AN D AL O D

US005557609A
United States Patent [(111 Patent Number: >,557,609
Shobatake et al. [45] Date of Patent: Sep. 17, 1996
[54] SWITCHING APPARATUS FOR ATM [56] References Cited
[75} Inventors: Yasuro Shobatake, Kawasaki; Keiji u-S. PATENT DOC NTS
Tsunoda; Yoshiaki Takabatake, both 5,054,069 10/1991 Maeno et al. .
of Yokohama; Mikio Hashimoto, 5,203,024 4/1993 Yamao .
Ichikawa; Taketoshi Tujita; Junichi 3,204,883 4/1993 Blanc .
Takeda, both of Yokohama: Narito 5,274,641 12/1993 Shobatake et al. .
. : ’ 5,420,859 5/1995 Takase et al.occrueurreernnnnen. 370/60.1
Kimura, Ichikawa, all of Japan 5,430,721 7/1995 Dumas et al. ..ooooveooerooooo. 370/60.1
[73] Assignee: Kabushiki Kaisha Toshiba, Kawasaki, Primary Examiner—Melvin Marcelo
Japan Attorney, Agent, or Firm—Finnegan, Henderson, Farabow,
| Garrett & Dunner, L.L.P.
[21] Appl. No.: 351,098 [57] ABSTRACT
- [22] Filed: Nov. 30, 1994 A switching apparatus includes an input port to which

information data associated with an ATM cell is input, a

[30] Foreign Application Priority Data memory for storing information data input via the input port,
Dec. 1, 1993 [JP] Japan ..eeeeoccoecvveccneevreeanenn, 5-301489 a processor for sequentially performing frame synchroniza-
Jun. 24, 1994 [JP] Japancceeeecveeneeniennnes 6-143568 tion process for finding a frame and ATM cell synchroniza-
Sep. 16, 1994 [JP] Japanccecomeecccvecvecnennne. 6-246806 tion process for checking a cell structure with respect to

(51] Int. CL° HO4L 12/66 information data read out from the memory, and an output

52) US' Ci 370/601370/94 2 370/105.1 port for outputting information data processed by the pro-

D Clo e, Jd; 2; : CesSOr
[58] Field of Search ... 37060, 60.1, 94.1, O
370/94.2, 105.1 22 Claims, 21 Drawing Sheets
124 LINE SIDE X (3 LINE SIDE

INPUT OUTPUT

|
BIT INE CODING
SYNCHRONIZAT ION LINE
NETWORK N

i e 22 - v (3277
FRAWE
SYNCHRONIZATION CHANNEL PROCESS FRAME FORMATION
123 133
i | HEC FORMATION
SYRCHRONIZAT 10N HEC FORMAT ION
124 134
DESCRAMBLE SCRAMBLE
MPTY CELL
125 EENERATION

HEADER CONVERSION 139 135

126 HEADER CONVERSION
R-TAG ADDITION - 136

127 R-TAG DELETION
POLICING {37

EMPTY CELL
128 GENERATION 138
CELL TRANSMISSION CELL RECEPTION

113 114

OAM CELL BRANCH/ SUPERVISORY
INSERT |ON

CONTROL INF

MESSAGE SUPERVISORY
TRANSMISSION/ CONTROL
RECEPT ION ROCESS

143

. . ek el el ey gy e—— o—— A B S B A Sk e el ekl ek s e e ekl e s Sl e ey ey e S e el ek Sl e e
el e AN I B L SN R A B el el ekl gl S el et CEE Bl e skl S B deS S L S ol S S B A Gl sl S skl b bl el gkl

l11024

e
1

SWITCHING APPARATUS CONTROL FROM CELL
SWITCH 103

T0 CELL
PROCESSOR INTERFACE
SWITCH 103 Y —mm e mmm e N -

OAM PROCESS, r SWITCHING R

b
102 | APPARATUS CONTROL PROCESSOR' 'O

___________________ J

r———--—-—"—-7-77=77"

QN
3
> HOLIMS T13) b 91 4
)
ot . LINJYI)
- 40SS308d 4 NI NOI LYGOWNOIIV
INIOd 3N
U - 20 m U-jor
y—
@ |
LINDJYHID
E B 40SS3004d NI N NOI LVGONWOIOV
- . INiOd 4N
- 2- 20} 2 - 10l
03414 INdNI . 0414 1INd1no
301S NOISSIWSNVHL 405S3008d 4NI| | 3015 NOISSIWSNYAL
2101}
&
43IAIYA INIT
3 - €201~ AHOW3N NIVA .
= o, “ Rv_uo._u Q3.10VY4L1X3
|
__ g
Z ceol o 1nan 1 N6
b2OH NN 8 3HOVO m_o: P20

- mOmmuuom n d3AI303Y 3INIT

<
=

oﬁmwmm oiw_.___,_m_ o Lyao RS
S 4 INIOd NI
75 £01 - - 20V - 10¥
-

U #
INIOd dNI

¢ #
INIOd dANI

&

INIOd 4Nl

U.S. Patent Sep. 17, 1996 Sheet 2 of 21 5,557,609 - _

LINE_SIDE (11 131 LINE SIOE

LINE CODING

121

INPUT
e oxzoons] [E7
LINE DECOONG_| | vhcrmoniZATION

NETWORK
"0‘3H 2™ synchronizaTion| 11014
i 122" ey s 132"
FRANE
' [_SYNCHRoNizaTIon | “HANNEL PROCESS | FRAME FORMATION | |
| {23 133 |
| GEL] |
" |__SYNCHRONIZAT ION HEC FORMATION | |
: {24 134 :
; DESCRAMBLE SCRAMBLE | !
EMPTY CELL '
| 125 GENERATION ;
' | HEADER CONVERSION 139 135
E 126 HEADER CONVERSION | |
| R-TAG ADDITION 136
| |
- 127 R-TAG DELETION | !
| _
| "POLICING ' . 37 |
|
: e
EMPTY CELL '
128, ||GENERATION 138 |
. | CELL TRANSMISSION CELL RECEPTION |
E 13 114 ;
| OAM CELL BRANCH/ SUPERVISORY ;
; INSERT ION CONTROL INF I
L o L o e e e e e e e e e e e e e e e e e e N2 4
B
. _
. [MESSAGE SUPERVISORY | | ﬂ
= | o [R]
' l
111024 l —, 11025 t
!
SWITCHi03 | LPROCESSOR INTERFACE 1 SWITCH 103
OAM PROCESS; r--------gmamae———- -

102\ APPARATUS CONTROL PROCESSOR!

___________________ J

U.S. Patent Sep. 17, 1996 Sheet 3 of 21 >,557,609

—— DATA FLOW
——= POINTER FLOW
P

' || '
RECEIVED DATA - c09
INPUT SUBROUT INE L FRAME DATA

ACCOMMODAT |ON
<03 BUFFER

FRAME ' 210

SYNCHRONIZAT ION

SUBROUT INE CELL HEADER
204 ACCOMMODAT ION

BUFFER

I
I
|
I
I
|
I
I
I
!
I
I
|
I
I
I
I
]
- [CELL —
, SYNCHRONIZAT ION
|
|
I
)
I
I
I
I
I
|
I
I
|
|
]
I
|
I
I

HEADER-WITH-RT

SUBROUT INE BUFT LMODATION
206
DESCRAMBLE ATM LAYER
PROCESS .
SUBRWT'NE SUBROUTINE 212
CELL PAYLOAD
ACCOMMODAT ION
BUFFER
RECEIVED _
DATA OUTPUT
SUBROUTINE =
L““? “““““““““““““““““““ 1L e J
201 ' o
PROCEDURE OF * BUFFER ON MAIN MEMORY

PROCESSOR 11021 11023 ON PROCESSOR 11021

FIG 3

4344N8 NOILVAONWOIIV VivQ 3NV

5,557,609

] V!B
-
-
-

n i

ro

< -

5 R

m]
R
R

- 0

wm, _ / ¢ MJ0118 vivd

=b

o5 P 2018 vivd

e el fEn oy

SGYOM 681 SGYOM 68.
momo; G¢

U.S. Patent

/ V v MY N T g
/_\./ J_- /..\

V \/x\x N A7 W

///////// O

o

Ml Wl A W e e s g

\om
e
ol
(e
Tg
i
Q)
&
e
e »

Sep. 17, 1996

U.S. Patent

o1 4

b0G JI8VIYVA ONILYVLS
NOILVZINOYHINAS 3Wvy4
NOYd B8H2G2 ONI LIvHLEansS

A018 vivd 40 NOIL3ITdNOD

P09¢ Lv J18VINVA uzdm_.._v
3A1103443 9NILL3S

S84 YOuy3

SNONNILNOD L NOi1 133130

| 83 40443

NO1133130 84

Am._md_m<> uzdm.._v
GIIVA ONILL3S/] 31VIS SS3004d

NOI LVZINOYHONAS
SNOIA3Yd

3LVIS
UIZINOYHONAS

118 AY3A3
84 ONIHOYV3IS

S84 1034402
SNONNILNOD €

£0G 106

31V1S Q3ZINOYHONAS 3INVY
SNOIA3d4d HLIM 3ONVQY0IIV NI

14V1S

o
o
Sy

&
\&
N

v

oV
=
p

Sep. 17, 1996

U.S. Patent

9 914 ON3

G09~31VIS HOVI ONIAVS

A3018 vivd 40 NOIL3TdWOD

430V 3H

30N | [TNO Ty | L2 [rROT) _ HOSd;
snonniLNod | [diowia) E), zw_wﬁ%_zwwﬂ%ﬁl 3LV1S
3LY1S YIS wIovAH| enotAud ONI LNNH

037INONHONAS]“g3avanLOIZINOHHONAS| 153540, NOT 13130

40443 430V 3H

09

NOILVZINOYHIONAS 1130
SNOIAJYd HLIM 3JONVQYOJIV NI

¢ GHIVA

JNYY4 NI V1vd
TV 34V

¢ Q1" TVANI
JANVY4 NI VLVO
1V 34V

ON

14V HOIMd J 9| 4

5,557,609

804

L0/~ NO111aav (2)49

90/ NOISIAILQ

ﬂu
5
. 10~]No1L1aav (2) 49
2 20,~] NOISIAIG
102~ NoILIGaY (2) 49
2 00/~ NOISIAIG
-
: 10~ NOILIQQY (2) 49
¢

NOISIAIQ 90/

} @ ¥3av3H
1N0 av3y

GOL, b0l £0. _ 20L

GQ 43Jv3H vQ 444vaH €d ¥430Qv3H ¢(43Qv3H
1N0 4dv3y

0]

N0 Qv3iy 1N0 Gvdy 1N0 dviy

U.S. Patent

U.S. Patent Sep. 17, 1996 Sheet 8 of 21 5,557,609

START

801 READ OUT HEADER Df READ OUT HEADER D6
805
802 DIVISION PROCESS A

8O3 ADD HS AND GF (2)

804 DIVISION PROCESS B

806 ADDITION ON GF(2)=H6

80T DECIDE HEADER

(_Ew F16 8

901

READ OUT HEADER D5

904

READ OUT HEADER
Di,02,D3,D4

902 DIVISION

903 ADDITION ON GF (2)
905 ~ DECIDE HEADER _

™) Fle 9

U.S. Patent Sep. 17, 1996 Sheet 9 of 21 - 5,557,609

SHIFT 2 T
s o L 1 1 1 1003
LEFT | I I '

SHIFT { BIT [' ' 1002
o EFT L T
NO SHIFT DI ' D2 ! D3 ! D4 1001

SHIFT {BIT | ' —— 1004
% RioHT ;
SHIFT 2 BITS | ' ‘ : ’
o RIGE ™ '°°5

: | : : 1 1006
SHIFT 3BITS ‘
TO RIGHT | T _

' : : ; | | 1007

SHIFT 4 BITS | ' '
70 RIGHT ~ | T
SHIFT 5 BITS | 5 : : ' 1008
TO RIGHT | I ;

i ! 1 : : {
SHIFT 6 BITS ! | ’
TO RIGHT | ;
SHIFT 7 BITS | i ' ’ ' 1010
TO RIGHT | ; E

’ Jr&B@ IJrlB(-a l lr\LB® r‘LB — r[8g]
re r7® r® r — (7]
6@ ¥6® l 6® 6 = r[6]
5@ 0® e 5
o ||t ||[tes ||[t =
[3® r3® r3® ra = 14

r2® [2® 2® IFZ = 3

@ e r® It = riel

5= ri1]

i
-
el
L

U.S. Patent

SHIFT 2
BITS TO
LEFT

SHIFT { BIT
TO LEFT

NO SHIFT dii)i

SHIFT 1BIT TO
RIGHT

SHIFT 2 BITS TO
RIGHT

SHIFT 3 BITS TO
RIGHT

SHIFT 4 BITS TO
RIGHT I

SHIFT 5 BITS TO
RIGHT

SHIFT 6 BITS TO
RIGHT

SHIFT 7 BITS TO
RIGHT

d2);

Sep. 17, 1996 Sheet 10 of 21 5,557,609

1102 1103 1104 1105

'dnot ,dliel* sdlzef
*d[Q]' dliT) 'd[25] {101
;dlal' T

*dlsl' 'd[14l: ,dlzﬂ
dlsli disl .d[211
T .dlizl. -dlzd

1107 {109
d(2] @ d[3]]}d[5]® d[i0] d[21] ©d[25] ® d[26]
® d27]
1106
1110
+ -d[33]
FI1G 11 EEN
ri{]
CELL PAYLOAD RECEIVED
SYNCHRONIZATION ' DATA OUTPUT
SUBROUT INE SUBROUTINE
(f"
—_ —i———a- —>
HEADER
205 201 | 1202 : 208
 [HEADER CONVERSION TABLE|!
l |
FI1G {2 ' ATM LAYER PROCESS +~_207

L __SUBROUTINE B

U.S. Patent Sep. 17, 1996 Sheet 11 of 21 5,557,609

START
RECEIVE HEADER 1301

INCREASE COUNTER 1302
EXTRACT VPI/VC] {303
CALCULATE READOUT POSITION 104
OF HEADER CONVERSION TABLE '
"READ OUT VARIOUS TYPES | 1305
OF INFORMAT ION

POLICING .

CALCULATION OF PEAK RATE 1306
CALCULATION OF AVERAGE RATE

1307
IS PEAK YES
RATE INVALID ?

1308

S AVERAGE 1309

_ RATE INVALID ?

IS INVALID

CELL Prg)ocssseo
SET INVALID FLAG DELETE CELL
{310 (31 1

_ CHANGE VP1/VC! 1312
| . ADD ROUTING TAG {313
UPDATE ARRIVAL TIME OF | (344
CELL FOR POLICING '
(END F G

U.S. Patent

Sep. 17, 1996 Sheet 12 of 21 5,557,609

— DATA FLOW

S
—2 + POINTER FLOW

—— ..l_ — .--l _________________ —

TRANSMISSION SIDE | © 1 | T TTY :
INPUT L '
SUBROUTINE ACCOMMODATION |
BUFFER ;

{409 |

ACCOMMODAT ION
—|_BUFFER
1404 :' 1410
: |
L PAYLOAD

|
|
|
]
|
l
|
|
|
|
l
|
|
!
|
|
|
|
|
|
|
|
|
PHYSICAL |[CALCULAT ION BUFFER B
LAYER |- 1414 :
SUBROUTINE |
|

i

|

|

|

|

|

|

l

{

|

|

|

|

|

|

|

|

l

i

I

|

|

|

CELL ORDER
ACCOMMODAT ION
BUFFER

r“ﬂﬂ_—m“_-___“————_-—#ﬁ—n—n-—-————-d—-l—-—ﬂ_—_———“-—-“_“—h_—_“_—_ﬂ___“—-_—

] PROCEDURE OF BUFFER IN MAIN
{1401 PROCESSOR 11021 MEMORY OF {402
PROCESSOR 11024

FIG 14

U.S. Patent Sep. 17, 1996 Sheet 13 of 21 5,557,609

INSERT DATA REMAINED
IN PREVIOUS FRAMING IN
CURRENT FRAME

REVIOU
FRAMING COMPLETED~_ NO 1506
DURING OUTPUTTING 3

EMPTY CELL?™ _iS PREVIOUS..

