United States Patent [

Kanavy et al.

OO D A A

US005544298A
[11] Patent Number:
451 Date of Patent:

5,544,298
Aug. 6, 1996

[54] CODE GENERATION AND DATA ACCESS
SYSTEM

[75] Inventors: Walter J. Kanavy, Scranton; Timothy
P. Brown, Dunmore, both of Pa.

[73] Assignee: Data Management Corp., Del.

[21] Appl. No.: 7,595

[22] Filed: Jan. 22, 1993

[S1] Inte CLE e GO6F 3/14
[32] US.Cle e, 395/155; 395/161
[58] Field of Searchcoooovmeovveoeen. 395/155, 161,
395/159, 157, 160, 156, 600; 345/119,
145, 146

[56] References Cited

U.S. PATENT DOCUMENTS

4,796,179 1/1989 Lehman et al. woueeeeveeeeenenenennnnn.s 364/191
5,065,347 11/1991 Pajak et al. .ooeeveeevvoeeeomoen 395/159
5,187,788 2/1993 MarmelStein .oeeeeeeeveeeeeeermnnnnan, 395/700
5,255,363 10/1993 SeVIer ...ovveereerevreceeeierennne 305/159 X
5,261,043 1171993 Wolber et al. ...ueeeeveeeeeeerrneenen,s 395/159

3,313,574 5/1994 Beethecccvvvvviiveveveerernnenee. 395/159
5,313,575 5/1994 Beetheoooeecrevvcuvrcrcrereannee. 395/159
3,414,838 5/1995 Kolton et al.ccoereenennee.. 395/161 X

Primary Examiner—Raymond J. Bayerl
Assistant Examiner—Crescelle N. dela Torre

Attorney, Agent, or Firm—Brumbaugh, Graves, Donohue &
Raymond

[57] ABSTRACT

A system for code generation and data access which over-
comes many of the problems in conventional database and
spreadsheet applications. A user is able to build up program
steps, having available, as needed, information on the per-
missible operations, on the fields present in the data files in
use, and on the actual contents of pertinent fields in the data
files. When setting up a selection statement, for example, the
user 1S able to view in real time a concordance of contents
of a field; in the concordance display the actual contents are
shown 1n sorted sequence and with duplicates suppressed.
The display allows the user to generate code without any
need for repeated referral to lists of fields. Duration from
start to finish of generating workable code, including mean-
ingful selection statements, is greatly improved.

7 Claims, 3 Drawing Sheets

Oe

U.S. Patent = Aug. 6, 1996 Sheet 1 of 3 5,544,298

U.S. Patent Aug. 6, 1996 Sheet 2 of 3 - 5,544,298

o6

= A

55 <= _ ——— —
- 53
— ~ _h_'"_'_ 54
e l T .,.,..____>5?
e
FIG. 3
51
<18
Bl o
Sk
52

U.S. Patent

Aug. 6, 1996 Sheet 3 of 3 5,544,298

70

FIG. S

TEMPLATE EXAMPLES

OPERATOR TEMPLATE

Add - Add | | To [] Giving []

Muttiply Multiply [1By [T Giving []
Write Write [] Using []

Get_Days Get_Days [] To[1 Giving[] Days
Perform Perform | | Thru []

FIG. 6

5,544,298

1

CODE GENERATION AND DATA ACCESS
SYSTEM

BACKGROUND OF THE INVENTION

Personal computers are everywhere, yet for most users of
database applications it is still not easy to get the information
they need and to manipulate that information to get the
answers they need. This invention relates generally to data-
base and computational applications and relates particularly
to an improved system permitting users to retrieve informa-
tion from databases and to create programs for manipulation
of the data and for performing computations on the data.

One commonly used application is what is generically
called a database application. With such an application, the
user 1s able to enter data on a record-by-record basis, edit
selected records, browse through the contents of the data-
base, and print reports based on the contents of the database.
Some database applications are called “relational”, denoting
that a field in a selected record of a first database can be a
pointer mto a second, related database. Some database
applications permit the user to write a program in a special-
ized language peculiar to the application. One commonly
used database application is dBase III, published by Ashton-
Tate. Another in common contemporary use is Paradox,
published by Borland. In dBase III, which is a relational
database application, a user can run a program written in the
dBase programming language; the conventionally used
extension to the DOS filename for the dBase program is the
extension of “.PRG”. The PRG program is executed by
means of the dBase application serving as an interpreter.

