United States Patent [

Andreas et al.

AU T A OO0 W

US005517436A
Patent Number:
Date of Patent:

5,917,436
May 14, 1996

[11]
[45]

[54] DIGITAL SIGNAL PROCESSOR FOR AUDIO Texas Instruments TMCS57000/57001 Digital Audio Signal
APPLICATIONS Processor User’s Manual, cover & pp. 2-1 to 2-20 (1990).
Texas Instruments TMS320C3x User’s Guide, Chapter 2:
[76] Inventors: David C. Andreas, 723 Southern Dr; Architectural Overview, cover and pp. 2-1 to 2-26 (1990).
Jon Dattorro, 488 Lynetree Dr., both Analog Devices ADSP-2100 User’s Manual, cover, copy-
of West Chester, Pa. 19380; J. William right page and pp. 1-1 to 2-34 (1986).
Mauchly, 199 Cassatt Rd., Berwyn, Pa. Sony Computer Audio/Video Semiconductor Data Book
19312 1992, Index page and “CXD1160AP/AQ Digital Audio
signal processing LSI” at pp. 299-300 (1992).
[21] Appl. No.: 255,262 Dream “SAMS505 digital sound generator/processor for
_ musical applications” User’s Manual, cover and pp. 6-7
[22] Filed: Jun. 7, 1994 (Jun. 1991).
[51] I0t CLE oo GOGF 7/38; GO6F 7/50 ~ Al&l Preliminary Data Sheet WE DSP32 Digital Signal
[52] USe Cle oo 364/736; 364/768 L 10CessOr, pp. 1-4 (Apr. 1986),
[58] Field of Searchooanene.......... 364/736, 715.08, Primary Examiner—David H. Malzahn
364/745, 768 Attorney, Agent, or Firm—Ratner & Prestia
156] References Cited [571 ABSTRACT
A digital signal processor for efficiently handling audio
u-5. PATENT DOCUMENTS applications 1s disclosed. The single chip digital signal
4.811,267 3/1989 Andoetal. ...ooeeevevevverevreennn. 364/736 processor includes an on-chip instruction memory for out-
4,817,047 3/1989 Nishitani et al. ..oeeeeeeereeereeneee. 364/745 putting instructions representing an audio application pro-
5,140,543 B/1992 Tanaka ..oeeeeeeeroeicireeeeeenserennens 364/736 gram. Four bllSSfJS, W’ X, Y and Z, prgvide communication
5,208. 770 5/1993 Ito e 364/745 within the processor. An ALU performs a plurality of
2,260,897 11/1993 TDI:IHH]I IR | 364/736 arithmetic and logical functions according to the instruction
,311,458 571994 Hainescooeeeeveviiireveierrvcrcnnnnn. 364/736 . e . . :
5,347,480 4/1994 Asghar et al. ... 364736 ~ memory. Specialized implementations for functions have
been specially developed for audio applications, for
OTHER PUBLICATIONS example, a single cycle average instruction, a jump on

Philips brochure of Electronic components and materials,
“PCB 5010/PCB 5011 Programmable DSPs”, cover, pp, 27
and p. 48 which reficets date of Feb. 1986.

Y. Matsushita et al.,, “A 32/24 Bit Digital Audio Signal
Processor,” IEEE Transactions on Consumer Electronics,
vol. 35, No. 4, at pp. 785-792 (Nov. 1989).

R. J. Gredin, “The NEC uPD77230 Advanced Signal Pro-
cessor’, presented at Mini/Micro Northeast—86, pp. 1-6
(1986).

“ADSP-2100 Internal Architecture” from ADSP-2100
Seminar of Analog Devices, Inc., Cover, Contents page and
pp. 2-5 to 2-14 (1986).

Motorola DSP56000 Digital Signal Processor User’s
Manual, Chapter 3. Chip Architecture, cover, copyright
page, pp. 3—1 to 3-17 (1986).

condition code instruction, a repeat instruction, a limit
instruction. A Multiplier Accumulator/Barrel Shifter per-
forms a plurality of MAC and shifting functions according
to the instruction memory. The MAC/BS is coupled in
parallel with the ALU and an Address Generator. The
Address Generator performs a plurality of address calcula-
tion functions according to the instruction memory. Some of
the data storage areas include: 1) a GPR memory for writing
data to the X and Y busses and reading data from the Z bus;
2) an AOR memory for writing data to the W, X, and Y
busses and reading data from the Z bus; and 3) an SPR
memory for writing data to and reading data from the X, Y

and Z busses and for outputting control information to the
ALU, the MAC/BS and the AGEN.

22 Claims, 11 Drawing Sheets

210 AlBICIDIEIFIG|
SPRs SPRs Qperand |
226 :
ADR memory GPR mamo Instruction
256 by 256 by "\, gganﬂg 7
24 bits [24 bits < SF bt
1l B |
1 W X bus 24bits
W bus 24bits ’
Y bus 24bits i
218 220
y 218 Y v/ v/
04 AGEN ALU MAC
Extarnal Barral Shifter
Address Bus i Y Y
Z bus 24 bits
SPRs |, - [SPRs
24 (D%EL';S‘d - < Neore 30
Ext"f/""" B Regs)
Amidi
Data Bus —~

Serigl Data
228 Serial Control

8 x 24 hiis

U.S. Patent

May 14, 1996 Sheet 1 of 11 5,517,436

GP MICROCODE
ra9 5 160 X 45 w//ﬂz
110
i — - .
; R | DRAM |——
DRAM OFFSETS 16 ADDR | 20 >
GEN
SPRs “*fqﬁs
| | X BUS 24
| [- — —L/1080
Y BUS 24 <
VAR VAR . DIL |
D C B A INPUT
BUFFER
MULT I~ |
24 x 24 ' 104
' ALU 24 16|
10 | 102 DRAM
ACCUM 48 DATA
L X2
| Z BUS 24 | DOL N
FIG. | 108t
; OUTPUT
(Prior Art) FIFO

U.S. Patent May 14, 1996 Sheet 2 of 11 5,5 17,436

—

! £ - B i

J

A{B|C| D E| F|G]

=

210
SPRs SPRs perane
22&1 AOR memory GPR memory Instruction 599
256 by [RFHEE 256 by | Memory | £f
| 24 bite 32— 24 bits |224| 9S00 by

S o

] X bus 24bits
W bus 24bits NS
Y bus 24bits |
216 | 218 J 220
AR

| S

04 AGEN | | MAC ;
External Barrel Shifter|)

Address Bus
i 7 bus 24 bits

SPRs SPRs
(DILs and o 1 | | _(Serial
24 DOLs) | o o Inéerfd)ce 230
egs
External * |
Data Bus ~ Serial Data
228 Seria! Control '

FIG 2 . ‘ 8 x 24 bits

U.S. Patent

May 14, 1996 Sheet 3 of 11 5,517,436

X BUS IY BUS
D E

24 % 24 MULTIPLIER | °%°
18
338

LEFT SHIFT 1
49 (sign extended to 52) .
2

52 BIT

ACCUMULATOR 222

330 Z BUs 92 332 .
MAC PR ATCH MWM MACZERO

R l
4 TO 1 MUX ,éza

2 (sign extended to 60)

4 60 BIT 324
T,,B LEFT/RIGHT SHIFT l

60

326

OVERFLOW DETECT LOGIC
OUTPUT TO Z BUS 48

AVAILABLE AS (MACRL) 1355"'
INPUT FROM MACRESULT LOW LATCH
X AND Y BUSSES AVAILABLE AS INPUT FROM
24 241 X AND Y BUSSES

FlG. 3 F OPERAND

U.S. Patent

May 14, 1996

Double Precision Shift (example shows Logical Shift).

B operand

Byte 2 |Byte 1

Shift Double High ﬂhﬂy ‘M‘T‘M‘T

Sl

| | 404
Byte 0}

.

Sheet 4 of 11 5,517,436
A
A operand ____ 206
Byte 2 'Byte 1 |Byte O |/
]
OOH | 498
| R

Byte 4 {Byte 3 | Byte 2

N Right Shift 0 to 15 _\<414

424 bit
l l Microinstruction
] N S Word
'Byte 2 |Byte 1 [Byte O 416
— S| (—_/ '
Result :
Decoder
L J
Y

Double Precision
Shift function

-

FIG. 4

U.S. Patent

May 14, 1996 Sheet 5 of 11 5,517,436

AVG Instruction

B operand A operand

24bit (sign extend to 25) // ' // 24bit (sign extend to 26)
,
Adder (25 bﬁm
A~ 25 bit
. (divide by 2)
Right shift by 1 2
—— 512
Microinstruction
Word
24 bit
Y
Result Y
Decoder
Y.

Average Function

FIG. S

U.S. Patent May 14, 1996 Sheet 6 of 11 5,517,436

I0Z pin

IOZ_EN

BIOZﬂtE}—
BIOZ ALU_instr. i

FIG. 6

ALU instruction from instruction word

‘MV‘W NO1 A4
HALT_bit | BIOZ_bit

A op <:|ddrasC Op address 4 opcode

Modified ALU instruction to decoders

FIG. b

5,517,436

Sheet 7 of 11

May 14, 1996

U.S. Patent

WY Hd91SOH
(NOLLONMLSNI 1SOH) % AON3d ud9IsoH

i

7ddV ddO 1SOH

Il
o
.
L

SSeIpPD YdS
VIVQ d¥0 "1SOH

L Old

SJ9POO3P 0} UORONIISUl (1Y PSUIPON

_ ssalppp do Q| sseuppp do g| ssaippp do M

—

_ ssalppp do ohmmo.ﬁnc do g m;mo._v_uo do <_

pJOM UOIJONUJISUl WoOJj uoRONASUl NV
1SOH

U.S. Patent

May 14, 1996 Sheet 8 of 11 5,517,436

LIM instruction

A input operand B input operand
)

24bit i 24bit

/ /
LT flag + -
(A<B) Subtract(25 bit)
N\—510
' | > 912
: MUX
NA (flag))
Microinstruction
/154 bit Word
Resuit

Decoder

Y
Limit Function

FIG. 8

U.S. Patent May 14, 1996 Sheet 9 of 11 5,517,436

Phases within

microinstruction
cycle

MAC inst n—1 inst n | inst n+1

ALU inst n—1 1 inst n inst n+1

|
X/Y . LQ - * ALL
b
S ..

8B
dest.
AGEN inst n—1 inst n l inst n+1
1 R
AGEN
W bus ‘fﬂ" AGI'F“ %Gﬂ n+2
offset offset offset offset
- n
AGEN Kt BASE) it) 2
nglStBl'S l * update igLe nf‘fset upagie oﬁset
(sources = SIZEM1, BASE, END)
EXTERNAL — B]
MEMORY inst n—2 inst n—1 inst n
Access I R
DIL/DOL rpoL DOLT DOL DOL [DOL DOL | DOL]|
usags p-2 n—2{n—1 n—1| n n |n+1
|—- —»Time

FIG. O

U.S. Patent

May 14, 1996 Sheet 10 of 11 5,517,436

1220h

SPR'S- SPR'S— SPR’S— SPR'S—
REGION BASE,| REGION BASE, | REGION BASE, | REGION BASE,
SIZE, AND END|SIZE, AND END|SIZE, AND END|SIZE, AND ENDle——

REGISTERS | REGISTERS | REGISTERS REGISTERS

226~: 8 to 1MUX 1224
24x3
AOR MEMORY 4
. 256 ROWS BY . ._
: 24 BITS {‘
bus |
BASE
1210 ADDER
—
j__ET”'l_D - SIZEM1+1
1212 SUBTRACT SUBTRACT
1214
1226 |

FIG. 1O ¢ ADDRESS

5,517,436

Sheet 11 of 11

May 14, 1996

U.S. Patent

S FAN!

O¢el

8cel

Illll.l.lll_
ssaJppp do Yy

9AI}09443

ddS VAIANI

ssalppp do vy

[AAY

jonba 1 |

0c¢el

103piodujod |pnba

SSalppD
UOI}DAI}OD UO0I30aJIpU]

144Y

5,917,436

1

DIGITAL SIGNAL PROCESSOR FOR AUDIO
APPLICATIONS

FIELD OF THE INVENTION

The invention relates generally to digital signal process-
ing and, more particularly, it relates to a single chip digital
signal processor specifically designed to efficiently handle
audio applications.