FRAMING COMPLETED NO
1503 YES DURING OUTPUTTwG :J510

“SVALID CELL*
NO L S THERE VALID
1507 | YES < CELL CAPABLE OF
m N~ OUTPUTTING?
. 1511 YES 1514
OUTPUT HEC Io:ggm HEADER
15 0~ CALCULATE AND vita
OUTPUT HEC CALCULATE AND] [cElL |
OUTPUT HEC

1505, 1509
OUTPUT DATA AS| [OUTPUT DATA AS | [GUTPUT DATA &S] 1912
SCRAMBLING SCRAMBLING SCRAMBLING
PAYLOAD PAYLOAD PAYLOAD 513 |
e e R |
1515 ;
'S THERE VALID '
QELL CAPABLE OF >0 :
OUTPUTTING ? :
1516 YES E
}
| WHEN FRAME IS FULL
OUTPUT 1920

CALCULATE AND EMPTY
OUTPUT HEC CELL

+ SAVE DATA FOR SCRAMBLING

|
|
|
I
|
I
I
I
I
{ OUTPUT HEADER] 1519
| PART
I
|
|
;
I
I
I
I
|
I
|

ggm L? ,@gA % 1547 . ?ﬁﬁ'ﬁuﬁé” REMAINED IN
PAYLOAD 1518 + SET FRAME WRITING POINT
b o e e e __ |

U.S. Patent Sep. 17, 1996 Sheet 14 of 21 5,557,609

OUTPUT DATA

PAYLOAD
ACCOMMODAT ION &%:gg#oomon
BUFFER F | G 1 6

INSTRUCTION FLOW
(INSTRUCTION STREAM)

\

mmmmm
T v [jeewfwe
LD T

{8 INSTRUCTION PIPE LINE OF R3000

5,557,609

Sheet 15 of 21

Sep. 17, 1996

U.S. Patent

1911}
AHON3N NIVKN
66.LI
SN8 3JHIVI
=16 L}
U-01L}
Us#
0/1 0/1
¢-01L}

NI 1NdLNO/ LNdNI

1G LI _

=902

d344n8
3114M/Qv3y

bl Zt 91 4

I-€02} i-¢0.}

JHOVI-@ | 3HIVO-I

— 1 INOILD3L3a| ==
22. X301 £cll
g2 L)
4IAMI3D3Y | 1 | y3ANNG
NI -~ NI
1272} 2l

, NOILONNI 0/1
=0 L 3N17 1nd1n0/ 1NdN NOI LYWYO NI

5,557,609

Sheet 16 of 21

Sep. 17, 1996

U.S. Patent

ol

033dS ONINNO4 T3
ALdW3 ONILSnray
803 ss3008d /‘

91

HILIMS 71130

1llllll|lllllllil|||llI.......ll...l....llIIIIII........llllllllllllllllllllll

5S3004d T13NNVHI

be6l . T ONIAIYQ

_h HYJ LN
ONIAING NOI LdNY¥YIL
NOILNUY3INI|

||

431NIOd ¥344ng tn_su/

d4344N8
JNVY S

€26} XA _~

A :
__

_ __ﬂm_,

| Y34 -—
i %mm ww_ wly ._“._a:o.vmm;z_om T30 LndNI 1NdNI
. i _ ‘ ~ LNdN! INIT
o _“ N . _ _ _ _ e V161
" @
; 1130 WVYO0 40
: NOILY3ISNI/ HONvESE ;/~ .
| SS3004d TANNVHY | —] | T 1 _
_ SS30048d Wv0 | — | | — _
_ _ !
_ A] [= L 1]] _
| G26l m AN __, |
“ “ _ 26l < 4344n8 NOWWO? ”
“ 43LNIOd ~_SNIMOANI Yzer
1 3OVH0LS 11 xmﬂx “
| $S3004d WVO ”
06 xm INJINOD 7130 -———- “

02 91 4 _ S

5,557,609

ONIAIYA

HOLIMS 1130
NOI LdNYY J1NI

1602 +4033dS ONINY0S 1139/
N ALAW3 ONlIsnray

\ dO4 NOILINNI

r

e wgeh ik Sl O S e Gt ks mEas S AR B e e s ek PR R AR el

_ l2£0¢

w
3 m zo_w_m_émmp,z S e
S m TR _q , 3N3ND Y3INIOD ¥344N8 ALdW3 \
—— TN g eior WAJTm]
7 o SAENEEENS T LR N anano 43INIOd T130 1ndino GB5 L AAdLNO
¢ob A = _
° . S "
” \ 1140 WVYO d0 .__.........__... ,.........,. |
= “ NOILU3SNI/ KONVEE ¢ , _ |
~ ' _
) st || = [[] R “
& — —_— | |
* m A= _ W _ T 1] “
m §e0e \ ﬂzow 7 ¥31dn@ NOWNOD
| YIINIOd . ~~ ONIXOANI 1202 “
| JOVEOLS T30 Vas L dSVL, - __
0074 ANIINOD 13D ~— 0dd WvO __
_ _
i
;

U.S. Patent

U.S. Patent , Sep. 17, 1996 Sheet 18 of 21 5,557,609

1933 {1931

CHANNEL PROCESS

PHYSICAL LAYER EMPTY CELL
PROCESS FORMATION

ATM LAYER PROCESS

1934

. -~ T~{4932 |

i | INVOKING) E

-] “"--..._________.--"/ :

E l i :
E | : i ..---""_""‘*j
i~ PROCESS N)
: (COMPLETiON); INVOKING)

1912 | GNTERRUPTION ?
ATM—SW)______ R S o= =S
BUFFER : : 5 | {(INVOKING)

I s S~
; ; =] ~PROCESS
E = :B START) ' E COMPLETIO
FRAME 5 : =T 5
PERIOD I i E ’
P N\ E | : PR CESS
RESTART) : ; (COMPLET 0N
' : :
; : : P
ATM—SW)_____ ' 5 = (|)
BUFFER ; j : : '(J‘IiVOKlE?’}
. i : | _—
1912 i : : : |7 PROCESS
, : 5 (COMPLET10
INTERRUPTION i 5 5 -
; : : :
INPUT : R 5
FRAME }----—- - ' e ~ :
BUFFER ! INVOKING,! :
- i “_________.—'" ! — —
ATN— ’ ' ; INVOKING
BUFEER R S . {INVOKING!
: l : : T~
1912 E N = '~ PROCESS
i (RESTART) ; (COMPLETIO
ke =

; /f N
PROCESS o INVOKING,
COMPLETION -

FI1G 21

2032

U.S. Patent Sep. 17, 1996
2041

OAM
PROCESS

NTERRUPTION

SW—ATM)
BUFFER
2012

INTERRUPTION

T VU NS SNy VT G D SR P S S Y r e b G eGP S T T N G NS b G5 G M TS SR S SED D SED O G N ap

201 | §
E \RESTARD
E i
«RESTAR?;
FRAME
PERIOD

INTERRUPTIO

\

l RESTART‘

H-’

UNTERRUPTIO

OUTPUT
RAME f------- -

BUFFER

i euldp
| -
"l'lE
T}
] -

e
—
!

i

1
|
|
i

"DRIVING\ .

ATM LAYER
PROCESS

PROCE
LCOMPLE

--"""--.

h-*

\

5\
:D

T

Sheet 19 of 21

CHANNEL PROCESS

EMPTY CELL
FORMATION

PHYSICAL LAYER
PROCESS

2033

’
I
\

(QRIVING‘

wme} -

5,557,609

2031

' 2034

=
0
<
<
G

S
INVOKE_ONLY
. WHEN EMPTY

PROCESSNCELL IS
COMPLETlON REQUIRED

ION

U.S. Patent

Sep. 17, 1996 Sheet 20 of 21 5,557,609

. RECEPTION SIDE TRANSMISSION SIDE
(INVOKING CONDITION] (DRIVING CONDITION)
EMPTY CELL FORMATION __ |PHYSICAL LAYER PROCESS +
(ATM—SW BUFFER CELL |EMPTY CELL FORMATION
FORMAT 10N REQUEST] (FRAME FORMATION

REQUEST)

PHYSICAL LAYER PROCESS + |ATM LAYER PROCESS

ATM LAYER PROCESS (SW—ATM BUFFER CELL
(FRAME PROCESS REQUEST)| PROCESS REQUEST)

OAM PROCESS
(SLEEP OTHER PROCESS)

OAM PROCESS
(SLEEP OTHER PROCESS)

F 16 23

| PROCESS (INVOKING CONDITION)

TRANSMISSION SIDE PHYSICAL LAYER
PROCESS + EMPTY CELL FORMATION

(FRAME FORMATION REQUEST)

RECEPTION SIDE EMPTY CELL FORMATION

(ATM—SW BUFFER CELL FORMATION
REQUEST)

TRANSMISSION SIDE ATM LAYER PROCESS
(SW—ATM BUFFER CELL PROCESS REQUEST)

RECEPTION SIDE PHYSICAL LAYER PROCESS +
ATM LAYER PROCESS

(FRAME PROCESS REQUEST)

OAM PROCESS (TRANSMISSION /RECEPTION}
(SLEEP OTHER PROCESS)

F 16 24

U.S. Patent Sep. 17, 1996 Sheet 21 of 21 d,557,609

2921 251 1 2031

LINE DECODING BIT LINE CODING
— ~ |SYNCHRONIZATION

NETWORK
“0'3%. €912 SYNCHRONIZATION] 11014

1

s i e _—“-“--ﬁ—_—_-“_-_-—_“__———— e SRl RN L

CHANNEL PROCESS FRAME FORMATION
/ TRANSMISSION

DATA RECEIVING

]

|

I

E 522

' [T FRAME

: SYNCHRONIZATION [~-2523 SCRAMBLE]

' [TCELL |

| $YNCHroNizaTION [4724 SECI

| . EMPTY CELL :

| GENERATION |

: 2539 2533 |

| 2525 — |

: HEADER CONVERSION| |

| |

: i
|

| 2526 :

|

: 2513

i

{

l

:

I

=

, k
H | [MESSAGE SUPERVISORY 1! [
| |_TRANSMISSION [*"|CONTROL PROCESS| ! |

|t1024] 2541 2642’ | 11025
i ATNG APPARATUS CONTROL 1 |

o155ty | L PROGESSOR iehrce o
|
I) 2543 OAM PROCESS 1

2502”7

F1G6G 25

3,557,609

1
SWITCHING APPARATUS FOR ATM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a switching apparatus
and, more particularly, to a switching apparatus for trans-
ferring an ATM (Asynchronous Transfer Model) cell input
from an input port at each interface point to an output port
at a desired interface point in accordance with header
information of the cell.

2. Description of the Related Art

A great deal of attention has been paid to an ATM
technique as a technique aiming at a high-speed transmis-
sion/switching technique. An ATM is a technique aiming at
implementation of hardware for packet switching by trans-
ferring a fixed-length short packet called a cell which carries
all sorts of information, thereby facilitating transfer/switch-
ing of information at a high speed. In order to realize an
ATM communication network for performing communica-
tion of information by using this scheme, it is essential to use
a switching apparatus for transferring a cell from a given
transmission line to a desired transmission line in accor-
dance with the header information of the cell.

In conventional switching apparatuses, however, the fol-
lowing problems are posed. For example, in a conventional
switching apparatus disclosed in U.S. Pat. No. 5,274,641 by
one of the present inventors, dedicated hardware compo-
nents for realizing the functions of physical and ATM layers
are arranged along a data flow in a channel. The array of
these dedicated hardware components connected in series
perform physical and ATM layer function handling by a
so-called pipeline scheme, in which each hardware compo-
nent processes a data string received from the preceding
hardware component. In a switching apparatus having such
an arrangement, since the function of each layer is realized
by a dedicated hardware component, the throughput is high.
However, the dedicated hardware component on each layer
increases the cost. Especially, an increase in cost is too high
to apply the above system to a communication system
currently attracting considerable attention as an ATM-LAN,
which is designed to offer transmission ability based on
ATM cells to terminals existing in a relatively closer area, or
a so-called low-speed interface such as a 6.3-Mbps interface
or a 20-Mbps interface which is used to accommodate
low-end PCs in an ATM communication network and
expected to be in great demand in the future.

In addition, a function realized by hardware lacks flex-
ibility with respect changes in specifications. The ITU-T
(International Telecommunication Unit) is enthusiastically
promoting the standardization of the specifications of ATM
communication networks. However, the standardization has
not been completed yet. New specifications are proposed
one after another.

If the function of each layer is realized by hardware in this
state, hardware must be newly designed every time the
specifications are changed or new specifications are pro-
posed. As a result, a large amount of hardware must be
designed, and the whole cost of the system is increased.

SUMMARY OF THE INVENTION

It 1s an object of the present invention to provide a
low-cost switching apparatus.

10

15

20

25

30

35

40

45

50

55

60

65

2

It is another object of the present invention to provide a
switching apparatus which can flexibly cope with changes in
specifications and can quickly cope with new specifications.

According to the present invention, there is provided a
switching apparatus for realizing processes executed by
various functions included in the switching apparatus by an
ALU and a sequencer by means of time-division multiplex-
ing.

With this arrangement, the amount of hardware required
for communication process functions can be reduced,
thereby realizing a low-cost switching apparatus. In addi-
tion, by making the operation of the sequencer program-
mable, the apparatus can flexibly cope with changes in
specifications and new specifications.

In a conventional switching apparatus, in executing a
physical layer function handling or an ATM layer function
handling, bit strings in a channel are supplied to a pipeline
without interruption, and the bit lines are transferred in the
pipeline without interruption. In contrast to this, in the
switching apparatus of the present invention, in order to
realize processes executed therein by time-division multi-
plexing, a bit string in a channel is temporarily held in a
storage means arranged -outside the sequencer, and the
sequencer sequentially performs layer function handling of
this bit string as a unit by using the ALU. In this method,
when a predetermined amount of bit strings in a channel is
held 1n the storage means arranged outside the sequencer,
each layer function handling routine may be started.

An inexpensive microprocessor is preferably used in
place of the ALU and the sequencer. The process speed of
the switching apparatus of the present invention can be
greatly increased by using pointers for the storage means in
transferring user information between the respective layer
functions which are subjected to time-division multiplexing
in the sequencer.

In addition, not only the function of the channel required
for each layer but also an OAM process of monitoring
whether the channel function operates normally can be
realized by the ALU and the sequencer by means of time-
division multiplexing.

Additional objects and advantages of the invention will be
set forth in the description which follows, and in part will be
obvious from the description, or may be learned by practice
of the invention. The objects and advantages of the invention
may be realized and obtained by means of the instrumen-

talities and combinations particularly pointed out in the
appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of the specification, illustrate presently
preferred embodiments of the invention and, together with
the general description given above and the detailed descrip-
tion of the preferred embodiments given below, serve to

~ explain the principles of the invention.

FIG. 1 is a block diagram showing the arrangement of a
switching apparatus according to an embodiment of the
present invention;

FIG. 2 is a functional block diagram showing the overall
arrangement of the switching apparatus including a proces-
sor switching process package;

FIG. 3 1s a block diagram showing the arrangement of an
interface in the embodiment;

FIG. 4 is a chart showing a reception side channel data
input format;

5,557,609

3

FIG. § 1s a flow chart showing reception side channel
frame synchronization process;

FIG. 6 is a flow chart showing reception side channel cell
synchronization process;

FIG. 7 1s a tlow chart showing conventional cell synchro-
nization process;
FIG. 8 is a flow chart showing cell synchronization

process in which a header 1s shifted byte by byte in a hunting
state;

FIG. 9 1s a flow chart showing cell synchronization
process in which data D1 to D4 are read out at once;

FIG. 10 1s a chart for explaining calculation for cell
synchronization;

FIG. 11 is a chart for explaining calculation for cell
synchronization with respect to r[1] in FIG. 10 in detail;

FIG. 12 is a schematic view showing a reception side
ATM layer tunction handling section;

FIG. 13 1s a flow chart showing a reception side ATM
layer function handling;

FIG. 14 1s a block diagram for explaining segmentation of
transmission side channel process subroutines;

FIG. 15 1s a flow chart showing a transmission side
channel physical layer function handling;

FIG. 16 is a flow chart showing data descramble process;

FIG. 17 1s a block diagram showing the arrangement of an
ATM switching apparatus according to another embodiment
of the present invention;

FIG. 18 is a chart for explaining the arrangement of an
instruction pipeline;
FIG. 19 is a view showing the arrangement of main parts

on the reception side of the switching apparatus in FIG. 17
and the flow of data; |

FIG. 20 is a view showing the arrangement of main parts
on the transmission side of the switching apparatus in FIG.
17 and the flow of data;

FIG. 21 is a chart showing the process timing on the
reception side of the switching apparatus in FIG. 17;

FIG. 22 1s a chart showing the processing timing on the
transmission side of the switching apparatus in FIG. 17,

FIG. 23 is a table for explaining assignment of priorities
to the respective processes;

FIG. 24 is a table for explaining assignment of priorities
to the respective processes; and

FIG. 23 1s a flow chart showing another flow of process
in a processor switching process package.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The first embodiment of the present invention will be
described below with reference to FIG. 1.

According to the switching apparatus shown in FIG. 1,
interface (INF) processors 102-1 to 102-n for performing
physical layer function handling as well as cell header
processing are respectively connected to the ports of a
hardware cell switch 103, With this scheme, interface points,

each having a relatively simple frame structure as the frame

structure of a physical layer, can be received at a lower cost.
In addition, since switching of cells is performed by a
hardware cell switch, a switching apparatus with a high
throughput can be provided.

According to the switching apparatus shown in FIG. 1,
interface point accommodation circuits 101-1, . . . , 101-n

10

15

20

25

30

35

40

45

50

35

60

65

4

and 1interface processors 102-1, . . . , 102-n, which corre-
spond to interface points 1, . . . , n, are arranged between the
hardware cell switch 103 and interface points 100-1, . . .,

100-n.

The interface point accommodation circuits 101-1, . . .,
101-n respectively receive bit strings from the interface
points 1,..., n and convert the signal level of the bit strings

to a signal level which can be fetched by the interface
processors 102-1, . . . , 102-n. In addition, the interface point

accommodation circuits 101-1, . . ., 101-n receive bit strings
from the interface processors 102-1, . . . , 102-n and convert
the bt strings into a signal level which can be transmitted to
the interface points 1, . . ., n. The interface processors 102-1,
. .. » 102-n respectively receive bit strings from the interface
point accommodation circuits 101-1, . . ., 101-n and convert
the bit strings into cell strings which can be transmitted to
the cell switch 103. The interface processors 102-1, . . .,
102-n also convert cell strings received from the cell switch
103 into bit strings which can be transmitted to the interface
point accommeodation circuits 101-1, . . ., 101-n

Each of the interface point accommodation circuits 101-1,
.. ., 101-n comprises: a line receiver 11011 for receiving a
bit string from a corresponding one of the interface points
100-1, . . ., 100-n and performing process such as level
conversion; a clock extractor 11012 for extracting a clock
for sampling a bit stnng from an output from the line
receiver 11011; a reception side input FIFO 11013 for
sampling a bit string from the line receiver 11011 in accor-
dance with a clock from the clock extractor 11012, tempo-
rarily holding the bit string, and outputting the bit string
according to a FIFO (first-in first-out) manner; a transmis-
sion side output FIFO 11014 for temporarily holding a bit
string sent from a corresponding one of the interface pro-
cessors 102-1, . . ., 102-n and outputting the bit string in
response to a clock formed by the clock extractor 11012
according to the FIFO manner; and a line driver 11015 for
performing process such as conversion of a bit string sent
from the transmission side output FIFO 11014 into a level at
the respective interface points.

Each of the interface processors 102-1, . . . , 102-n
respectively comprises: a processor 11021 for offering the
processing ability of a corresponding one of the interface
processors; a cache memory & MMU 11022 attached to the
processor 11021; a main memory 11023 attached to the
processor 11021; a reception side output FIFO 11024 for
temporarily holding a cell string which is formed upon
process performed by the processor 11021 and is to be
transferred to the cell switch 103; and a reception side input
FIFO 11025 for temporarily holding a cell string from the
cell switch 103 until reference is made from the processor
11021. The processor 11021 includes an ALU and a
sequencer used for channel-processing in the present inven-
tion, and further a channel processing procedure code
executed by the processor 11021 is written in the main
memory 11023.

The cell switch 103 switches cell streams sent from the
interface processors 102-1, . . ., 102-z in accordance with
routing tags added to the cells in the cell streams.

In the above embodiment, assuming that the processor
11021 has a bit width of 32 bits.

The operation of the switching apparatué of the embodi-
ment shown in FIG. 1 will be described in detail below.

A bit string input via a given interface point is converted
into a level in the switching apparatus by the line receiver
11011. At the same time, a clock for sampling the bit string
is extracted from the bit string by the clock extractor 11012. |

5.557.609

S

The reception side input FIFO 11013 samples the output
from the line receiver 11011 in accordance with the clock
extracted by the clock extractor 11012, and temporarily
holds the bit string to prepare for reference made from the
processor 11021.

The reception side input FIFO 11013 serves as one input
port for the processor 11021. The processor 11021 periodi-
cally refers to the reception side input FIFO 11013 to form
cells from the bit string held in the reception side input FIFO
11013 while performing operations for frame synchroniza-
tion and cell synchronization to be described below. First of
all, the processor 11021 performs the following process for
establishing frame synchronization with respect to the bit
string input from the reception side input FIFO 11013.