Another commonly used application is what is generically
called a spreadsheet application. With such an application,
the user 1s able to fill cells in a two-dimensional array by
means of keyboard entries. Each cell contains a numerical
value, a formula, or a label. A formula is an expression
which may include constants, operations, functions, and
references to the contents of other cells. A commonly used
spreadsheet application is Lotus 1-2-3; another is Excel
published by Microsoft. Lotus also permits cells to contain
“macros”, expressions which contain programming steps
interpreted by the Lotus application.

Most database applications have the drawback that pro-
gramming 1s quite difficult. It is estimated that well over
nine-tenths of the users of dBase, for example, never write
any programs in the native dBase programming language,
but only perform menu-driven activities such as the afore-
mentioned editing and browsing. Among the many factors
making programming difficult are the cumbersome require-
ments for creating and debugging database programs. The
user must typically type in the entirety of a programming
line, including the operations, field names, constants, etc.
that make up a valid line of program. Syntax and data type
mismatch errors are commonplace and cumbersome.
Numerical operations such as summing and subtotaling are
not easy, nor are operations intended to apply across all

records, €.g. to increase the contents of a selected field by a
percentage.

With many database applications, one who would write a
program is constantly faced with having to try to keep in
mind the names of fields in each database that is to be used.
If two database files are to be accessed at once, the user will
often have the additional complication of a field name
turning up 1in more than one database file, which must also
be kept in mind. The user will enter one or more program
lines and then execute them. At execution time the user may

5

10

15

20

25

30

35

40

435

50

55

60

65

2

learn, for the first time, that fields of inconsistent data type
are being added, that there is an error in the syntax of the
entered lines, or that a nonexistent field has been referred to.
The user is thus subjected to a debugging cycle of numerous
iterations just to obtain a runnable program, and only after
that is the user in a position to check the program for logical
correctness and finishing touches.

Most spreadsheet applications are also difficult to pro-
gram. As with database applications, it is estimated that well
over nine-tenths of users of Lotus never create macros to
solve problems, but only enter the aforementioned labels,
formulas, and constants. While many spreadsheet applica-
tions including Lotus have commands and menu choices
(including sorting and looking up) intended to permit use of
the spreadsheet for database purposes, most users have
trouble using them,

When conventional database or spreadsheet applications
arc employed, a not infrequently encountered task is select-
ing records for further processing and analysis. In dBase, for
example, one does what is called setting a “filter” to cause

the display and processing only of records meeting a crite-
rion.

An example will show how selecting records is inconve-
nient and problematical with preseni-day applications. A
user may be working with a database file having a field for
a Zip code, and may wish to arrive at statistics based on the
records having a particular Zip code. The user will write a
program in which, at the outset a selection step is performed
setting a filter so that only records having the particular Zip
code are considered for further computation. After executing
the program, the user will obtain the desired data, but only,
of course, after the usual iterative process of revising the
program. After the program is debugged, there could be the
unhappy news that there are no records matching the desired
Z1p code.

It would be helpful to many users of database and
spreadsheet applications if there were a way to generate
program steps permitting the user to give more attention to
the step being generated and less to pesky aspects such as (1)
having to remember the fields which can be used in the step,
and (2) having to get the syntax and data types right on the
first try. It would be additionally helpful to such users if there
were a way to find out, and the time of generating the code
relating to selecting records, the universe of actual values in
the fields being used in the selection process.

SUMMARY OF THE INVENTION

The invention comprises a system for code generation and
data access, which overcomes many of the problems in
conventional database and spreadsheet applications. A user
1s able to build up program steps, having available, as
needed, information on the permissible operations, on the
fields present in the data files in use, and on the actual
contents of pertinent fields in the data files. When setting up
a selection statement, for example, the user is able to view
in real time a concordance of contents of a field; in the
concordance display the actual contents are shown in sorted
sequence and with duplicates suppressed. The display
allows the user to generate code without any need for
repeated referral to lists of fields and the like. Duration from
start to finish of generating workable code, including mean-
ingful selection statements, is greatly improved.

DESCRIPTION OF THE DRAWING

The invention will be described with respect to a drawing,
of which:

3,544,298

3

FIG. 1 shows the hardware configuration of the system of
the invention: |

FIG. 2 shows a typical file structure for data files to be
manipulated by the system according to the invention;

FIG. 3 depicts a display screen including a number of)
windows:

F1G. 4 depicts the screen of FIG. 3 including an additional
window relating to names of files such as those of FIG. 2;

FI1G. § depicts the screen of FIG. 3 including an additional ;4
window relating to actual data values for a field for which an
operation is to be performed; and

FIG. 6 shows in tabular form typical operations and the
templates that result upon their selection.

