independent of its path
location and name.

As mentioned, the path form of identification is important
in cutting and pasting subprograms into a larger program as
1t provides an additional dimension of information about the
grouping of the program to assist the user in reconnecting
cut and pasted subprograms as will be described. Referring
now to FIG. 6, the shell header of each shell includes:
information identifying the shell, the variables used by its
associated subprogram characterized as to input/output and
producer/consumer and certain connection information that
1s redundant with that in the connection database and which
aids in the transporting of subprograms between programs
with different connection databases. The variables are rep-
resented by wires within cables, each wire and cable having
certain data associated with it. Table I shows the shell

information of FIG. 6 for shell in a program having a tree
structure of FIG. 4 holding the CLAMP subprogram.

TABLE 1
SHELL DATA
Shell Name: Clamp
Shell Key 12345
Parent Shell Key: 23456 (Sched)
Processor Key 12 (PLC-5)

Code Fragment Key 345 (Clamp Subprogram)

CABLE DATA:

5,564,049

foreseeable applications. Such a key may be generated
conveniently through a composite of a unique project num-

TABLE I-continued
SHELL DATA
5
Cable Name: Open
Cable Key: 1
Connection Image: Diagnostic/Cable 2
Author Key 12345 (Clamp)
Producer/Consumer Producer
WIRE DATA; 10
Wire Name;: Open
Wire Key |
Input/Output; Qutput
Data Type: Boolean
Address N7:0/2 15
Man. Assigned:; No
CABLE DATA:
Cable Name: Close
Cable Key: 2
Connection Image: Diagnostic/Cable 3
Author Key 12345 (Clamp) 20
Producer/Consumer Producer
WIRE DATA:
Wire Name: Close
Wire Key 2
Input/Output: Output 25
Data TVpe: Boolean
Address N7.0/3
Man. Assigned; No
CABLE DATA:
Cable Name: Advance 30
Cable Key: 3
Connection Image: Scheduler/Cable 2
Author Key 12345 (Clamp)
Producer/Consumer Producer
WIRE DATA:
Wire Name: Advance 3
Wire Key 3
Input/Qutput: Input
Data Type: Boolean
Address N7:0/6
Man. Assigned: No
CABLE DATA; 40
Cable Name: Retract
Cable Key: 4
Connection Image: Scheduler/Cable 1
Author Key 12345 (Clamp)
Producer/Consumer Producer 45
WIRE DATA:
Wire Name; Retract
Wire Key 4
Input/Output: Input
Data Type: Boolean 50)
Address N7:/0/8
Man. Assigned: No
~ Shell Data 35
The first piece of information in each shell header is the
name of the shell which is conveniently represented as an
ASCII string but may, in fact, be any identifier according to
the discussion of paths above. The name may be used in the g
depiction of the shells in tree form per FIG. 4 and together
with the path of the tree structure, the name uniquely
identifies each shell from all others in a program.
The next piece of information 1s a shell key which 1s a
unique number for that shell, ideally within the universe of 65

10

ber, referring to the overall program, together with a shell
number unique within that project.

The key number of the parent of the shell is included nexi,

- that key which establishes the location of the shell within the

tree diagram. For example, in the tree of FIG. 4, the parent
of CLAMP associated with STATION 1 is SCHEDULER
which 1n this example has a key number of 23456.

The parent information is followed by a processor key and
a coded fragment key which serve to uniquely identify the
physical processor on which the fragment runs (for multi-
processor systems) and the location of the subprogram
associated with the shell, which need not be stored with the
shell. The latter feature permits each subprogram to be used
by multiple shells.

(Cable Data

The fundamental purpose of the shell is to explicitly
define all the vaniables used globally by the subprogram of
the shell. These variables are defined by means of “cables”
37 (referring metaphorically to electrical cables), each cable
37 collecting one or more “wires” (alluding to electrical
wires within the cables). Cables 37 with multiple wires are
used to clarify the connections between shells when multiple
wires go to the same shell. Generally, however, a cable 37
will contain only a single wire. The CLAMP shell 35 has
four cables 37, one for each input and output.

