{0 U 0 R0 AR A

Motorola MC88110 Second Generation RISC Microproces-
- sor User’s Manual, Motorola, Inc., Table of Contents (9
© pegs.). |

Motorola Semiconductor Technical Data, Errata to
MC88110 Second Generation RISC Microprocessor User’s
Manual, Motorola, Inc., pp. 1-11.

o US005541865A
Unlted States Patent [(111 Patent Number: 5,541,865
Ashkenazi 451 Date of Patent: Jul. 30, 1996
541 METHOD AND APPARATUS FOR Titled “MC88110 Second Generation RISC_Micropmcessor.
' PERFORMING A POPULATION COUNT User’s Manual” Sep. 1992, pp. 1-23, 2-1 to 2-20, 3-1 to
OPERATION . | 3-32, 5-1 to 5-25, 10-62 to 10-71, Index 1 to 17.
| Motorola Semiconductor Technical Data Titled "MC88110
{75] Inventor: Yaron Ashkenazi, Haifa, Israel Programmer’s Reference Guide”, Dec. 1992, pp. 1-4. -
- | o Titled “Intel 1 750®, 1860™, i960® Processors and Related
(73] Assignee: Intel Corporation, Santa Clara, Calif. Products”, 1993, Table of Contents & p. x1.
| J. Shipnes, Graphics Processing with the 88110 RISC Micro-
| P processor, IEEE (1992), pp. 169-174. -
[21] Appl. No.: 499,095 MC88110 Second Generation RISC Microprocessor User’s
1. | Maruual, Motorola Inc. (1991).
22] Filed: l. 6, 1995
o2 e . MC88110 Programmer’s Reference Guide, Motorola Inc.
. e en (1992), pp.1-4.
| Related U.S. Apphcatmn Data i860™ Microprocessor Family Programmer’s Reference -
| Manual, Intel Corporation (1992), Ch. 1, 3, 8, 12. |
3] C f No. 175,783, Dec. 30, 1993, ab
163] d;?é?“a““n of Ser. No. ec. 30, 1993, aban- o "B | e, Accelerating Multimedia With Enhanced Micro-
e 5 | | processors, IEEE Micro (Apr. 1995), pp. 22-32.
51] Int. CL.° ... e GO6F 7/50 TMS32002x User’s Guide, Texas Instruments (1993) Dp.
“52] U-S- CL .'u.....u....."........- 364’715.{)9; 364!784 3_2 through 3___11; 3_28 thrgugh 3_34; 4__1 thrt}ugh 4__22;
58] Field of Search ... 364/715.09, 784, 4-41; 4-103; 4-199 through 4-120; 4-150 through 4-151.
| 364/786, 758 L. Gwennap, New PA-RISC Processor Decodes MPEG
Video, Microprocessor Report (Jan. 1994), pp. 16, 17.
[56] References Cited SPARC Technology Business, UltraSPARC Multimedia
o | Capabilities On—Chip Support for Real-Time Video and
- U.S. PATENT DOCUMENTS Advanced Graphics, Sun erosystems (Sep 1994).
3,711,692 1/1973 Batcher .vvcvinniivvrrennees 364/715.09
3,723,715 3/1973 Chenetal. .ninincciannnee.. 364/715.09 (List continued on next page.)
4,161,784 1/1978 Cushmg) < | VO 3647743 Primary Examiner—David H. Malzahn
4393468 T/1983 NEW .cvvcimmrrrrecrcnsicresisnaenes 364/736 Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor & Zaf-
4,418,383 11/1983 Dnyle. ' A | SOOUUURSOUR 364/200 man - |
4,498,177 2/1983 Larsoncccevcenmemcnencinin 364/715.09
4,707,800 11/1987 Montrone et al.ccceeerrnenene. 364/788 1577 ABSTRACT
4771,379 9/1988 Ando et al. ...ciiiciiiinnineennnnnee 364/200 |
4,989,168 1/1991 Kuroda et al.cccerevereennn. 364/715.09 An operation circuit for performing a population count. The
- 5,095,457 3/1992 Jecm.g“ eueesss s e 364771509 operation circuit comprises a first circuit being coupled o
- 5,187,670 2/1933 Vassiliadis €t al. wooenivnneees 364/715.09 receive a first data element. A first packed data includes the
5,330,447 §/1994 Bz{lxl_ler 364/715.09 first data element and a second data element. Each of the
5,418,736 571965 WIdIg(:H] A | D 364/786 data Elﬂments hEIS a9 pl‘ﬁdﬂ:tﬁl’l’ﬂll’lﬁd Ill.lmbﬂl' Gf bitS. The ﬁI‘St
OTHER PUBLICATIONS circuit is for generating a first result data element represent-

ing a total number of bits set in the first data element. The
operation circuit further comprises a second circuit being
coupled to receive the second data element. The second
circuit is for generating a second result data element repre-
senting a total number of bits set in the second data element.

5 Claims, 16 Drawing Sheets

_ iH'[:: EN\I 3 IH1 1 I"-Ig [H? iHﬁ |N—3 [H'f
0o ! Jy EER vy vy vtV vy
—*i # e 2 Iﬁ‘l: Thi 3 e Al ol iy e I K
-2 G5A 4-»2 C5A =2 CHA 4~>2 CSA
o {ay Out? Cutt Qa2 il Cud L ﬂt.ll Cut?
o A o Ei‘/ A2 X A2 l ;I {
Il..'ll i-rEl tmlmﬂ ¢ o In2 il
e e RESULT OUIT 807
{'Jun Outt Qut? ;’1 - >
,}f S/I’ A7 RESULT OUT15.5
l C— 11
o2 Int EA -
e 1 RESULT OUT
Owt O > Cn co 7
,I/ /{’j =2 1052
Al gy | PESULT OUTE
— 8 I 1051 4

5,541,865
Page 2

OTHER PUBLICATIONS B. Case, Philips Hopes to Displace DSPs wr.th VLIW
" Microprocessor Report (Dec. 94), pp. 12-18.
| | | | N. Margulis, 1860 Microprocessor Architecture, Mc Graw
Y. Kawakami et al., LSI Applications: A Single-Chip Digital =~ Hill, Inc. (1990) Ch. 6, 7, 8, 10, 11. |
Signal Processor for Voiceband Applications, Solid State Pentium Processor User’s Manual, vol. 3: Architecture and
Circuits Conference, Digest of Technical Papers; IEEE Programming Manual, Intel Corporation (1993), Chapters
International (1980) pp. 40-41. | 1, 3,4, 6,8, and 18.