BACKGROUND OF THE INVENTION

As the multi-media market continues to grow, demands
for smaller, more powerful tools to implement the multi-
media products also grow. One area in which the demands
generally outpace the technology of the tools is digital signal
processing and, in particular, digital signal processing spe-
cifically designed for audio applications.

There are many digital signal processing chips currently
in use and presently competing for market share. An
example of a digital signal processing chip currently in use
1s the Ensoniq Signal Processor (ESP). The ESP chip has
been used in keyboards shipped to customers since 1989.

FIG. 1 illustrates the overall architecture of the ESP
inciuding the use of a general purpose ALU 102 and
multiplier 104/accumuiator 106 coupled together by three
busses X, Y and Z. Also shown in FIG. 1 are the data in/out
latches 108a/108b, an address generator 110 and data stor-

age areas including microcode memory 112, GPRs 114 and
SPRs 116.

‘The architecture shown in FIG. 1 has several deficiencies.
Primary deficiencies include the double usage of GPRs as
general purpose registers and as DRAM offsets to external
memory. When used as DRAM offsets, the GPR used is
constrained to have the same address as the line of micro-
code which requests the DRAM access.

Secondary deficiencies include the lack of a general
purpose barrel shifter which is useful for fixed point arith-
metic at various radices. There are few provisions for double
precision arithmetic. External memory accesses can only be
queued two-deep. The ALU has only 16 instructions, and no
provision for branching.

Therefore, the ESP functional units can only work on two

operands; i.e., one of the source operands must be a desti-
nation as well.

However, as technology advances allowing more func-
tions to reside on a single chip, new improvements to
overcome the deficiencies of prior architectures can provide
a powerful yet cost-effective audio digital signal processor.

SUMMARY OF THE INVENTION

The present invention involves a digital signal processor
which efficiently handles audio applications. It includes an
instruction memory for outputting instruction words repre-
senting an audio application program; four time-division
multiplexed busses, W, X, Y and Z, which provide data
communication within the digital signal processor; an ALU
which performs a plurality of arithmetic and logical func-
tions according to an instruction word, the ALU uses data
received from the X and Y busses and places the resuits on
the Z bus; a Multiplier Accumulator/Barrel Shifter (MAC/
BS) which performs, in parallel with the ALU, a plurality of
MAC and shifting functions according to an instruction
word; an Address Generator (AGEN) which performs a
plurality of address calculation functions according to an
instruction word, using input values provided by the W bus

10

15

20

25

30

35

40

45

50

35

60

65

2

and providing output values to to an external data port; a
general purpose register (GPR) memory, responsive to an
instruction word, for writing data to the X and Y busses and
reading data from the Z bus; an address offset register
(AOR) memory, responsive to an instruction word, for
providing data to the W, X, and Y busses and for reading data
from the Z bus; and a special purpose register (SPR)
IMEemory, responsive to an instruction word, for writing data
to and receiving data from the X, Y and Z busses and for

providing control information to the ALU, the MAC/BS and
the AGEN.

BRIEF DESCRIPTION OF THE FIGURES

The invention 1s best understood from the following
detailed description when read in conjunction with the
accompanying drawings, in which:

FIG. 1 1s a functional block diagram of a prior art
arcintecture for an audio digital signal processor (ESP);

FIG. 2 15 a functional block diagram of an overall archi-
tecture for an audio digital signal processor employing the
present invention (ESP2);

FI1G. 3 1s a more detailed functional block diagram of the
MAC/BS of FIG. 2;

FIG. 4 is a functional block diagram illustrating how a

double precision shift instruction is performed by the ALU
of FIG. 2; and

F1G. 5 1s a functional block diagram illustrating how an
average (AVQ) instruction is performed by the ALU in FIG.
2;

FIG. 6a is a functional block diagram illustrating an

aspect of a BIOZ instruction as performed by the ALU of
FIG. 2;

FIG. 65 1s a functional block diagram illustrating activity
in the operand datapath during a BIOZ instruction as per-
formed by the ALU of FIG. 2;

FIG. 7 1s a functional block diagram illustrating activity
in the operand datapath during a HOST instruction as
performed by the ALU of FIG. 2;

FIG. 8 is a functional block diagram illustrating how a
limit (LIM) instruction is performed by the ALU of FIG. 2;

FIG. 9 is a timing diagram illustrating the relative oper-
ating relationships of the functional units including external
memory/devices in FIG. 2;

FIG. 10 is a more detailed functional block diagram of the
AGEN of FIG. 2; and

FIG. 11 is a functional block diagram illustrating how one
aspect of an indirection mechanism operates.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 2 shows an exemplary overall architecture of a single
chip audio digital signal processor 210 employing the
present invention. The architecture of FIG. 2 represents the
next generation ESP—or ESP2. The new improved ESP2
architecture has many advantages over the above-described
ESP architecture including a more efficient overall configu-
ration and specially designed functional units, namely ALU
218, Multiplier Accumulator/Barrel Shifter (MAC/BS) 220
and Address Generator (AGEN) 216. In particular, ALU 218
and AGEN 216 are specifically designed to more efficiently
perform functions particular to audio applications, and
MAC/BS 220 is specifically designed to allow for greater

flexibility in accumulations as well as greater numerical
accuracy.

3,517,436

3

Also shown in FIG. 2 are multiple data storage areas. The
data storage areas include instruction memory 222, general
purpose register memory (GPR) 224, address offset register

memory (AOR) 226, and various special purpose registers

(SPRs) including data-in and data-out latches (DILs/DOLS)
228 and the serial interface registers 230. It should be noted
that although some SPRs are shown as being attached to
GPR 224 and AOR 226, this simply represents the fact that
the SPRs are mapped into the memory space for each of the

respective memories; but, 1n the actual layout, the SPRs are
spread throughout the ESP2 chip, for example, within ALU
functional block 218.

As mentioned, the ESP2 architecture is optimized for
processing audio signals. The demands of audio dictate a
mintmum single precision data bit-width of 24 bits. A
prominent feature of this architecture is the parallel con-
figuration of AGEN 216, ALU 218, and MAC/BS 220. In the
exemplary embodiment, instruction memory 222 is 96 bits
in width and completely on chip (i.e., there is no provision
for off-chip program memory), in order to be capable of
supporting the parallel architecture so that AGEN 216, ALLU
218 and MAC/BS 220 can function in parallel.

Both ALU 218 and MAC/BS 220 perform three operand
instructions (i.e., two input operands and one output oper-
and) directly on the registers in GPR 224. AGEN 216 is
supported by AOR 226 which, in the exemplary embodi-
ment, 18 distinct from the other memories. This separation of
memories facilitates random access of audio data off-chip on
each instruction cycle. Additionally, this separation, due to
the parallel fetching of an offset and operand, allows the use
of a 2-phase microinstruction cycle rather than the 3-phase
icroinstruction cycle employed in the ESP architecture.

AOR 226 provides address offsets to modulo address
calculation mechanisms of AGEN 216. Unlike conventional
digital signal processing chips, AOR 226 facilitates the
design of sparse digital networks which is very useful for
some types of audio signal processing, e.g., digital rever-
berators. Additionally, AOR 226 is accessible by ALU 218
and MAC/BS 220 for the purpose of modulating addresses.
This 1s useful for time-varying processes.

Internal Operand Busses

As seen in FIG. 2, the overall ESP2 architecture employs
four 24-bit data busses, W, X, Y, and Z. The X, Y and Z
busses are time-division multiplexed for fetching and writ-
ing ALU 218 and MAC/BS 220 operands. These busses
connect to GPR 224, AOR 226, ALU 218, MAC/BS 220,
and to all SPRs including 228 and 230. In the exemplary
embodiment, the input operands for ALU 218 are designated
A and B while its output operand is designated C; for
MAC/BS 220, the input operands are designated D and E
while the output operand is designated F; finally, the operand
destined for AGEN 216 is designated G.

As shown 1n FIG. 2, the addresses for the above operand
designations—A through G—are provided by instruction
memory 222 to the separate data storage areas. It should be
noted that the addresses contained in the microinstruction
word corresponding to these operands have the same des-
ignations as seen in Table 1.

The contents of a register, whether in GPR 224, AOR 226
or an SPR, specified as the A operand for ALLU 218 is fetched
on the X bus, and the D operand for MAC/BS 220 is also
fetched on the X bus. The register specified as the E operand
for MAC/BS 220 is fetched on the Y bus. The AOR register
addressed as the G operand for AGEN 216 is fetched on the
W bus. The Z bus is used to deliver results to the registers
(GPR 224, AOR 226, or SPRs) designated by operands C
and F from the outputs of ALU 218 and MAC/BS 220,
respectively.

10

15

20

235

30

35

40

43

50

55

60

63

4

MAC/BS 220 and ALU 218 share the X, Y, and Z busses
by time-multiplexing their use on different phases of a
4-phase microinstruction cycle. It should be noted that the W
bus 1s actually sourced by the same read port of AOR 226 as
the Y bus. This means that AOR 226 cannot supply both the
W bus and the Y bus with data during the same clock phase
which is the reason why, in the exemplary embodiment, the
E operand for MAC/BS 220 is fetched on the Y bus (see
FIG. 2, the E operand address from instruction memory 222
only goes to GPR 224). The internal bus cycle timing is
described in detail below with reference to FIG. 9.
Functional Units: ALU 218, AGEN 216, MAC/BS 220

The instruction set for ALU 218, for which specialized
instructions are described in detail below with reference to
FIGS. 4-10, consists of 32 standard, non-standard, and
boolean instructions. All of the instructions handle two
source operands and a separate destination operand. The
non-standard functions are used for functions such as Fast
Fourier Transform (FFT) generation, envelope generation,
stereo t0 mono signal conversion, etc. A prominent feature
of ALU 218 is the group of specialized instructions, as
described in detail below, which facilitate digital signal
processing for audio applications.

ALU 218 also supports program control instructions
which allow conditional branching. Conditional branching
allows a program to jump over parallel instructions to ALU
218, MAC/BS 220 and AGEN 216. Also provided in ESP2
1S a separate mechanism which allows for conditional execu-
tion of individual instructions within any or all of the three
units, this is referred to as “skipping” an instruction. Special
skip bits are set out in the microinstruction word for each
functional unit.

The instruction set for MAC/BS 220 consists of 20
instructions which provide variations of multiply, accumu-
late and/or shift operations. A barrel shifter 324 (see FIG. 3)
is integral to MAC/BS 220. Shifter 324 is available on a
per-instruction basis and can be accessed by ALU 218.
Barre] shifter 324 can operate on either the input value to
accumulator 322 or the output value of MAC/BS 220. A
prominent feature of MAC/BS 220 is the ability to selec-
tively inhibit writing the accumulator MAC 332 latch while
sending an accumulated result to a destination register.

AGEN 216 performs modulo addressing of 8 regions
simultaneously located anywhere in physical memory and of
any size. A region is a programmer determined subdivision
of external memory (DRAM), which is recognized by the
hardware in the form of 8 sets of SIZEM1, BASE, and END
REGISTERS. When these registers are properly loaded, the
defined region is protected against overwriting by operations
taking place in other regions. Each region appears to the
programmer as a circular queue. This comes about due to the
modulo addressing mechanism of the hardware. Each region
can support multiple delay lines, or tables. A multiplicity of
regions facilitates memory allocation for separate (co-resi-
dent) DSP applications.

Within each region numerous delay lines can be defined
having region offsets which are determined by the multi-
plicity of AOR 226 locations. AGEN 216 also provides for
automatic plus one address increment operations and auto-
matic region base update. A region is uniquely identified by
SIZEM1 and END SPRs. Additionally, AGEN 216 provides
for absolute addressing as is typically required, for example,
in the cases of table lookup and peripheral 1/0.

GPR 224 and AOR 226

Referring back to FIG. 2, in the exemplary embodiment,
GPR 224 and AOR 226 are large dynamic arrays of 24-bit
wide registers. GPR 224 and AOR 226 each have two read

5,517,436

S

ports and one write port. Again, although in FIG. 2 it appears
that AOR 226 has three read ports, bus W is actually sourced
by the same read port as bus Y. Each of the ports is accessed
twice per instruction cycle. This provides a virtual set of four
read ports and two write ports per instruction cycle for each
of the memories. The total for ESP2 then becomes 8 reads

and 4 writes while ESP has only 6 reads and 3 writes per
instruction cycle.