15
DETAILED DESCRIPTION

The exemplary embodiment will be described with
respect to a microprocessor-based hardware platform,
shown in FIG. 1. A microprocessor 11 has RAM 19; pref-
erably the processor is an Intel 80386 and the memory is at
least four megabytes. Hard disk drive 17 and floppy disk
drive 18 are coupled with the processor. While the main
input device 1s a keyboard 12, many of the input activities
described below are efficiently performed by use of a
pointing device such as a mouse 13. It is anticipated that a
touchscreen 14 could be employed as well, if sufficiently
fine resolution were available. Finally, though the most
frequently employed output device is the cathode-ray tube
(CRT) screen 15, other display technologies such as liquid
crystal display (LCD) may be used. Any outputs capable of
being directed to the screen may also be directed to a printer
16. The entire hardware platform is assumed to have a
conventional operating system, preferably MS-DOS.

In the general case, users of the system according to the
invention are manipulating the contents of data files, such as
files 31 and 32 in FIG. 2 which portrays a typical disk file
storage. Employing the standard file directory facilities of
the operating system, a directory 37 has entries 38, 39
relating to files in the file storage, and pointer relationships
41, 40 respectively permit access to the file contents 31, 32
based on the file names 38, 39. Normally everything in FIG.
2 described up this point is concealed from the user, and
from the author of an application, due to the file and
directory services provided by the operating system.

In database applications it is commonplace for a database
file to have a predefined internal structure. As shown in FIG.
2, a database file 31 will have a first region or header 33,
which does not contain database data but rather contains
information defining the fields in each record of the data- <
base. The field definitions include the field name, the data
type for the field, and the field size. Also present in the
header may be information indicative of the number of
records and the total size of the file. In many database
applications, such as dBase, each record is of constant size ss
regardiess of the contents of fields of the record. Qther
database applications, to conserve disk space, will define the
internal structure of the database file to permit records to be
of varying lengths, e.g. to take advantage of any spaces in
empty or partly-empty fields. The designer of an application g
will generally select an arbitrary extension and use it as a
default extension for a newly created database file. dBase,
for example, uses an extension of DBF. The system of the
invention employs a default extension of “.CE”.

When the system according to the invention is used, a 65
software application is executed on the hardware platform of
FI1G. 1. The application, stored in hard disk drive 17, is

20

25

30

35

40

45

4

executed In the conventional way by user inputs o the
operating system, as a result of which the application is
loaded into the memory 19. Under control of the stored
program that is the application, various screens are dis-
played as described below in response to various user inputs.
FIG. 3 shows an “editor” screen, depicting part of a session
during which a user is creating (i.e. editing) a program; the
screen 1s composed of various windows. At lower right in
window 54 is a region, initially empty, where program lines
57 come into existence during the programming process
described below.

Generally when a user is preparing to create a program,
the user already has in mind the database upon which the
program will operate. If the database does not already exist,
the user will create it. Such database creation may be
performed according to well-known prior art steps. The user
gives a name to the database, lists the field names, specifies
the field sizes, and so on. Then the user enters data into
records of the database. It is also commonplace, using
techniques well known in the art, to import data from other
sources, such as quote- and comma-delimited ASCII files,
constant-ficld-width ASCII files, dBase files, and the like.

- The manner in which the database file is created is in any

event not a part of this invention other than in the respect of

having an internal structure as described above in connec-
tion with FIG. 2.

In the system according to the invention, the user initiates
the activity of selecting a database file by means of a
keyboard or mouse input. The application queries DOS for
the names of files having an extension of .CE, and the results
of the query are presented to the user as shown in FIG. 4. A
window 60 is created temporarily, listing database filenames
61. One or more of the database file names is selected by the
user, either by keyboard entries or by mouse manipulations.
At this point, one of the salient aspects of the system
according to the invention is reflected in what is seen on the
screen. As each database file 61 is selected, the application
makes reference to the field name information for the
selected file; as mentioned above the field name information
1s depicted in FIG. 2 with reference numerals 33, 35. If the
user's intention is to access only one database file, then the
window 33 comes to be populated with the fields 56 of that
database file, and the window 60 disappears. If the user’s
intention is to access several database files, then the window
53 comes to be populated with the fields 56 of the several
database files, after which the window 60 disappears.