- U.S. Patent

Jul. 30, 1996 Sheet 1 of 16

5,541,865

Display
Levice 191

Keyhoard :

|
U

Processor
109

~ Cursor]
Control §—
123

Hard Copy
Device

|
-
|
|
|
-
|
'|
|
|
|
E
o |
|

“_“__“_“___n“””“

Sound
Recording and

Playback

Devi _
evice e |

Figure 1

2 2inbi4

5,541,865

501 amwmuo__m

. <0z

— S._.ﬂ%

—— __ un oibo
. Ewﬁ_mmm - ..]
. el —— _ i
-
-
2
112

s ig)sibsy
> JBuIog - mcm
7 uononysu| | | . sng [ewaiu]
&
- Japooe(]
e
-3
o)
=
J

Emw_mmm

-

-

Qs

ot

b

-V |
)
=

0z /S
3l Js)sibey

Y
~ [eubig joauog |

~ U.S. Patent Jul. 30,1996 Sheet 3 of 16

5,941,865

Access Register File
302
Enable ALU with Operation
303 _

' Receive and Decode Instruction -
_ 301

Store Result In Register
304

Figure 3

5,541,865

ey ainbi

L0
PIOMI|qRO(]

£ olg
—

1olAg | 2 9iAg
Gl 9l

0 SiAg

Sheet 4 of 16
-
[
L)

Jul. 30, 1996

~ U.S. Patent

5,541,865

SANE

N

S | Lt Lonejuasaidey] Jajs|Bai-uj slAg peublg

Z VT S [—— S 385
X 0Ly uoneuasaiday Jaisibai-u) a¥ig psubisun

» — .

”Ju..n ﬁ_ﬂﬂﬂ ﬂﬂﬂﬁ_ g@!.i-l-n.i!.!..l.........,_.t.l..!.!...__i._...._.!.....:..._i..._........!_I-.!.....t:...l:i..i.....&._._._.___.:_.:n......-.-_ ::::: o o o M A 004 0 L S .-§
= . _

= e __ _ — -

~ US. Patent

5,541,865

0f aInbi4

m e1 ¥ uotejuasaidey se1s1bal-u) prop peubig
7 e o33

0 _ gt B 9
X . _
2} Z Ly uoljejussalday Jeisibal-u piop peubisun
T ———

° cLoL - - &9

U.S. Patent

5,941,865

Py 8Inbi4

. SLp Uoneluasasday JeisiBas-u| piomaignog paubls
7 PP PPOP PP PPPP PPPP PPPP PPPR PPPS |88

W pLp UONEjUBSaIdaY 101sIBaI-ul promejnoq peubisun
:

DOOD DPPP PPDD POOR PPPP POPP PPPP PPPP | 000---rrrremermmrmmess oo ()

0 — _ | . e e - R .

- U.S. Patent

BG ainbi

5,541,865

£0G edA | eleq pIopmelano(pexsed

0 PIOM@EIGNO(] 1 PIOMBIGNO(J

Sheet 8 of 16

0 - 1£ 28 £9
20G edA} ejeq piop pexoed
~ G191 €26
E
108 8& el E.m pexoed

mpm_. £e ¥ lbet o0k h8F 969 £9

~ U.S. Patent

5,541,865

qG einbi4

| LG uonejLueseidey se)sibel-uf mqﬁ paxaed peubig

q4aq Gaqst gqag qags) 9aa9 99gs 140qq n_un_m 4qdq Enm 4309 gqas{ 9qaq qqas| dqagc qaqs

G191 £2 72 1t ot 6E OF vy 6§95 €9

Sheet 9 of 16

016 uonejueseiday Jesibal-u| m;m payaed peubisun

GAd| 9999 99q9)qaqq aqqa § Q49 n_anm qqqq qqqq| @aqa gaaq| 9qgq adaa| qaqq qaaq

REIR A _ ez 6oy vy 9596 €9

Jul. 30, 1996

nnng qaa4

U.S. Patent

5,541,865

oG 8Inbi-

&

=

= €16 uoneluasaidiay hmwm_mmh.:_ DIOM PaYoRd peublg
. 619} /.28

3 218 ...Eﬁcmmmawm Eﬁ.mp_-:_ BIOAR paxoed paubisun
E

=

6 @ R® ey

~ U.S. Patent

5,541,865

pG 2.nBi4

m"
= ¢ 1¢ uoneluesaldey Jajsifial-ul pJomalanog paxded paubig
PPOP PPPE PPPP PPRR PREP PPRP PPPP PPPS PPPE PPPP PPPP PPPR PPPP PPPR PPPR PPPS
0 _ €26 €9
o
m
] b1¢ uoeluaseidsy seisibel-ul piomaianog pexoed paubisun)
E
—

PP PPPE PPDP PO PPAO PPEP PPPP PPRP PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPP

- U.S. Patent

5,541,865

g 8Inbi4

202 [eubig [oauo)d
5 zio[kiof ol e0s 200 T rog
m 0S 2OHS LOHS

: 2k eyl 6100 G2 92 3

U.S. Patent

5,541,865

Jul. 30, 1996 Sheet 13 of 16

_' START
' 701 Decode Control Signal

- U.S. Patent

702 Access Register File, SRC1

" Enable ALU with Operation

709

Bits 15-0: Resltys o Total Number of Bits in
Sourcelqs.g 56t to one.
*Bits 31-16: Resultyy 45 Total Number of Bits

in Source144.15 Set to one.
*Bits 47-32. Results7.3» "Total Number of Bits

in Sourcel47.40 set to one.
*Bits 63-48: Resultgs 45 " Total Number of Bits

in Sourcelgs. 4g Set to ONe.

706 Store Result in DEST Register

- Figure 7

- U.S. Patent

810a
Generate

CSumia,
CCarry1a from:

15o0urcelqs,
Sourcel 44,
Source14a, and
Sourcel14p

810D 810c 810d
Generate | Generate Generate
CSum1ib, | CSum1c, CSumid,
CCarry1b from: CCarryic from: CCarry1d from:
Sourcel 44, Sourcely, Sourcets,
1Sourcetyp, Sourcelg, Source1s,
Sourcelg, and Sourcels, ana Source1, and
Sourcelg Sourcely Sourcelp

820a
Generate
CSuma2a,
CCarry2a from:
CSumia,
CCarry1a,
CSumib,
CCarryib

Jul. 30, 1996 Sheet 14 of 16 5,541,865

820b
Generate
CSumab,
CCarry2b from:
CSumlc, -
CCarryic,
CSumid,
CCarryid

830

| Generate CSum3 and CCarry3

from: CSum2a, CCarry2a,
_ ggumzb, and CGarrryyZb

_ 840
Results.p " Add CSum3 +

CCarry3
Resultyg.5 " 0

Figure 8

\& -
0 606 Snd
v InsaY .
=T
¥ 6 2I1nbi4
Tl
9} 9l 9|
000 G519 91g _ W g &9

————————————
———

= no 606 INO 506 1NO PIOB 1IN0
| pm 1INSdY INRELS 17N53d LINS3IY
nl T306 7806 806 Bg06
= LINOHID INOdOd LINOHID INOdOd 1INOYID INOdJOd NI INDdOd
W _ |
Sh €806 ep0B q306 qr06 29086 o706 PO06 PF06
NI ooinos 9|l NI} 8aunog g{qeuy NI 1eainog 9|qeuy Nijaninog jaBUS
\&
3
=
-
- gl gl . gl ol
oz
=
prmry