GPR 224 read ports allow two operand fetches for ALU
218 and two for MAC/BS 220 in an instruction cycle. The

two write ports allow one result write by ALU 218 and one
by MAC/BS 220.

AOR 226 holds address offsets for AGEN 216. The four
read ports of AOR 226 allow one offset fetch for AGEN 216,
onc operand fetch for MAC/BS 220, and two operand
fetches for ALU 218. The two write ports of AOR 226 allow
for one result write by ALU 218 and one by MAC/BS 220.

Because, in the exemplary embodiment, GPR 224 and
AOR 226 are implemented as dynamic RAM, they need to
be refreshed to maintain the data. The mechanism for
refreshing these registers is described below.

In the exemplary embodiment, the address map allows for
as many as 438 storage locations in GPR 224 and 466
storage locations in AOR 226; however, only 256 locations
for GPR memory and 256 locations for AOR memory are
presently implemented.

Special Purpose Registers (SPRs)

SPRs are implemented as static registers for holding data
specific to a functional unit or interfacing with the external
ports of the ESP2 chip. Chip control and status registers such
as the program counter (PC) and the condition code register
(CCR) are mapped as SPRs to provide the host with access
to these functions. Because many of these registers are
modified by internal chip operations, they have been imple-
mented as static registers and are not refreshed.

SPRS are accessible in all of the same modes as GPR 224.
As mentioned, SPRs are divided up over the division
between GPR 224 and AOR 226 address space, this is to
avold restricting either data register type in future versions.
CONDITION CODE REGISTER (CCR)

Associated with ALU 218 is the Condition Code Register
(CCR) (not shown in FIG. 2) which is used for conditional
execution of instructions and for branching decisions. As
mentioned, the CCR is mapped in the SPR address space.

Seven bits of the CCR reflect the arithmetic status of the
system, particularly the result of the previous ALU opera-
tion. The eighth bit (IFLG) reflects the state of an external
pin, the remaining bit (I0Z) reflects the state of the intemal
I0Z bit located in a HOST__CNTL register which, in turn,
18 a function of the external IOZ pin. The upper bits of this
24-bit register are read as zeros as are all SPRs which use
less than the full 24 bits of width. The LSBs are mapped as
shown 1n Table I:

TABLE I
BIT 8 7 6 5 4 3 2 1 0

10Z IFLG

NB NA N C Vv LT Z

The CCR contains 5 flags which are derived in most ALU
operations from basic arithmetic results: Z (zero result) C
(carry out), N (negative result) and V (result overflowed).
The LT (less than) flag is computed by

LT=V XOR N

where N' is the sign of the result before saturation. Having
the LT flag allows simple detection of a less than condition.

10

15

20

25

30

35

40

45

50

35

60

635

6

An example of how the LT flag is set is described as follows
using a SUBREY instruction:

SUBREV A, B>C

which 1s functionally implemented as C=A-B.

Foliowing this instruction, the LT flag is set according to
whether A was less than B.

The sixth and seventh flags, NA and NB, hold the sign of
the A and B inputs to the previous ALU operation.

The eighth flag 1s IFL.G and it is an image of the IFLAG
pin. The IFLAG pin is an asynchronous input to the ESP2
which 1s internally synchronized by the ESP2. This causes
the state of the IFLG bit to change synchronously with the
updating of the remaining flag bits by ALU 218.

The mnth flag I0Z reflects the state of the IOZ bit which
appears 1n the HOST_CNTL_SPR register and the
HOST__CNTL interface register, and which is used by the
BIOZ instruction. The BIOZ instruction is discussed in
detail below with reference to FIGS. 6a and 65.

Because the CCR 1s mapped as an SPR, it can be read
from and written to like any SPR. However, it should be
noted that the IFLG and IOZ flag are read-only and writing
the CCR does not affect their state. The I0Z flag can be
1odified by writing to the HOST_ _CNTL__SPR register.
Instruction Memory

In the exemplary embodiment, instruction memory 222 is
a dynamic memory array which allows for as many as 1024
words at 96-bits/each; however, only 300 words are pres-
ently implemented. It is the sufficiently long 96-bit instruc-
tion word which allows for parallel operation of all the

internal memory fetches as well as the parallel execution of
the functional units.

Each memory cell has one write port and one read port
and cycles at twice the instruction rate. This allows one cycle
for instruction fetching, and a read/write cycle for refreshing
or host access to the array. Refresh of the instruction
memory 222 is transparent to a programmer and is discussed
in detail below.

External Interfaces (DILs, DOLS, Serial Registers)

There are two mechanisms for interfacing to external
devices and memory. The first mechanism is a combination
of a 24-bit address bus and a 24-bit data bus for accessing
delay lines and tables stored in external memory (not
shown). These busses can also be used to access memory
mapped I/O devices (not shown). AGEN 216, under pro-
gram control, computes the addresses for this address bus.
SPRs (DILs and DOLs) 228 provide the interface to the
external data bus for incoming and outgoing data. The bus
cycles once per instruction cycle.

The second interface consists of 8 serial data ports. Each
of the ports can be configured as an input or output port.
There are two fully programmable sets of clock signals for
controlling the timing of data transfers on the serial data
lines, and each data line can be assigned to either set of clock
signals. In addition, the serial clock signals can be disabled
to allow external devices to dictate the serial timing. Serial
Interface Registers 230, which are SPRs, provide the inter-
face to the external serial control and data busses.
MAC/BS 220

FIG. 3 is a detailed functional block diagram of the
exemplary embodiment of MAC/BS 220. The exemplary
embodiment of MAC/BS 20 includes a 24x24-bit multiplier
320, a 52-bit accumulator 322, a 60-bit left/right shifter 324,
overflow detect logic 326, a 4 to 1 MUX 328 and various
latches MAC Preload latch (MACP) 330, MAC latch 332
and MAC Result Low latch (MACRL) 334. Multiplier 320
receives 1its input values via the X and Y bus from registers

5,517,436

7
specified by the D and E operand fields of the instruction.
Accumulator 322 adds or subtracts the 48-bit multiplication
product (having appended 4 bits of sign extension) to the
52-bit value selected by MUX 328 as the other input value
to accumulator 322 (e.g., MAC latch 332). The 4 extra bits
provide 4 guard bits for use in detecting overlow in the

result. The result obtained by accumulator 222 is then stored
in MAC latch 332.

During the first half of an instruction cycle, when accu-
mulator 322 is being loaded, the MUX 328 selects, as the
input value to the shifter 324, either MAC latch 332, the
constant MACZERO 336, or MAC PRELOAD latch
(MACP) 330. These three input options allow: 1) accumu-
lation of the multiplier product with the previous accumu-
lator output, 2) multiplication without accumulation, and 3)
accumulation of the multiplier product with a sign extended
32-bit preload value.

An advantage of MUX 328 and its positioning relative to
accumulator 322 is that an accumulator value stored in MAC
latch 332 can be preserved if the microinstructions of the
program so dictate. Additionally, shifting can take place on
input data (i.e., data from MACP 330 or MAC LATCH 332)
or output data (e.g., data from MAC latch 332). It should be
noted that the above-described configuration also provides
for normalization of input values to accumulator 322.

Because shifter 324 is positioned within the feedback loop
and before the overflow detect logic 326, the value held in
the accumulator may be accessed before saturation opera-
tions are performed, which means that value overflows
which occur as intermediate steps in a sequential operation
can correct themselves in the accumulation process without
reaching and triggering the overflow detect logic 326.

In the second half of the instruction cycle, there are four
destination options: 1) the 24 MSBs of the result can be
wrltten out to a destination register (via the Z bus) bypassing
MAC latch 332, 2) to a destination register while a 52-bit
value 1s written to the MAC latch 332, 3) double precision
shifted to a destination register but not shifted to the MAC
latch 332, and 4) double precision shifted to a destination
register, but not to the MAC latch 332 at all.

As shown in FIG. 3, the accumulator result propagates
through MUX 328, shifter 324, and overlow detect logic 326
to reach the Z bus for writing to a destination register. Shifter
324 and overflow detection logic 326 are separate, as
mentioned above, so that only the final result of a series of
multiply/accumulate/shift operations is checked and, if nec-
essary, becomes saturated before being written to a destina-
tion.

In the exemplary embodiment, shifier 324 performs a
60-bit arithmetic shift of O to 8 bits left or 0 to 7 bits right.
Since an instruction contains only one shift amount, shifter
324 can shift either the accumulator input or the result to the
destination register, but not both in the same instruction
cycle. Sign extension of the 52-bit output of MUX 328 is
required because of the maximum possible shift left of 8
bits.

Overflow detect logic 326 checks the 13 MSBs of the
output value provided by shifier 324 for overflow. The
overflow condition exists if the 13 bits are not all in the same
state. When overflow has occurred the output is saturated to
h7/FFFFEFFFEFF (the largest positive number that can be
represented by a 48-bit word) if the MSB of the shifter input
1s a O, or to h800000,000000 (the largest negative number)
if the MSB of the shifter input is a 1. It should be noted that
the “h” prefix signifies that a hexadecimal format is being
used.

Again, saturation occurs only at the output, i.e., there is no

saturation of infermediate accumulator results stored in
MAC latch 332.

10

15

20

25

30

33

40

45

50

55

60

65

8

Shifter 324 can perform shifts on any of the data sources
coupled to MUX 328. Shifter 324 performs a shift in the
range of +8 to —7 of its 52-bit input value. It should be noted
that since the product of the 24x24-bit fixed point multiply
has two sign bits, a fixed shift left by 1 normalizing shifter
338 1s designed into the data path.

The guard bits employed by MAC/BS 220 can be exam-
ined by one of two means: reading directly from MAC latch
332, or writing the MAC result to a destination. It should be
noted that this is done by first right shifting the guard bits
into the MAC/BS 220 result.

Accessing MAC/BS 220

The MAC Preload latch (MACP) 330 is accessible as two
pairs of 24-bit write-only registers, MACP_H and
MACP_L and MACP_HC and MACP_ LS.

Writing the MACP

When MACP_H or MACP_ L are written, the 24-bit
value 1s written into the indicated half of MACP 330. Any
write to the upper half of the latch is sign extended into the
four guard bits to create a full 52-bit word.

When MACP__HC is writien, the 24-bit value is written
into the upper half of MACP 330 and the lower half is
cleared to all zeros. When MACP__LS is written, the 24-bit
value is written into the lower half of MACP 330 and the
upper half 1s written with the sign extend of the value in the
lower half. This allows initialization of the full 52 bits of the
accumulator value from ALU 218 in one instruction cycle.

MACP 330 can be used in a computation instead of MAC
latch 332 as dictated by program control. MACP 330 retains
a value until it 1s written again. Due to the instruction timing
of ALU 218 and MAC/BS 220, the value written by ALU
218 into MACP 332 during instruction N is available for
accumulation 2 instructions later (i.e., instruction N+2).
Reading MAC latch 332

MAC latch 332 is readable as a pair of 24-bit registers
MACH and MACL, for use as operands in ALU 218 or
MAC/BS 220 with normal latencies as described below.
Since MAC latch 332 is positioned in the topology before
overflow detection logic 326, values read from MAC latch
332 do not saturate. This is so because, as seen in FIG. 3,
direct access to MAC latch 332 is available via a path which
bypasses MUX 328, shifter 324 and overflow detect logic
326 and leads to the X and Y busses. The same latency rules
apply to the reading of MAC latch 332 as for reading any
other register.