The processor 11021 searches the input bit string for a bit
pattern indicating the head of a frame. Upon finding the bit
pattern indicating the head of the frame, the processor 11021
checks whether an identical bit pattern is present one frame
ahead of the current frame. In the case that the bit pattern is
not found, the head of a frame cannot be found. Therefore,
the input bit string may be discarded in this case.

Assume that a bit pattern indicating the head of a frame
is found in the input bit string, and it is determined that
identical bit patterns sequentially appear at time intervals of
the frame length. In this case, the processor 11021 performs

an operation for searching for the head of a cell from the bit
pattern, 1.e., an operation of cell synchronization. This
operation is performed according to the ITU-T standard 1.
432, That is, the processor 11021 performs a predetermined
calculation with respect to a consecutively input 4-byte bit
string, and checks whether the calculation result coincides
with the next one byte. If they coincide with each other, it is
determined that the four bytes constitute the header portion
of the cell, the above one byte is an HEC value, and the
subsequent 48 bytes constitute the information portion of the
cell. As a result of this operation, the header of each cell in
the mput bit string can be recognized so that process can be
performed in units of cells. Similar to the case of frame
synchronization, while cell synchronization is not estab-
lished, input bit strings may be discarded.

When cell synchronization is established, the processor
11021 sequentially reproduces cells in the internal register.
Thereatter, the processor 11021 refers to the VPI/VCI values
of each cell in the internal register and a routing tag table set
in the main memory 11023 to acquire an output port number
indicating a destination, to which the cell is to be transferred,
and new VPI/VCI values at the corresponding output port.
The processor 11021 sends a routing tag, calculated from the
output port number according to the architecture of the cell
switch 103, to the reception side output FIFO 11024. The
processor 11021 then sends new VPI/VCI values obtained
from the routing tag table to the reception side output FIFO
11024. Subsequently, the processor 11021 sequentially
sends the PTI/CLP/HEC/information portion of input cells.
With this operation, cell streams subjected to switching
process in the cell switch 103 are sequentially input to the
reception side output FIFO 11024.

The cell switch 103 periodically refers to the reception
side output FIFO 11024 to receive a cell if it is held in the
reception side output FIFO 11024, and transfers the cell to
a desired output port in accordance with the routing tag
added to the cell. If no cell is held in the reception side
output FIFO 11024 when the cell switch 103 refers to the
reception side output FIFO 11024, the reception side output
FIFO 11024 may output an empty cell.

Each cell having undergone switching by the cell switch
103 1s transferred to the transmission side input FIFO 11025

10

15

20

25

30

35

40

45

30

33

60

65

6

to be temporarily held. If an empty cell is transferred from
the cell switch 103, the transmission side input FIFO 11025
preferably holds the empty cell as well.

The processor 11021 periodically refers to the transmis-
sion side input FIFO 11025 to store a cell, held in that FIFO
11025, in the internal register. Thereafter, the processor
11021 removes the routing tag from the cell and calculates
the HEC value of the cell and replace the old HEC value
with the calculated HEC value.

Upon completion of the above operation, the processor
11021 outputs the cell to the transmission side output FIFO
11014. In this case, the processor 11021 inserts bit patterns,
required for frame synchronization, in the cell at predeter-
mined intervals, With this operation, bit strings to be output
to the corresponding interface point are sequentially written
in the transmission side output FIFO 11014.

A bit string held in synchronism with a clock extracted by
the clock extractor 11012 is output from the output section
of the transmission side ontput FIFO 11014. The bit string
output from the transmission sided output FIFO 11014 is
input to the line driver 11015 to be converted into a level at
the corresponding interface point. The resultant bit signal is
then output to the interface point.

According to this embodiment, with the functions of the
reception side input FIFO 11013 and the transmission side
output FIFO 11014, variations in the processing time taken
for process performed by the processor 11021 can be
absorbed, and information can be input/output from/to each
interface at a predetermined speed.

In the above embodiment, in order to minimize the
number of accesses to the main memory 11023, the cell
from/to the interface point or the cell switch 103 is repro-
duced by the register in the processor 11021. If such
procedures are taken, it is hard to manage the execution of
the program. Therefore, the information from the interface
point or the cell switch 103 may be once stored in the main
emory 11023 in a number of information groups, and the
requested process may be executed for each information
group. By this method, the management of execution of the
program become easier as described after. o

Note that a communication network is constituted by a
plurality of switching apparatuses connected to each other.
In this case, network synchronization indicates that the
frequencies of operation clocks for all the switching appa-
ratuses constituting the communication network are accu-
rately matched with the frequency of one oscillator. Unless
network synchromzation is established, frame synchroniza-
tion and cell synchronization periodically step out, and the
overall operation of the communication network becomes
unstable.

In the switching apparatus shown in FIG. 1, since data is
output from the transmission side output FIFO 11014 in
response to a clock extracted from a bit string formed by a
corresponding switching apparatus, output of the data to an
interface point is performed in accordance with the fre-
quency of an operation clock for the corresponding switch-
ing apparatus. In this case, the switching apparatus shown in
FIG. 1 is not the master of network synchronization. In order
to cope with a case wherein the switching apparatus serves
as the master of network communication, the switching
apparatus may have a function of outputting a bit string to
an mterface point in synchronism with a clock reproduced
by the reception side input FIFO 11013, and also the
transmission side output FIFO 11014 may have a function of
outputting a bit string to an interface point in synchronism
with a clock reproduced by the switching apparatus includ-

3,557,609

7

ing the FIFO 11014. Furthermore, in this case, the switching
apparatus may have a function of matching the frequency of
the operation clock produced by itself with the frequency of
a clock extracted by a predetermined one selected frot
among the clock extraction functions that the switching
apparatus has. This function can be realized by a known

method called PLL.

The procedure for transmitting received data in the
switching apparatus of this embodiment will be briefly
described next with reference to the flow chart shown in
FIG. 2. This shows a method of once writing information
from the interface point or a cell switch in a main memory
11023, and thereafter performing necessary processes
sequentially.

FIG. 2 1s a functional block diagram showing the flows of
process in each reception side interface section and each
transmission side interface section in the switching appara-
tus of this embodiment. |

The process executed by the switching apparatus of this
embodiment is constituted by a channel process 101 and an
OAM (Operation And Maintenance) process 102.

The channel process 101 is constituted by two processes,
1.e., a reception side channel process of receiving data from
a reception side line via a reception side input section,
sequentially performing a physical layer function handling
and an ATM layer function handling with respect to the data,
and outputting the resultant data to the cell switch 103 via a
reception side output section; and a transmission side chan-
nel process of receiving data from the cell switch 103 via a
transmission side input section, sequentially performing an
ATM layer function handling and a physical layer function
handling with respect to the data, and outputting the result-
ant data to a transmission side line via a transmission side
output section.

The reception side channel process will be briefly
described below.

In the reception side input section, first the line decoding
121 is executed, and then a network clock is extracted from
a received signal, and bit synchronization is established. The
signal is converted into a data string as a bit expression and
stored once in the reception side input FIFO 11013.

The above process is realized by hardware instead of
software.

The bit string is read out from the reception side input
FIFO 11013 and an ATM cell is extracted from this bit string
upon a physical layer function handling including, e.g.,
frame synchronization 122, cell synchronization 123, and
descramble process 124 for each cell payload section. There-
after, an ATM layer function handling including header
conversion 125, routing tag addition 126 for intra-switch
routing, and flow rate monitoring (policing) 127 is per-
formed, and the cell is output to the cell switch 103 via a
reception side output FIFO 11024. In other words, the
processes including the frame synchronization 122, cell
synchronization 123, descramble process 124, header con-
version 125, R-TAG addition 126 and policing 127 are
executed by the processor 11021 in a time division multi-
plexing.

The transmission side channel process will be briefly
described below.

On the transmission side, a cell having undergone switch-
ing by the cell switch 103 is transferred to the transmission
side channel process via the transmission side input section.
The cell data is subjected to an ATM layer function handling
including shaping 137, routing tag deletion 136, and header

3

10

15

20

25

30

35

40

45

50

55

60

65

3

conversion 133. In addition, the cell data is subjected to a
physical layer function handling including scramble process
134 of a cell payload section, HEC (Header Error Control)
field formation 133 for the cell header and frame formation
132, and transferred to the transmission side output FIFO
11014. Then, the data is subjected to line encoding 131, and

the resultant bit data is output to the transmission side line.
In this case, the line encoding 131 is executed by hardware.

Also, the shaping 137, R-TAG deletion 136, header conver-
sion 135, scramble 134, HEC formation 133 and frame
formation 132 are executed by the processor 11021 in a
time-division multiplexing.

Programs for performing these channel processes with
respect to data obtained by mapping cells conforming to the
ITU-TS recommendation 1. 432 into a frame conforming to
the TTC standard JT-G. 703-a in accordance with the
I'TU-TS recommendation G. 804 will be described in detail
below with reference to the reception side channel process
and the transmission side channel process, respectively. It is
preferable that each program be written with a high-level
language such as C.

Subroutines constituting the reception side channel pro-
cess will be described in detail first.
Segmentation of Subroutines

When a plurality of processes are to be performed with
respect to some data by software, the processes cannot be
periormed at once. For this reason, the following method
may be employed. First of all, the data is divided into pieces
each having a proper size. Then, a plurality of processes are
sequentially performed with respect to one piece of data.
When a series of processes is completed, the same processes
are performed with respect to the next piece of data. The
flow of subroutines sequentially performed with respect to a
certain block of data, the flow of data, and the flow of
information such as a pointer and an effective cell will be
described below with reference to FIG. 3. Referring to FIG.
3, each thick arrow indicates the flow of data, and each thin
arrow denoted by reference symbol P indicates the flow of
a pointer.

In the reception side input section, received data, which is
converted 1nto a data string as a bit expression and stored in
a reception side input FIFO 11013, is written as a block of
a predetermined amount, into a frame data buffer 209 in the
main memory 11203 inside each of the interface processors
112-1...112-n by areceived data input subroutine 203. This
received data input subroutine 203 transfers a pointer indi-
cating the position of the data written in the memory to a
frame synchronization subroutine 204 as the next subrou-
tine. .

Upon reception of the pointer from the received data input
subroutine 203, the frame synchronization subroutine 204
reads out only a necessary portion of the data in the frame
data buffer 209 and performs process. That is, while frame
synchronization is not established at all, all the data are
sequentially read out and checked, starting from the head of
the data. After frame synchronization is established, only a
portion corresponding to a frame synchronization bit is read
out and checked. The position information of the frame
synchronization bit and the like obtained after frame syn-
chronization are transferred to a cell synchronization sub-
routine 208 as the next subroutine.

In the cell synchronization subroutine 205, only a neces-
sary portion of the data in the frame data buffer 209 is read
out and cell synchronization and the like are performed on
the basis of the information received from the frame syn-
chronization subroutine 204. More specifically, while cell
synchronization i1s not established, all the cell data of the

5.557.609

9

data 1s sequentially read out, starting from the head of the
cell data, to search for the header of each cell. After cell
synchronization is established, only the header portion of
each cell is read out to perform error detection and correc-
tion in the header portion as described in 1. 432. In addition,
after cell synchronization is established, the readout data is
written in a cell header accommodation buffer 210 for
collecting only cell headers in the main memory 11023, with
the first four bytes of the header being grouped into one
word.

After the cell synchronization subroutine 205, two sub-
routines, 1.e., a descramble subroutine 206 and ATM layer
function handling subroutine 207, are performed.

Information indicating the number of cells in the data in
the frame data buffer 209, the start position of each cell, and
the validity of each cell is transferred from the cell synchro-
nization subroutine 205 to the descramble subroutine 206. In
the descramble subroutine 206, the payload section of each
cell in the frame data buffer 209 is read out on the basis of
the information. Descramble process is performed with
respect to the readout data, and the data after the descramble
process 1s written in a cell payload buffer 212 in units of
cells. |

Information indicating the position of each header and the
number of headers stored in the cell header buffer 210 is
transferred to the ATM layer function handling subroutine
207. In the ATM layer function handling subroutine 207, the
cell headers in the cell header buffer 210 are read out on the
basis of the information. Policing, routing tag addition,
header update process, and the like are performed with
respect to the readout headers, and the new headers are
written in a buffer 211 for storing headers with routing tags.

Information indicating the position of each cell payload
and the position of each header with a routing tag is
transferred from these two subroutines 206 and 207 to a
received data output subroutine 208 as the last subroutine. In
the data output subroutine 208, the cell data are synthesized
and output.

The output cell data is temporarily held in the reception
side output FIFO 11024 connected to the cell switch 103, as
shown in FIG. 1. The held cell data are sequentially read out
from the reception side output FIFO 11024 at a speed at
which the cell switch 103 receives cell data.

With this subroutine configuration, unnecessary exchange
of data between the subroutines can be omitted, and the
number of times of data fetching and storing operations,
which impose a heavy load on the processor 11201, can be
decreased, thereby realizing high-speed process.

Since the subroutines are independently performed, and a
pointer and the like for data are exchanged between memo-
ries, each subroutine can be easily replaced with hardware.
For example, hardware may be used to perform process up
to frame synchronization, and software may be used to
perform the subsequent processes. Alternatively, hardware
may be used to perform process up to the descramble
process. Such combinations of hardware and software pro-
cesses can be relatively freely selected. |

Each procedure and each subroutine will be described in
detail next.

Reception Side Input Section

In the reception side channel data input section, data input
via an interface point is loaded into an internal register (not
shown) by using a clock extracted from the data itself by a
clock extracting circuit. The data is then serial/parallel-
converted by a serial/parallel converter and stored in a
reception side input FIFO 11013.

Received Data Input subroutine 203

10

15

20

25

30

35

40

45

50

53

65

10

According to the frame structure based on the TTC
standard JT-G. 703-a, which is used in this embodiment,
frame synchronization can be established once by using one
multi-frame consisting of four 789-bit frames. Each process
(each subroutine) performed by the processor 11021 with
respect to received data is performed for each data corre-
sponding to eight multi-frames, i.e., 25,248 bits or 789
words, as a unit (the number of multi-frames is not limited
to eight). In this case, the amount of data to be loaded into
the frame data accommodation buffer 209 at a time is set to
be 814 words, which is the sum of 789 words and 25 words
as a head portion of 789-word data to be loaded next, so as
to allow recognition of two frame sync signals in one
multi-frame even between loaded data and to load up to the
last bit of a cell in which the last bit of 789-word data is
included. That is, as shown in FIG. 4, input serial data is
divided into 789-word data, and adjacent 789-word data are
loaded, with 25-word data therebetween being loaded twice.
Such 814-word data loaded at a time will be referred to as
a data block hereinafter.

The received data input subroutine 203 writes this data
block in the frame data buffer 209, and informs the other
subroutines of the position of the data in the frame data
buffer 209.

Frame Synchronization Subroutine 204

Frame synchronization is performed first with respect to
the data block loaded into the frame data buffer 209, and
each frame bit, the position of each user information transfer
area, and the validity of each frame are checked. In order to
allow the use of information indicating the result of frame
synchronization and other information in the next cell syn-
chronization subroutine or the frame synchronization sub-
routine for the next data block, the following three variables
are defined: a frame synchronized state display variable, an
effective frame start display variable, and a frame synchro-
nizing start display variable.

The frame synchronized state display variable indicates a
frame synchronized state or the number of consecutively
received frames having false frame bits. If the frame syn-
chronized state display variable is “—4”, it indicates that
frame synchronization is not established at all. Similarly,
“—3" to "-1” as the frame synchronized state display vari-
able indicates a state wherein three consecutive correct
frame sync signals have been checked for frame synchro-
nization (each absolute value indicates the number of correct
sync signals to be checked further for establishing frame
synchronization); and “0” to “6”, a state wherein frame
synchronization is established (each value indicates the
number of consecutively received frames having false sync
signals).

The effective frame start display variable indicates the
head of an effective frame determined upon frame synchro-
mzation. Cell synchronization is performed with respect to
data following data corresponding to this value. If the value
1s 0, it indicates that all the data are effective. If the value is
26049, it indicates that none of the data are effective.

The frame synchronizing start display variable indicates
how many frame sync signals have been checked. If this
value of this variable exceeds 25248, 25248 is subtracted
from the value. The resultant value is then set as a new frame
synchronizing start display variable, and the frame synchro-
nization subroutine is completed. This new frame synchro-
nizing start display variable indicates the point at which
frame synchronization is to be started with respect to the
next data block.

The frame synchronization subroutine 204 to be actually
executed will be described next with reference to FIG. 5.

3,557,609

11

When a new data block is written in the frame data buffer
209, the final frame synchronized state in the immediately
preceding data block can be determined from the value of
the frame synchronizing start display variable.

If the frame synchronizing start display variable is “—4”,
frame bit synchronization pattern searching 501 is per-
formed with respect to this new data in units of bits. That is,

3

the data in the frame data buffer 09 is sequentially read out

in units of words from the beginning, and frame bit syn-
chronization pattern searching is performed with respect to
the readout data.

If correct synchronization patterns are found in two frame
bits, the frame synchronizing start display variable is incre-
mented by one to search the next multi-frame, and the flow
advances to a presynchronization process state 502 in which
1t 1S checked whether two synchronization patterns are
present at the corresponding positions. In performing this
check, only necessary data in the frame data buffer 209 is
read out. If there are correct synchronization patterns, the
frame synchronizing start display variable is further incre-
mented by one to check synchronization patterns in the next
multi-frame. If false synchronization patterns are detected,
the frame synchronizing start display variable is set to be
“—4” to return to the bit-by-bit searching 501.

If frame synchronization is established after correct syn-
chronization patterns are consecutively detected three times,
the start bit of the corresponding frame is set as the frame
synchronizing start display variable, and a synchronized
state 503 1s set. At this time, the frame synchronized state
display variable is “0”.

In the synchronized state 503, it is checked whether
correct synchronization patterns are present at frame bits in
all the multi-frames in the data. If an incorrect multi-frame
1s detected, the frame synchronized state display variable is
incremented by one. When a correct frame arrives, the frame
synchronized state display variable is set to be “Q”. If the
variable reaches ““7”, the variable is set again to be “~4”, and
the effective frame start display variable is set to be “26049”
indicating the end of a frame. The flow then returns to the
synchronization pattern searching 501 (searching for frame
bit synchronization patterns in units of bits).

When these procedures are performed until the frame
synchronizing start display variable exceeds a value corre-
sponding to the 789th word of the data block, 25248 is
subtracted from the value of the frame synchronizing start
display variable (step 504), and the frame synchronization
subroutine 204 is completed.

Cell Synchronization Subroutine 205

By performing frame synchronization, cell information
areas in the data in the frame data buffer 209 and synchro-
mzation for each byte in cell data can be identified. Cell
synchronization is then performed with respect to the data in
the areas in which the cell information is present, and the
position of each cell header and the position of each cell
payload are clarified, and correction/detection of errors in
header portions is performed.