106
SNE 182N0S
2 o

t.06
NG

TOHLNOD NV

U.S. Patent

5,541,865

Sheet 16 of 16

Jul. 30, 1996

U.S. Patent

041n0 1ns3ad

GI

eL06 1NO 11NS3d

1NO L1753

4 (=510
Wwng

2501
_ 09

0%01 v

Ui d

Uf ¥

Vg

L] —
SN0 L1Nsay

ALORRRLY,

EQLOL
¥SO2a<t

0

¥

anp Hng

ouj

EQZ01

VSO é< b

LY

U]

e

G ¢

ZN0 UG

L0t
V53 g<v

g HNO

0e01
VSO es-v
Ui Ul eM]

SN

ginQ L{iNQ

JOL0L

At AN

U

U

O

20 1IN0
q0e01

Y50 o<
QU pup oz

L

D_.Z_ |

LEn

0l @inbi4

m_\ ,

I

AN

T ZINO UG

FOT01
A

43N]

m_.zu SENI

0-3+ Nljaanog

EG06

5.541.865

1

METHOD AND APPARATUS FOR
PERFORMING A POPULATION COUNT
OPERATION

- This is a continuation of application Ser. No. 08/175,783,
filed Dec. 30, 1993 now abandoned.

BACKGROUND OF THE INVENTION

1. Field of Invention

~ The present invention relates to the field of processor
operation. In particular, the present invention describes an
apparatus and method of performing a populahon count
- operation on packed data. |

2. Description of Related Art

~Today, most personal computer systems operate with one
- instruction to produce one result. Performance increases are
achieved by increasing execution speed of instructions and
the processor instruction complexity; known as Complex
Instruction Set Computer (CISC). Such processors as the
Intel 80486™ microprocessor, available from Intel Corp. of
Santa Clara, Calif., belong to the CISC category of proces-
sor. - |

Previous computer system architecture has been opti-
mized to take advantage of the CISC concept. Such systems
typically have data buses thirty-two bits wide. However,
applications targeted at computer supported cooperation
(CSC—the integration of teleconferencing with mixed
media data manipulation), 2D/3D graphics, image process-

~ing, video compression/decompression, recognition algo-

rithms and audio manipulation increase the need for
improved perlormance. But, increasing the execution speed
‘and complexity of instructions is only one solution.

- One common aspect of these applications is that they
‘often manipulate large amounts of data where oniy a few bits
are important. That is, data whose relevant bits are repre-
sented in much fewer bits than the size of the data bus. For
example, processors ¢xecute many operations on eight bit
-and sixteen bit data (e.g., pixel color components in a video
image). Thus, a processor having a thirty-two bit data bus
and registers, and ¢xecuting one of these algorithms, can

. wasic up to seventy-five percent of its data processing,

carrying and storage capacity because only the first eight bits
- of data are important.

As such, what is desired is a processor that increases
performance by more efficiently using the difference
betwecn the number of bits required to represent the data to
be manipulated and the actual data carrying and storage
capacity of the processor.

SUMMARY OF THE INVENTION

- An apparatus and method of increasing processor perfor-
mance by efficiently reducing the difference between data
element length and actual carrying and storage capacity 1s
described. In one embodiment, a circuit performs population
count operations on packed data. This embodiment acceler-
“ates the operation of multimedia applications by providing
‘the result of a population count opcratian on a packed data
within one clock cycle of the system using the circuit.

A first embodiment of the present invention includes an
operation circuit for performing a population count. The
operation circuit comprises a first circuit being coupled to
reccive a first data element. A first packed data includes the
first data element and a second daia element. Each of the
data elements has a predetermined number of bits. The first

10

15

20

25

30

35

40

45

50

33

60

635

2

circuit is for generating a first result data element represent-
ing a total number of bits set in the first data element. The
operation circuit further comprises a second circuit being

coupled to receive the second data element. The second

circuit is for generating a second result data element repre-
senting a total number of bits set in the second data element.

In another embodiment of the present invention, the
operation circuit generates a result packed data, and the
result packed data includes the first result data element and
the second result data element.

In another embodiment of the present invention, the first
packed dafa includes a third data element and a fourth data
element. The operation circuit further comprises third and
fourth circuits. The third circuit is coupled to recetve the
third data element. The third circuit is for generating a third
result data element representing a total number of bits set in
the third data element. The fourth circuit i1s coupled to
receive the fourth data element. The fourth circuit is for
generating a fourth result data element representing a total
number of bits set in the fourth data element.

In another embodiment of the present invention, packed
data includes sixty-four bits, and each of the data elements
includes sixteen bits.

In another embodiment of the present invention, the first
circuit includes seven carry-save adders and a full adder. A
first carry-save adder is coupled to receive bit three through
bit zero of the first packed data. The first carry-save adder 18
for generating a first two-bit output and a second two-bit
output. A second carry-save adder is coupled to receive bit
seven through bit four of the first packed data. The second
carry-save adder is for generating a third two-bit output and
a fourth two-bit output. A third carry-save adder is coupled
to receive bit eleven through bit eight of the first packed
data. The third carry-save adder is for generating a fifth
two-bit output and a sixth two-bit output. The fourth carry-
save adder is coupled to receive bit fifteen through bit twelve
of the first packed data. The fourth carry-save adder is for

~ generating a seventh two-bit output and an eight two-bit

output. A fifth carry-save adder is coupled to receive the first,
second, third and fourth two-bit outputs. The fifth carry-save
adder is for generating a first three-bit output and a second

three-bit output. A sixth carry-save adder is coupled to
receive the fifth, sixth, seventh, and eight two-bit outputs.
The sixth carry-save adder is for generating a third three-bit

output and a fourth three-bit output. A seventh carry-save

adder is coupled to receive the first, second, third, and fourth
three-bit outputs, and the seventh carry-save adder is for
generating a first four-bit output and a second four-bit
output. The full adder is coupled to receive the first and
second four-bit outputs, the full adder is for generating bt

four through bit zero of the result packed data, and the bit

fifteen through bit five of the result packed data is coupled
to ground. |

In another embodiment of the present 1invention, each of
the carry-save adders is a 4—2 carry-save adder. |

In another embodiment of the present invention, the fuil
adder is a four-bit full adder. The full adder is for generating
a carry-out, and the full adder is for generating bit four of the
result packed data. |

In another embodiment of the present mventmn a bit 1 18
set if that bit equals one.

Thus, in a single operation, multiple data elements may be'
operated upon given a single packed data.

An object of the present invention is to provide a circuit
better suited to multimedia applications.