MAC Result Low Latch (MACRL) 334

On every cycle, the low 24 bits of the overflow detect
logic 326 ouiput are written to MACRL 334 which is
mapped as an SPR, thus, it is accessible by MAC/BS 220
and ALU 218. Storing the low word allows double precision
arithmetic using all 48 bits of the final result of MAC/BS
220. If desired, reading the MACRL 334 should occur
before it is overwritten by MAC/BS 220 in the next instruc-
tion. An exception is when MAC/BS 220 is executing NOPs
in which case the contents of MACRL 334 are preserved.
MAC/BS 220 Instructions

The instructions executed by MAC/BS 220 are three
operand instructions of the form DXE=>F where “="
represents the assignment of the expression on the left to the
register on the right. The D and F operands can be fetched
irom any location in GPR 224, AOR 226 or any SPR. The
E operand can be fetched from any location in GPR 224 or
any SPR. The F operand is the destination. Results of the
accumulation are stored in MAC latch 332 (which is mapped
as an SPR) for use in the next accumulation and for use by
ALU 218 or MAC/BS 220 as a source operand. Some

instructions allow for an accumulation operation while

5,517,436

9

inhibiting the writing of MAC Latch 332 as a destination,
this 18 to preserve its contents for future use.

The following instruction types can be executed by MAC/
BS 220:

TABLE II

10

ADD 1s a saturating 2’s complement addition operator
used to create the sum of two signals. If the sum cannot be
represented in 24 bits, the full-scale positive value (h71ffff)

(MACZERO + D X E)>>n

=> ¥ while MACZERO + D X E = MAC

MACZERO - D X E)>>n => F while MACZERO — D X E = MAC
(MACZERO + D X E)>>n => F
(MACZERO-D X E)>>n = F
(MACP+D X E)>>n => * while MACP+ D XE = MAC
MACP>>n+D XE = EMAC
MACP>>n-DXE = FMAC
MACP>>n+DXE => F
MACP>>»>n—-D XE = F
MAC>>n+DXE = FEMAC
MAC>>n-DXE => EMAC
MAC>>n+DXE == F
MAC>>1~DXE => F
MACP-D X E)>>n => F while MACP-D XE =>MAC
(MACP+ DX E)>n = F
(MACP-DXE)>n = F
MAC+D XE)>>n =>Fwhile MAC+DXE =MAC
(MAC-D X E)>>n =>Fwhile MAC—-D XE =>MAC
MAC+D X E)y>>n => F
(MAC-D X E)>>n = F
25

It should be noted that the “>>n’ in the above instructions
represents an instruction to barrel shifter 324 to shift its input
by n places. If n 1s positive, there is a shift to less significant
bit positions; if n is negative, it is a shift to more significant
bit positions.

ALU 218 AND INSTRUCTION SET

ALU 218 can be programmed to perform a variety of
general and special purpose arithmetic, data movement and
logical operations on digital signal words. ALU 218

employs conventional zero-overhead saturation arithmetic
for handhng computational overflow. ALU 218 can shift
double precision signals left or right for the purposes of
normalization. And, instructions exist for performing
unsigned arithmetic operations without saturation.

Dunng every microinstruction cycle, ALU 218 takes one
or two 24-bit operands and produces a 24-bit result. The
execution of ALU 218 overlaps with the operation of
MAC/BS 220, so the two units operate in parallel.
Instructions

The 1nstructions executed by ALU 218 are three operand
instructions of the form:

OPERATION A,B>C.

The source A and B operands can be any location in GPR
224, AOR 226 or any SPR. The C operand is the destination
and 1t also can be any location in GPR 224, AOR 226 or any
SPR. Since the external memory interface, as described in
detail below, takes place via SPRs (DILs and DOLs) 228, the
available operands can also be taken from external memory.
Some of the instructions for ALU 218, especially program
control instructions, do not use all three operands. Some of
the ALU instructions (e.g., AVG) are functionally illustrated
in the figures which show a decoder means for decoding that
particular instruction from the opcode field of the microin-
struction word. The control signals generated by the decoder
means are used to dictate the datapath taken by the oper-
and(s) as it 18 processed. Once the opcode for the instruction
is decoded, the datapath control (e.g., how data gets from an
adder to a shifter), as is appreciated by those skilled in the
art, can be accomplished using, for example, multiplexers.

It should be noted that the mnemonic ZERO used below
refers to a read-only SPR having a preset value of zero.

30

35

40

45

30

35

60

65

or the full-scale negative value (h800000) is substituted for
the overflowed result. The operation performed is C=A+B.

ADDYV is an unsaturating addition operator. It operates
exactly as ADD, except that it does not perform overflow
detection/saturation. For this reason, it is not normally used
to add signals together, unless the signals are double preci-
sion. However, it can be used for generating ramp signals
and for performing unsigned address arithmetic. It performs
the operation C=A+B modulo 2%*.

ADDC is a saturating 2’s complement addition operator
iike ADD, but the carry bit in the condition code register
(CCR) 1is added at the LSB. This is valuable for double
precision arithmetic. The operation performed is C=A+B+
carry.

When the ADDC instruction is used in conjunction with
a preceding ADDYV to perform double precision arithmetic,
the ADDC operation can saturate the high 24-bit word of the
48-bit result. Since the low 24-bit word was computed in the
preceding ADDYV operation, its value is not saturated.

AMDF subtracts the operands as B—A with saturation and
then takes the absolute value of the result as represented by

iiB—A)<0 then (=(B-A) xor hffffff
else
C=B-A

AND performs the bit-wise logical AND of each bit in the
two 24-bit operands: C=A*B.

AS (arithmetic shift) performs an arithmetic shift of B by
the contents of A. Saturation occurs if any of the bits shifted
through the MSB differ from the original sign bit. The shift
amount 18 restricted to the range of +8 to —8. Positive values
correspond to left (MSB) shifts and negative values corre-
spond to right (LSB) shifts. Zeros enter the LSB during left
shifts and the sign bit is copied into the vacated MSBs
during right shifts.

ASDH (Arithmetic Shift Double High) performs a double
precision arithmetic shift with B being the high word and A
being the low word of a 48-bit input word. Saturation occurs
if any of the bits shifted through the MSB differ from the
original sign bit. The shift amount for this operation comes

3,517,436

11

from the ALU_ SHIFT SPR and is restricted to the range of
+8 and —8 as in the AS and LS instructions. Zeros enter at
the low-word LSB in a left shift, and the sign bit is copied
into the vacated high-word MSB in a right shift. The result
is the high 24-bit word of the 48-bit shift output.

ASDL (Arithmetic Shift Double Low) performs a double
precision arithmetic shift with B being the high word and A
being the low word of a 48-bit input word. The shift amount
for this operation comes from the ALU__SHIFT SPR and is
restricted to the range of +8 and —8 as in the AS and LS
instructions. Zeros enter at the low-word LSB in a left shift
and the sign enters at the high-word MSB in a right shift.
The result is the low 24-bit word of the 48-bit shift output.

FIG. 4 shows a functional block diagram illustrating how
a double precision shift, particularly an arithmetic double
precision shift, operates in ALU 18. As shown, either the
three bytes of the B operand 404 or the three bytes of the A
- operand 406 are primarily used to construct an intermediate
operand 412 which is input to shifter 414. The selection is
determined via the Shift Double High signal which, 1if it is
a “1” (indicating high), selects the three bytes in B 404, and
if it is *“0” (indicating low), selects the three bytes 1n A 406.
If “B” 1s selected the resulting 40 bit-input to shifter 414
includes the MS byte of “A” appended as the LS byte, and
if “A” 1s selected the resulting 40-bit input includes a byte
of “0”s appended as its LS byte and the LS byte of “B”
appended as 1t MS byte.

Again, ALU 18 performs the ASDH and ASDL instruc-
tions by intelligently extracting a 24-bit field from the 48-bit
input based on shift direction and whether the low or high
word is desired. When the low word is desired, the MSBs of
the input are lost before the shift and are therefore not
available for detecting overflow during a shift.

It should be noted that the result of this instruction

10

15

20

25

30

12

This method avoids the possibility of saturation in the
intermediate result that could occur if coded as follows:

SUB somereg_ b, somereg__a>somereg_ ¢

AS #-1, somereg_ c>some_ other reg

FIG. 5 shows a functional block diagram of how the AVG
instruction 1s implemented in ALU 18. As shown, the A and
B operands are added by adder 510 then the result is shifted
right by 1 by shifter $12 in order to perform the divide-by-2
in a single microinstruction cycle.

BIOZ is a synchronization instruction which sets the
BIOZ bit in the HOST__CNTL interface register which 1s an
SPR. A high BIOZ bit suspends the operation of the chip if
the I0Z status bit of the HOST _CNTL, register is low. The
chip remains suspended until the IOZ status bit 1s set.
Execution then resumes and the 10Z status bit and the BIOZ
bit are automatically cleared. The I0Z status bit 1s set by a
low to high transition of the IOZ pin while the IOZ__EN bit
in the HOST__CNTL register is high. The 10Z pin is an
asynchronous input which is synchronized in the microin-
struction cycle. |

Taking the 10Z__EN bit low disables the setting of the -
I0Z status bit and, therefore, holds the chip in a BIOZ state
indefinitely assuming that a BIOZ instruction was encoun-

tered in the microprogram. Otherwise, when 10Z_ EN is

again set high, the next low to high transition on the IOZ pin
sets the IOZ status bit. If IOZ__EN goes low after the 10Z
status bit was set, the BIOZ instruction still observes a high
I0Z status bit. This 1s functionally illustrated in FIG. 6a.
The BIOZ instruction itself executes as a MOV in the
ALU moving the register addressed by the Bop address to
the register addressed by the Cop address. This instruction
also causes synchronization to an external sample rate clock
by suspending execution pending a low to high transition of
the 10Z mput pin, if one has not occurred prior to execution

overflows to hFFFFFF or h000000 when a left shift is 35 of the BIOZ instruction. This program suspension OcCcurs
performed and the V flag in the CCR 1is true from the when the BIOZ_ bit is high. A block diagram of the asso-
previous instruction. The direction of overflow 1s deter- ciated logic is shown in FIG. 66 (which is the same
mined by the N flag of the CCR from the previous instruc- mechanism used to halt the chip via the HALT pins of the
tion. The N and Z flags are set based on the 24-bit result from HOST__CNTL register). In FIG. 65, if either the HALT bit
this instruction, the V flag is not modified. 40 or the BIOZ_bit is asserted, the REF address pointer
AVG performs an average calculation of two operands, replaces the B and C operand addresses and the HOST
C=(A+B)>>1. The guard bit of the addition result is included opcode replaces the ALU opcode. In order to allow run time
in the shift. This means that two full scale signals may be host interaction, the ALU executes HOST instructions while
used as inputs. suspended.
NOTE: The operation (A-B)/2 can be coded using the 45 It should be noted that the IOZ bit appears in the CCR, the
AVG instruction as follows: HOST__CNTL interface register, and the HOST__CNTL__
AVG somereg_ a, somereg_b>somereg ¢ SPR. BIOZ monitors the bit which appears in CCR. Unlike
SUB somereg_ b, somereg_ ¢>some_ other_reg the IFLLAG pin, an image of the 10Z pin does not exist.
Equivalent
Pseudocode: MOV REF > REF /* BIOZ bit is clear coming in.*/

/* These B and C operands are supplied by the
assembler */ if (I0Z bit) /* set on Low to High
transition of I0Z pin */

clear I0Z bit
else

set BIOZ bit
execute < next ALU instr. > /* latency */
if (I0Z bit)

{

clear BIOZ bit

clear I0Z bit /* zero it for detection

of next sample period */

}
while (BIOZ bit)

{
HOST /* auto refresh and host interaction */

/* B and C operands above are supplied by the
hardware as REF */ if (I0Z) bit /* set on Low

5,517,436

13

-continued

14

to High transition of IOZ pin

{
clear BIOZ bit

clear I0Z bit /* zero for detection of
start of next sample period */

i
e

execute < 2nd ALU instr. > /* resume microprogram */

10

BREYV performs a bit reverse operation on the full 24 bits

of the B operand. The MSB becomes the LSB and vice
versa. This instruction 1s used in a radix 2 FFT and can be
used for FFIs of any binary size.

DREYV performs a digit reverse operation on the full 24
bits of the B operand. The operation on the bits is as follows:

23> 1
22>0

1>23
0>22

This instruction is used in a radix 4 FFT: it can be used in
any FIFT of quaternary size.