In order to allow the use of information indicating the
result of cell synchronization and other information in the
next descramble process or cell synchronization subroutine
for the next data block, the following variables are defined:
a cell synchronized state display variable, a synchronization
cell count, a synchronization cell start bit array, a cell start
bit, and an ineffective cell display array.

The cell synchronized state display variable indicates a
cell synchronized state, the number of invalid cell headers
received, and the like similar to the case of frame synchro-
nization. If the cell synchronized state display variable is

10

15

20

25

30

335

45

50

55

60

65

12

“—77, it indicates that cell synchronization is not established
at all (a hunting state). Similarly, “~6” to “~1” as the cell
synchronized state display variable indicate a state wherein
six consecutive correct cell headers have been checked for
cell synchronization (pre-synchronized state); “0”, a state
wherein cell synchronization is established and a header
error correction mode 18 set; and “1” to “6”, a state wherein
cell synchronization is established and a header error detec-
tton mode is set. In the pre-synchronized state, the value of
the cell synchronized state display variable indicates the
number of valid cells required to achieve a synchronized
state. In the header error detection mode in a synchronized
state, the value of the cell synchronized state display vari-
able indicates the number of consecutively observed cells
having invalid headers.

The synchronization cell count indicates the total number
of cells existing at portions, in the data block, in which cell
synchronization is established. The start bit of each of these
cells is indicated by the synchronization cell start bit array.
The cell start bit always indicates the start bit of a tareget cell
upon cell synchronization. Cell synchronization is per-
formed up to a cell including the last bit of the 789th word
of the data block. That is, when the cell start bit exceeds
25248, the cell synchronization subroutine is completed. At
this time, a value obtained by subtracting 25248 from the
value of the last cell start bit is held as a new cell start bit,
which indicates the start bit of a cell, of the next data block,
from which cell synchronization is to be started.

The 1neffective cell display array indicates the ordinal
number of a cell, of the above synchronization cells, which
1s determined to be invalid because of a header error.

The cell synchronization subroutine 205 to be actually
executed will be described below with reference to FIG. 6.

When frame synchronization for a new data block loaded
into the frame data buffer 209 is completed, the cell syn-
chronization subroutine 205 is started. If the value of the
valid frame start display variable from the frame synchro-
nization subroutine 204 is 26049, it is determined that
invalid frame is included in the data block (step 600a). In
this case, the cell synchronization subroutine 205 sets the
value of the cell synchronized state display variable to be
“~7” and terminates the process.

If the value of the frame synchronized state display
variable 1s “07, it is determined that all the frames of this
data block are valid (step 600b). In this case, process is
started from a state based on the value of the cell synchro-
nized state display variable in the cell synchronization
subroutine 205.

If the previous cell synchronization subroutine 205 ends
in a pre-synchronized state 602 or a synchronized state 603,
data based on the cell start bit from the previous cell
synchronization subroutine 208 is read out from the frame
data buffer 209, and cell synchronization is performed with
respect to the data.

In a hunting state 601, data is loaded word by word,
starting from the head of an effective frame, and a search for
the header of each cell is performed in accordance with byte
synchronization provided by frame synchronijzation. If the
value of the valid frame start display variable indicates a
frame located halfway in the data block, process is started
from the data of the frame in a hunting state. If a correct cell
header portion is found in the hunting state 601, the value of
the frame synchronized state display variable is set to be
“—6” to set the pre-synchronized state 602.

In the pre-synchronized state 602, a header is checked at
the cell period. If a correct header is determined, the cell
synchronized state display variable is incremented by one. If

5,557,609

13
a false header is detected, the cell synchronized state display
variable is set to be “—~7” to change the current state to a

hunting state. When six consecutive correct headers are
determined, and the cell synchronized state display variable
becomes “0”, the error correction mode 603 in a synchro-
nized state is set.

In the error correction mode 603 in the synchronized state,
a cell header is checked at the cell period, and the value of
the synchronization cell count is incremented. The start bit
of the cell is recorded on an element indicated by the current
value of the synchronization cell count of the synchroniza-
tion cell start bit array, and the cell header is stored in the cell
header buffer 210. If an invalid cell header is observed, the
value of the synchronization cell count is incremented by
one and recorded on the synchronization cell start bit array.
Thereafter, an attempt is made to correct the cell header. If
the attempt succeeds, the header is stored in the cell header
buffer 210. If the attempt fails, the cell is determined as an
invalid cell, and the current value of the synchronization cell
count is recorded on the invalid cell display array. In
addition, an empty cell is output to the cell header buffer
210. If an invalid cell header is observed, the cell synchro-
nized state display variable is incremented by one, and the
flow shifts to an error detection mode 604 in a synchronized
state.

In the error detection mode 604 in the synchronized state,
a header is checked at the cell period, and the synchroniza-
tion cell count is incremented by one, similar to the correc-
tion mode. The synchronization cell start bit is then
recorded. If a correct header is observed, the cell synchro-
nmzed state display variable is set to be “0” to change the
current state to the error correction mode 603 in the syn-
chronized state. If an invalid header is observed, no attempt
1s made to correct the header, and the cell is recorded, as an
invalid cell, on the invalid cell display array. The cell
synchronized state display variable is then incremented by
one. If the value of the cell synchronized state display
variable reaches “7”, the cell synchronized state display
variable 1s set to be “~7” to change the current state to the
hunting state 601.

In any state, when the start bit of a cell or a byte for
checking hunting exceeds the 789 words of the data block,
the cell synchronization process is completed. In this case,
25248 is subtracted from the current value of the cell start bit
to set a new cell start bit, and the subroutine is completed.

Several methods of actually establishing cell synchroni-
zation and performing header error correction may be con-
sidered. For example, a method realized by hardware is
disclosed in Jpn. Pat. Appin. KOKAI Publication No.
4-363927. According to this method, with regard to cell
synchronization, a portion assumed to be a header is loaded
bit by bit or byte by byte, and division according to GF(2)
is performed, thereby checking whether the value of a total
of five bytes is a desired value. When error correction is to
be performed in a synchronized state, a result of division
with respect to five bytes is set as an initial value, and the
same division is repeatedly performed in units of bits or
bytes, thereby finding a correction position.

As a cell synchronization method used in this embodi-
ment, a method of applying the above cell synchronization
method to a software program will be considered. As indi-
cated by the flow chart shown in FIG. 7, while cell syn-
chronization is established, consecutive 1-byte data D1, D2,
D3, D4, and DS of a header portion are sequentially read out
(steps 701 to 70S), and a division process 706 and addition
on GF(2), i.e., an exclusive OR process (707) for each bit,
are alternately performed. Finally, determination 708 is

10

15

20

25

30

35

40

45

50

55

65

14

performed to determine whether the header portion is a
header. In this case, a read operation must be performed five
times for one process.

If each division process 706 is expressed as a polynomial
as an input is defined as DI and an output as Do, the
operation is represented as follows:

DO=D1 * X"8 modG (X) (1)
for G(X)=X"8+X"2+X+1

In a hunting state, as described above, determination on a
cell header is performed while each data is shifted by one
byte. Therefore, the number of times of read process can be
decreased by properly using an immediately preceding pro-
cess result, as in the method disclosed in Jpn. Pat. Appln.
KOKALI Publication No. 4-363927.

Assume that process for cell synchronization is performed
with respect to five consecutive bytes, i.e., data D1, D2, D3,
D4, and DS at a given timing. In this case, a value obtained
by division and an exclusive OR process is H5. Processing
for data D2, D3, D4, DS, and D6, each shifted from a
corresponding one of the above data by one byte, is per-
formed according to the flow chart shown in FIG. 8 as
follows.

First of all, the data D1 is read out again (step 810), and
a division process 802 different from the previous division
process 1s performed. Letting DI be an input and DO be an
output, the division process 802 is expressed as a polynomial
as follows:

DO=D1 * X"32 modG (X) (2)

An exclusive OR 803 between this result and HS is
calculated for each bit, and a division process B 804
expressed by equation (1) is performed with respect to all the
exclusive ORs. In addition, an exclusive OR 806 between
the above result and the readout data D6 is calculated. If the
resnltant value is equal to a desired value (“01010101” in
binary notation), it is determined that the corresponding
portion is a header. Otherwise, it is determined that the
portion is not a header.

According to this scheme, the number of times of read
process 1S two, as against five in the case shown in FIG. 7,
thus reducing the process amount.

In the invention disclosed in Jpn. Pat. Appln. KOKAI
Publication No. 4-363927, however, the data width per read
operation is limited to eight bits. If, therefore, a high-
performance CPU such as a 32- or 64-bit CPU is to be used
as 1n this embodiment, a deterioration in efficiency occurs.

For this reason, when a 32-bit CPU is to be used, a method
of reading first four bytes at once may be used. In this
method, the number of times of read process can be
decreased, as compared with the method of performing read
process five times.

For example, as shown in FIG. 9, first of all, first four
bytes D1, D2, D3, and D4 of a header are read out at once
(step 901). A division process 902 is then performed with
respect to the readout data. It takes much time to perform
this division process by sequentially dividing 32-bit data by
G(X) of equation (1). This cancels out the advantage
obtained by decreasing the number of times of read process
to two. Considering the above division process for each bit,
the tollowing relationship is found between each bit and the
corresponding result. Each bit of the bytes D1 to D5 is

expressed as follows:
D1=(d{1}, d[2], .., d[8]) (32)

D2=(D(9], d[10], . . , d[16])

(3b)

5,557,609

15
D3=(D(17], d[18], . ., d[24]) (3c)
D4=(D[25], d[26], . . ., d(32)) (3d)
D3=(D(33}], d[34], . . ., d{40D (3e)

Eight bits r[i](i-:l to 8) as a result of division are sequen-
tially expressed as follows, starting from the upper bit:

ril] = dl2]+d[3] +d[5]+d[10] +d[12] + {4a)
d(14] 4+ d{15] +d[17] + d[19] + d[21] +

d(25] + d[26] + d{27] + d[33]

r(2] d(3] +d[4] +d[6] +d[11] +d[13] +
d[15]) + d[16] +d[18] + d[20] + d[22] +

d[26]) + d[27] + d[28] + d[34

(4b)

3] dl1] +d{4] +d[5]+d[7] +d[12] +
d(14] +d[16} + d[17] + d[19] +d|21] +

d(23] + d[27] + d[28] + d[29] + d[35]

(4c)

Il

r(4] dl1] +d[2) + d[5] + d|6] + d[8] +
d[13] + d[15] +d{17] + d[18] + d[20] -+

d[22] + d[24] + d[28] + d[29] + d[30] + d[36]}

(4d)

21 +d[3] +d{6] +d[7] +d[9] +
14] + d[16] +4d[18] + d[19] + d[21] +

d (de)
d

d[23] + df25]) + d{29] + d[30] + d[31] + d[37]

d

d

r[5]

r[6] 3] +df4) +d(7]) +d[8] +d[10] +
15} + df17] + d[19] + d[20] + d[22] +

d[24] + d[26] + d[30] + d[31] + d[32] + d[38]

(4f)

7] = d2]+d[3] +d{4]+d]|8] +d[9] +
d{10] + d[11] +d[12] + d[14] + d[15] +
d{16] +d[17]) +d[18] + d[19} + d[20] +
d(23] + d[26] + d[31] + d[32] + d[39]

(4g)

r(8] d{1] + d[2] + d[4] +d[9] + d[11] +

d{13]) +d[14] + d[16] + d[18)} + d[20] +
d(24] + d[25] + d[26] + d[32] + d[40]

Note that “+” represents an exclusive OR for each bit.

Programming, therefore, may be performed such that
these bits are directly added by exclusive OR process using
the above relationship, instead of performing a general
division process, to obtain the same result as that obtained
by the division process. With this programming, the pro-
cessing time can be greatly shortened.

More specifically, as shown in FIG. 10, first of all, the 32
bits of the bytes D1, D2, D3, and D4 of the header are read
out. The readout bits are shifted bit by bit by a maximum of
seven bits to the left and a maximum of two bits to the right.
The first bit of each of the bytes D1 to D4 which are not
shifted is set for rf1]. Similarly, the second and subsequent
bits are set for 1[2], . . . With this operation, exclusive OR
process 1s performed upon extraction of only necessary data.

When this process is completed, the data D5 is read out.
Since d[33], d[34], . . . of the data D5 can be sequentially
substituted 1n r[1], r2], . . . , values 1[1]to r[8] for the final
header determination can be obtained by simply calculating
the exclusive OR between eight bits obtained as a result of
the exclusive OR of the above 32 bits and each bit of the data
D3. If these eight bits are “01010101”, it is determined that
the corresponding portion is a header portion.

The program for the process shown in FIG. 10 will be
described in more detail below. FIG. 11 shows only a portion
for obtaining r[1]. As described above, four register points

(4h)

5

10

15

20

25

30

35

40)

45

50

33

60

65

16

for r[1] are respectively set at the leftmost bits of D1 to D4.
In a register 1101 which is not subjected to a shift operation,
d[1], d[9], d[17], and d[25] as the first bits of D1 to D4 are
seen. By sequentially shifting this register to the left and the
right, data from d[1] to d[27] can be seen.

First of all, only d[2] and d[3] are extracted from a register
1102 corresponding to D1 and are exclusive-ORed. In this
case, d[1] is ignored. Similarly, d[5]+d[10] is calculated in
a register 1103 corresponding to D2; d[12]+d[14]+d[15])+d
[17]+d[19], in a register 1104 corresponding to D3; and
d[21]+d[25]+d[26]+d[27], in a register 1105 corresponding
to D4. In addition, the outputs from these four registers and
d[33]as the first bit of DS are exclusive-ORed, thereby
obtaining r[1]. Other values r[i](i=2 to 8) are obtained in the
same manner as described above.

In the register corresponding to r[1], d[28] to d[32] are not
seen. This 18 because these bits need not be used as data
obtained as a result of division process. In order to cause all
the bits (d[1] to d[32]) to be seen, the register must be shifted
by seven bits each to the left and the right. As described
above, however, by omitting portions having no influences,
the amount of shift to the left can be reduced to two bits.

In these data processes, calculation for data which is
repeatedly used a certain number of times may be performed
in a register by performing register variable declaration as in
C language. With this operation, loading of data from a
memory can be reduced in frequency. As a result, the process
speed can be increased.

As a method of performing error correction, a technique
of performing a division process by using equation (1), as
disclosed in Jpn. Pat. Appln. KOKAI Publication No.
4-363927, may be used. In this method, however, readout
operation must be performed five times again. For this
reason, cumbersome process must be performed on soft-
ware. |

It 1s known that when r[i]J(i=1 to 8) are determined,
whether error correction can be performed and which bits
need to be corrected are uniquely determined. For this
recason, a table indicating possibilities of correction and
correction bit patterns with respect to all combinations (64)
of r[i]is prestored. If obtained values r[i]Jdo not coincide with
“01010101”, a correction pattern is obtained by referring to
the table. With this procedure, error correction can be
instantly performed. As is apparent, however, an essential
condition for this operation is that cell synchronization is
established, and a mode capable of error correction is set.
Descramble Subroutine 206

Since the number of synchronization cells included in the
data block and the start bit of each cell are known owing to
the cell synchronization subroutine 205, cell payload data is
read out from the frame data buffer 209 in accordance with
such information. The readout data is written, 12 words at a
time, in the cell payload buffer 212 in units of cells while
descramble process 214 is performed.

In order to perform descramble process of a given bit of
cell payload data, data on the cell payload portion which has
arrived 43 bits before the given bit is required. For this
reason, the last two words of the payload portion of the last
cell of the previous data block are stored as descramble data.

An actual operation is performed as follows.

The first 32 bits of the payload portion of the first cell of
the data block are extracted and written in a register. The
written data and descramble data are shifted to the left and
the right to calculate the exclusive OR between each bit and
data 43 bits before the bit. The obtained data is written in a
payload output memory. The first 32 bits written in the
register are deleted after they are used as descramble data for

5,557,609

17

the subsequent two descramble processes. With regard to the
data used for this descramble process, register variable
declaration may be performed to decrease the number of
times of load process of data, thereby realizing high-speed
process. |

When the descramble process of the last one word of the
payload portion of the last cell of the data block is completed
by repecatedly performing the above operation, the
descramble process of this data block is completed. At this
time, the last two words of this cell are stored to be used for
the descramble process of the next data block.

Finally, empty cell data is written in the payload portion
of each mvalid cell in accordance with the invalid cell
display array.

Alternatively, with respect to an invalid cell, the
descramble process may not be performed and a fixed
pattern may be written in the cell payload buffer 212.

In a descramble method based on the conventional con-
cept of hardware, descramble process is performed in units
of bits or bytes. However, the payload portion of one cell is
constituted by 48 bytes, and such large amount of data must
be read out at least twice for descramble process. For this
reason, as in this embodiment, descramble process is per-
formed 1n units of 32 bits corresponding to the maximum
data width of the processor 11201 so that the number of
times of read process of data from the memory can be
greatly decreased, thereby minimizing the software process
armount.

ATM Layer Process subroutine 207 |

As shown in FIG. 12, an ATM process subroutine 207 is
constituted by a reception side ATM layer function handling
section 1201 and a header conversion table 1202. The
reception side ATM layer handling section 1201 retrieves
information corresponding to the header of an ATM cell,
extracted by the cell synchronization subroutine 205, from
the header conversion table 1202, performs an ATM process
such as header conversion, intra-switch routing tag addition,
and flow rate monitoring (policing) on the basis of the
information, and outputs the resultant data to a received data
subroutine 208.

In the header conversion table 1202, information required
for the ATM layer function handling is stored. More spe-
cifically, new VPI/VCI values or connection identifiers for
copy connection, intra-switch path information (routing
tag), parameters for policing, and arrival times of a prede-
termined number of cells in the past (counter values; Tp(n))
are stored in the header conversion table 1202. The new
VPI/VCI values and the values of routing tags set in a call
setting operation are not changed until the setting is
changed. Declared values (T0, X0, T1, X1) for policing are
not changed either. The arrival time information is updated
every time corresponding VPI/VCI values arrive.

The reception side ATM layer function handling section
1201 will be described below with reference to the flow
chart shown in FIG. 13. |
Exchange of Data with Physical Layer; Step 1301

An ATM cell extracted by a reception side physical layer
function handling section is divided into a cell header and a
payload portion. The reception side ATM layer function
handling section 1201 receives only the header portion of
the ATM cell. The payload portion is directly sent to the
received data output subroutine 208. Assume that the data
width 1s 32 bits. In this case, since the ATM cell header
consists of five octets, two words are required to transfer the
header.

For this reason, the header to be sent from the physical
layer to the ATM layer is reduced to one word by deleting

10

15

20

25

30

35

40

45

50

55

60

65

18

the HEC field which is not used for processing after the
reception side physical layer. If the data width is 64 bits or
more, the header can be accommodated in one word without
deleting the HEC field. If, however, a control information
field (e.g., a routing tag and copy information) for the ATM
switch 1s to be added, the HEC field may be deleted to allow
a large field.