An object of the present invention is to improve the
execution of multimedia algorithms by more efliciently

5,541,865

3

using the difference between the length of data element
manipulated and the actual data carrying and storage capac-
ity of the processor.

An object of the present invention is to allow one opera-
tfion to perform work on multiple data elements.

An object of the present invention is to improve the
performance algorithms requiting the totaling of the number
of bits set in a eight bit, sixteen bit, and thirty-two bit
operations in a processor having sixty-four bit registers.

An object of the present invention is to efficiently support
population count operations on eight bit, sixteen bit, and
thirty-two bit data elements in a processor having sixty-four
bit registers.

An object of the present invention is to perform a popu-
lation count operation on a packed data within one clock
cycle.

Although a great deal of detail has been included in the
description and figures, our invention is defined by the scope
of the claims. Only limitations found in those claims apply
to our invention,

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not limitation, in the figures. Like references indicate
similar elements.

FIG. 1 illustrates an embodiment of the computer system
using the methods and apparatus of the present invention.

FIG. 2 illustrates an embodiment of the processor of the
present invention.

FI1G. 3 1s a flow diagram illustrating the general steps used
by the processor to manipulate data in the register file.

FIG. 4q illustrates memory data types.

FIG. 4b through FIG. 44 illustrate in-register integer data
representations.

FIG. S5a illustrates packed data-types.

FI1G. 3b through FIG. 8 illustrate in-register packed data
representations.

FIG. 6 illustrates the control signal format used in the
computer system to indicate the use of packed data.

FIG. 7 illustrates the steps followed by a processor when
performing a population count operation on packed data.

FIG. 8 illustrates the steps followed when performing a
population count operation on one data element of a packed
data and generating a single result data element for a result
packed data.

FIG. 9 illustrates one circuit for performing a population
count operation on packed data having four word data
clements.

FIG. 10 illustrates a detailed circuit for performing a
population count operation on one word data element of a
packed data.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

DEFINITIONS

To provide a foundation for understanding the description
of the embodiments of the present invention, the following
definitions are provided.

Bit X through Bit Y: defines a subfield of binary number.
For example, bit six through bit zero of the byte
00111010, (shown in base two) represent the subfield

10

15

20

25

30

35

40

45

50

55

60

65

4

111010,. The °,’ following a binary number indicates
base 2. Therefore, 1000, equals 8,4, while F,, equals
1540

R, 18 a register. A register is any device capable of storing
and providing data. Further functionality of a register is
described below.

DEST: is an address of a register.
SRC1: is an address of a register.
SRC2; is an address of a register.

Result: 1s the data to be stored in the register addressed by
DEST.

Sourcel: is the data stored in the register addressed by
SRCI.

Source2: 1s the data stored in the register addressed by
SRC2.

COMPUTER SYSTEM

An apparatus and method of increasing processor perfor-
mance by efficiently reducing the difference between data
element length and actual carrying and storage capacity is
described. In the following description, numerous specific
details are set forth such as packed data formats, control
signal formats, etc., in order to provide a thorough under-
standing of the present invention. It will be obvious, how-
ever, to one skilled in the art that the present invention may
be practiced without these specific details. In other
instances, well-known processor architecture, circuits, struc-
tures and techniques have not been shown in detail in order
not to unnecessarily obscure the present invention.

FIG. 1 illustrates a computer system 100 upon which one
embodiment of the present invention can be implemented.
Computer system 100 comprises a bus or other communi-
cation means 101 for communicating information, and a
processing means 109 coupled with bus 101 for processing
information. Computer System 100 further comprises a
random access memory (RAM) or other dynamic storage
device 104 (referred to as main memory), coupled to bus 101
for storing information and instructions to be executed by
processor 109. Main memory 104 also may be used for
storing temporary variables or other intermediate informa-
tion during execution of instructions by processor 109.
Computer system 100 also comprises a read only memory
(ROM) and/or other static storage device 106 coupled to bus
101 for storing static data and instructions for processor 109.
Data storage device 107 is coupled to bus 101 for storing
information and instructions.

Furthermore, a data storage device 107 such as a magnetic
disk or optical disk and its corresponding disk drive can be
coupled to computer system 100. Computer system 100 can
also be coupled via bus 101 to a display device 121, such as
a cathode ray tube (CRT), for displaying information to a
computer user. An alphanumeric input device 122, including
alphanumeric and other keys, is typically coupled to bus 101
for communicating information and command selections to
processor 109. Another type of user input device is cursor
control 123, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 109 and for controlling cursor
movement on display 121. This input device typically has
two degrees of freedom in two axes, a first axis (e.g., x) and
a second axis (e.g., y), which allows the device to specify
positions in a plane.

Another device that may be coupled to bus 101 is hard
copy device 124 that may be used for printing instructions,

5.541.865

S
data, or other information on a medium such as paper, film,
or similar types of media. Additionally, computer system

- 100 can be coupled to a device for sound recording and/or

playback 125 such as an audio digitizer coupled to a
- microphone for recording information. Further, the device
may include a speaker that is coupled to a digital to analog
(D/A) converter for playing back the digitized sounds.
Finally, computer system 100 can be a terminal in a com-

- puter network (e.g., a LAN).

Computer system 100 is useful for supporting computer
supported confercncing (CSC—the integration of telecon-

-~ ferencing with mixed media data manipulation), 2D/3D

- graphics, image processing, video compression/decompres-
sion, recognition algorithms and audio manipulation.

 PROCESSOR
 FIG. 2 illustrates a detailed diagram of processor 109.

 One skilled in the art would understand that processor 109

could be implemented on one or more substrates using any

of a number of process technologies, such as, BiCMOS,
CMOS, and NMOS.

Processor 109 comprises a decoder 202 for decoding
control signals and data used by processor 109. Data can
then be stored in register file 204 via internal bus 205. As a
- matter of clarity, the registers of the preferred embodiment
should not be limited in meaning to a particular type of

circuit. Rather, a register of the preferred embodiment need

only be capable of storing and providing data, and perform-
ing the functions described herein.

Depending on the type of data, the data may be stored in
integer registers 209, status registers 208, or instruction
pointer register 211. Integer registers 209 contains thirty-two
integer registers, R, 212a through R, 212af. Each register is
sixty-four bits in length. R, 212a, R, 2125 and R, 212c are
examples of individual registers in integer registers 209.
Status registers 208 indicate the status of processor 109.
Instruction pointer register 211 stores the address of the next
instruction to be executed. Integer registers 209, status
registers 208, and instruction pointer register 211 all connect
to internal bus 205..

Arithmetic logic unit 203 (ALU) performs the arithmetic
and logic operations carded out by processor 109. Such
opcrations may include logical shifts, addition, subtraction
and multiplication, etc. ALU 203 connects to internal bus
205. Cache 206 is an optional element of processor 109 and
can be used to cache data, including control signails, from,
for example, main memory 104. Cache 206 is connected to
decoder 202, and is connected to receive control signal 207.