Each cable 37 is given a name, for example, “open” which
refers to the variable transmitted on the cable 37. A cable key
is a number uniquely identifying that cable 37 relative to that
shell. This number aids in the construction of a connection

database 36 as will be described. In the case of the cable 37
named “Open”, the cable 37 key number is 1.

Also 1ncluded in the cable data is the connection image,
which as descnibed above, 1dentifies the shelis to which the
cable 1s connected by the path name of those shells. Thus for
the “Open” cable, the connection image is the DIAGNOS-
TIC shell, and 1its second cable. Generally for a producer
cable, the connection 1mage will hold the path names of
many shells, whereas for a consumer cable, the connection
image will contain only a single shell path name.

The cable also indicates whether the cable is a producer
or a consumer as has been described. As noted, identification
of each cable as a producer or consumer is an important
aspect of the present invention’s facilitation of connections
of code fragments. Finally the cable provides the key
number of the shell that authored it. In this case the “Open”
cable 1s indicated to have been authored by the Clamp Shell,
indicating that the cable authored itself, e.g. no other shell
historically acted as the model for the *“Open” cable, but
rather the structure of this cable was entered ab initio by the
Programer.

Wire Data

Each cable 37 may include one or wires going to the same
shells as the cable. A cable may only connect with another
cable having the same number of wires, type and opposite
direction, opposite type (i.e. producer or consumer). In the
present example, each cable has only a single wire given the
same name as the cable. Thus, for example, in the cable
“Open”, there is only a single wire in that cable 37 also
named “Open”.

‘The wire data also provides a wire key number unique to
that shell used to 1dentity the wire’s variable in the connec-
tion database. In this example, the wire “Open” is the first
wire and 1ts key is 1.

5,564,049

11

The wire data also indicates the type of data being
transferred on the wire, e.g., integer, floating point, or
Boolean, the latter which has one of two values. The wire list
also provides the direction of the data flow with respect to
the shell, e.g., input or output. In this case, the wire “Open”
1S an output wire providing data to other shells.

Each wire is also associated with an address which stores
the wire’s value. The address indicates the physical location
of the variable in memory (after compilation) that is to be
used to share values between shells and thus forms the
mechanism for connecting cables and wires of shells
together. That 1s, shells that have input wires read this
address and shells that have output wires write to this
address. If two shells are executed on different processors,
different addresses may store connecting wire’s value and
the sharing 1s accomplished by processor to processor com-
munication.

The next entry indicates whether the wire address was
manually assigned. If it was, as may be the case for example
if the address has some physical significance such as being
an /O address to a particular I/O device, then when the
shells are recompiled, the address may not be changed
according to the convenience of the compiler. On the other
hand, 1if the address 1s not manually assigned, the addresses
can be reallocated as the demands of memory require.

Three other cable 37s, each having one wire, are also
described 1n this fashion in the shell for CLAMP. Each is
given a successive cable reference number for each cable 37
and successive database ID for each wire. |

The variables as described by the cable 37 and wire list
are the essential features of the shells. |

TABLE I
Producer Shell . Consumer
Key Cable Shell Key Cable
12345 (Clamp) Open 41789 (Diag.) Open
12345 (Clamp Close 41789 (Diag.) Close
20358 (Sched.) Advance 12345 (Clamp) Advance
203358 (Sched.) Retract 12345 (Clamp Retract

Referring now to Table II, the actual linkage between
variables of one shell and another is accomplished by means
of a connection database 36 which lists in a first and second
“column”, a composite key number of the shell and a cable
of a producer and links it to one or more consumer key
numbers and cables in a third and fourth “column’. Thus, the
connection database 36 centrally collects the data that indi-
cates the actual connections between variables of different
shells regardless of the actual names of those variables.

For example, the “Open” variable of the Shell CLAMP is
linked to a variable of the DIAGNOSTIC subprogram.