HOST provides host access to locations within GPR 224,
AOR 226 and any SPR via the HOST interface registers. A
HOST_GPR__PEND bit of the HOST _GPR__ CNTL reg-
ister 1s checked for a pending host access. If an access is
pending, a MOV .instruction is automatically executed
which moves data between the HOST _GPR_B_ SPR reg-
ister and internal memory in the direction specified by the
HOST__GPR__RW\bit of the HOST__GPR__ CNTL register.
The address of the GPR 224, AOR 226 and/or SPR register
to be accessed resides in the HOST__GPR__ ADDR registers.
It no access is pending a MOV of B to C automatically
occurs. This 1s functionally illustrated in FIG. 7 which shows
that the host data (HOST_GPR__DATA) and the host
address (HOST__GPR__ADDR) replace the B operand
address and the C operand address which gives the host
access to any data storage location in the chip.

Jcc (Jump on condition code) moves the value in the B
operand field of the instruction into the program counter
(PC). The A operand field of the instruction holds a condition
mask which controls conditional execution of the instruction
by preloading the Condition Mask Register (CMR).

Because there is a one cycle latency before PC is modi-
fied, the 1nstruction following the Jcc is executed before the
jump occurs. Conditional execution applies to all instruc-
tions. Conditional jumps are performed by conditionally
executing the Jcc instruction. If the skip bit is not set for
ALU 218, the jump is taken regardless of the preloaded
mask. The “cc” can be a condition based on GT, GTE, EQ,
LT etc.

JScc (Jump Subroutine on condition code) functions
similar to Jec, however, the current value of PC is pushed
onto a stack. The B operand field holds the new value of PC,
while the A operand field holds a preload condition mask. As

with Jcc, the instruction after a JScc is executed before the
subroutine is entered.

LIM (Limit) 1s a special operation for checking a ramping
value against an upper or lower limit. As illustrated in FIG.
8, the LIM instruction accepts a limit value as the A operand
and a ramping value as the B operand and these operands are
compared by subtracter S10 (same arithmetic unit used for
AVG instruction). The instruction also looks at the NA
condition flag from the previous ALU operation to deter-

15

20

25

30

35

40

45

30

55

60

65

mine the ramp direction. Based on the comparison and the
NA flag, either the A operand or the B operand is selected by
MUX 912.

The instruction executes as follows:

if (NA = 0)
MINAB > C

else
MAX AB>C

In the exemplary embodiment of the present invention,
the 1nstruction is typically used in a two instruction block as
follows:

ADD increment, current_ value>current value

LIM limit, current value> current value

The ADD instruction sets the NA flag with the sign of the
increment which indicates the direction of the ramp.

It should be noted that since skippable instructions do not
modify the condition codes, the above LIM instruction does
not work properly if the preceding ADD instruction 1is
designated as “‘skippable”.

LS (Logical Shift) performs a logical shift of the contents
of B by the contents of A. The shift amount is restricted to
the range of +8 to —8. Zero will be shifted into the LSB or
MSB depending on the direction of shift. No sign extension
Or saturation occurs.

LSDH (Logical Shift Double High) performs a double
precision logical shift with B being the high word (MSBs)
and A being the low word (LL.SBs) of a 48-bit input word. The
shift amount for this operation comes from the ALU__
SHIFT SPR and is restricted to the range of +8 and —&. Zeros
enter vacated bits 1n left and right shifts of the 48-bit double
word. The result 1s the high 24-bit word of the 48-bit

unsaturated shift output.

LSDL (Logical Shift Double Low) performs a double
precision logical shift with B being the high word and A
being the low word of a 48-bit input word. The shift amount
for this operation comes from the ALU_ SHIFT SPR and is
restricted to the range of +8 and —8. Zeros enter vacated bits
in left and nght shifts of the 48-bit double word. The result
1s the low 24-bit word of the 48-bit unsaturated shift output.

Both the LSDH and LSDIL. are performed in a similar
manner as the ASDH and ASDL, as described with reference
to FIG. 3. AS noted above, however, there is no sign
extension with LSDH and LSDL, also there is no saturation.

MAX (Maximum) takes the arithmetically GREATER in
two’s complement of the A and B operands, and provides it
as C as represented by C=MAX(A,B). The comparison is
periormed as C=A-B.

MIN (Minimum) takes the arithmetically LESSER in
two’s complement of the A and B operands, and provides it
as C as represented by C=MIN(A,B). The comparison is
performed as C=A—B.

MOV (Move register contents) performs the basic data
movement operation, MOVE the contents of the location
addressed by B to C.

MOVce (Move on condition code) functions like MOV
however the A operand field holds a preload condition mask,

3,517,436

15

which is sent to the CMR. If this instruction is marked as
skippable, then “cc” is used to determine the conditional
execution of this instruction.

OR performs the bit-wise logical OR of each bit in the two
24-bit operands: C=A v B.

RECT (rectify) performs the operation.

if B<(
C = A — B (with saturation)
else

C=8

Two special cases of this instruction exist: If A=0 the
result is the absolute value of B (full wave rectification). If
A=B the result i1s B i1f B is positive or 0 if B is negative (half
wave rectification).

REPT provides a low overhead looping mechanism, by
which the instruction fetch unit repeats a block of instruc-
tions a specified number of times. The A operand field holds
the value of the last instruction of the block which is placed
in REPT END. The B operand field is the number of times
to repeat the block which is placed in REPT_CNT. The
REPT command functions such that the block is executed at

least once. The pseudo-code representation is as follows:

while (REPT__CNT- -);

Three SPRs are used in the loop mechanism. As men-
tioned, the REPT instruction loads the value in the A operand
field into REPT__END. REPT loads the value of the B
operand field into the REPT__CNT, and it loads the value of
PC for the next microinstruction into the REPT__ ST register.
A non-zero positive value for REPT__CNT causes a jump to
REPT__ST to repeat the block when the instruction on line
number contained in the REPT_END is executed. REPT
CNT decrements at the end of each pass through the block.

The hardware for setting up a loop is separate from the
normal ALU data path. The normal data path during this
instruction executes a MOV B>C. To make this a benign
operation, the C operand can be the ZERO register. The
instruction would have the following form:

first_ form: REPT last_ instruction, count>ZERQO

Since the normal ALU datapath movement occurs after
the REPT_CNT is loaded from B operand field, the ALU
datapath MOV operation could be used to move a count
value from the contents of a chip register into the REPT
CNT. The form of the instruction would be

second form: REPT last instruction,
gpr>REPT_CNT.

In this case, count__gpr is a GPR containing a count
amount. So the sequence of events moves the address of
count__gpr into REPT__CNT via B operand field. At a later
time, the contents of count_ gpr are moved to REPT _CNT
via the ALU datapath. Because of the pipeline latency
involved, REPT__CNT 1016 doecs not get the contents of
count_ gpr for two instruction cycles. This is acceptable if
the repeated block is at least two instructions long. This
second use of the REPT instruction allows counts greater
than and allows calculated loop counts. The difference is that
the first form uses 10-bits of the micro instruction word to
hold the count while the second form employs a 24-bit GPR
instead.

count

10

15

20

25

30

35

40

45

50

35

60

65

16

It the repeated block is only 1 instruction in length, the
loop executes correctly if and only if the address of count__
gpr 1S nonzero, and the contents of count__gpr is the number
of repeats minus one.

It should be noted that jumps and subroutines are allowed
within a loop, however, these instructions should not imme-
diately precede the last instruction of the repeated block. A
programmer should be careful when a jump instruction is
intended to abort the execution of the loop. The loop counter
mechanism is still functional as long as REPT_CNT is
positive, and will attempt to continue the loop if the last
instruction is reached by any means. So to be safe, zero
REPT_CNT by executing the EXIT pseudo-instruction. In
the exemplary embodiment there is only one set of REPT

registers, therefore, multiple REPT instructions should not
be nested.

Since these registers are SPRs, it is possible to set up
loops under program control by writing directly into these
registers. If it 1s necessary to terminate a loop at the end of
the current block, this can be done by setting the REPT

CNT to zero via an ALU 218 or MAC/BS 220 pseudo-
instruction. Because of pipeline latencies, an EXIT should
occur at least one instruction before the last instruction of the

loop 1n order for the loop to stop at the end of the current
block.

It should be noted that since REPT CNT, REPT END.,
and REPT__ST are updated as a result of REPT execution,
an error can occur if these registers are used as the desti-
nation of a MAC/BS 220 operation occurring in the same
instruction as a REPT or the last line of a repeated block.

RScc (Return to Subroutine on condition code) pops the
value of PC from the stack. The A operand field of the
instruction holds a preload condition mask. Since RScc
modifies the PC, the same as Jcc and JScc, the instruction
following the RScc executes as the last instruction of the
subroutine.

SUB (Subtract) is a 2’s complement saturating subtraction
operator which yields the difference of two signals, analo-
gous to ADD. It performs the operation C=B—A.

SUBB (Subtract carry-in) is a 2’s complement saturating
subtraction operator which yields the difference of two
signals. It differs from SUB in that the carry bit of the CCR
18 subtracted from the LSB position. This operator is useful
for double precision arithmetic. It performs the operation
C=B-A—carry.

When the SUBB instruction is used in conjunction with a
preceding SUBYV to perform double prevision arithmetic, the
SUBB operation can saturate the high 24-bit word of the
48-bit result. Since the low 24-bit word was computed in the
preceding SUBYV operation, its value will not be saturated.
The low word of the result can be adjusted by the following
conditional operation:

SUBV a_low,b_low > ¢ low
SUBB a_ high,b_ high > c__high
IF OV

XOR h8000000,c_high > ¢_low

SUBREY 1s a 2’s complement saturating subtraction
operator which yields the difference of two signals, just like
SUB. However the position of the source operands with
respect to the minus sign is reversed. It performs the
operation C=A-B. The statement SUBREV A,B>C is read
“compare A to B and set the conditions accordingly”.

SUBYV is an unsaturated subtraction operator, analogous
to ADDV. Like SUB, it performs the operation C=B—A.

XOR performs the bit-wise logical EXCLUSIVE OR of
each bit in the two 24-bit operands: C=A v B.

3,917,436

17

Setting Condition Codes

Only ALU 218 instructions set the bits of the CCR
register. CCR bits become valid at the end of a complete
ALU instruction cycle; thus, they are available for reading
by the next ALU 218 operation and the second MAC/BS 220
operation. CCR bits are active for the conditional execution
of ALU 218, MAC/BS 220, and/or AGEN 216 operations

during the next microinstruction cycle.
If the ALU 218 instruction is marked as skippable, the
condition codes remain unchanged from the previous

instruction. Condition codes are computed as shown below
i Table III for each ALU 218 operation:

TABLE III
NB

OPERATION NA

Z
)
<
-
Bl

ADDADDV,ADDC
SUB,SUBV,SUBB
SUBREV

|

X

P PE P PSP RS

2

~

-
?
~~
N

o
Senge
P

I - O I O
DA DA pd D P D pE AL pd e K

o~
(ad
et

HOST,BIOZ REPT
Jee,JSee,RSee MOVcee

|| |] D be b b e DG e D D D e 4
BRI R E R Y

BEEEEEEEES

X
X

Ll e

Regarding Table III, an X in the NB and NA flags
indicates that the flag is set to the sign of the corresponding
input operand, two’s complement. An X in the N flag
indicates that the flag is see to the sign of the result of the
operation, 2°s complement. An X in the C flag indicates that
the flag is set to the value of the carry output of the MSB of
the adder/subtractor. An X in the V flag is set to the value G
XOR N' where G is the guard bit of the adder/subtractor, and
N' is the MSB of the adder/subtractor output prior to

saturation. An X in the LT flag indicates that the flag is set
to the value N’ XOR V. An X in the Z flag indicates that the
flag 1s set to a 1 if the result of the operation is a zero.

A (—) indicates that this flag is not altered by the operation.

A (1) indicates that C receives the last bit shifted off the
left of the 24-bit result in a left shift or off the right of the
24-bit result in a right shift (before saturation is performed
in the cases of arithmetic shifts;

If the shift amount is zero the C flag gets the bit imme-
diately to the left of the MSB: In the case of AS or ASDH,
this would be a sign extend of the MSB. In the case of LS
or LSDH this would be zero. In the case of ASDL or LSDL,
this is the LSB of the B operand.

A (2) indicates that V and LT are modified based on the
result of the subtraction if the B operand is less than zero. If
the B operand is greater than or equal to zero, the subtraction
1s not performed, therefore the V and LT flags will be
cleared.