FIG. 3 illustrates the general operation of processor 109.
That is, FIG. 3 illustrates the steps followed by processor
109 while performing an operation on packed data, perform-
ing an operation on unpacked data, or performing some
other operation. For example, such operations include a load
operation to load a register in register file 204 with data from
- cache 206, main memory 104, static memory 106, or mass
storage device 107. In one embodiment of the present
 invention, processor 109 supports most of the instructions
- supported by the Intel 80486*M, available from Intel Cor-
poration of Santa Clara, Calif. In another embodiment of the
“present invention, processor 109 supports all the operations
supported by the Intel 80486™, available from Intel Cor-
poration of Santa Clara, Calif. In another embodiment of the
present invention, processor 109 supports all the operations
supporicd by the Pentium™, the Intel 80486™, the
80386™, the Intcl 80286™, and the Intel 8086™, all

5

10

15

20

25

30

40

45

50

33

65

6

available from Intel Corporation of Santa Clara, Calif. In

another embodiment of the present invention, processor 109
supports all the operations supported in the IA™—Intel
Architecture, as defined by Intel Corporation of Santa Clara,
Calif. (see Microprocessors, Intel Data Books volume 1 and

~yolume 2, 1992 and 1993, available from Intel of Santa_ _

Clara, Calif.).

At block 301, the decoder 202 receives a control signal
207 from either the cache 206 or bus 101. Decoder 202
decodes the control signal to determine the operations to be
performed. |

Decoder 202 accesses the register file 204 at block 302.
Registers in the register file 204 are accessed depending on
the register address specified in the control signal 207. For
example, for an operation on packed data, control signal 207
includes SRC1, SRC2 and DEST register addresses. SRC1
is the address of the first source register. SRC2 is the address
of the second source register. In some cases, the SRC2
address is optional as not all operations require two source
addresses. If the SRC2 address is not required for an
operation, then only the SRC1 address is used. DEST 1s the
address of the destination register where the result data 1s
stored. SRC1, SRC2 and DEST are described more fully in
relation to FIG. 6. The data stored in these registers is
referred to as Sourcel, Source2, and Result respectively.
Each of these data is sixty-four bits in length.

Where the control signal requires an arithmetic or logic
operation, at step 303, ALU 203 will be enabled to perform
this operation on accessed data from register file 204. Once
the arithmetic or logic operation has been performed in ALU
203, at step 304, the result is stored back into register file 204
according to requirements of control signal 207.

DATA AND STORAGE FORMATS

FIG. 4q illustrates some of the data formats as may be
used in the computer system of FIG. 1. Processor 109 can
manipulate these data formats. Multimedia algorithms often
use these data formats. A byte 401 contains eight bits of

- information. A word 402 contains sixteen bits of informa-

tion, or two bytes. A doubleword 403 contains thirty-two bits
of information, or four bytes. Thus, processor 109 executes
control signals that may operate on any one of these memory
data formats.

In the following description, references to bit, byte, word,
and doubleword subfields are made. For example, bit six
through bit zero of the byte 00111010, (shown in base 2)
represent the subfield 111010,

FIG. 4b through FIG. 44 111ustrate in-register integer data
representations used in one embodiment of the present
invention. For example, unsigned byie 403 can represent
data stored in integer register R; 212a. A register, in integer
registers 209, is sixty-four bits in length.

In-register unsigned byte representation 410 illustrates
processor 109 storing a byte 401 in integer registers 209, the
first eight bits, bit seven through bit zero, in that integer
register are dedicated to the data byte 401. These bits are
shown as {b}. To properly represent this byte, the remaining
56 bits must be zero. For a signed byte 411, integer registers
209 store the data in the first seven bits, bit six through bit
zero, to be data. The seventh bit represents the sign bit,
shown as an {s}. The remaining bit sixty-three through bit
eight are the continuation of the sign for the byte. '

Unsigned word in-register data representation 412 is

stored in one register of integer registers 209. Bit fifteen
through bit zero contain the unsigned word 402. These bits

5,541,865

7

are shown as {w}. To properly represent this word, the
remaining bit sixty-three through bit sixteen must be zero.
Signed word 402 is stored in bit fourteen through bit zero as
shown in the signed word in-register data representation
413. The remaining bit sixty-three through bit fifteen is the
sign field.

A doubleword 403 can be stored as an unsigned double-
word or a signed doubled word 414 or 415. Bit thirty-one
through bit zero of an unsigned doubleword 414 are the data.
These bits are shown as {d}. To properly represent this
unsigned doubleword, the remaining bit sixty-three through
bit thirty-two must be zero. Integer registers 209 stores a
signed doubleword 4135 in its bit thirty through bit zero; the

remaining bit sixty-three through bit thirty-one are the sign
field.

As indicated by the above FIG. 4b through FIG. 44,
storage of some data types in a sixty-four bit wide register
is an inefhicient method of storage. For example, for storage
of an unsigned byte in-register data representation 410 bit
sixty-three through bit eight must be zero, while only bit
seven through bit zero may contain non-zero bits. Thus, a
processor storing a byte in an integer register uses only
12.5% of its capacity. Similarly, only the first few bits of
operations performed by ALU 203 will be important.

FIG. Sa illustrates the data formats for packed data. Three
packed data formats are illustirated; packed byte data type
501, packed word data type 502, and packed doubleword
data type 503. Packed byte, in the preferred embodiment of
the present invention, 1s sixty-four bits long containing eight
data elements. Each data element is one byte long. Gener-
ally, a data element is an individual piece of data that is
stored in a single integer register with other data elements of
the same length. In the preferred embodiment of the present
invention, the number of data elements stored in an integer
register 1s sixty-four bits divided by the length in bits of a
data element.

Packed word data type 302 is sixty-four bits long and
contains four word 402 data clements. Each word 402 data
element contains sixteen bits of information.

Packed doubleword data type 503 is sixty-four bits long
and contains two doubleword data elements. Each double-
word 403 data clement 403 contains thirty-two bits of
information.

FIG. 5b through FIG. 54 illustrate the in-register packed
data storage representation. Unsigned packed byte in-regis-
ter representation 510 illustrates the storage of packed byte
data type 501 in one of the integer registers R, 212a through
R, 212af. Information for each byte data element is stored
in bit seven through bit zero for byte zero, bit fifteen through
bit eight for byte one, bit twenty-three through bit sixteen for
byte two, bit thirty-one through bit twenty-four for byte
three, bit thirty-nine through bit thirty-two for byte four, bit
forty-seven through bit forty for byte five, bit fifty-five
through bit forty-eight for byte six and bit sixty-three
through bit fifty-six for byte seven. Thus, all available bits
are used in the integer register. This storage arrangement
increases the storage efficiency of the processor. As well,
with eight data elements accessed, one operation can now be
performed on cight data elements simuiltaneously. Signed
packed byte in-register representation 311 1s similarly stored

10

15

20

25

30

35

40

45

30

335

60

65

in an integer register in integer registers 209. Note that only

8

the eighth bit of every byte data element is the sign bif; no
other bits are used to indicate sign.