Count-Up Operation for Cell Count; Step 1302

The reception side ATM layer function handling section
1201 performs flow rate monitoring (policing). In order to
perform policing, however, the arrival time of each cell oran
clapsed time between a given cell and a previous cell having
the same VPI/VCI values must be known. Since the headers
of all input ATM cells (valid, invalid, and empty cells) are
sent from the cell synchronization subroutine 205 to the
reception side ATM layer function handling section 1201,
the arrival time of each cell can be known as a time based
on a l-cell time as a unit of time by counting all the cells.
With this method, an accurate cell arrival time can be known
at this interface without using clocks independent from
clocks on the transmission path which are used for the
processor of the switching apparatus, and the like. Even if,
therefore, the interface speed is changed, the program need
not be changed. A real time can be obtained by multiplying
this counter value by a 1-cell time.

If, in this case, the data width for a cell counting operation
1s m bits, the counter value is incremented one by one from
“0”. When the counter value becomes 2"m—1, the counter
value 1s reset to “0” and incremented again.

Extraction of VPI/VCI Values; Step 1303

VPI/VCI values required for routing and policing are
extracted from received header information. A VPI value can
be obtained by shifting header data (HD) received from the
physical process section 2 to the right by (the bit length of
a VCI value)+(4 bits), and masking a portion other than the
bit length of the VPI value. A VCI value can be obtained by
shifting the HD to the right by 4 bits and masking a portion
other than the bit length of the VCI value. As described
above, even if the bit lengths of the VPI/VCI values change,
such changes can be simply handled by only changing
parameters for the bit lengths of the VPI/VCI values.
Conversion Table Address Calculation; Step 1304

From the previously extracted VPI/VCI values, reference
positions, in the header conversion table 1202, which cor-
respond to the VPI/V(I values are calculated. The reference
lengths of the VPI/VCI values are respectively set to be
a(bit) and b(bit) which are smaller than the bit lengths of the
VPI/VCI values, and positions, in the header conversion
table 1202, which correspond to the VPI/VCI values are
referred to by using lower a(bit) and b(bit) of the VPI/VCI
values.

Information Read Operation; Step 1305

Each information is read out by referring to the header
conversion table 1202.

Policing to rate calculation and average rate calculation; step
1306 *

Policing is performed on the basis of the UNI standard
defined by the ATM forum. A method of realizing this
process will be described in detail below.

1. Peak Rate Calculation

In this embodiment, as declared values for peak rate
monitoring, a time T0 and a maximum cell count X0
representing the maximum number of cells which can exist
during the time T are used, and the peak rate is represented
by X0/T0. Assume that a cell flow arrives at time Tk (k=. .
.,0=X0,...,n,...). In this case, if arrival time Tn of a
target cell to be measured has not reached the time the TO

5,557,609

19

time after arrival time Tn—X0 of a cell X0 cells before the
target cell, it indicates that the target cell violates the
declared peak rate. That is, if Tac=Tn—Tn—X0 is smaller than
T0, the cell violates the peak rate.

Even if a terminal sends cells while observing the
declared values, the cell flow may fluctuate due to buffering
and the like 1n a switching apparatus or the like while it
passes through the switching apparatus, resulting in viola-
tion of the declared values. For this reason, in order to allow
a certain degree of fluctuations, a constant time g is set, and
Tac>T0—g is determined as the range of fluctuations. A cell
within this range is not determined as a violation cell. In this
case, however, Tn=Tn—1+T0 1s set as the arrival time Tn,
instead of a counter value.

It a cell armives after the counter is reset, the arrival time
interval between the cell and the immediately preceding cell
becomes a negative value, which is not a correct value. For
this reason, it 1s assumed that a cell arrives at time Trb, the
counter 18 then reset, and the next cell arrives at time Tra. In
addition, assume that the maximum value of the counter is
Tcm. In this case, the arrival time interval between cells is
not Tra—Trb but (Tcm—Trb)+Tra. Although the arrival time
interval in which a counter reset operation is performed may
be calculated according to this mathematical expression, a
cumbersome operation is required to determine whether a
counter reset operation is performed. For this reason, the
arrival time interval is calculated according to (Tra—Trb+
Tcm) mod Tem. With this mathematical expression, the
arrival time interval can be calculated regardless of a counter
reset operation.

2. Average Rate Calculation

As declared values for an average rate monitoring opera-
tion, a time T1 and a cell count X1 are used, and an average
rate as a monitor value is exprcssed by X1/T1. Assume that
a cell flow arrives at Tk (k=. . .). In this case, every
time a cell arrives, the dlf.erence bﬁtween T1/X1 and the
time interval between the cell and the immediately preced-
ing cell 1s accumulated. That is, every time a cell arrives, an
update operation of Tad«Tad+((Tk—Tk—1)-T1/X1) (k=. .

, 11, . . .) 18 performed. If this value is negative, it indicates
that the corresponding cell violates the declared average
rate.

Stmilar to the case of peak rate monitoring, calculation of

the cell arrival time interval is performed without being
~ influenced by a counter value reset operation.
Replacement of VPI/VCI Values; Step 1312

With respect to a cell which is determined, in the above
policing operation, as a cell not violating the declared value,
the VPI/VCI values are replaced with new VPI/VCI values
obtained from a portion corresponding to the VPI/VCI
values attached to the cell header in the header conversion
table 1202, or the header is replaced with a connection
identifier for copy connection.

Routing Tag Addition; Step 1313

In order to allow a cell to perform a self-routing operation
in a switching operation, a routing tag in which switching
information for the switching operation, retrieved from the
header conversion table 1202 on the basis of the VPI/VCI
values, is written is added to the header portion in accor-
dance with the switch cell format.

Processing to Be Performed When Cell Violates Peak Rate
or Average Rate; Steps 1307 to 1311

It an mnput ATM cell flow violates any one of declared
values (the peak rate or the average rate) in the above
policing operation, the ATM layer function handling section
performs the following process. In routing tag addition
process, a roufing tag 1s added to the cell so that it is

10

15

20

25

30

35

45

50

55

60

63

20

determined that the cell 1s an invalid cell or an empty cell in
an ATM switching operation (steps 1311 and 1313). Alter-
natively, a flag indicating a violation cell is written in the cell
(step 1310), and header conversion is immediately per-
tormed (step 1312).

Cell Amval Time Update Processing for Polishing; Step
1314 |

After routing tag addition (step 1313) is performed, cell
arrival time update process for policing is performed. As
variables for policing, the arrival times of X0 cells before a
current cell are required, in addition to the above declared
values X0, T0, X1, and T1 associated with the respective
VPI/VCI values. In this embodiment, these arrival times are
stored in an array Tp(n) (n=0, 1, . .., X0-1). The contents
of this array are updated in accordance with the following
algorithm.

If Tp(k)=Tn, then Tp(k—1)=Tn-1, Tp(k—2)=Tn-2, . . .,
Tp(0)=Tn—k, Tp(X0-1)=Tn—k-1, . .., Tpk+1)=Tn—XO0.
When the next cell arrives, Tp(k+1)=Tn+1 and Tp(k+1) are
updated. With this operation, in order to perform policing
when the next cell arrives, Tp(X0-1) and Tp(0) may be
referred to/updated by using k in the case of Tp(k) and
Tp(k+1) (k=X0-1).

Thus has been explained the ATM layer function handling
subroutine 207.

Received Data Output Subroutine (Corresponding to “208”
in FIG. 3))

As aresult of the ATM layer function handling subroutine,
cells having routing tags added to their headers, which are
to be output to the cell switch 103, are stored in the buffer
211 for storing headers with routing tags. At the same time,
pieces of information about cells, of the cells obtained by the
cell synchronization subroutine, which are not output to the
cell switch 103 are obtained. Cells to be output to the cell
switch 103 are converted and output on the basis of these
pieces of information and the data in the cell payload buffer
212 which is obtained as a result of the descramble subrou-
tine.

Receiving Side Output Section

Cell data from the data output subroutine 208 is stored in
the reception side output FIFO 11024. The reception side
output FIFO 11024 outputs cell data to the cell switch 103
in accordance with a timing signal from the cell switch 103.

Next, subroutines constituting the transmission side chan-
nel process will be described in detail.

Segmentation of Subroutines

A channel process on the transmission side is performed
by a process consisting of a plurality of subroutines in the
same manner as the reception side. The flows of the respec-
tive subroutines, data, and information such as a pointer and
an effective cell will be described below with reference to
FIG. 14. Referring to FIG. 14, each thick arrow indicates the
flow of the data, and each thin arrows denoted by reference
symbol P indicates the flow of the pointer.

First of all, a cell sent from the cell switch 103 is input to
the transmission side input section, i.e., the transmission side
input FIFO 11025. The cell data in the transmission side
input FIFO 110235 is written in a switch cell buffer 1409 in
the main memory 11023 of a corresponding one of the
interface processors 102-1, . . . , 102-n by a transmission side
input subroutine 1403. If the transmission side input FIFO
11024 is allowed to have a sufficiently large capacity, cell
data need not be temporally held in the switch cell buffer
1409, and a portion 1414 enclosed with a dotted line at an
upper portion in FIG. 14 is not required.

Only a pointer from the switch cell buffer 1409 is trans-
terred from the transmission side input subroutine 1403 to a

5,557,609

21

transmission side ATM layer function handling subroutine
1404. The transmission side ATM layer function handling
subroutine 1404 retrieves cell data from the switch cell
buffer 1409 on the basis of this pointer, If the switch cell
butier 1409 is omitted as described above, the cell data is
directly sent to the transmission side ATM layer function
handling subroutine 14(4.

The transmission side ATM layer function handling sub-
routine deletes a routing tag, added by the reception side
ATM layer function handling subroutine, from the cell
having a format attending a routing tag so as to convert the
cell into a cell having a format on an interface point. In
addition, the transmission side ATM layer function handling
subroutine performs conversion of VPI/VCI values and
shaping, as needed.

As a result of shaping, the order of cells is changed from
that upon input to a transmission side ATM layer function
handling subroutine 1401. For this reason, the order of cells
after shaping is stored in a cell order buffer 1412, and the
corresponding pointer is transferred to a physical layer
function handling subroutine 1405.

Each cell is divided into a header and a payload portion,
which are respectively stored in a header buffer 1410 and a
payload bufier 1411. Only the pointers of these portions are
transferred to the physical layer function handling subrou-
tine 1405.

In the physical layer function handling subroutine 1405,
scramble process of a payload portion, calculation of a
header and an HEC portion, and insertion of cell data in a
frame are mainly performed. First of all, data required for
framing 1s read out, in units of cells, from the payload buffer
1411 in accordance with cell output order information in the
cell order buffer 1412, and scramble process of the readout
data 1s sequentially performed. In this insertion process, a
header corresponding to the payload portion is read out from
the header buffer 1410, and an HEC value corresponding to
the readout 4-byte header is calculated and added thereto.
The resultant header is combined with the scrambled pay-
load portion to form cell data. The cell data is then inserted
in the frame. This data is written in an output frame data
buffer 1413 and transferred to an output subroutine 1406. In
this case, if the transmission side output FIFO 11014 has a
sufficiently large capacity, or the physical layer function
handling subroutine is started upon detection of an empty
state of the transmission side output FIFO 11014, frame data
need not be temporarily stored in the output frame data
buffer 1413 but can be directly transferred to a transmission
side output subroutine 1406 to be written in the transmission
side output FIFO 11014. In this case, a portion 1415
enclosed with a dotted line at a lower portion in FIG. 14 is
not required.

As described above, similar to the reception side channel

process, the transmission side channel process is divided
into a plurality of subroutines. Therefore, software and
hardware can be freely combined. For example, scramble
process of a payload portion may be replaced with hardware.

In the transmission side physical layer function handling,
process 18 performed in accordance with the data width of
the processor 11021 to reduce the amount of software
process, as in the reception side physical layer process.

In a process based on the conventional concept of hard-
ware, in order to generate an HEC value, a header is read out
byte by byte four times, and division process must be
performed for each read operation. In the 32-bit CPU in this
embodiment, however, an HEC value can be easily obtained
by reading out the first four bytes of a header at once and
performing exclusive OR process or referring to a table.

10

15

20

25

30

35

40

45

30

53

60

65

22

In scramble process, 48-byte data must be read out per
cell, as in descramble process. In this embodiment, such data
1s read out in units of 32 bits or the like corresponding to the
data width, and hence the number of times of read process
can be decreased as compared with the conventional scheme
of reading out data in units of bits or bytes.

In addition, since the scrambled data is directly written in
the frame output FIFO, i.e., transmission side output FIFO
11014, the data need not be temporarily written in the
internal cache memory. Therefore, the number of times of
write process can be decreased.

In general, a processor need to spend much time in order
to perform write and read accesses with respect to the
memory and the FIFO. For this reason, data is processed by
effectively using the data width of the processor, which
exceeds one byte as described above, to decrease the number
of times of write and read accesses, thereby reducing the
amount of process to be executed by the processor.

Each procedure and each subroutine will be described in
more detail below.

Transmitting Side Input Subroutine 1403

Cell data output from the cell switch 103 is held in the
transmission side input FIFO 11025. The transmission side
input subroutine 1403 writes the data held in the FIFO in the
switch cell buffer 1409 in the main memory 11023 of a
corresponding one of the interface processors 102-1, . . .,
102-r and transfers the pointer of the data in the switch cell
buffer 1409, information indicating the number of cells
stored, and the like to a transmission side ATM layer
function handling subroutine 1404 as the next subroutine. If
the portion 1414 enclosed with the dotted line at the upper
portion in FIG. 14 is to be omitted, this subroutine simply
serves to transfer the data from the FIFO to the transmission
side ATM layer function handling subroutine 1404.
Transmitting Side ATM Layer Process Subroutine 1404

The reception side ATM layer function handling section
adds information such as a routing tag and a copy tag to a
cell and converts the cell into one having a switch cell
format. In contrast, the transmission side ATM layer func-
tion handling subroutine 1404 deletes the information added
by the reception side ATM layer function handling section
from the cell and restores it to the ATM cell format at the
interface point. At the same time, the transmission side ATM
layer function handling subroutine 1404 separates the cell
into a cell header and a payload portion to facilitate scramble
process of the payload portion performed by the transmis-
sion side physical layer function handling section (to be
described later).

If a copy function is added to the cell switch 103, instead
of performing conversion of VPI/VCI values in the recep-
tion side ATM layer function handling section, the following
scheme 1s effectively performed. A connection identifier
which 1s effective only in the switching apparatus is added
to a cell. The transmission side ATM layer function handling
subroutine refers to a VPI/VCI value conversion table by
using this connection identifier to update the VPI/VCI
values.

The state of an input cell flow changes owing to conges-
tion control in the cell switch or multiplexing with cells from
other paths. As an effective measure against such a change
in state, a shaping process for shaping a cell flow in
accordance with declared values is executed in the trans-
mission side ATM layer function handling subroutine 1404.

In performing a shaping process, the time-based position
of a cell (subjected to shaping) in an output cell flow needs
to be 1dentified. For this reason, cells transferred from the
ATM layer function handling subroutine 1404 to the physi-

5,557,609

23

cal layer function handling subroutine 1405 are counted, and
the count value 1s used, as a time based on a 1-cell time as
a unit, for shaping. With this operation, the processor need
not have a timer function. As described above, by counting
cells transferred to the physical layer function handling
section, shaping can be performed at the cell transfer rate in
the physical layer function handling subroutine even in an

ATM layer function handling subroutine 1404 correspond-
ing to the cell switch 103 in which the cell transfer rate is set

to be higher than that at an interface point so as to improve
the cell discarding characteristics.
Physical Layer Function Handling Subroutine 1405

By the physical layer function handling subroutine 1405,
frames are generated one by one. According to a frame
structure used as a model in this embodiment, cell data
included in one frame consists of 96 bytes, which corre-
spond to nearly two cells. The end of a cell rarely coincides
with the end of a frame. For this reason, the following data
must be exchanged between subroutines for generating
frames. The data are: a frame write point, a cell read point,
scramble data, an intra-memory cell write variable, an
intramemory cell read variable, and the like. The frame write
point indicates the position of the next write operation in a
frame in units of bytes and takes a value from “0” to “95”.
The cell read point indicates the position of the next read
operation 1n a cell in the main memory 11023 of the interface
processor 102-1 in units of bytes and takes a value from
“~52” to “52”.

The value of the cell read point becomes negative when
an empty cell 1s output because no cell which can be output
1s present in the main memory 11023. The absolute value of
the negative value indicates a specific byte in the empty cell.
The scramble data is used for scramble process of the first
two words of this data block. The scramble data consists of
the last two words of the previous data after scramble
process. As 1s apparent, when framing of the data block is
completed, the last two words of the data block after
scramble process are stored.

The 1intra-cell write variable indicates a point on the main
memory 11023 at which a cell is to be written next. The
presence/absence of a cell which can be output is determined
by comparing this value with the value of the intra-memory
read variable indicating a point at which a cell is to be read
out. If the value of the write variable is equal to that of the
read variable, there 1s no cell which can be read out. If the
value of the write variable is larger than that of the read
variable, there is a cell which can be read out. When read
process of one cell 1s completed, the cell read point is
imcremented by one and is compared with the write variable
again.

A procedure for actually generating a new frai
described below with reference to FIG. 15.

First of all, excess data (0 to three bytes) which overflows
the last word of the previous frame is inserted in the head
portion of the current frame (step 1501). In practice, all the
data of one word is written. The processor receives a frame
write point corresponding to the number of bytes of the
excess data, and starts to write the next data in accordance
with the value of the point, thereby writing the excess data
in the frame.

Subsequently, the processor checks, on the basis of the
value of the cell read point, how the previous physical layer
function handling has completed.

Assume that framing in the previous physical layer func-
tion handling has completed during output process of an
empty cell (YES 1n step 1502). In this case, if output process
is to be started from output of an HEC value (YES in step

e will be

10

15

20

25

30

35

40

45

30

55

60

65

24

1503; cell read point="“—4"), the HEC value of the empty cell
is written in the output frame data buffer 1413 (step 1504).
Thereafter, the data of the empty cell is scrambled and
written 1n the buffer (step 1505). In this case, since the
header pattern of an empty cell is a fixed value, the program
includes the HEC value as a constant. Therefore, the corre-
sponding empty cell HEC data need only be output. If output
process is to be started from output of a payload portion (NO
in step 1503; cell read point="-~5"" or less), the remaining
portion of the payload portion of the empty cell is scrambled
and written in the bufier (step 1505).

Assume that the previous framing has completed during
output process of a valid cell (YES in step 1506). In this
case, if output process is to be started from output of an HEC
value (YES 1n step 1507; cell read point="4"), the HEC
value 18 calculated from the value of the header and written
in the buffer (step 1508). Thereafter, the payload portion is
scrambled and written in the buffer (step 1509). If output
process 1s to be started from output of the payload portion
(NO in step 1506; cell read point="5" or more), the remain-
ing payload portion is scrambled and written in the buffer
(step 1509).