In this example, there are only a pair of shells sharing each
variable, therefore the connection database is relatively
simple. However, generally multiple variables at different
shells may communicate data among themselves resulting in
multiple entries, the consumer column of a given “row” of
the connection database 36.

Creation of the Shell Data and Compilation of the
Subprograms

In practice, the shells and their header information are to
be generated during the program writing process by the
programmer according to a prewritten framework imported
into the program editor. Although the database may be

10

15

20

25

30

35

40

435

S0

53

60

63

12

manually compiled, it 1s preferably generated automatically
by an interactive program which connects shells together by
displaying a picture of the tree structure of FIG. 4 and
querying the programmer to thus develop the needed path
names. Menus displaying the cables and wire names for each
shell may be displayed-as a shell is selected by a cursor on
the workstation 30. Connections are then indicated by draw-
ing lines on the display of the workstation 30 between shells
using a cursor control device such as is understood in the art.

The present data structure refers to the source code to be
received by a compiler to generate a machine executable
code. Such compilers are well understood in the art and
serve as one of their functions to allocate memory locations
for particular variables within the program. In the present
invention, this allocation is performed based on the connec-
tion database which provides a comprehensive list of all the
shells using a particular variable and the various names used
to designate that variable within the shell. The compiler
simply substitutes a physical address for these variable
names in the compiled program. The type of variable
necessary for determining the amount of memory needed to
be allocated to each variable is readily determined by
reference to the wires within the shell.

Where producer inputs are detected by examining the
shells, the compiler provides additional code invoking a
priority rule to eliminate data contentions according to a
predetermined priority rule as selected by the programmer
according the context of the application.

During the writing of the program, the connection data-
base can be printed out to generate a cross-reference table
useful for troubleshooting a particular program. Comparison

~of the connection database to the headers of the shell readily

provides information indicating shells which are miscon-
nected or unconnected. Such a process will also clearly
indicate orphan variables belonging to no subprogram.

This clear laying out of the interaction between various
subprograms within a larger program will, in general, assist
the programmer in writing troublefree code but also
increases the reusability of particular code portions by
permitting cutting and pasting.

Cutting and Pasting Subprograms

Referring now to FIG. 5, a given subprogram as encap-
sulated in a shell 35 may be cut or copied to be used in
another program or another part of the program. Once the
subprogram is removed from its context of the larger pro-
gram, the shell header may be used to provide an indication
of the cables 37 that need to be attached for the shell to be
operative 1n its new environment. In the case of the CLAMP
shell, “Open” and “Close” output cables 37 need to be
attached and “Advance” and “Retract” input cables 37 need
to be attached for the CLAMP subprogram to operate.

The explicit definition of the necessary variables in the
header of the shell simplifies this reconnection process but
making reconnections may be further aided by reference to
the logical context of the previous connections of these
variables implicit in the tree diagram of the source program.

For example, and referring to FIG. 4, in the construction
of two identical program stations in a control system, having
subprograms STATION 1 and STATION 2, such as shown
generally in FIG. 4, it may be desirable to copy the CLAMP
shell from STATION 1 to STATION 2. This may be inter-
preted as the desire to reuse the subprogram CLAMP in a
new portion of code including the subprogram STATION 2.
Because of the similarities of the station subprograms,

5,564,049

13

reflecting the similarities of the hardware composing the
stations, it is likely that the SCHEDULER of STATION 2
already has necessary variables which may be used to

control the clamp 23. The information implicit in the tree

diagram of the original or source program can assist the
programmer in identifying these variables and the necessary
connections.

Once the CLAMP shell has been copied, 1ts new location
in the tree structure must be designated. In one example, it
may be placed at the same tree level as the PUNCH shell of
STATION 2, that position being shown in dotted lines in
FIG. 4.