Unsigned packed word in-register representation 3512
illustrates how word three through word zero are stored in
one integer register of integer registers 209. Bit fifteen
through bit zero contain the data element information for
word zero, bit thirty-one through bit sixteen contain the
information for data element word one, bit forty-seven
through bit thirty-two contain the information for data
element word two and bit sixty-three through bit forty-eight
contain the information for data element word three. Signed
packed word 1n-register representation 313 1s similar to the
unsigned packed word in-register representation 512. Note
that only the sixteenth bit of each word data element
contains the sign indicator.

Unsigned packed doubleword in-register representation
514 shows how integer registers 209 store two doubleword
data elements. Doubleword zero is stored in bit thirty-one
through bit zero of the integer register. Doubleword one is
stored 1n bit sixty-three through bit thirty-two of the integer
register. Signed packed doubleword in-register representa-
tion 515 is similar to unsigned packed doubleword in-
register representation S14. Note that the signed bit is the
thirty-second bit of the doubleword data element.

In one embodiment of the present invention, the indi-
vidual programming processor 109 must track whether an
addressed register, R; 212a for example, is storing packed
data or simple integer data. One skilled in the an would
understand that in an alternative embodiment, processor 109
could track the type of data stored in individual registers of
integer registers 209. This alternative embodiment could
then generate errors if, for example, a packed addition
operation were attempted on simple integer data.

CONTROL SIGNAL FORMATS

The following describes the control signal formats used
by processor 109 to manipulate packed data. In one embodi-
ment of the present invention, control signals are repre-
sented as thirty-two bits. Decoder 202 may receive control
signal 207 from bus 101. However, it is obvious to one
skilled 1n the an that decoder 202 can also receive such
control signals {from cache 206.

FIG. 6 illustrates the general format for a control signal
operating on packed data. Operation field OP 601, bit
thirty-one through bit twenty-six, provides information
about the operation to be performed by processor 109; for
example, packed addition, packed subtraction, etc.. SRC1
602, bit twenty-five through twenty, provides the source
register address of a register in integer registers 209. This
source register contains the first packed data, Sourcel, to be
used in the execution of the control signal. Similarly, SRC2
603, bit nineteen through bit fourteen, contains the address
of a register in integer registers 209. This second source
register contains the packed data, Source2, to be used during
execution of the operation. DEST 6085, bit five through bit
zero, contains the address of a register in integer registers
209. This destination register will store the result packed
data, Result, of the packed data operation. Although this
general format for a control signal uses source and destina-
tion registers in integer registers 209, one skilled in the art

5,541,865

- o
would understand that an alternative embodiment can use

the source and destination addresses of memory locations in
cache 206 or main memory 104.

Control bils SZ 610, bit twelve and bit thirteen, indicates
the length of the data elements in the first and second packed
data source registers. If SZ 610 equals 01,, then the packed
data 1s formatted as packed byte data type 501. If SZ 610
cquals 10,, then the packed data is formatted as packed word
~data type 502. SZ 610 equaling 00, or 11, is reserved,

-hﬂwever, given the above description, one of ordinary skill
in the art would understand that one of these values could be
used for doubleword size data type 503.

. Control bit T 611, bit eleven,
~operation is to be carried out with saturate mode. If T 611

indicates whether the

equals one, then a saturating operation 1s performed. If T 611
equals zero, then a nonsaturating operation is performed.
Saturating operations will be described later.

Control bit S 612, bit ten, indicates the use of a signed
operation. If § 612 equals one, then a signed operation 18
 performed. If S 612 equals zero, then an unsigned operation

- is performed. |

DESCRIPTION OF SATURATE/UNSATURATE

- As mentioned previously, T 611 indicates whether opera-
tions optionally saturate. Where the resuit of an operation,

- with saturate enabled, overflows or underflows the range of
~ the data, the result will be clamped. Clamping means setting
the result to a maximum or minimum value should a result
exceed the range’s maximum or minimum value. In the case
of underflow, saturation clamps the resuit to the lowest value
- inthe range and in the case of overflow, o the highest value.

- The allowable range for each data format 1s shown in Table

1 | |

10

15

20

25

30

35

40

TABLE 1
Data Format Minimum Value Maximum Value
Unsigned Byte | | 0 235
Signed Byte —128 127
Unsigned Word 0 65535
Signed Word | —32768 32767
UnSigned Doubleword 0 2541
Signed Doubleword ~263 2991

As mentioned above, T 611 indicates whether saturating '
operations are being performed. Therefore, using the
unsigned byte data format, if an operation’s result=258 and

saturation was enabled, then the result would be clamped to

255 before being stored into the operation’s destination
register. Similarly, if an operation’s result=-32999 and
processor 209 used signed word data format with saturation
enabled, then the result would be clamped to —32768 before
being stored into the operation’s destination register.

POPULATION COUNT

One embodiment of the present invention enables popu-
lation count operations to be performed on packed data. That
is, the present invention generates a result data clement for
each data element of a first packed data. Each result data
clement represents the number of bits set in each corre-

sponding data element of the first packed data. In one
embodiment, the total number of bits set to one is counted.

Table 2a illustrates an in-register representation of a
population count operation on a packed data. The first row
of bits is the packed data representation of a Sourcel packed
data. The second row of bits is the packed data representa-
tion of the Result packed data. The number below each data
element bit is the data element number. For example,
Sourcel data element 0 is 1000111110001000,. Therefore, if
the data elements are sixteen bits in length (word data), and
a population count operation is |

TABLE 2a

§ 10001111 10061000
0

e—
L

00000000 00000111

55

S

In another embodiment, population counts are performed
on eight bit data elements. Table 2b illustrates an in-register
representation of a population count on a packed data havin g

eight eight-bit packed data elements.

5,541,865

11

"TABLE 2b

I N

12

01111111101010101110101010 10000000 (11111111

11001111%0{}0(}00{}0

— — — — —

— — p—— e —

e I e ——]

rrr———

7 6% 5 4 3§H2F1§_ﬂ

00000111 [00000100 [00000100 (0000001 | 00001000

00000110

00000000

SN T

In another embodiment, population counts are performed
on thirty-two bit data elements. Table 2c¢ illustrates an
in-register representation of a population count on a packed
data having two, thirty-two bit, packed data elements.

TABLE 2c

:

0

That is, integer registers 209 communicate the packed data
to ALU 203 via internal bus 205.