After steps 1505 and 1509 are performed, or if NO is
obtained 1in step 150, i.e., the previous process is completed
at the end of a cell (cell read point="0" the following process
18 performed. |

It 1s checked (step 1510 or 1515) whether a valid cell
which can be output is present in the main memory 11023 of
the processor. In accordance with this determination result,
a valid cell is output (steps 1511 to 1513 or steps 1516 to
1518) or an empty cell is output (step 1514 or 1519). The
write position of each of these data in the buffer is deter-
mined by the value of the frame write point. Every time a
write operation is performed, the values of the frame write
point and the cell read point are updated. When either an
empty cell or a valid cell is completely output, the cell read
point 1s initialized to “0”, and the intra-memory cell read
variable is incremented by one to check again whether a
valid cell which can be output is present in the main memory
11023. Output process of the next cell is performed in
accordance with the determination result.

The above process is repeatedly performed until the frame
18 filled with data, i.c., the frame write point becomes “96”
or more. When the frame is filled with data, the physical
layer function handling subroutine ends after, for example,
data for scramble process and data overflowing the frame
data are stored and the frame write point is set for the next
framing operation.

A procedure for scramble process of a cell payload
portion will be described next with reference to FIG. 16. In
order to scramble a given bit of a cell payload portion, data
having undergone scramble process and output 43 bits
betore the given bit is required. For this reason, in order to
perform scramble process of the current data word, the latest
two words of data having undergone scramble process are
always held in the register. In this case, if this variable is
designated as a register variable on C language, unnecessary
load process with respect to the memory can be reduced, and
an increase in process speed can be achieved. Actual
descramble data can be obtained by performing exclusive
OR process of the following three data: 1-word data read out
from the cell payload buffer, data obtained by shifting the
older data of data of two words for scramble process by 21
bits to the left, and data obtained by shifting the new data by
11 bits to the right. The newly obtained data is output, as cell
data, onto the frame and is held, as data for scramble process
of the next data, in the internal register of the processor

3,557,609

23

11021. In addition, the older data of the data of the two
words for scramble process is discarded. If no cell which can
be read out is in the internal memory, an empty cell is output
in the framing subroutine. In this case, however, the payload
poriion of the data may not be scrambled.

As described in detail above with reference to cell syn-
chronization, an HEC value can be calculated by masking
cach of 10 data obtained by shifting the data of a header
having a length corresponding to one word by a maximum
of seven bits to the left and a maximum of two bits to the
right, operating necessary bits at any positions in four bytes,
and performing exclusive OR process of corresponding bits
of the four bytes.

In outputting data, 1-frame data to be transferred to the
transmission side output FIFO 11014 of a transmission side
output subroutine 11201 consists of 24 words and 21 bits.
That 1s, the size of this data does not conform to the word
width of a general purpose processor. With regard to this
problem, odd data may be held inside by software and added
to the head of the next frame to be output.

With the above-described subroutine group, a switching
apparatus using a processor as a sequencer and an ALU can
be constructed. In the switching apparatus having this
arrangement, the throughput of the portion connecting the
processor (11021) and the reception side input FIFO
(11013), the transmission side output FIFO (11014), the
reception side output FIFO (11024), and the transmission
side FIFO (11025) becomes a factor which interferes with
improving the throughput of the switching apparatus itself.
A method of improving the throughput between these FIFO
memories and the processor to improve the throughput of
the switching apparatus will be described next.

Referring to FIG. 17, a microprocessor (uPU) 1701-1is a
RISC type microprocessor such as an R3000 available from
MIPS corporation. This microprocessor is used to perform
switching process of information including ATM cells input/
output to/from the information input/output functions
1710-1 to 1710-n.

In this case, an information input/output function in the
present invention indicates hardware arranged to exchange
information between the processor and external units (i.e.,
the interface points and the cell swiich). The information
input/output function includes a FIFO for temporarily hold-
ing information from/to external units, in order to set a
processing time in the processor as described above.

In the embodiment, the input/output functions 1710-1 to
1710-n are directly connected to a cache-bus 1791-1 for
connecting the microprocessor 1701-1 to an instruction
cache (I-cache) 1702-1 and a data cache (D-cache) 1703-1.
In this embodiment, the input/output functions are con-
nected to the cache-bus 1791-1, instead of connecting them
{0 a memory-bus 1799, so as to decrease the latency of
communication between the information input/output func-
tion and the D-cache 1703-1, thereby improving the
throughput of the switching apparatus.

As 1s apparent, similar to a general scheme, information
which cannot be written in the cache area is written in a main
memory 1761 connected to the memory-bus 1799 via a
read/write-buffer 1704-1. In this embodiment, the memory-
bus 1799 is controlled by a DMA controller (DMA) 1751,
and transmission/reception of data is performed by DMA
transfer.

FIG. 17 shows an arrangement for executing information
input/output functions in this embodiment. In a method
based on this arrangement, after bit synchronization is
established with respect to data sent via input/output lines,
the data is sequentially written in an input FIFO 1722, and

10

15

20

25

30

35

40

45

30

55

60

65

26

the microprocessor 1701-1 sequentially transfers the input
data to the D-cache 1703-1, starting from the head portion
of the input FIFO 1722. Data having undergone switching
process is sequentially written from the D-cache 1703-1 into
an output FIFO 1723 of each of the information input/output
functions 1710-1 to 1710-n, and the data is sequentially
output to an output line, starting from the head portion of the
output FIFO 1723. |

The microprocessor 1701-1 writes the input data from
each of the information input/output functions 1710-1 to
1710-n at a proper storage area in the D-cache 1703-1, and
sequentially performs a physical layer function handling, an
ATM layer function handling, and a switching process with
respect to the data. |

Software used in this embodiment is stored in the I-cache
1702-1 or a ROM 1741.

As described above, in this embodiment, the information
input/output functions 1710-1 to 1710-n are directly con-
nected to the cache bus. As is well known, with the recent
rapid advances in the microprocessor techniques and the
device techniques, high-speed microprocessors and large-
capacity cache memories have been developed. Although it
1s still expected that data with a high burst rate is input to a
switching apparatus, the upper limit of the transfer rate of
the data is determined by the speed of a transmission line.
Therefore, significant data may be transmitted at a rate lower
than the speed of the transmission line, but will never be
transmitted at a rate higher than the speed of the transmis-
sion line. A microprocessor which is said to be the fastest
microprocessor (€.g., a microprocessor capable of operating
at 200 MHz, called an alpha chip available from DEC
Corporation) at present operates on a clock faster than 155
MHz corresponding to a typical interface speed in the ATM
communication scheme.

In addition, currently available microprocessors are
allowed to have large-capacity cache memories (for
example, a 256-KB cache memory can be incorporated in an
R3000). That is, the capacity of such a cache memory is
large enough to process general data packets. |

As a high-speed SRAM, a memory having an access time
of 10 ns and a storage capacity of 1 MB has already been
developed. A faster cache memory having a larger storage
capacity 1S expected to be developed in the future. |

With advances in such functions, if ATM switching is
performed with an arrangement in which information input/
output functions are directly connected to a cache bus, as in
this embodiment, it is expected that no disturbance is caused
in an instruction pipeline in the microprocessor 1701-1 by
data transfer between the information input/output functions
1710-1 to 1710-n. Therefore, the embodiment can realize an
ATM switching apparatus faster than a conventional ATM
switching apparatus.

Consider, for example, a 6.4-Mbps I/F as one of ATM
interfaces. Since the frame length of the 6.4-Mbps I/F is 789
bitsx4 frames=3156 bits, data corresponding to one frame is
3 Kbits=0.4 KB at most. In contrast to this, the cache
memory in the microprocessor R3000 used in the embodi-
ment can have a capacity of 256 KB at maximum, which is
large enough for the capacity of a cache memory.

Even if significant data is to be sent from all such
6.4-Mbps I/Fs, since the microprocessor R3000 operates on
a 25-MHz clock (one clock to one instruction) correspond-
ing to the standard operation speed, data transfer from the
interface points to the cache memory can be satisfactorily
executed.

When the 6.4-Mbs I/Fs described above are to be operated
by the 25-MHz R3000 (microprocessor 1701-1), it is only

5,557,609

27

required that 3,156-bit data be written in the input/output
FIFOs 1722 and 1723 in each of the information input/
output functions 1710-1 to 1710-x. In this case, the R3000
can assign an instruction cycle count of about 12,000/n to
process of each of the information input/output functions
1710-1 to 1710-n. Assume that the microprocessor 1710-1
operates at a high speed, e.g., at 100 MHz. In this case, if
ATM switching process required for each input/output line
corresponds to 12,000 mnstructions or less, 4x4 ATM switch-
ing process can be realized by the ATM switching apparatus
of this embodiment. In this case, a FIFO length of about 800
bits 18 sufficient for each of the input/output FIFOs 1722 and
1723.

FIG. 18 shows the arrangement of an instruction pipeline
in the R3000 used as the microprocessor 1701-1. The
following are processes in the respective cycles in the
pipeline shown in FIG. 18:

IF: instruction fetch (access to the I-cache in this case)
RD: fetching of operand from processor register

ALU: execution of instruction operand

MEM: memory access (access to the D-cache in this case)

WR: writing of result in register file

In the MEM cycle of the cycles in this instruction pipe-
line, the microprocessor 1701-1 reads/writes data from/in
the D-cache 1703-1 or the information input/output func-
tions 1710-1 to 1710-n. As is apparent from FIG. 18, since
the MEM cycle and the IF cycle (access to the I-cache
1702-1) overlap each other, the R3000 ‘accesses both the
I-cache 1702-1 and the D-cache 1703-1 in one cycle. In
practice, when the R3000 operates at 25 MHz, it accesses
each of the cache memories 1702-1 and 1703-1 at an access
speed of 50 MHz. For this reason, in this embodiment, the
I-cache 1702-1, the D-cache 1703-1, and the bidirectional
FIFOs 1722 and 1723 in each of the information input/
output functions 1710-1 to 1710-n perform a data input/
output operation at an access speed of 50 MHz.

As described above, as a high-speed SRAM, a memory
having an access time of 10 ns (access speed of 100 MHz)
and a capacity of about 1 MB has already been developed.
In addition, a FIFO having an access time 20 ns or less
(access speed of 50 MHz or more) and a capacity of 3 Kbit
or more has already been developed.

Considering these points as well, with the arrangement of
this embodiment, ATM switching process of data sent from
the information input/output functions 1710-1 to 1710-n can
performed in practice without disturbing the instruction
pipeline in the microprocessor 170-1.

In addition, since the header portion of an ATM cell
consists of 4 Bytes (32 bits), if process is to be performed by
using a 32-bit microprocessor as in this embodiment, the
header portion of the ATM cell can be read out or written
with one instruction (in one MEM cycle) of the instruction
pipeline shown in FIG. 18. Therefore, ATM layer function
handling and switching process can be performed very
efficiently.

Hereinafter, an OAM process will be described below
with reference to FIG. 2 again.

Data input/output between a transmission and a reception
line includes OAM data as well as user data. In each channel
process described above, user data is processed. A special
process 1s prepared for OAM data. For example, as OAM
data, a cell for loop back is used to specify a portion of
failure. It 1s specified that a cell for designating loop back
can designate loop back process of the cell in a connection
path or a switching apparatus (or a terminal) having an
arbitrary end point.

10

15

20

25

30

35

40

45

50

55

60

65

28

Since a special cell header value is assigned to a cell
carrying OAM data, whether a given cell is a cell carrying
OAM data or a user cell can be determined in an ATM layer
function handling section. However, it cannot be determined
only from the cell header value whether the cell carrying the
OAM data is a cell for designating loop back or a loop back
point 1s the corresponding node. Loop back cells include
cells before loop back and cells after loop back, and only
cells before loop back are subjected to loop back. However,
information indicating whether a cell 1s before or after loop
back 1s not written in the cell header but is written in the cell
payload portion. This makes the process more complicated.

As described above, process of OAM data is more com-
plicated than a conventional channel process for user data.
For this reason, the data channel in a conventional switching
apparatus constituted by hardware, OAM data is extracted
mdependently ot user data and subjected to process based on
software in many cases.

In addition, software is generally used to perform process
such as updating of a routing tag table upon a change in the
state of connection and notification of statistic information,
produced by the data channel, to the outside. Such process
is also called OAM process.

In this embodiment, the OAM process is performed by an
OAM process unit on the processor. As shown in FIG. 2, the
OAM process unit comprises a transmission/reception sec-
tion 141 for an OAM cell message and a supervisory control
process 142 for processing a table and statistic information.
The channel process comprises an OAM cell branching/
inserting section 113 and a supervisory control interface 114.
The OAM process unit also includes an interface 143 for a
switching apparatus control processor 104 for controlling
the overall switching apparatus and informing the values in
the tables in the channel process 101 to the OAM process
102.

A speed adjustment process is an exceptional process
other than OAM process. If data input from the frame buffer
on the reception side 1s 1ost owing to a bit error or the like,
a shortage of data to be transferred to the cell switch 103
may occur. In cell process performed by hardware, buffers
are arranged between the respective process stages shown in
F1G. 2 to perform insertion of dummy data (empty cell when
a shortage of data occurs in an output side buffer.

In cell process performed by the processor, there are
interface points at which the output speed of information
must be kept constant independently of the speed of received
effective information. They are a transmission point and an
interface point for the cell:switch 103 which operates at a
constant speed. In cell process performed by the processor,
speed adjustment must be realized by software process. In
this embodiment, speed adjustment is performed by empty
cell generators 129 and 139.

One example of how process for satisfying the require-
ments for each process is started, resources such as a
processor are assigned, and data is exchanged will be
described in detail below with reference to FIGS. 19 (recep-
tion side) and 20 (transmission side). FIGS. 21 (reception
side) and 22 (transmission side) respectively show the flows
of process in terms of time.

The process on the reception side will be described first
with reference to FIG. 19.

Bit data input via a reception side line is stored in an input
frame buffer 1911 using a FIFO. The input frame buffer 1911
18 an expression for managing the reception side input FIFO
11013 in a software manner. When the amount of data stored
in the input frame buffer 1911 in a hardware manner
becomes a predetermined value or more (as is apparent, it is

5,557,609

29

assumed that data having a length large enough to allow
recognition of a frame is stored in the buffer), the input
frame buffer 1911 outputs an interrupt request to a processor
R to start channel process. This start condition means that
reception process is started before the reception buffer
overflows when the remaining capacity becomes a prede-
termined value or less. A physical layer function handling
1932 1s started by the interrupt request.

As a method of starting this reception side physical layer,
a method using timer interruption may be employed, instead
of the method using an interrupt request from the input
frame buffer 1911. According to this method, the processor
R receives data from the input frame buffer 1911 at prede-
termined time intervals, and starts physical layer function
handling. A channel process 1931 of the physical and ATM
layers is started by the interrupt request.

A series of operations in the channel is basically per-
formed without being interrupted by other processes until
process of a block of bit data stored in the input frame buffer
1911 is completed and the resultant data is transferred to the
cell switch 103. Since the channel process is not interrupted,
the process can be completed within a predetermined period
of time except for a case wherein a process having a high
priority generates interruption. That is, a strict real time
process condition is satisfied. |

Assume that a process having a high priority generates
mterruption during the execution of a given process. Even in
this case, if the upper limit value of the processing time for
the process is known, the given process can be completed
within (the execution time for the given process)+(the
execution time for the process having a higher priority than
the given process).

Since the process can be completed within a predeter-
mined period of time, no received data in the input frame
buffer 1911 is lost even if a received data overflow occurs.
As is apparent, in order to prevent an overflow, the process-
ing time required for the channel process 1931 and the
maximum wait time till the start of the process must be
estimated, and the channel process 1931 must be started by
generating an interrupt in consideration of the possibility of
an overflow.

In such assignment of the processor resource, a proper
process priority 1S assigned to a channel process, and inter-
ruption is inhibited, thereby preventing other processes from
stealing the processor resource.

In the physical layer function handling 1932, after line
decoding of an input bit string is performed, frame synchro-
mzation 1s established. This process is performed by detect-
ing a synchronization bit having a physical layer frame
structure. At this time, determination of a synchronization
bit need not be performed with respect to all data. If
“synchronization cannot be established after a certain amount
of bit data is checked, the frame synchronization process
may be terminated, and a frame synchronization step-out
may be informed to an OAM process 1941. This method is
effective in preventing the processor time from being wasted
by trying to detect a frame synchronization pattern from
input data including no frame information.

In addition to information for display of a frame synchro-
nization step-out, information transferred from the physical
layer function handling 1932 to the OAM process 1941
includes the bit error count of received frame and other
statistic information. The bit error count of received data
may be informed to the partner side depending on the
interface protocol for the physical layer. The data amount of
this value to be transferred is very small, and the require-
ments concerning a delay are moderate. In order to facilitate

10

15

20

23

30

35 -

45

50

3

60

65

30

implementation of the channel process 1931, the data may
be temporarily transferred to the OAM process 1941. It is
not preferable for the channel process 1931 aiming at a
high-speed operation to have interfaces for a plurality of
processes such as a partner side channel process (which can
be executed in various forms). The interface between the
physical layer function handling 1932 and the OAM process
1941 will be described later (described in detail later with
reference to a statistic information table).

Subsequently, a search for ATM cell synchronization, i.e.,
an ATM cell header, is performed in a user data transfer area
In a bit string for which frame synchronization is estab-
lished. In cell synchronization process, correction of cell
headers and detection process of header error cells and
physical layer empty cells are performed at once. Further,
descramble process is performed with respect to the payload
of each of the input cells.

With the above process, the positions of the valid cell
headers and payload portions in the bit string are confirmed.

Subsequently, an ATM layer function handling 1933 is
performed with respect to each cell. Basically, on the ATM
layer, the value of each cell header is read, and header
conversion, routing tag addition, flow rate monitoring, and
transmission of the cells are performed.

In the ATM layer function handling 1933, payload data is
not directly referred to. For this reason, in a condition in
which the physical layer function handling 1932 and the
ATM layer function handling 1933 share the same memory
space of the main memory 11023, only a pointer indicating
the location of a cell payload portion is transferred, instead
of the cell payload portion, from the physical layer function
handling 1932 to the ATM layer function handling 1933 to
reduce overhead of data transfer therebetween, as described
above. This method is effective in decreasing the number of
times of memory access and increasing the execution speed.
In this embodiment, the physical layer function handling
1932 writes the contents of a cell payload portion in a
common buffer 1921, and writes the pointer and the header
value in a physical layer/ATM layer input cell pointer queue
1923,

The ATM layer function handling 1933 is subsequently
started. Since the physical layer and the ATM layer on the
reception side are processes in which the flow of data is
sequential, if the two layers are implemented as the first and
second half portions of the same process on the OS, context
switching between the processes and exclusive control pro-
cess of common buffer access can be saved.