A potential ambiguity arises if some particular field name
turns up in more than one of the selected database files. This
would happen if the field name were to appear in the field
definition areas 33 and 3§, for example, in FIG. 2. In the
system according to the invention, the potential ambiguity is
eliminated because the application detects the potential
ambiguity and displays, for each indicium 56 relating to that
field name, a prefix denoting the file from which the field is
taken. To give an example, suppose two database files A and
B each contain a field “name”. Then if files A and B are
selected as in FIG. 4, the application lists two indicia in
window 353, “Ainame” and “Biname”. Thus if the user
wishes to make later reference to the “name” field in file A,
the user will use the mouse to select “Alname”.

Continuing the program creation process, the user now
sees a screen like that of FIG. 3, except that the window 54
(which is to contain a display of the program to be created)
1S empty.

Sometimes a program that manipulates data from a data-
base will be intended by the user to apply to every record in

3,544,298

S

the database. In such a case the program will perform its
manipulations on every record in the database. In other cases
the user will desire that fewer than all the records of the
database be used. In dBase, for example, the nser may set a
“filter”, which contains a logical expression. Generally the
expression will work out to be true for some records in the
file and false for others. When program execution continues
after the filter has been set, the program only acts upon
records for which the logical expression evaluates to “true”.

In the system according to the invention, selection of 10

records 1s done by a program step using a “SELECT”
operator followed by a logical expression. If a select step is
present in the program created by the user, then when the
program 1s executed only records for which the logical
expression evatuates as “true’” will be acted upon.

In the system according to the invention, a user creates a
program as will now be described. The user will select one
of several operations 55 from the window 52, by means of
the mouse 13 or keyboard 12. A template relating to the
selected operation will, according to the invention, be posi-
tioned in the window 54. The template includes the opera-
tion itself (expressed typically in character form but option-
ally as an icon) and place holders, preferably screen blocks
with a differing color or other display characteristic. Typical
operations are shown in FIG. 6 in tabular form, and place
holders are shown as underscores in the figure. The user then
selects one of the placeholders, again by the mouse or
keyboard, and has the ability to indicate how the placeholder

18 to be filled in, as described below in accordance with the
invention.

Consider the case of the operation ADD. The user selects
the ADD operation by pointing in the window 52, causing an
operation template to appear in window 54. The system
indicates by the above-mentioned color or other character-
istic that a placeholder needs to be filled, such as ADD (first
placeholder) TO (second placeholder) GIVING (third place-
holder). A typical calculation might be, for each record in the
database (or for each selected record in the database) to add
the contents of the field COST to the contents of the field
MARKUP to yield something called PRICE. In many pro-
gramming environments, a user would be in the position of
having to consult resources elsewhere than on the screen to
permit selecting what it is that would be added (i.e. the
addend). Then the user would have to type in the name of the
addend, which in this example is COST. The manual activity
of typing the word COST presents the risk that the word will
be misspelled, and the fact of the user consulting resources
elsewhere (e.g. printed lists, recollection of file contents,
etc.) presents the risk that an erroneous or unintended word
will be brought to mind and typed. In the system according
to the invention, however, the user is able to select COST
from among the field names appearing in window 53.
Advantageously this is done by pointing with the mouse, so
that the field name itself need not be typed. Advantageously
the system according to the invention may also perform data
type checking in case the field selected is of a data type that
does not match the operation selected.

Having filled in one of the placeholders, the user is then
In a position to be able to fill in any remaining placeholders.
In the example of the ADD operation, the user may fill in the
second addend, by clicking with the mouse on the second
placeholder and clicking on the MARKUP field in window
53. As a result, the program entry in window 54 would now
read ADD COST TO MARKUP GIVING. Those skilled in
the art will note that up to this point no keystroking has taken
place, but rather everything has been accomplished by
mouse activities. The likely result for users of a variety of

15

20

25

30

35

40

45

50

55

60

65

6

backgrounds, including nonprogrammer backgrounds, is
that generating a line of program code will have been
accomplished more quickly, and the likelihood of inadvert-
ent programming error will have been greatly reduced
relative to previously used programming environments.