11111111 11111111 11111111 11111111

10000000 11110000 11001111 10001000

0

— } —_—
00000000 00000000 00000000 OOIOUOOOiOUOOOOOO 00000000 0000C000 00001101

|

Population counts can also be performed on sixty-four bit
integer data. That 18, the number of bits set to one, in
sixty-four bits of data, is totalled. Table 2d illustrates an
in-register representation of a population count on sixty-four
bit integer data.

TABLE 2d

30

0

At step 703, decoder 202 enables ALU 203 to perform a

population count operation. In an alternative embodiment,
decoder 202 further communicates, via internal bus 2085, the
length of packed data elements.

111131131 111131111 11111111 11111111 10000000 11110000 11001111 10001000

30000000 C0000000 00000000 0C0CO000 00000000 GO0C000D 00000000 00101101

A METHOD OF PERFORMING A POPULATION
COUNT

FIG. 7 illustrates one method of performing a population
count operation on packed data. At step 701, responsive to
receiving a control signal 207, decoder 202 decodes that
control signal 207. In one embodiment, control signal 207 is
supplied via bus 101. In another embodiment, control signal
207 is supplied by cache 206. Thus, decoder 202 decodes:
the operation code for population count, and SRC1 602 and
DEST 605 addresses in integer registers 209. Note that
SRC2 603 is not used in this present embodiment of the
present invention. As well, saturate/unsaturate, signed/un-
signed, and length of the data elements in the packed data are
not used in this embodiment. In the present embodiment of
the invention, only sixteen bit data element length packed

addition 1s supported. However, one skilled in the an would
understand that population counts can be performed on
packed data having eight packed byte data elements or two
packed doubleword data elements.

At step 702, via internal bus 205, decoder 202 accesses
integer registers 209 in register file 204 given the SRC1 602
address. Integer registers 209 provides ALU 203 with the
packed data, Sourcel, stored in the register at this address.

45

50

35

60

65

At step 705, assuming the length of the data elements is
sixteen bits, then ALU 203 totals the number of bits set in
bit fifteen through bit zero of Sourcel, producing bit fifteen
through bit zero of Result packed data. In parallel with this
totaling, ALU 203 adds totals thirty-one through bit sixteen
of Sourcel, producing bit thirty-one through bit sixteen of
Result packed data. In parallel with the generation of these
totals, ALU 203 totals bit forty-seven through bit thirty-two
of Sourcel, producing bit forty-seven through bit thirty-two
of Result packed data. In parallel with the generation of
these totals, ALU 203 totals bit sixty-three through bit
forty-eight of Sourcel, producing bit sixty-three through bit
forty-eight of Result packed data.

At step 706, decoder 202 enables a register in integer
registers 209 with DEST 605 address of the destination
regisier. Thus, the Result packed data is stored in the register

addressed by DEST 695.

A METHOD OF PERFORMING A POPULATION
COUNT ON ONE DATA ELEMENT

FIG. 8 illustrates the steps followed when performing a
population count operation on one data element of a packed

5,541,865

13

data and generating a single result data element for a result
packed data. At step 810a, a column sum, CSumla, and a
column carry, CCarryla, are generated from Sourcel bits
~ fifteen, fourteen, thirteen and twelve. At step 8105, a column
sum, CSum1b, and a column carry, CCarry1b, are generated
~from Sourcel bits eleven, ten, nine and cight, At step 810c,
. acolumn sum, CSumlc, and a column carry, CCarrylc, are
generated from Sourcel bits seven, six, five and four. At step
8104, a column sum, CSumld, and a column -carry,
CCarryld, are generated from Sourcel bits three, two, one

- and zero. In one embodiment of the present invention, steps
~ 810a-d are performed in parallel. At step 820a, a column
sum, CSum?2a, and a column carry, CCarry2b, are generated
from CSumla, CCarryla, CSumlb, and CCarrylb. At step
8200, a column sum, CSum2b, and a column carry,
CCarry2b, are generated from CSumic, CCarryl, CSumld,
and CCarryld. In one embodiment of the present invention,
steps 820a-b are performed in parallel. At step 830, a
column sum, CSum3, and a column carry, CCarry3, arc
gencrated from CSumZa, CCarry2a, CSum?2b, and
- CCarry2b. At step 840, a Result is generated from CSum3
and CCarry3. In one embodiment, the Result is represented
in sixteen biis. In this embodiment, as only bit four through
bit zero are need to represent the maximum number of bits
set in a Sourcel, bits fifteen through five are set to zero. The
maximum number of bits for Sourcel 1s sixteen. This occurs
when Sourcel equals 1111111111111111,,. The Result would

be sixteen and would be represented by
~ 0000000000010000,,.

‘Thus, to calculate four result data elements for a popula-
tion count operation on a sixty-four bit packed data, the steps
of FIG, 8 would be performed for each data element in the
packed data. In one embodiment, the four sixteen bit result
data elements would be calculated in paraliel.

10

15

20

25

30

35

A CIRCUIT FOR PERFORMING A
POPULATION COUNT

- The preferred embodiment of the present invention
employs numerous circuits to implement the invention. FIG.
9 illustrates one circuit for performing a population count
opcration on a packed data having four word data elements.
FIG. 10 illustrates a detailed circuit for periorming a popu-
lation count operation on one word data element of a packed
data.

FIG. 9 illustrates a circuit wherein Sourcel bus 901
~ carrics information signals to the popent circuits 908a—d via
Sourcel IN 906a-d. Thus, popcnt circuit 908a totals the
number of bits set in bit fifteen through bit zero of Sourcel,
producing bit fifteen through bit zero of Result. Popcent
circuit 9085 totals the number of bits set in bit thirty-one
through bit sixteen of Sourcel, producing bit thirty-one
through bit sixtecn of Result. Popcent circuit 908c¢ totals the

number of bits set in bit forty-seven through bit thirty-two of

40

45

50

Sourcel, producing bit forty-seven through bit thirty-two of s

Result. Popent circuit 9084 totals the number of bits set in
bit sixty-threc through bit forty-eight of Sourcel, producing
bit sixty-three through bit forty-eight of Result. Enable
O04a-d receives, from ALU 910, via control 903, control
signals enabling popcent circuits 998a-d (o perform popula-
tion count operations, and to place a Result on the Result
- Bus 909. One skilled in the art would be able to create such
a circuit given the 111ustratmns in FIGS. 1-9 and the above
~ description.

Popent circuits 908a—d communicate result information
of a packed population count operation onto Result bus 909,
via result out 907a-d. This result information is then stored

65

14
in the integer register specified by the DEST 605 register
address.

A CIRCUIT FOR PERFORMING A
POPULATION COUNT ON ONE DATA

ELEMENT

FIG. 10 illustrates a detailed circuit for performing a
population count operation on one, word, data element of a
packed data. In particular, FIG. 10 illustrates a portion of
popent circuit 908a. To achieve the maximum performance
for applications employing a population count operation, the
operation should be complete within one clock cycle. There-
fore, given that accessing a register and storing a result
requires a certain percentage of the clock cycle, the circuit
of FIG. 9 completes its operation within approximately 80%
of one clock period. This circuit has the advantage of
allowing processor 109 to execute a population count opera-
tion on four sixteen bit data elements 1n one clock cycle.