In the ATM layer function handling 1933, a cell header
and a pointer are extracted from the queue 1923, and header
conversion, routing tag addition, and policing are per-
formed. In the ATM layer function handling, when a cell is
to be finally output to the ATM switch 1902, data at the
location indicated by the pointer of the cell is combined with
the cell header and the routing tag, and the resultant data is
transferred to an ATM—SW buffer 1912. In this case, the
ATM— SW buffer 1912 is an expression for managing the
reception side output FIFO 11024 of FIG. 1 in a software
manner.

As a unit of period in which the physical layer function
handling is activated, at least 1-frame period is required
because a frame structure must be recognized. For this
reason, in order to simplify exclusive control, when the ATM
layer function handling 1933 is to be started following the
physical layer function handling 1932, the number of cells
formed by the ATM layer function handling and written in
the output ATM—SW buffer 1912 is determined by the
number of cells included in a transmission frame. For

5,557,609

31

example, 1n 620-Mbps SDH transmission frame process,
about 160 cells are generated upon processing of one frame.
On the physical layer, in order to recognize a frame, data
corresponding to at least one frame must be processed. If,
therefore, the ATM layer function handling 1933 is to be
started following the physical layer function handling 1932,
at least 160 cells must be processed.

Most of the cells generated as a result of this process are
written in the output ATM—SW buffer 1912. If the capacity
of the output ATM—SW buffer 1912 is too small to store
such a number of cells, the unit of process on the ATM layer
must be decreased. In some method, the unit of processing
in the physical layer is decreased to a value smaller than one
frame, and when process of cells which can be stored in the
output ATM—SW buffer 1912 is completed, an ATM pro-
cess 1s started to process the cells.

Assume that the physical layer function handling is con-
stituted by dedicated hardware. In this case, since there is no
physical layer function handling, the ATM layer function
handling may be started in accordance with the timing of a
“cell generation signal” sent from the hardware as the
physical layer function handling.

A pointer indicating an empty buffer upon completion of
a transfer operation is set in an empty buffer pointer queue
1922. The physical layer function handling 132 extracts the
address of the empty buffer from the empty buffer pointer
queue 1922 when writing a cell in the buffer, and writes the
contents of the cell payload portion at the address. Then, the
physical layer function handling 1932 enqueues the address
to the input cell pointer queue 1923. The cell buffer 1921 is
cyclically used in this manner.

Consider buffer management. Since an ATM cell has a
fixed length, even if the storage area of the buffer is divided
to be managed, buffer management can be satisfactorily
performed with a large number of fixed-length areas pre-
pared in the buffer. When the management unit for the
storage areca 18 a variable length, garbage collection is
performed to prevent the storage area from fragmentation.
Garbage collection is one of the factors which interfere with
the real time performance of a process, but need not be
performed in processing an ATM cell.

ATM cells include user cells and OAM cells. The above
description is associated with process of user cells. OAM
cells are processed independently of user cells. Processing of
OAM cells will be described below.

If a header read in the ATM layer function handling
process 1933 corresponds to an OAM cell, a pointer indi-
cating a buffer in which the corresponding cell is stored is

10

15

20

25

30

35

40

45

transferred from the ATM layer function handling 1933 to

the OAM process 1941.

In order to ensure the real time performance of a channel
process, the OAM process 1941 is not started when the
pointer is transferred thereto, but the channel process is
continued. No problem is posed in this process because the
time limitations imposed on an OAM process are more
moderate than those on a channel process.

Although an OAM cell on the physical layer is to be
branched on the physical layer according to protocols, an
implementation method is restrained by the protocols. An
OAM cell on the physical layer is identified by checking the
value of the cell header. For this reason, it is preferable, from
the viewpoint of easiness of process, that an OAM cell of the
physical layer be branched by OAM cell branch process for
the ATM layer, similar to an OAM cell of the ATM layer.

Since no cell is processed on the physical layer, branching
of an OAM cell to an OAM process, which is performed to
ensure the real time performance of a channel process, is the
only process performed in an ATM layer function handling.

50

55

60

65

32

It a request 1s generated by the OAM process at the same
time of branching of a received OAM cell to insert a cell in
a cell flow on the ATM layer, the cell is inserted instead of
the branched cell. Assume that an empty cell on the ATM
layer is detected. In this case as well, if a cell insertion
request 1s generated by the OAM process, the empty cell is
discarded, and the OAM cell is inserted.

The cell insertion request from the OAM process 1941 is

written in an OAM—channel transfer cell pointer queue
1925. If a cell extracted from the input cell pointer queue
1923 by the ATM layer function handling 1933 is an empty
cell, it is checked whether a pointer is written in the
OAM—channel transfer cell pointer queue 1925. If a pointer
1S writien in the queue 1925, the ATM layer function
handling determines that a cell output request is generated
by the OAM process 1941, and writes an OAM cell header
and a payload portion, which are to be output instead of the
empty cell, in the output ATM—SW buffer 1912.
- When a cell generated by the OAM process 1941 is to be
transferred to the channel process 1931, an area for writing
the cell must be ensured in the common buffer 1921. Instead
of this operation, the OAM process 1941 may access the
empty buffer pointer queue 1922. However, conflict control
for the empty buffer pointer queue 1922 is required in this
case. As a result, the execution time of the channel process
1931 is undesirably prolonged. For this reason, in this
embodiment, an area held for a cell received from the
channel process 1931 is used to transfer a cell generated by
the OAM process 1941 to the channel process 1931. In this
case, if the number of cells transferred from the channel
process 1931 is small, a shortage of area in which celis
generated by the OAM process 1941 are written occurs. This
problem, however, can be solved by writing a pointer
indicating the location of the payload portion of an empty
cell in a channel-OAM transfer cell pointer queue 1924,
together with the header, under a predetermined condition,
e.g., when the OAM-— channel transfer cell pointer queue
1925 is empty.

When an empty cell is present in the channel-OAM
transier cell pointer queue 1924, the OAM process 1941
may preferentially use the empty cell to output an OAM cell.
Since no effective information is stored at the address, in the
common buffer 1921, indicated by the pointer, the payload
portion of the OAM cell to be output is written at this
address. Furthermore, the cell header is rewritten into a
proper value and writien in the OAM—channel transfer cell

- pointer queue 1925, together with the pointer. Qutput pro-

cess of the cell 1s executed by the channel process 1931.

- A pointer indicating the location of the payload portion of
an empty cell to be discarded is written in the OAM—
channel transfer cell pointer queue 1925, together with the
header. When an empty cell is present in the channel 2 QOAM
transfer cell pointer queue 1924, the OAM process uses the
empty cell to output an OAM cell. Since no effective
information is stored at the address, in the common buffer
1921, indicated by the pointer, the payload portion of the
OAM cell to be output is written at this address. Further-
more, the cell header is rewritten into a proper value and
written in the OAM—channel transfer cell pointer queue
1925, together with the pointer. Output process of the cell is
executed by the channel process 1931.

Upon completion of the ATM layer function handling
1933, a cell handled as a cell header and a pointer indicating
the location of a cell payload portion in processing on the
ATM layer is written again in an output buffer to the cell
switch 103, that is, ATM—SW buffer 1912, according to the

cell format in a node coupling a routing tag and a payload

3,557,609

33

portion to the cell header. The ATM—SW buffer is an
expression for managing the reception side output FIFO
11024 in a software manner. |

This buffer is constituted by hardware, from which data is
read out at a constant speed in accordance with the data
loading speed of the cell switch 103 and is output to the cell
switch 103. When all user information transferred from the
physical layer are processed and written in the output buffer
to the cell switch 103, the process of the channel process
1931 including the physical layer and the ATM layer is
completed.

The channel process 1931 is started depending on the
buffer amount of the input frame buffer 1911. If a received
bit string is not written in the input frame buffer 1911 owing
to a bit synchronization error, the channel process 1931 is
not started. As is apparent, in this case, data to be written in
the ATM—SW buffer 1912 is not written. In addition, an
ATM layer function handling is not performed when frame
synchronization and cell synchronization are not estab-
lished. If a cell pattern is required to operate the cell switch
103, dummy data must be generated and provided by some
method.

An empty cell generation process 1934 serves to generate
such dummy data. When the capacity of the ATM—SW
butfer 1912 becomes a predetermined value or less, the
empty cell generation process 1934 is started by interruption
caused by the hard logic of the buffer. The empty cell
generation process 1934 has a higher priority than the
channel process 1931 and is started by the operation of the
channel process 1931 to write a predetermined number of
empty cell patterns in the output buffer. As the number of
empty cells written in the buffer per empty cell generation
process increases, the number of times of process start
processing decreases, resulting in a reduction in overhead of
process start processing. However, the frequency of output-
ting unnecessary empty cells to the cell switch 103 also
increases. If the number of cells written per process is
decreased, the reverse happens.

The highest priority is assigned to the empty cell genera-
tion process 1934 in the channel process 1931. This is
because the cell switch 103 operates normally and the
overall switching apparatus operates on the premise of the
presence of the output ATM—SW buffer 1912. An empty
cell generation request is generated by the output ATM—SW
buffer 1912. No other process interrupts in the empty cell
generation process 1934. Therefore, an empty cell genera-
tion request must be generated before the data amount of the
output ATM—-SW buffer 1912 become smaller than the
amount of cell data which can be continuously sent to the
cell switch 103 for a period of time given by (the overhead
of start processing . of the empty cell generation process)+
(the time required to generate empty cells).

A speed adjustment process can be performed in any one
of the series of processes in the cell process performed by
the processor. However, the speed adjustment process is
preferably performed at a position as close to the output side
of the processor cell process as possible, i.e., immediately
before the output ATM—SW buffer 1912, in consideration
of easiness of implementation and time response character-
istics (empty cell insertion is considered as feedback control
of the output buffer length). Note that this process may be
realized by dedicated hardware for detecting the buffer
length of the output ATM—>SW buffer 1912 and generating
a predetermined empty cell pattern.

The example of process on the transmission side will be
described first with reference to FIG. 20.

The process on the transmission side is performed in
almost the reverse manner to the process on the reception

10

15

20

25

30

35

45

50

39

65

34

side described abo-va. A cell buffer, i.e;, SW—ATM buffer
2012 constituted by hardware is connected to an input

- section between the cell switch 103 and the processor

interface. Similar to line input process on the reception side,
an ATM layer function handling 2033 is started when the
amount of data stored in the SW—ATM buffer 2012 exceeds
a predetermined value. The SW—>ATM buffer 2012 is an
expression for managing the transmission side input FIFO
11025 of FIG. 1 in a software manner. |

The following are the conditions for starting the trans-
mission side ATM layer function handling, which are dif-
ferent from those in the method described above. In one
method, the remaining capacity of the SW—ATM buffer
2012 is periodically monitored (polling) by timer interrup-
tion, and the ATM layer function handling 2033 is started
when the remaining capacity becomes a predetermined
value or less. In another method, when a transmission side
physical layer function handling 2032 requests cells from
the ATM layer function handling 2033 to form a frame, the
ATM layer function handling 2033 is started, and the trans-
mission side physical layer function handling 2032 receives
cells from the SW—ATM buffer 2012 and starts to perform
process.

A cell having a routing tag is extracted from the
SW—ATM buffer 2012 and stored in a common buffer
2021. Flow rate monitoring, routing tag deletion, and header
conversion are performed, and the converted header and the
pointer are set in an ATM layer—physical layer output cell
pointer queue 2023. Branching/insertion of an QAM cell is
performed at this time. When all the cells or a predetermined
number of cells in the SW—ATM buffer 2012 are processed,
the ATM layer function handling 2033 is completed.

On the reception side, the ATM layer function handling
and the physical layer function handling are started as
sequential processes. On the transmission side, however, the
transmission side physical layer function handling 2032 is
started by interruption from an output frame buffer 2031 of
the transmission side line interface independently of the end
of the ATM layer function handling 2033. The interrupt from
the output frame buffer 2031 is occurred when total amount
of data in this buffer is less than the predetermined value.
The output frame buiffer 2031 is an expression for managing
the transmission side output FIFO 11014 of FIG. 1 in a
software manner.

This 1s because, on the transmission side, an empty cell
generation process 2034 for speed adjustment is executed
immediately before the physical layer function handling and
a frame cannot be formed without a required amount of cell
data (scramble process is influenced by preceding bit data).
On the reception side, speed adjustment can be performed
simply by generating empty cell patterns and writing them
in the buffer. On the transmission side, however, since frame
formation process is required after empty cells are inserted
to perform speed adjustment, the physical layer function
handling and the ATM layer function handling are preferably
started independently. If an empty cell insertion point is set

- before the ATM layer, the ATM layer function handling and

the physical layer function handling can be integrated.
However, the empty cell insertion point is preferably set to
be as close to the output side as possible for the same reason
why the reception side empty cell generation process is set
immediately before the ATM—SW buffer 1912.

The transmission side physical layer function handling
2032 extracts a predetermined number of cells required for
constituting a frame from the output cell pointer quene 2023,
and forms a frame. Unnecessary pointers after the extraction
of cell contents are set in an empty buffer pointer queue

3,557,609

35

2022, and the buffer 2021 is used to store cells on the ATM
layer again.

If the number of cells in the output cell pointer queue
2023 is not enough to constitute a frame, the empty cell
generation process 2034 is called from the physical layer
function handling 2032. Empty cell patterns are then gen-
erated to form a frame. The empty cell generation process as
a speed adjustment function on the reception side corre-
sponds to (the physical layer+empty cell generation pro-
cess). This is because process on the physical layer is
performed in units of frames.

The above process may be replaced with a function 10 of
writing pointers indicating empty cell patterns and stored in
the main memory in advance and headers indicating empty
cells 1n a FIFO 1n a hardware manner, when a FIFO formed
in a hardware manner between the ATM layer function
handling and the physical layer function handling becomes
empty.

The reception and transmission processes described so far
are real-time processes on which strict restrictions are
imposed in terms of the processing time. These processes are
started depending on whether transmission/reception data is
present. The time required to process a data block such as a
frame must fall within a predetermined range.

In contrast to this, the remaining OAM process is a
real-time process on which moderate restrictions are
imposed in terms of the processing time. Even if the
processing load of the OAM process increases with an
increase 1n the number of received OAM cells, the OAM
process 18 allowed to sequentially process the cells one by
one. If, therefore, the channel process and the OAM process
contend with each other for the system resources (mainly the
processor time) of the switching apparatus, it is preferable
that resources be preferentially assigned to the channel
process, and the remaining resources be assigned to the
OAM process. Assignment of the processor time can be
properly performed by setting the execution priority of the
OAM process to be lower than that of the channel process.

The manner of transferring cells from the channel process
to the OAM process and process of OAM cells in the OAM
process will be described below.

Assume that an OAM cell is detected in the ATM layer
function handling 1933 on the reception side shown in FIG.
19. The ATM layer writes the cell header and a pointer
indicating the location of the payload portion in the chan-
nel—>0AM transfer cell pointer queue 1924. The payload
portion is stored in the common buffer 1921 of the chan-
nel >OAM process in advance. With only this process, the
process of the OAM cell in the channel process 1931 is
completed. The operation of the OAM process 1941 is
started when the process in the channel process 1931 is
completed and control 1s passed to the OAM process 1941.

Processing of an OAM cell includes failure notification,
loop back, and the like, which demand greatly different
operations and processing times. For this reason, only noti-
fication to the OAM process 1941 is performed in the
channel process 1931, on which restrictions are imposed in
terms of the processing time. |

The OAM process 1941 reads out the OAM cell header
and the pointer indicating the location of the payload portion
from a message box. Required process can be known from
the values of the header and the payload portion. The process
1s then started. The contents of the cell to be inserted from
the OAM process 1941 are written in the payload storage
arca (corresponding to one cell), in the common buffer,
~ which need not be kept when the process is started or
completed. The header value to be added to the cell and the

10

15

20

25

30

35

40

45

50

35

60

65

36

pointer are written in the OAM-—channel transfer cell
pointer queue 19285,

Upon detecting an empty cell or an OAM cell, the ATM
layer function handling 1933 branches the OAM cell or
discards the empty cell, and extracts information of one cell
from the OAM—>channel message box and inserts it in a cell
flow. The buffer area in which the discarded empty cell or
the OAM cell output to the cell switch 103 is stored is
queued on the empty buifer pointer queue 1922 and used by
the physical layer function handling 1932 to store an input
cell.

Exclusive control of buffer access between the OAM
process and the channel process can be realized in the above
manner. The memory resource of the common buffer 1921
which is transferred to the OAM process 1941 is cyclically
reused. Since the cell buffer is used as a common buffer,
even 1f the number of cells exchanged between the channel
process and the OAM process increases, information of only
cell headers and pointers is transferred between the two
processes, but cell payload portions need not be transferred.

Statistic information indicating the number of bit errors
collected in the channel process 1931 or the number of cells
passing therethrough is transferred to the OAM process
1941. In addition, a partner side bit error rate or a cell header
conversion table 1s transterred from the OAM process 1941
to the channel process 1931 and used for channel process.
Information designating the operation of the channel process
1931, e.g., a routing tag table, is transferred from the OAM
process 1941 to the channel process 1931.

Since the channel process 1931 is started upon interrupt-
ing the OAM process 1941, transfer of these values demands
exclusive control between the processes.

Although the message box function of a general purpose
OS can be used to realize exclusive control, the overhead is
large for processing of short data such as statistic informa-
tion.

As methods of simply realizing exclusive control of table
update process, for example, the following three methods

can be considered:

[1] Processing for transferring values is set as a system
call, and interruption is inhibited during the execution
of the process. Table value update process is imple-
mented as a system call of an OS, and interruption from
a process having a higher priority is inhibited during
the execution of table value update process. Note that
the wait time for a process having a higher priority
increases owing to inhibition of interruption.

{2] If one entry of a table is contained in one word and a
read/write operation 1s completed with one instruction,
exclusive control between processes can be realized by
the exclusiveness of the execution of an instruction by
the processor itself. The use of this method, however,
1s limited to a case wherein the consistency of infor-
mation 1s kept within one entry, but the method cannot
be used in a case wherein consistency of time is
required throughout a plurality of entries.

[3] As disclosed in U.S. Pat. No. 5,203,024, if one entry
of a table cannot be contained in one word, an “entry
rewriting flag” is arranged in an entry. This flag is set
while the OAM process is rewriting the entry, and the
corresponding cell is discarded when the channel pro-
cess refers to the entry in which the flag is set. That is,
in this embodiment, a pointer indicating the location of
the cell in the common buffer 1921 is not output to the
empty buffer pointer queue 1922 but is unqueued.