What remains, in the example for the operation ADD, is
for the user to fill the third placeholder. For this example it

1s assumed that there was not, already in the database, a field
called PRICE. In the system according to the invention the
user can click on the third placeholder, then type at the
keyboard the newly created name PRICE. The label PRICE
is added to the labels already appearing in window 53, and
becomes available for future pointing activity. At such time

as the program is executed the system causes a new field
PRICE to come into existence, and stores to it the results of
the ADD operation.

Another operation that is advantageously realized in the
system according to the invention is the abovementioned
SELECT operation. In typical prior art database applications
a user might be asked, say, to generate a report containing
selected fields for all records for which, say, the state is
Massachusetts. After setting a filter (in dBase) or recompil-
Ing a program (in an environment in which a compiled
program 18 used to extract data from the database file) there
would come a time when information on the screen would

let the user know if, for example, there happened to be no
records matching the desired state name. As another

example, in typical prior art database applications a user
might be asked, say, to generate a report containing selected
fields for all records for which, say, the dollar value in a
specified field falls within certain limits. After setting a filter
(in dBase) or recompiling a program (in an environment in
which a compiled program is used to extract data from the
database file) there would come a time when information on
the screen would let the user know if, for example, there

happened to be no records for which the specified field falls
within the specified limits.

In the system according to the invention, however, much
wasted time may be saved due to advantageous aspects of
the programming environment. If a SELECT operation is
selected by the user, for example, a template as described
above appears in window 54. The placeholder is a place
where a logical expression may be built up by repeated
mouse activity. A simple case will suffice to illustrate the
system relating to building up the logical expression. Where
it is desired to SELECT records based on the STATE field,
the user could point to an operation EQUALS, causing two
placeholders to appear in window 54. In the simple case, the
first placeholder is intended to be filled with the field name
of STATE and the second placeholder will contain a literal
expression (here, Massachusetts) for the match test of the
record selection. As mentioned above, the user is able to
click on the first placeholder, then on the field name STATE
appearing in the window 53.

Advantageously, the system according to the invention
then prompts the user with a screen permitting a sophisti-
cated way of filling in the second placeholder. As shown in
FIG. 5§, a window 70 appears, the contents of which are a
consequence of the fact that the STATE field is on the other
side of the word EQUALS. The system displays as entries 71
a series of lines of displayed material based on the actual
contents of the field in the records of the actual database that
1s being accessed. To do this, the system takes the contents
of the field, sorts those contents in a natural order, removes
duplicates, and displays what remains after the culling.
Using the mouse the user may scroll through the many lines
of window 70 to look for MASSACHUSETTS in the present

5,544,298

7

example. When that value is found, the user may click on the
value and the value will be moved to the placeholder
position in window 54. The results of the culling, with
duplicates suppressed or eliminated, maybe termed a con-
cordance.

Those skilled in the art will appreciate that numerous
advantages accrue when this preferable aspect of the system
of the invention is employed. The user is saved the key-
strokes that would be required to type in the literal value
MASSACHUSETTS. More subtly, the user is able to iden-
tify early on in the programming process the situation that
would follow if it happens there are no records for which the
STATE field contains MASSACHUSETTS. Finally, the user
may be apprised of circumstances where it makes more
sense, on retiection, to match on any of several literal values
(say, due to the realization that some of the records have the
state name spelled out in full while others contain the state
name 1n abbreviated form). And a final example is that the
generation of the line of program code is faster and more
efficient for the user, compared with prior art programnnng
environments.

After repeated pointing and typing activities, program
lines are accumulated in window 54. Those skilled in the art
will appreciate that execution of such a program could be
accomplished by any of a number of conventional tech-
niques. In the system according to the invention the user
selects an “execute” button on the screen 51, as a result of
which the program (stored internally in a tokenized form) is
interpreted by an interpreter that is part of the system. The
type of tokenization and type of interpreter used form no part
of this invention other than as a way to realize execution of
the accumulated program. In the present system, the screen
clears and the results of the execution appear on the screen.
Later the screen 31 is restored to view. Alternatively the
results of execution may be printed. Upon imminent exit
from the application, the user is given an opportunity to
indicate whether the original source of the database (e.g. on
hard disk) is to be updated based on the results of the
program execution.

When the application of the system of the invention has
been run by users with a variety of backgrounds, the actual
result observed is that users are able to generate workable
programs in less time than with prior art programming
environments. The programs are seen more often to give the
intended result on the first try. Most significantly, the appli-
cation environment as perceived by many users is not even
perceived as a “programming’ environment, which for some
users removes some of the anxiety that is associated with
“programming” as an activity. Rather, it is perceived gen-
crally by many users as a report generating or problem
solving environment. The practical result is that users who
would not characterize themselves as programmers are able
to achieve results that heretofore would have required the
use of prior art systems usable only by users who do
characterize themselves as programmers.