After the clamp shell is pasted at the location indicated in
FIG. 4, the shell header is updated. First, the parent may be
updated. In this case, the parent 1s still SCHEDULER and so
no change is required. Likewise, the cable key numbers
which are relative to that shell are all still correct and all that
is missing for the code to be operative is for the cables
indicated in FIG. § to be reconnected to the proper shells.

Referring to Table I, as mentioned, each shell keeps a
connection image of its previous connections to other cables
of other shells. This connection image list may be used to
reconnect the shell to the program. The entry in the con-
nection image list is the shell and cable for a particular
variable. This path name is relative to the shell, thus it 1s
effectively abbreviated to eliminate portions that are in
common with the shell holding the connection 1mage list.
This connection image list improves the portability of the
shell to programs remote {rom the connection database 36.

An automatic reconnection procedure using the connec-
tion image list may be invoked. In this procedure, a copied
and pasted shell is reconnected according to the paths
previously indicated in the connection database and refiected
in the connection image list but as interpreted from the new
paste position. Thus, the CLAMP shell 1n connecting the
ADVANCE and RETRACT cables to SCHEDULE looks
not to the SCHEDULE shell under STATION 1 but to the
SCHEDULE shell under STATION 2 based on the abbre-
viated path name. This connection 1s accomplished by a tree
search based on the current paste position in which the shell
indicated in the connection image list or the connection
database is searched for at each level of the tree, from
bottom (branches) up (to roots), until a matching shell is
found. This procedure connects the “Advance” and
“Retract” cables of the pasted CLAMP shell to the SCHED-
ULE subprogram under STATION 2. Thus, an auto connec-
tion may be effected by searching for local matches to the
previous connections and recording those 1n the connection
database. The key numbers of this connection are recorded
in the connection database 36.

Following a similar procedure, an auto connection may be
effected for cables 1 and 2 of the copied CLAMP shell which
are outputs indicated to connect to the shell DIAGNOSTIC.
In this case, the search through the hierarchy of the tree up
to the node of STATION reveals no DIAGNOSTIC shell at
station 2 and therefore the program continues searching until
the DIAGNOSTIC block is found beneath STATION 1. A
connection to this DIAGNOSTIC shell and its cables is then

formed.

In each of these cases, the cables of the Clamp shell are
indicated to be authored by the Clamp shell. Accordingly,
the autoconnection process adds new variables (cables and
wires) to the shells indicated in the connection process.
These new variables are not yet used by the subprograms of
the shells, either because they are not identified to their
counterparts in the subprograms or because the subprograms

10

15

20

25

30

35

40

45

50

33

60

65

14

do not use these variables yet. This creation of these
variables, however, provides both a place holder for the
connection and a reminder to the programmer that additional
connection work is necessary.

Thus, in the present example where the CLAMP shell 1s
copied to a similar environment, the auto connection feature
based on information implicit in the tree structure permits
near perfect reconnection of the software to the proper shells
without operator intervention. Operator confirmation 1s
always requested of every connection, however, as there 1S
no way, based on the information incorporated into the
program, to be certain that the previous connections indi-
cated by the tree structure of the source program should be
continued throughout the remaiming program when a par-
ticular subprogram is copied and pasted.

Thus, by externalizing the connections between shells and
using the information implicit in a tree structure linking the
shells, certain automatic reconnection of shells may be
accomplished.

The above description has been that of a preferred
embodiment of the present invention. It will occur to those
that practice the art that many modifications may be made
without departing from the spirit and scope of the invention.
In order to apprise the public of the various embodiments
that may fall within the scope of the invention, the following
claims are made.