A (3) indicates that Z is asserted based on the result of the
comparison not the result of the instruction.

A (4) indicates that the result of an AMDF operation
always has a positive sign. Therefore, the N flag for this
operation is set based on the sign of the subtraction result,
which 1s indicative of whether the 1’s complement operation
was performed.

Conditional Execution

In addition to the program control instructions previously

specified (e.g., Jcc), a mechanism that allows individual

10

15

20

25

30

35

40

45

50

55

60

635

18

steps of its microcode to be conditionally executed is also
provided. Any microinstruction step may be flagged by a
programmer as ‘‘skippable”, this is accomplished via the
microinstruction fields designated SKIP BITS. This means
that the instruction is only executed when the CCR is in a
certain state. This state constitutes the skip condition, and is
specified by loading a particular bit pattern into the Condi-
tion Mask Register (CMR).

By loading various values into the CMR, the instructions
of the functional units (i.e., MAC/BS 220, ALU 218 or
AGEN 216) can be conditionally executed according to a
variety of different conditions. The conditions result from
combinations of the nine basic CCR flags 10Z, 10Z, IFLG,
NB, NA,N,Z,C, Vand LT.

When the CMR and CCR do not correspond, an instruc-
tion having its skip-bit set executes, but the write to the
destination address or register is inhibited. It should be noted
that ALU 218, MAC/BS 220, and AGEN 216 have their own
skip bits so this mechanism can be applied independently to
¢ach.

In the exemplary embodiment, instructions which are
skippable do not set the condition codes, regardless of
whether they were executed or not. This restriction allows
the CMR to be initialized and a condition (CCR) tested at the
beginning of a block of skippable instructions, with the
condition being held the same across the entire length of the
block. It should be noted that if a block of MAC/BS 220 or
AGEN 216 1instructions is marked as skippable while the
corresponding block of ALU 218 instructions is not, the
CCR (condition) may change for each instruction.

To detect a Skip condition during the instruction cycle of

any skippable instruction step, the following logical com-
putation is performed:

Skip\ = NOT,,, XOR ((NB*NB,) + (NA*NA) + (N*N_) +
(Z*Z,) + (V*V,) + (C*C,) + (LT*LT,) +

(IFLG,*IFLG.,) + (I0Z*I0Z,))

The subscript m in the above equation indicates the
corresponding bit of the CMR. Each mask bit in the CMR
(except NOT) 1s ANDed with the corresponding bit in the
CCR, and the results are OR’ed together. This result is then
conditionally inverted according to the status of the NOT bit
to account for the extra negated cases. If the final result is
FALSE (equal to a logical “0”) then the current instruction
step is skipped; that is, the step becomes a NOP for MAC/BS
220 and AGEN 216 and a NORFSH for ALU 218 by
disabling the output of any results.

Note that an “execute never” condition, where instruc-
tions are unconditionally skipped, can be effected by clear-
ing all CMR bits to 0 except for a 1 in the NOT bit. Likewise,

“execute always” can be accomplished by clearing all bits in
the CMR including NOT.

Instructions Not Skippable

Blocks of skippable ALU 218 instructions warrant con-
sideration regarding the impact on the execution of several
instructions (such as ADDC, SUBB, LIM, ASDL) which use
CCR bits as part of their computation. It should be noted that
double precision operations are impacted, and programmer
should consider the use of branching instructions instead of
skippable instructions.
Arithmetic Condition Masking

There are 16 commonly used arithmetic conditions which
can be tested based on 5 CCR flags: N, C, V, LT, and Z. A
mask 1s loaded with 5 corresponding bits and a NOT bit into
the CMR to select the condition which will cause instruc-
tions to be executed. The mask values for the 16 conditions

5,517,436

19

are listed below in Table IV.

TABLE IV

20
instruction “n”. It should be noted that MAC/BS 220 fetches

Arithmetc Condition Code Masks

I
N I F

Mnemo O O L N N L Mask
Condition nic T Z G B A N C V T Z Vale
Equal (Zero) EQ=Z 1 0 0 0 0 0 0 0 0 1 h20]
Not Equal NEQ O 0 ¢ 0 0 O 0 O 0 1 hod
Negative NEG 1 0 0 0 0 1 O 0 O O h210
Positive (>=0) POS O 0 0 0 ¢ 1 0 0 O 0 hnol1o
Overflow Set oV 1 0 0 0 0 0 0 1 0 0 h204
Overflow Clear NV O 0 0 0 06 0 0 1 0 0 hoo4
Lower than (carry set) LO=CS 1 0 0 O O 0 1 0 0 0 h208
Higher or same (carry clear) HS=CC O 0 0 0 0 O 1 © O 0 hoos
Lower or same LS 1 0 0 0 0 0 1 0 O 1 h209
Higher than HI o 0 0 0 0 0 1 0 O 1 hooo
Less than LT 1 0 0 0 0 0 0 0 1 0 h202
Greater or equal GTE c 0 0 0 O 0 0 0 1 0 hoo2
Less or equal LTE 1 0 0 0 0 0 0 O 1 1 Bha203
Greater than GT o 0 0 0 O 0 0 0 1 1 hoo3
Always ALW 0O 0 0 0 0 0 0 O O O hOOO
Never NEV i 0 0 0 0 0 0 0 o0 0 h2o
IFLG flag set IFLG 1 0 1 0 0 0 0 0 O 0 h28
IFL.G flag cleared NIFLG g 0 1 0 O O O 0 0 O hosO
I0Z flag set 107 1 1.0 0 6 0 0 0 0 0 h300
I0Z flag cleared NIOZ g 1.0 0 O O 0 0 O 0 hi
NB flag set BNEG 1 0 0 1 O 0 0 0 0 0 h240
NB flag cleared BPOS 0 0 0 1 0 0 0 0 O 0 hnd40
NA flag set ANEG 1 0 0 0 1 0 O 0 0 0 h22
NA flag cleared APOS 6 0 0 O 1 O 0 0 O 0 ho20

Note that the values are not copies of the bit patterns
produced by the CCR when these conditions exist. They are
merely mask values that are necessary and sufficient for
detecting the condition. In addition to these conditions, the
IFLG and IOZ flags can be used for conditional execution
based on the state of external signals.

The CMR can be written by a number of means. First,
special instructions in ALU 218 (Jcc, JScc, RSce, MOVcc)
move the value of the A operand field of the instruction into
the CMR. When these insructions are executed, the new
condition mask is effective for all operations (MAC/BS 220,
ALU 218, and AGEN 216) on the microinstruction line.

A second method for setting the condition mask is to use
ALU 218 or MAC/BS 220 to move the contents of a data
register, either from GPR 224, AOR 226 or an SPR, into the
CMR. Under these circumstances, the new condition mask
is effective for all operations on the instruction line follow-
ing the instruction in which the move was performed.
Instruction Cycle Timing

All of the microinstructions execute in one instruction
cycle. FIG. 9 i1s a timing diagram which illustrates the
instruction execution of each of the functional units along
with the operation of the external memory bus. Execution in
MAC/BS 220 and ALU 218 are interleaved to allow operand
fetches and stores of the operands by multiplexing the X, Y,
and Z busses. By operating these busses, for example, at
twice the instruction rate, the MAC/BS 220 and ALU 218
can both be supplied with two source operands from the
individual data storage areas (GPR 224, AOR 226 or any
SPR) and have their results stored back into the data storage
areas on each instruction cycle.

The 1nterleaving of MAC/BS 220 and ALU 218 produces
some latency of the result of an ALU instruction with respect
to a MAC/BS 1nstruction. As illustrated in the timing dia-
gram of FIG. 9, MAC/BS 220 fetches its source operands for
- Instruction “n+1" before ALU 218 has stored its results from

35

40

45

50

33

60

65

its sources for the same instruction at the same time that
AGEN 216 fetches its offset. This is the reason for the
restriction on operand fetches described above (i.e., operand
E should not be sourced by AOR 226).

A second area of latency occurs in AGEN 216 and
external memory operation. Here, AGEN 216 computes an
address during one instruction and the external memory
cycle to that address takes place during the next instruction

cycle. This results in the need to schedule external memory
reads before the data is needed by either ALU 218 or
MAC/BS 220.
Instruction Scheduling Rules

The interleaving of operations for MAC/BS 220 and ALU
218 and the alignment of timing for AGEN 216 and MAC/
BS 220, have important ramifications, especially, for pro-
gramming. The following rules summarize the data latencies
between functional units.

Non-latent operations
1. The result of a MAC/BS 220 operation is available for use

as an operand by MAC/BS 220 in the next instruction.
2. The result of a MAC/BS 220 operation is available for use

as an operand by AL.U 218 in the next instruction.

3. The result of a MAC/BS 220 operation written to AOR
226 or an SPR (e.g., AGEN region register) is available to
AGEN 216 in the next instruction.

4. The result of an ALLU 218 operation is available for use as
an operand by ALU 218 1n the next instruction.

Latent operations

5. The resulf of an ALLU 218 operation is available for use as
an operand by MAC/BS 220 in the second instruction
following the ALU instruction.

6. The result of an ALU 218 operation written to an AOR
226 or an SPR (e.g., AGEN region register) is available to
AGEN 216 on the second instruction following the ALU
218 instruction.

The scheduling of external memory cycles relative to

MAC/BS 220 and ALU 218 operands follow these rules.

5,917,436

21

Latent Operation

7. The fetch of a data operand from external memory for use
by either ALU 218 or MAC/BS 220 should be scheduled
at least 2 instruction cycles prior to the instruction which
uses the operand.
Non-latent Operation

8. External memory writes of MAC/BS 220 results can be

scheduled on the same line as the instruction which
generates the data.

0. External memory writes of ALU 218 results should be
scheduled no sooner than one cycle after the instruction
which generates the data.

Indirect Register Addressing
A mechanism 18 provided for indirect addressing of reg-
ister type operands for MAC/BS 220 and ALU 218. Six

SPRs (namely, INDIRA, INDIRB, INDIRC, INDIRD,

INDIRE, INDIRF and INDIRG) hold operand addresses for

the six operands to ALU 218 and MAC/BS 220, and the
AOR 226 operand to AGEN 216.

To activate the indirection mechanism, a register address
1s placed into one or more of the above-listed SPRs corre-
sponding to the desired operand. The instruction is then
written using the INDIRECT SPR address specified in the
operand field for which indirection shouid occur, This can be
for any of the seven operands in an instruction. The instruc-
tion control circuit in the hardware recognizes this special
address and substitutes the contents of the appropriate SPR
(INDIRA,B,C,D,E.FG) for the address. In particular, FIG.
11 1ilustrates the indirection mechanism for the A operand
address which shows comparator 1320 comparing indirec-
tion activation 1322 and A operand address 1324 such that
the result controls multiplexer 1326 in selecting between the
A operand address 1324 and the INDIRCA value 1328 for
the “effective” A operand address 1330.

In the exemplary embodiment, the INDIRECT SPR is not
a physical register; 1t 1s a reserved address which is used to
activate indirection on an operand. Two additional reserved
addresses INDIRINC and INDIRDEC are provided which
also accomplish indirection through the INDIRA,B,C,D,E,
F,G registers. INDIRINC has the added functionality of
post-incrementing the corresponding INDIRA,B,C,D.E.EG
register’s contents. INDIRDEC post-decrements the regis-
ter’s contents. This 1s very useful in looping on array
elements. A programmer can control the increment manually
if desired. The incremented address is available in the next
microinstruction cycle. If the function units whose operand
specified an increment or decrement is skipped for that
1nstruction cycle, the increment or decrement does not occur.

Since ALU 218 instructions REPT, Jcc, JScc, and RScc
use the operand address fields of the instruction as imme-
diate fields for holding condition masks and program
counter values, the indirection mechanism is disabled in the
hardware for these instructions to avoid unexpected results.
Such circumstances could occur if one of the operand
address fields contains a value which matches the INDI-
RECT, INDIRINC, or INDIRDEC SPR addresses.

It should be noted that indirection within the REPT
repeated block 1s not prohibited.