Popcnt circuit 908a employs 42 carry-save adders
(unless otherwise specified, CSA will refer to a 4—2 carry-
save adder). 4—2 carry-save adders, as may be employed in
the popent circuit 908a—d, are well known in the art. A 42
carry-save adder is an adder that adds four operands, result-
ing in two sums. Since the population count operation in
popcnt circuit 908a involves sixteen bits, the first level
includes four 4-—2 carry-save adders. These four 4—2
carry-save adders transform the sixteen one-bit operands
into eight two-bit sums. The second level transforms the
eight two-bit sums into four three-bit sums, and the third
level transforms the four three-bit sums into two four-bit
sums. Then a four-bit full adder, adds the two four-bit sums
to generate a final result.

Although 4—2 carry-save adders are used, an alternative
embodiments could employ 3—2 carry-save adders. Alter-
natively, a number of full adders could be used; however,
this configuration would not provide a result as guickly as
the embodiment shown in FIG. 10.

Sourcel,,; 5. 9064 carries bit fifteen through bit zero of
Sourcel. The first four bits are coupled to the inputs of a
4—2 carry-save adder (CSA 10104). The next four bits are
coupied to the inputs of CSA 101056. The next four bits are
coupled to the inputs of CSA 1010c. The final four bits are
coupled to the inputs of CSA 10104. Each CSA 1010a-d
generates two, two-bit, outputs. The two, {wo bit, outputs of
CSA 1010a are coupled to two inputs of CSA 1020a. The
two, two bit, outputs of CSA 1010b are coupled to the other
two inputs of CSA 10204. The two, two bit outputs of CSA
1010c are coupled to two inputs of CSA 10205. The two,
two bit outputs of CSA 10104 are coupled to the other two
inputs of CSA 10206. Each CSA 1020a-b generates two,
three bit, outputs. The two, three bit, outputs of 1020a are
coupled to two inputs of CSA 1030. The two, three bit,
outputs of 1020b are coupled to the other two inputs of CSA
1030. CSA 1030 generates two, four bit, outputs.

These two four bit outputs are coupled to two inputs of a
full adder (FA 1050). FA 1050 adds the two four bit inputs
and communicates bit three through bit zero of Result Out
907a as a total of the addition of the two, four bit, inputs. FA
1050 generates bit four of Result Out 9074 through carry out
(CO 1052). In an alternative embodiment, a five bit full
adder is used to generate bit four through bit zero of Result
Out 9074. In either case, bit fifteen through bit five of Result
Out 9074 are tied to zero. As well, any carry input's to the full
adder are tied to zero.

Although not shown in FIG. 10, one skilled in the an
would understand that Result Out 9074 could be multiplexed

3,541,865

15

or buffered onto Result bus 909. The multiplexor would be
controlled by Enable 904a. This would allow other ALU
circuits to write data onto Result bus 909.

'Thus, an apparatus and method of increasing processor
performance by efficiently reducing the difference between
data element length and actual carrying and storage capacity
has been described. In particular, a circuit capable of per-
forming population count operations on packed data has
been described.

What is claimed is:

1. A circuit for producing a population count for a data
clement comprising:

a first set of adders comprising first, second, third, and
fourth carry-save adders coupled to receive first, sec-
ond, third, and fourth bit portions of the first data
clement, respectively, the first and second carry save
adders producing a first multi-bit output, and the third
and fourth carry save adders producing a second multi-
bit output;

a second set of adders comprising fifth and sixth carry-
save adders coupled to recetve the first and second

multi-bit outputs, respectively, the fifth and sixth carry-
save adders producing a third multi-bit output;

a seventh carry-save adder coupled to receive the third

multi-bit output, the seventh carry-save adder produc-
ing a fourth multi-bit output; and

a Tull adder coupled to receive the fourth multi-bit output
and produce the population count therefrom.
2. The operation circuit of claim 1 wherein each of

the carry-save adders 1s a 4—2 carry-save adder.

3. The operation circuit of claim 2 wherein the full adder
1s a four-bit full adder, the full adder being for generating a
carry-out.

4. A circuit having a packed data input and a packed data
result output, said circuit comprising:

a first circuit having a first data element input and a first
data element result output, said packed data input
coupled to receive a first packed data, said first packed
data including a first data element and a second data
clement, said first data element corresponding to bit
fifteen through bit zero of said first packed data, said
first data element input coupled to receive said first data
clement, said first circuit further having:

5

10

15

20

25

30

35

40

16

a first carry-save adder being coupled to receive bit
three through bit zero of said first packed data, said
first carry-save adder for generating a first two-bit
output and a second two-bit output;

a second carry-save adder being coupled to receive bit
seven through bit four of said first packed data, said
second carry-save adder for generating a third two-
bit output and a fourth two-bit output;

a third carry-save adder being coupled to receive bit
eleven through bit eight of said first packed data, said
third carry-save adder for generating a fifth two-bit
output and a sixth two-bit output;

a fourth carry save adder being coupled to receive bit
fifteen through bit twelve of said first packed data,
said fourth carry-save adder for generating a seventh
two-bit output and an eighth two-bit output;

a fifth carry-save adder being coupled to receive said
first, second, third, and fourth two-bit outputs, said
fifth carry-save adder for generating a first three-bit
output and a second three-bit output;

a sixth carry-save adder being coupled to receive said
fifth, sixth, seventh, and eighth two-bit outputs, said
sixth carry-save adder for generating a third three-bit
output and a fourth three bif output;

a seventh carry-save adder being coupled to receive
said first, second, third, and fourth three-bit outputs,
said seventh carry-save adder for generating a first
four-bit output and a second four-bit output; and

a full adder being coupled to receive said first and
second four-bit outputs, said full adder for generat-
ing bit four through bit zero of said result packed
data, and said bit fifteen through bit five of said result
packed data being coupled to ground;

a second circuit having a second data element input and
a second result data element output, said second data
element 1nput being coupled to receive said second data
element; and

wherein said first result data element output and said
second result data element output are coupled to said
result packed data output.
5. The circuit of claim 4 wherein each of said carry-save
adders 1s a 4—2 carry-save adder.

k 0 %k K *O*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. :5.541,865
DATED : July 30, 1996
INVENTOR(S) * yaron Ashkenazi

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

In column 5 at line 43 delete "carded" and insert --carried--
In column 8 at line 45 delete "an" and insent --art--

In column 11 at line 60 delete "an" and insert --art--

Signed and Sealed this
Twenty-third Day of September, 1997

Attest: @M W

BRUCE LEHMAN

Artesting Oﬁfﬂﬁr Commissioner of Patents and Tradenarky

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