I claim:

1. An industrial controller comprising:

at least one processor for executing a first program

portion, the first program portion having a first variable

with a value shared with at least one second variable of

a second program portion

an electronic memory communicating with the at least

one processor, the memory storing a data structure

including:

(1) a first shell associated with the first program portion
including a list identifying the first variable and

~whether the first variable is a consumer or producer
with respect to that second program portion and

- whether the first variable i1s an input or output with
respect to that first to program portion, the shell
further having a first unique key number;

(11) a second shell associated with the second program
portion including a list identifying the second vari-
able and whether the second variable 1s a consumer
or producer with respect to that first program portion
and whether the second variable 1s an input or output
with respect to that second program portion, the shell
further having a second unique key number; and

(ii1) a connection database shared by the shells having
database entries linking the first variable of the first
shell, identified by the first unique key number and
its status as a consumer or producer, with the second
variable of the second shell identified by the second
unique key number and its status as a consumer or
producer;

wherein a compiler operating on this data structure may
identify potential data contentions resulting from
multiple output consumer variables being connected
to a producer input variable and resolve those con-
tentions by a predetermined priority rule.

2. The industrial controller of claim 1 wherein the list of
the first shell also indicates a key number of a shell that is
the author of the first variable, the author being a vanable
that formed a model for the first variable.

3. The industrial controller of claim 1 wherein the shells
include data identifying the processor on which the program
portions may run.

3,564,049

15

4. A method of compiling a program of an industrial
controller for operation on at least one processor, the pro-
gram including a first program portion associated with a first
shell, the first shell including a list identifying a first variable
and whether the first variable is a consumer or producer with
respect to the first program portion and whether the first
vanable 1s an input or output with respect to the first
program, the program also including a second program
portion associated with a second shell, the second shell
including a list identifying a second variable and whether the
second variable is a consumer or producer with respect to the
second program portion and whether the second variable is
an input or output with respect to the second program
portton, the shell further having a second unique key num-
ber, the program also including a connection database hav-
ing database entries linking the first variable of the first shell,
identified by the first unique key number and its status as a
consumer or producer, with the second variable of the
sccond shell identified by the second unique key number and
1ts status as a consumer or producer, the compilation com-
prising the steps of:

a) identifying potential data contentions resulting from
one of the first and second variables sharing data
with a third variable and being one of a consumer
output and a producer input as mdlcated by the
connection data base;

b) establishing the connections indicated by the con-
nection data base using a predetermined priority rule
to resolve contentions of the connection identified in
step (a).

>. The method of claim 4 wherein the predetermined
priority rule is that a first-in-time consumer output providing
a value to a producer input blocks all other consumer outputs
variable until that first-in-time consumer output indicates it
18 no longer providing a value to the producer input.

6. The method of claim 4 wherein the connections are
established per step (b) by providing the first and second
variable with a common memory address for storing their
shared value.

7. A method of cutting and pasting a primary program
portion within a larger program of an industrial controller
wherein the larger program is divided into secondary pro-

10

15

20

25

30

35

40

16

gram portions where each of the primary and secondary
program portions are associated with shells having a list
identifying each input variable and each output variable of
the programs of the shells; the shells further having a first
unique key number defined as their location within a user
defined tree structure of the shells, comprising the steps of:

a) identifying a paste location of the primary program
portion within the tree of shells;

b) reviewing the list of the shell of the primary program
to identify input and output variables for that shell;

c) determining the key number of shells of the secondary
programs previously sharing values of the identified
input and output variables for the shell of the primary
program,

d) searching the tree of shells for the locations of shells of
secondary programs determined in step (c); and

€) writing to a connection database to establish a connec-
tion between the shell of the primary program and at
least one shell of the secondary program for a shared
variable based on those shells found in the search of
step (d), the connection database having database
entries linking the shared variables of the shells iden-
tified by key number and their status as a consumer or
producer.

8. The method of claim 7 wherein determining the key
number of shells of the secondary programs previously
sharing values of the identified input and output variables for
the shell of the primary program is made by reviewing
information contained in the shell.

9. The method of claim 7 wherein the list of the first and
second shells also identifies a shell that is the author of the
first variable and second variable, the author being a variable
that formed a model for the first variable; and including
betore step (e) the step of:

generating a new variable in the shell of the secondary
program if the shell of the primary program is the
author of the shared variable.

I S

	Front Page
	Drawings
	Specification
	Claims