The term “keyboard” as used herein is meant to include
not only traditional keyboards but also other commonly
employed input devices including speech recognition sys-
tems, touchscreens and stylus pads and mice and other
pointing devices. Those skilled in the art will doubtless
devise other input devices which could be employed instead
without departing from the spirit of the invention.

The term “memory” as used herein is meant to include not
only traditional hard disk drives but also other commonly
employed memory devices including dynamic RAM, bat-
tery-backed CMOS RAM, and flash RAM. Those skilled in

10

15

20

235

30

35

40

45

50

35

60

65

3

the art will doubtless devise other memory devices which
could be employed instead without departing from the spirit
of the invention.

Those skilled in the art will appreciate that while the
above-described embodiment has been disclosed with
respect to a general-purpose computer executing an appli-
cation that is a stored program, the invention is not so limited
in 1ts scope and utility. For example, random logic circuitry
could be employed in lieu of a general purpose computer to
provide a dedicated system for performing the database
queries and manipulations of the invention without deviat-

ing 1n any way from the scope of the invention.

We claim:
- 1. A code generation and data access system for use in
performing operations upon data in data files comprising
records, each record comprising fields, the system compris-
ing:

a display comprising a plurality of windows:

a Processor;

a2 Memory;

a keyboard for receiving user inputs;

first means responsive to a first user input for identifying
data files and for displaying indicia indicative thereof
within a first window of the display;

second means responsive to a second user input for
selecting a data file, for retrieving information relating
to the fields in the selected data file and displaying the
information relating to the fields in a second window of
the display;

means for displaying indicia corresponding to operations
performable upon data in a third window of the display;

third means responsive to third user inputs for repeatedly
selecting an operation from the third window, for
displaying within a fourth window a program step
template 1ndicative of the selected operation, the tem-
plate having placeholders, and responsive to fourth user
inputs relating to the placeholders for selecting respec-
tive field information from the second window, the
selected information replacing respective placeholders
in the template;

whereby a plurality of program statements indicative of
the operations and fields selected by the user appear in
the fourth window.

2. The system of claim 1 wherein the third means stores
a plurality of program statements each indicative of the
operations and fields selected by the user and displayed
within the fourth window.

3. The system of claim 2 further comprising:

fourth means responsive to a fourth user input for execut-

ing the program statements and for displaying the
results of the execution.

4. A code generation and data access system for use in
performing operations upon data in data files comprising
records, each record comprising fields, the system compris-
ing:

a display comprising a plurality of windows;

a processor;

a Memory;

a keyboard for receiving user inputs;

first means responsive to a first user input for identifying
data files and for displaying indicia indicative thereof
within a first window of the display;

second means responsive to a second user input for
selecting a data file, for retrieving information relating

5,544,298

9

to the fields in the selected data file and displaying the
information relating to the fields in a second window of
the display;

means for displaying indicia corresponding to operations
performable upon data in a third window of the display;

third means responsive to third user inputs for repeatedly
selecting an operation from the third window, for
displaying within a fourth window a program step
template indicative of the selected operation, the tem-
plate having placeholders, and responsive to a fourth
user input relating to the placeholders for selecting
respective field information from the second window,
the selected information replacing a respective place-
holder in the template;

the third means further responsive to a fifth user input for
displaying within a fifth window actual data values for
the field of the selected information from the file
containing the field of the selected information;

the third means further responsive to a sixth user input for
selecting an actual data value from the fifth window, the

5

10

15

10

selected actual data value replacing a respective place-
holder in the template;

whereby a plurality of program statements indicative of
the operations, fields, and actual data values selected by
the user appear in the fourth window.
S. The system of claim 4 wherein the third means stores
a plurality of program statements each indicative of the

operations and fields selected by the user and displayed
within the fourth window.

6. The system of claim 5 further comprising:

fourth means responsive to a fourth user input for execui-

ing the stored program statements and for displaying
the results of the execution.

7. The system of claim 6 wherein the operations within the
third window include a selection operation selecting less
than all of the records in a file, and wherein the fourth means,
if the selection operation is among the stored program
statements, executes the stored program only with respect to
the records selected by the selection operation.

c N T S .

	Front Page
	Drawings
	Specification
	Claims