The above process can be implemented as a task in a

general purpose OS. In this case, the channel task is started

3,557,609

37

by interruption from hardware. If the channel process which
18 started in response to a signal from dedicated hardware for
the switching apparatus according to the present invention is
implemented as a direct interruption handler, the process can
be started more quickly. 5

FIG. 23 summarizes the above-described assignment of
priorities to the processes. Basically, higher priorities are
assigned to processes belonging to the channel process. Of
these processes, a data output process has the highest
priority. The priority of the OAM process is low. The 10
channel process must be completed within a processing time
unit. In contrast to this, the OAM process is interrupted by
the channel process but is resumed from the previous state.

The start timings of processes in a case wherein each of
the reception side and the transmission side is constituted by 15
one processor will be described below with FIGS. 21 and 22.
This manner can be applied to a system constructed by a
plurality of processors.

FIG. 21 shows the process timing on the reception side.
Referring to FIG. 21, the vertical direction corresponds to 20
the time axis, and the downward direction indicates the lapse
of time.

In this case, the channel process 1931 is started by
hardware interruption from the input frame buffer 911 and
the output ATM—SW buffer 1912. When no process start 25
request 1s generated by hardware, the OAM process 1941 is
executed.

When an interrupt is generated by the input frame buffer
1911, since the OAM process has the lowest priority, the
process 1s interrupted, and the physical layer process of the 30
channel process is started. When the physical layer function
handling completes process of a predetermined amount of
data of the bit data stored in the input frame buffer 1911,
execution of the ATM layer function handling is started.

The ATM layer function handling sequentially processes 35
cell data received from the physical layer function handling.

If the number of cells in the ATM—SW buffer 1912
becomes smaller than a predetermined number during this
process, the ATM—SW buffer 1912 generates an interrupt
input to start the empty cell generation process. The empty 40
cell generation process generates dummy data (empty cell)
and writes it in the ATM—SW buffer 1912 to prevent
interruption of patterns supplied to the cell switch 103.

When a predetermined number of empty cells are written
in the ATM—SW buffer 1912 and the empty cell generation 45
process 1s completed, the ATM layer function handling is
resumed. When all the cells received from the physical layer
function handling are processed and the ATM layer function
handling is completed, the OAM process is resumed and

executed. 50
~ Since the empty cell generation process has the highest
priority among the reception side processes, the empty cell
generation process is preferentially executed during the
OAM process and the physical layer function handling as
well as during the ATM layer function handling. 55

When bit data is stored in the input frame buffer 1911 with
the lapse of time, the channel process is started again. The
conditions for the generation of an interrupt by the input
frame buffer 1911 are that 1-frame data is stored, and data is
properly stored in the input frame buffer 1911 upon estab- 60
lishment of bit synchronization. When these conditions are
satisfied, the period of interruption from the input frame
buffer 1911, ie., the period of a channel process start
operation, coincides with the frame time corresponding to
one frame. 65

FIG. 22 shows the process timing on the transmission
side. Referring to FIG. 22, the vertical direction corresponds

38

to the time axis, and the downward direction indicates the
lapse of time. |

In this case, the ATM layer function handling is started by
a hardware interrupt signal from a SW—ATM buffer 2012,
whereas the physical layer function handling is started by a
hardware interrupt signal from an output frame buffer 2011.

- When no process start request is output from hardware, the

OAM process 1941 is executed.

When a predetermined number of cells or more are sent
to the cell switch 103 and stored in the SW—ATM buffer
2012, the execution of the OAM process is interrupted, and
the ATM layer function handling is started. When a shortage
of transmission data occurs and an interrupt is generated by
the output frame buffer 2011 during the execution of the
ATM layer function handling, the physical layer function
handling is started. This is because the priority of the
physical layer function handling is the highest on the trans-
mission side. |

The physical layer function handling extracts the cells,
which have been processed by the ATM layer, on the basis
of information of the output cell pointer queue 2023 and
creates output frame data. If the data in the queue is not
enough to form a frame, the empty cell generation process
is started to compensate the cell shortage.

When a predetermined number of frame data are gener-
ated by the physical layer function handling in this manner,
the ATM layer function handling, which has been inter-
rupted, 18 resumed. When all the cells in the SW—ATM
buffer 2012 are processed, the ATM layer function handling
i1s completed. The OAM process, which has been inter-
rupted, is resumed. If no interrupt is generated by the output
frame buffer 2011, the ATM layer function handling is kept
executed. When this process is completed, the OAM process
1S resumed. |

When bit data is output from the output frame buffer 2011
and the amount of data therein decreases with the lapse of
time, the physical layer function handling is started again.
The condition for the generation of an interrupt by the output
frame buiffer 2011 is that 1-frame data is stored. The period
of interruption from the output frame buffer 2011, i.e., the
period of a physical layer function handling start operation,
coincides with the frame time corresponding to one frame.

FIG. 24 shows assignment of priorities in a case wherein
the transmission side is constituted by one processor. The
OAM process can easily perform parallel process on the
transmission and reception sides. Therefore, the OAM pro-
cesses on the transmission and reception sides are preferably
implemented as one process to decrease the overhead of a
process start operation.

Basically, the transmission side process has a higher
priority than the reception side process. This is to quickly
output data stored 1n the switching apparatus to effectively
usc the overall buffers. Assume that the reception side
process is preferentially performed. In this case, if the
transmission side process is delayed, data are stored in all
the buffers.

Another example of the flow of processing in each
interface section on the reception and transmission sides,
which is shown in FIGS. 1 and 2, will be described next with
reference to FIG. 25.

In this example, some subroutines which are indepen-
dently performed are synthesized to increase the speed of the
channel process. Synthesis of subroutines in this case is
based on the concept that all processes which can be
simultaneously performed with respect to data written in a
register are simultaneously performed.

The flow of process will be described in detail below.

5,557,609

39

Similar to the case shown in FIG. 2, in this case, the
overall process is constituted by a channel process 2501 and
an OAM process 2502, and the channel process 2501 is
constituted by processes for transmission side process and
reception side process.

In the reception side process, a network clock is extracted
from a signal received via a reception side line interface by
a bit synchronization section 2511 and a network synchro-
nization section 2512, and bit synchronization is established
to convert the signal into a bit string. This bit string is
decoded by line decoding 2521. The resultant received data
1s input to a reception side input FIFO 11013. The data input
to the reception side input FIFO 11013 is loaded into the
internal memory of the processor by a data reception sub-
routine 2522 of the channel process. First of all, frame
synchronization 1s established with respect to the data
loaded into the memory by a frame synchronization sub-
routine 2523. Cell synchronization is then established by a
cell synchronization subroutine 2524. An ATM layer func-
tion handling on the reception side is performed by several
ATM layer function handling subroutines 2525 (specifically,
subroutines for header conversion, routing tag addition,
policing, and the like). Finally, descramble process of the
data is performed by a synthesized subroutine 2526 (spe-
cifically, a descramble process subroutine and a cell output
subroutine), and the processed data is sequentially output to
a reception side output FIFO 11024.

In the transmission side process, cell data received from
the ATM switch is input to a transmission side input FIFO
11025. The cell data input to the FIFO 11025 is loaded into
the internal memory of the processor and a transmission side
ATM process is performed by a synthesized subroutine 2533
on the transmission side (specifically, a cell reception sub-
routine and a transmission side ATM layer function handling
subroutine). The transmission side ATM layer function han-
diing performed in this case includes shaping process,
routing tag deletion process, header conversion process, and
the like. The ATM layer function handling needs to be
performed only with respect to header portions and hence
can be realized without read/write process of the payload
portions of the cells between the memory and the register,
which imposes a large load. For this reason, the transmission
and reception side ATM layer function handling subroutines

may be synthesized and performed independently of the

remaining subroutine group. A transmission side physical
layer function handling including scramble process, genera-
tion of HEC values, generation of a frame, and the like is
performed by a synthesized subroutine 2532 (specifically, a
transmission side physical layer function handling subrou-
tine and a data output subroutine). The resultant data is
output to a transmission side output FIFO 11014. |

This example exemplifies the method of synthesizing
subroutines in the channel process 2501. Such a method of
synthesizing subroutines, however, can be applied to the
subroutine group in the OAM process 2502. As is apparent,
subroutines in the OAM process which can be simulta-
neously performed may be synthesized, as in the case of the
channel process.

With the above synthesis of subroutines, since all pro-
cesses which can be performed with respect to data loaded
Into a register at a given moment can be performed at once,
the number of times of read/write process of data between
the register and the memory can be minimized, thereby
further increasing the processing speed.

In the embodiment shown in FIG. 25, careful consider-
ation must be given to descramble process of cells output to
the cell switch 103. More specifically, a 2-byte operation

10

15

20

25

30

35

40

45

50

35

60

65

40

variable obtained as a result of descramble process of a cell
must be used for descramble process of the next cell.
Referring to FIG. 2§, a cell from an interface point and a cell
from the OAM process are input together to the descramble
subroutine. In this case, the descramble subroutine does not
process the cell from the OAM process but needs to process
the cell from the interface point by using the previous
operation variable. For this reason, a flag indicating whether
a given cell is a cell from an interface point may be set as
an argument of the descramble subroutine.

Note that, in the scheme shown in FIG. 25, when an OAM
cell input from an interface point is to be branched to the
OAM process, the information portion must undergo the
scramble subroutine once.

Additional advantages and modifications will readily
occur to those skilled in the art. Therefore, the invention in
1ts broader aspects is not limited to the specific details, and
representative devices shown and described herein. Accord-
ingly, various modifications may be made without departing
from the spirit or scope of the general inventive concept as
defined by the appended claims and their equivalents.

What 1s claimed is:

1. A switching apparatus comprising:

an input port to which information data associated with an

ATM cell is input;

storage means for storing the inforr
said input port; |

procedure information means for outputting procedure
information indicating a procedure for sequentially
performing frame synchronization process for finding
each frame of the information data read out from said
storage means and ATM cell synchronization process
for checking a cell structure;

process means for sequentially performing the frame
synchronmization process and the cell synchronization
process with respect to the information data read out
from said storage means in accordance with the pro-
cedure information from said procedure information
means; and

an output port for outputting information data processed

by said process means.

2. An apparatus according to claim 1, wherein said
process means sequentially executes the frame synchroni-
zation process and the ATM cell synchronization process
when a predetermined amount of information data is stored
in said storage means.

3. An apparatus according to claim 2, wherein said output
port includes output side storage means for temporarily
storing information data after the frame synchronization
process and the ATM cell synchronization process, and said
process means stores information data of a predetermined
pattern when information data stored in said output side
storage means 1s smaller than a predetermined data amount.

4. An apparatus according to claim 1, wherein said input
port 1s composed of an input FIFO for temporarily storing
information data, and said process means executes said
frame synchronizing process and said cell synchronization
process when the amount of data stored in said input FIFO
1s larger than a predetermined amount of data. |

5. An apparatus according to claim 4, wherein said
apparatus temporarily writes the information data from said
input FIFO into said storage means, and thereafter transfers
a pointer for a data block to the process means for use by the
frame synchronization process, the pointer being stored in
the storage means and indicates a position at which the data
block is stored.

atton data input via

3,557,609

41

6. An apparatus according to claim 1, wherein

sald procedure information means further outputs infor-
mation indicating the procedure for counting the cells
inputted from said input port and information indicat-
ing the procedure for measuring the cell arrival interval
for each connection set for said input port, regarding
the number of cells inputted as the elapsed time at said
input port; and

said process means further executes said counting of cells
inputted and said measurement of cell arrival interval
on the basis of the information from said procedure
information means, soon after said frame synchroniza-
tion process and cell synchronization process.

7. An apparatus according to claim 6, wherein

said procedure information means further outputs infor-
mation indicating the procedure for judging whether to
transmit said inputted cells to said output port, on the
basis of the cell arrival interval between the individual
cells inputted from said input port and the information
previously stored in said storage means; and

said process means further executes the process of judg-
ing whether to transmit said inputted cells on the basis
of the procedure information from said procedure infor-
mation means, soon after said counting of cells inputted
and said measurements of cell arrival interval.

8. An apparatus according to claim 1, wherein

said procedure information means further outputs infor-
mation indicating the procedure for monitoring the
progress of said frame synchronization process and said
cell synchronization process; and

sald process means executes said monitoring procedure
according to the procedure information from said pro-
cedure information means, during the time when nei-
ther said frame synchronization process nor said cell
synchronization process is being performed.

9. An apparatus according to claim 1, wherein

sald procedure information means further outputs infor-
mation indicating an OAM cell extracting procedure
for extracting OAM cells from the cells obtained from
said cell synchronization process, an OAM cell diverg-
ing procedure for writing said extracted OAM cells into
OAM cell storage means, and an OAM cell process
procedure for processing said diverged OAM cells; and

sald process means sequentially executes said OAM cell
extracting procedure, OAM cell diverging procedure,
and OAM cell process procedure according to the
procedure information from said procedure information
means, during the time when neither said frame syn-
chronization process nor said cell synchronization pro-
cess is being performed, and said OAM cell storage
means transfers a pointer for a data block to the process
means for use by said OAM cell process procedure, the
pointer being stored in said OAM cell storage means
and indicates a position at which the data block is
stored.

10. A switching apparatus comprising: |

an input port having an input FIFO for receiving a bit
string constituting information data associated with
ATM cell and temporarily holding the bit string;

a processor for sequentially performing frame synchroni-
zation process of searching the bit string stored in said
input FIFO for a bit pattern indicating a head of a frame
by referring to said input FIFQ, and checking whether
the bit pattern indicating the head of the frame is
present a frame length ahead of the frame, and cell

10

15

20

25

30

35

40

45

50

35

60

63

42

synchronization process of finding a bit pattern indi-
cating a head of a frame in the input bit string, and
recognizing a head of a cell from the bit pattern and
processing information data in units of cells when the
bit pattern sequentially appears at intervals of the frame
length; and |

an output port having an output FIFO for temporarily

storing and outputting information indicating a desti-
nation of a cell stream formed by said processor.

11. An apparatus according to claim 10, wherein said
processor sequentially executes said frame synchronization
process and satd ATM cell synchronization process, when a
predetermined amount of data has been stored in said input

FIFO.

12. An apparatus according to claim 11, wherein said
processor inserts information data of a predetermined pat-
tern in said output FIFO when information data stored in
said output FIFO is smaller than a predetermined data
amount.

13. A switching apparatus comprising:

an input port to which ATM cells are inputted:;

storage means for storing said ATM cells inputted via said
input port;

procedure information means for outputting information
indicating the procedure for HEC operation and the

mapping of said ATM cells onto a frame structure, to
said ATM cells read from said storage means;

process means for performing said HEC operation and
said ATM cell mapping onto a frame structure on the
ATM cells stored in said storage means, on the basis of
the procedure information from said procedure infor-
mation means:; and

an output port for outputting the ATM cells mapped on a
frame structure at said process means.

14. An apparatus according to claim 13, wherein

said output port contains output-side storage means for
temporarily storing the resulting information data after
said HEC operation and said ATM cell mapping onto a
frame structure; and

said process means for mapping the ATM cells of a
predetermined pattern onto a frame structure and stor-
ing the results in said output-side storage means, when
the amount of information data stored in said output-
side means is less than a predetermined amount of data.

15. A switching apparatus comprising:

an input port to which ATM cells with routing tags are
inputted;

storage means for storing said ATM cells with routing tags
inputted via said input port;

procedure information means for outputting procedure
information indicating the procedure for routing tag
deletion, HEC operation and ATM cell mapping onto a

frame structure, to said ATM cells with routing tags
read from said storage means;

process means for performing said routing tag deletion,
said HEC operation, and said ATM cell mapping onto
a frame structure on the ATM cells stored in said
storage means, on the basis of the procedure informa-
tion from said procedure information means; and

an output port for outputting the ATM cells mapped on a

frame structure at said process means.

16. An apparatus according to claim 15, wherein said
input port comprises an input FIFO for temporarily storing
information data associated with the ATM cells, and said
process means sequentially executes said routing tag dele-

43 .
‘tion, said HEC operation, and said ATM cell

cells with routing tags is stored in said storage means.
17. An apparatus according to claim 16, wherein
apparatus temporarily writes the ATM cells with routing
from said input FIFO into said storage
transfers a pointer for a data block to the process

at which the ATM celis are stored.
18. An apparatus according to claim 15, wherein

said procedure information means further outputs infor-
mation indicating an OAM cell extracting procedure

for extracting OAM cells from the cells obtained
result from deleting said routing tags, an OAM

apping onto
a frame structure, when a predetermined amount of ATM

eans, and thereafter
eans for
use during the process of mapping ATM cells, the pointer
being stored in said storage means and indicates a position

5,557,609

44

20. An apparatus according to claim 19, wherein said
processor sequentially executes said routing tag deletion,

said frame structure creation, and said ATM cell mapping

said
tags 5

10

onto a frame structure, when a predetermined amount of
ATM cells 1s stored in said input FIFO.

21. An apparatus according to claim 19, wherein said
processor maps the ATM cells of a predetermined pattern
onto a frame and then inserts the results into said output
FIFO, when the amount of information data stored in said
output FIFO is less than a predetermined amount of data.

22. A switching apparatus comprising:

as a
cell 13

diverging procedure for writing said extracted OAM

cells into OAM cell storage means, and an OAM

cell

process procedure for processing said diverged OAM

cells; and
said process means sequentially executes said OAM

cell 20

extracting procedure, OAM cell diverging procedure,

and OAM cell process procedure according to the
procedure information from said procedure information
means during the time when neither said routing tag
deletion nor said HEC operation nor said ATM cell
mapping onto a frame structure is being performed, and
transfers the pointer to said OAM cell storage means
from said OAM cell diverging procedure to said OAM
cell process procedure.

19. A switching apparatus comprising:
an input port containing an input FIFO for receiving ATM

cells with routing tags and temporarily storing them;

a processor for referring to said input FIFO, deleting the

routing tags from the ATM cells stored therein, creating
a frame structure on its own, and then mapping said
ATM cells from which said routing tags have been
deleted, onto said created frame structure; and

an output port containing an FIFO for temporarily storing

the frame created by said processor and outputs the
frame.

25

30

35

40

storage means for storing cell headers of ATM cells; .
procedure information means for outputting procedure

information indicating the procedure for inputting the
cell headers from said storing means;

procedure information means for outputting procedure

information indicating a process for inputting the cell
headers from said storing means, information indicat-
ing a process for counting the cell headers inputted
from said storing means, information indicating a pro-
cess for measuring a cell arrival interval for each
connection set for said storing means and regarding the
number of cell headers inputted as an elapsed time,
information indicating a process for judging whether or
not the inputted cell headers are to be transmitted, and

information indicating a process for rewriting the cell
headers determined to be transmitted; and

process means for sequentially performing the process of

inputting the cell headers from said storing means, the
process of counting the cell headers inputted from said
storing means, the process of measuring the cell arrival
interval for each connection set for said storing means
regarding the number of cell headers inputted as the
elapsed time, the process of judging whether or not the
inputted cell headers are to be transmitted, and the
process of rewriting the cell headers determined to be
transmitted.

	Front Page
	Drawings
	Specification
	Claims