Indirect Register Latencies

Since the contents of the INDIRA,B,C,D,E,F,G registers
are used as addresses rather than the instruction execution
pipeline, the latencies encountered when these registers are
modified differ from the latencies described in the previous

description of register latencies. The latency rules are as
follows:

1. The result of a MAC/BS 220 write to INDIRD.E is
available for use as an indirect address two instructions
later.

5

10

15

20

25

30

35

40

43

50

55

60

65

22

2. The result of a MAC/BS 220 write to INDIRF is available
for use as an indirect address one instruction later.

3. The result of an ALU 218 write to INDIRA B is available
for use as an indirect address two instructions later.

4. The result of an AL U 218 write to INDIRC is available for
use as an indirect address one instruction later.

5. The result of a MAC/BS 220 write to INDIRA,B.C is
avatlable ftor use as an indirect address two instructions
later.

6. The result of an ALU 218 write to INDIRD,EF is
available for use as an indirect address three instructions
later.

External Memory Interface
Referring back to FIG. 2, the interface to external memory

includes two parts. The first part is AGEN 216 which

performs address computations and, the second part is the
memory port including an address bus, data bus and control
signals which provides the physical connection to external
memory. This memory port contains DILs/DOLs 228 which
act as the data mterface between the internal microprogram
and the external memory.

FIG. 10 shows a detailed functional block diagram of

AGEN 216 in FIG. 2. AGEN 216 computes addresses for the

external memory interface once every instruction cycle

which, in the exemplary embodiment, is 100 ns.
As shown in FIG. 10, AGEN 216 inciudes three 26-bit

adders/subtractors 1210, 1212 and 1214; eight 24-bit BASE
registers, eight 24-bit END registers, and eight 24-bit
SIZEM1 registers defining eight addressing regions, these
register groups are designated 1220a-A, respectively.

One of the register groups 122044 is selected via MUX
1224. The constituent BASE, SIZE and END values of the
selected register group are added/subtracted with other
selected values as shown and, finally, the result of the
multiple computations is selected via MUX 1226 as a
function of the sign of the output value of adder 1212.

Locations of AOR 226 are selected by the G operand field
of the instruction. Three bits in the external memory-control-
field of the instruction determine, by controlling MUX 1224,
which of the eight regions is accessed. The physical memory
location and function of the eight regions are determined by
the contents of the region SPRs, BASE, SIZEM1, and END
which contain unsigned positive values. These regions can
be configured as delay lines, tables, or /O space by pro-
gramming the registers appropriately.

AGEN 216 Address Computation

Reverbs 1n audio processing are typically sparse digital
networks (1.e., unit delays are replaced with delay lines
whose sizes vary so as to simulate disparate delay times
encountered 1n actual halls). Typically, approximately fifty
delay lines are required for a convincing simulation. The
mputs of these delay lines are fed by combinations of the
outputs of other delay lines, or sometimes by the input
signal, or simply another delay line. Each delay line is part
of a circular queue defined by this associated region’s
SIZEM1, END, and BASE Registers. Each delay line is
ofiset from the region base register by a predetermined
amount. The AOR’s track these offsets. The passage of time
1s accomplished by decrementing the region base register
using an automatic base modulo updating mechanism
described below. All the delay line inputs are desirably fed
new information, while the old information at the end of
each delay line 1s overwritten by the new information placed
1nto the beginning of the subsequent line.

At every 1nstruction cycle, the following external address
calculations, represented by pseudo-code where /*...*/ indi-
cate comments, are performed using the offset and region

5,517,436

23

specifiers indicated in the microinstruction fields.

address = AOR + BASE

/* this corresponds to adder 1210 output */

temp = address — END

/* this corresponds to adder 1212 output */

if temp > 0

/* this corresponds to MUX 1226 select */
address = address — (SIZEM1 + 1)

/* this corresponds to MUX 1126 output */

SIZEMI is incremented by 1 because the value of the
SIZEM1 register is a value representing a region size —1.
This is necessary in order to access a table having the full
size of physical memory. The first calculation can also be
executed as

address=AOR+BASE+1

under instruction control. This is useful in acquiring neigh-
boring addresses, as for example, for linear interpolation
operations. Although the BASE and END registers are
24-bit unsigned, the calculations are carried out at 26-bit
two’s complement to prevent the first equation from over-
flowing, and to guarantee the correct sign in the result of the
second equation. AOR 226 values are 24 bits and unsigned.

The above-described equations allow circular addressing
within a predefined region because of the end detection and
hardware modulo addressing. Regions can reside anywhere

in physical memory based on the contents of the region
SPRs. Multiple delay lines coexist in the same region by
stringing them end to end and addressing them with different
offsets. Delay lines move only within the extents of the
defined region. Therefore, the operation of delay lines does
not impact data in other regions of memory. Delay lines are
useful for audio effects such as reverb and for digital
filtering.

By setting the END register to the maximum physical
memory location, the entire region simplifies to a table
without modulo addressing. Setting BASE to zero and END
to maximum physical location results in absolute addressing
suitable for I/O devices.

An automatic method for updating the BASE register is
also provided via AGEN 216. This mechanism is especially
useful for auto-incrementing the BASE register every
sample period in a modulo fashion as desired using delay
lines. AGEN 216 computes a new address using the contents
of a location in AOR 226 (pointed to by the G operand field)
as the increment amount. The only difference is that the
AGEN opcode field of the instruction causes the result to be
written to the BASE register as well as to the address bus.

address = AOR + BASE
temp = address — END
if temp > 0
address = address — (SIZEM1 + 1)
base = address

To decrement the BASE by 1, set AOR equal to SIZEM1.
The new BASE value is immediately available to the AGEN
on the next instruction.

It should be noted that if base updating is specified in a
given instruction, a collision could occur between AGEN
216 and MAC/BS 220 trying to write to the same BASE
register because the two units are operating with the same
{iming.

AGEN Operations

In the exemplary embodiment, the opcode field of AGEN

16 consists of six instruction bits. Three of the bits are used

10

15

20

25

30

35

40

45

50

35

60

65

24

for selecting one of eight regions. The remaining three bits

are used to select from the following operations as listed in
Table V:

TABLE V

Operation

External memory read

Ext. memory write

Ext. memory read, update BASE
Ext. memory write, update BASE
Ext. mem. read, plus 1 addressing
Ext. mem. write, plus 1 addressing

NOP cycle on the external memory bus
Update BASE

A NOP on the external memory bus means that the bus is
not activated; it does not inhibit the operation of AGEN 16.
Updating the region BASE SPR without activating the
external memory bus is also possible.

Accessing the Region Registers and AORs

The region registers are mapped as SPRs for use as
operands by ALU 218 and MAC/BS 220. This is useful for
having more than eight regions active at a time, since the
contents of these registers can be modified during a sample
period under program control. As mentioned, AOR 226 can
also be accessed by ALU 218 and MAC/BS 220 to provide
the capability for computing addresses in a program.
Because of bandwidth limitations on AOR 226, AOR 226
locations should not be used as the E operand of MAC/BS
220.

Address Bus

The address bus is controlled by the ESP2 for supplying
a 24-bit address to external memory and to I/O devices. A bit
selectable multiplexed addressing mode is available which
provides multiplexed addresses for accessing DRAMs in
sizes from 64K to 16M.

Data Interface

Referring back to FIG. 2, the interface from the ESP2
chip’s internal computational units to external memory is
supplied through SPRs (DILs and DOLs) 228.

There are 16 DIL SPRs and 16 DOL SPRs each being 24
bits wide. These registers are accessed by the microprogram
as sources and destinations like any other SPR. A 4-bit field
in the instruction along with a read/write bit serve as the
address to one of these registers. The DIL and DOL SPRs are
readable and writable from MAC/BS 220 and ALU 218. It
should be noted that an assembler can organize the use of
these registers into FIFO and/or cache-like structures.

The DOL SPRs provide an added feature called magni-
tude truncation aimed at reducing truncation error in 24-bit
and 16-bit systems. This feature is controlled by two bits in
a HARD__CONEF register. The MAG__TRUNG bit enables
magnitude truncation when it is high. The TRUNC_
WIDTH bit sets the word width to 24-bits when it is high or
16-bits when it is low. In the case of 24-bit words, the
algorithm is as follows:

if (DOL < 0)
DOL = DOL + hl

In the case of 16-bit words, the algorithm is as follows:

if (DOL < 0)
DOL = (DOL + h100)
DOL. = DOL & HFFFF00

5.517.436

25

It should be noted that rules of truncation dictate that the
truncated value should approach 0, thus, “h1” is added to a
24-bit negative value (i.e., increment bit 1 of a 24-bit value:
the 1st bit) and “h100” is added to a 16-bit negative value
(1.e., increment bit 1 of a 16-bit value: the Oth bit). Addi-
tionally, for 16-bit words, the 8§ LSBs of the word are set to
hOO which allows the development of algorithms for 16-bit
target systems 1n 24-bit development systems.

Internal Register Refresh

Most of the chip’s registers are implemented in dynamic
RAM and therefore require a periodic refresh of their
contents. This applies to instruction memory 222, GPR 224,
and AOR 226. The SPRs are implemented as static registers
and do not require refresh.

Instruction Memory Refresh

Instruction memory 222 refresh is transparent to a pro-
grammer. There are four memory accesses available in
instruction memory 222 per instruction cycle. These consist
of two reads and two writes. One read is required for
instruction fetching based on the PC, leaving 3 accesses
unused. The one unused read and one of the unused writes

are used to allow host access to instructions when a host
access 1s pending, or to perform refresh when no host access
is pending. Refresh is performed based on the REFINST
SPR which is a 10-bit counter. Although the current imple-
mentation of the chip has only 300 instructions, the counter
1s allowed to count from 0 to 1023 for future expandability
of the instruction array. Since each instruction is refreshed
once every 1024 instruction cycles, the refresh rate at a 100
ns/instruction is 102.4 us.

A bit in the HARD_ CONEF register can be used to enable

or disable instruction refresh to ease debugging in the early
stages of chip development.
GPR 224 and AOR 226 Refresh

GPR 224 allows for 6 accesses per instruction cycle: 4 for
fetching source operands for ALU 218 and MAC/BS 220
and 2 for writing results of ALU 218 and MAC/BS 220
operations. AOR 226 allows for 6 accesses per instruction
cycle 1 for reading an offset for AGEN 216, 3 for reading
source operands for ALU 218 and MAC/BS 220, and 2
writes for writing ALU 218 and MAC/BS 220 results to
AOR 226. In both cases, there are no available accesses for
refreshing the registers.

Refresh of these registers is performed via instructions
using special SPRs to provide hardware support for the
refresh operation. The instructions provide refresh as an
ALU function (NOP, BIOZ, HOST) or the MAC function
(RFSH). These instructions use the indirect addressing
mechamsm provided by the REF and REFPT SPRs.

The SPRs REF and REFPT control the refresh mechanism
as follows:

The reserved SPR address called REF provides an indirect
addressing mechanism. By addressing REF in the operand
field of an instruction, the contents of REFPT are actually
used as the address of the operand. REFPT is a 10-bit
counter which post-increments whenever the REF reserved
address 1s used as a source operand.

Because of the address mapping of GPRs from 0 to 255,
and AORs from 512 to 767, the LSB of the counter serves
as the MSB of the address, so refreshes alternate between
GPR and AOR. Although REFPT is a 10-bit counter, in the
exemplary embodiment, the count is limited to 512 which
matches the number of locations physically implemented in
GPR 224 and AOR 226.

Due to the interleaved nature of MAC/BS 220 and ALU
218 operand fetching, one of these functional units can be
writing a new result to a register at the same time that the
other unit is being used to refresh it.

10

15

20

25

30

35

40

45

50

55

60

05

26

The chip contains logic to prevent a refresh operation
from writing old data over newly created register contents.
When REF is used as a destination in a MAC/BS 220
operation, special hardware compares the contents of
REFPT to the destination address of ALU 218 operation in
the preceding instruction. If the values are equal and the
ALU operation is not skipped, a NOP is performed by
MAC/BS 220 instead of the refresh.

Likewise, when REF is used as a destination if the ALU,
the chip compares contents of REFPT to the destination
address of MAC/BS 220 in the same instruction line. If the
values are equal and the MAC instruction is not skipped, a
NOREFSH is inserted in the ALU operation.

In normal audio processing applications, use of the BIOZ
instruction and available ALU NOPs for sample synchroni-
zation should provide effective refresh. Additional refresh
can be provided by using MAC/BS 220 RFSH pseudo-
instruction instead of a NOP in places where preservation of
MACRL 334 1s unnecessary.

It should be noted that MAC/BS 220 and ALU 218 can be
used to perform refresh operations simultaneously which
doubles the refresh rate.

When the chip is suspended due to a BIOZ microinstruc-
tion or because of high halt bits in the HOST CNTL
register, MAC/BS 220 executes NOPs (which preserve
MACRL 334) while ALU 218 executes the HOST instruc-
tion to allow host access and refresh.

In this suspended state, MAC/BS 220 can be forced to do
refresh by setting the HALT MAC_REF bit in the
HARD__CONF register. This has the effect of doubling the
refresh rate only during a BIOZ loop, however, the contents
of MACRL 334 will not be preserved as they are during a
MAC/BS 220 NOP. When the micro-program resumes (i.e.,
comes out of suspension), MACRL 334 is subsequently
preserved, assuming no RFSH instructions in the MAC/BS
220, at least until the next BIOZ is encountered.

Halting the Chip

The chip can be halted unconditionally by writing the
HOST_HALT bit of the HOST_CNTL register. The
HOST__CNTL register is accessible directly from the HOST
and 18 also accessible as an SPR by ALU 218 and MAC/BS
220. The chip can be taken out of the halt state only by the
host clearing the ESP__ HALT and HOST HALT bits of the
HOST__CNTL register. While halted, the program counter
does not increment, therefore, execution resumes at the next
unexecuted instruction in the sequence.

A mechanism for conditional halting under program con-
trol exists through the HALT pseudo-instruction of ALU
218. This instruction can be used to set the ESP_ HALT bit
in the HOST_CNTL register. If the ESP_ HALT EN bit
(which is also located in the HOST _CNTL register) is also
set, the chip goes into a halt state. If the ESP_ HALT EN
bit is not set, the ESP_ HALT bit is ignored. This allows
program debugging by placing HALT pseudo-instructions
throughout a program as breakpoints. The breakpoints can
be activated by setting the ESP_ HALT_EN bit or they can
be ignored to allow normal execution of the progra

A third method for “halting” the chip is by bnngmg the
I0Z__EN bit of the HOST_CNTL register low. This dis-
ables the observation of the IOZ input pin, and hence,
suspends microprogram execution when a BIOZ microin-
struction is encountered. This causes the chip to effectively
halt when the next BIOZ instruction is executed because the
IOZ bit in the CCR register never goes high to allow the
program to resume.

To preserve the state of the chip during a halt, the ALU
218, MAC/BS 220, and AGEN 216 perform operations

3,517,436

27

which are non-destructive to the state of GPR 224, AOR 226
and desired SPR.
HOST/ESP2-Interface

The purpose of the host interface is to read or write all the
ESP2 registers and program memory. The mechanism for
doing so is described below.

The host interface consists of five address pins HA[4:0],
eight data pins HD[7:0], a read/write pin HR/W and a chip
select pin CS\ (note that by convention the suffix “V”
indicates an active low signal). HA and HR/W\ are latched
on the falling edge of CS\. In a read cycle, ESP2 asserts the
HD pins with a read data while CS\is LOW. In a write cycle,

the HD pins propagate into the addressed register and are
latched on the RISE of CS\.

Although the invention is illustrated and described herein
embodied as a digital signal processor specially designed for
audio applications, the invention is nevertheless not
intended to be limited to the details as shown. Rather,
various modifications may be made in the details within the
scope and range of equivalents of the claims and without
departing from the spirit of the invention.

What is claimed:

1. A digital signal processor for efficiently handling audio
applications comprising:

an instruction memory which holds instructions repre-

senting a program for an audio application, wherein the
instruction memory includes an output port which
provides microinstruction words;

bus means for providing data communication within the
digital signal processor, wherein the bus means com-
prises W, X, Y, and Z busses, at least two of the W, X,
Y and Z busses being time-division multiplexed;

arithmetic logic unit (ALU) means for performing a
plurality of arithmetic and logical functions in response
to a microinstruction word, the ALU being coupled to
the bus means;

multiplier accumulator/barrel shifter (MAC/BS) means
for performing a plurality of multiply/accumulate and
shifting functions in response to a microinstruction
word, the MAC/BS means being coupled in parallel

with the ALLU means such that the MAC/BS is coupled
to the bus means;

address generator (AGEN) means, coupled in parallel
with the ALU means and the MAC/BS means and
having at least one data input port coupled to the W bus,
for performing a plurality of address calculation func-
tions in response t0 a microinstruction word;

first memory means, responsive to a microinstruction
word, for exchanging data with the bus means, the first
memory means includes a general purpose register
(GPR) memory means and a special purpose register
(SPR) memory means;

address offset register (AOR) memory means, separate
from the first memory means and responsive to a
microinstruction word, for exchanging data with the
bus means, wherein the AOR memory means is the
only source of data values for the W bus;

wherelin the microinstruction word is sufficiently long to
allow independent and simultaneous control of opera-
tion and operands for each of the ALU means, MAC/
BS means and AGEN means.

2. The digital signal processor of claim 1, the X, Y and Z
bus means being time-division multiplexed using a two-
phase microinstruction cycle in order to allow the ALU
means, the MAC/BS means, and the AGEN means to

concurrently latch, store, and operate on data values.

10

15

20

25

30

35

40

45

50

55

60

65

238

3. The digital signal processor of claim 1, further includ-
ing a condition code means responsive to the result of an
ALU means operation and a programmable condition mask
means, the condition code means and the condition mask
means having respective states, each of the ALU means, the
MAC/BS means and the AGEN means, as a function of the
respective states of the condition code means and condition
mask means, independently skip the present microinstruc-
tion word.

4. The digital signal processor of claim 1, wherein the
MAC/BS means comprises:

- multiplier means responsive to a microinstruction word
for mulitiplying the values provided by the X and Y bus
means to produce a product output value;

accumulator means responsive to the microinstruction
word for accumulating the product output value pro-
vided by multiplier means with a feedback value and
for providing the accumulated values as an output
value;

MAC latch means for holding and providing the output
value provided by the accumulator means;

MAUC Preload latch means for holding and providing a
value which is received directly from the Z bus means;

selecting means for selecting and outputting one of the
output values of the accumulator means, the MAC latch
means, the MAC Preload latch means, and a constant
zero value means; and

a single barrel shifter means responsive to the microin-
struction word for shifting an input value and produc-
ing an outpui, the output of the barrel shifter means
provides the feedback value, the barrel shifter means
being capable of shifting both the input value at a
beginning of a microinstruction cycle and the input
value at an end of the microinstruction cycle in order to
shift both an input to the accumulator means and the
output of the accumulator means during the same
microinstruction cycle.

5. The digital signal processor of claim 4, wherein the
MAC latch means 1s selectively inhibited from holding the
output value provided by the accumulator means as a
function of the microinstruction word.

6. The digital signal processor of claim 4, further com-
prising:

overflow detect means for detecting and saturating an
overflow/underfiow of the output value of the barrel
shifter means and for producing an output value based
on the detection.

7. The digital signal processor of claim 1, wherein the

MAC/BS means comprises:

multiplier means responsive to the microinstruction word
for multiplying the values provided by the X and Y bus
means to produce a product output value;

accumulator means responsive to the microinstruction
word for accumulating the product output value pro-
vided by multiplier means with a feedback value and
for providing the accumulated values as an output
value;

MAC latch means for temporarily storing the output value
provided by the accumulator means;

MAUC Preload latch means for temporarily storing a value
which 1s received directly from the Z bus means;

selecting means for selecting and providing one of the
output value of the accumulator means, the value stored
in the MAC latch means, the value stored in the MAC

Preload latch means and a constant zero value:

5,517,436

29

barrel shifter means responsive to the instruction memory
output for shifting the output value provided by select-
ing means to more or less significant bit positions and
for producing an output value, wherein said barrel
shifter means output provides the feedback value; and

overtiow detect means for detecting an overflow/under-
flow of the output value of the barrel shifter means and
for producing an output signal based on the detection.

8. The digital signal processor of claim 1, wherein the
ALU means includes:

decoder means for decoding one of a double precision
shift high function and a double precision shift low
function from the microinstruction word provided by
the instruction memory and for producing an output
signal;

means, responsive to the output signal of the decoder
means, for selecting a 24 bit value from a 48-bit input
value, the 48-bit input value comprising an A operand
and a B operand, the means for selecting 1) selects the
B operand and the most significant 8 bits of the A
operand if the output signal of the decoder means
indicates the function is the shift-high function and 2)
selects and outputs the most significant & bits of the B
operand, the A operand and a byte of logic “0”’s if the
decoder means output indicates the function is the
shift-low function; and

means, responsive to the microinstruction word, for shift-
ing values selected by the means for selecting and for
outputting a 24-bit result, wherein the selecting and
shifting are performed in a single microinstruction
cycle.

9. The digital signal processor of clai
ALU means includes:

decoder means for decoding an average function from the
nicroinstruction word provided by the instruction
memory and for producing an output signal;

adder means, responsive to the output signal of the
decoder means, for adding two operands received at the
two input ports further including means for accommo-
dating an overflow occurrence during the addition; and

right shift by 1 means, directly coupled after and in series
with the adder means, and responsive to the microin-
struction word for performing a right shift by 1,
wherein the adding of the adder means and the shifting
of the right shift by 1 means are performed in a single
icroinstruction cycle.
10. The digital signal processor of claim 1, further com-
prising:
decoder means for decoding a BIOZ instruction from the
microinstruction word provided by the instruction
emory and producing a BIOZ signal;

means, responsive to the BIOZ signal and an external
input, for setting BIOZ indicators within the digital
signal processor to indicate that the ALU means is in a
BIOZ mode;

means, responsive to the BIOZ indicators, for synchro-

nizing the ALU means operation to an external sample
rate clock signal; and

means, responsive to the BIOZ indicators, for replacing a

~ value in an opcode field and address fields of a micro-
instruction with a predetermined opcode value and
predetermined address values prior to execution of the
microinstruction to provide at least a host processor
with access to digital signal processor.

11. The digital signal processor of claim 1, wherein the

ALU means includes:

1, wherein the

10

15

20

23

30

335

40

45

50

35

60

65

30

decoder means for decoding a limit instruction from the

microinstruction word and for producing an output
value;

means for comparing a first operand to a second operand
to produce an output value, the first operand represent-
ing a limit value and the second operand representing
a ramping value, wherein the second operand is modi-
fied by an increment value prior to a subsequent
execution of a limit instruction;

logic means for performing an exclusive-OR operation on
the output value, provided by the means for comparing,
and a flag value indicating whether an immediately
preceding first operand was positive, and for producing
an output signal, wherein the immediately preceding
first operand represents the increment value; and

means, responsive to the output signal of the logic means,
for selecting one of the first and second operand values.

12. The digital signal processor of claim 1, wherein the
microinstruction includes address fields, further comprising:

decoder means for decoding a HOST instruction from the
micromnstruction word and for producing an output; and

means, responsive to the decoder means output signal, for
replacing values in the address fields of the microin-
struction with predetermined address values prior to
execution of the microinstruction by the ALU means,
MAC/BS means and AGEN means to provide synchro-

nization for a transfer of data between a host processor

and storage locations within the digital signal proces-
SOT.

13. The digital signal processor of claim 1, further com-
Drising:
comparing means for comparing an indirection activation
address to an operand address of a microinstruction
word and producing an output indicating if the indi-
rection activation address and the operand address are
equal; and

means for replacing, as a function of the comparing means
output, the operand address of the microinstruction
with a value contained in the SPR memory means prior
to execution of the microinstruction by the ALU means,
MAC/BS means and AGEN means, wherein the value

in the SPR memory means is an indirection operand
address.

14. The digital signal processor of claim 1, wherein the
AGEN means comprises:

first selecting means for selecting and outputting a value
from one of a plurality of SPR memory means locations
In response to the microinstruction word, the value
comprises a base value, an end value and a sizeml
value;

first adder means for adding the first selecting means base
value to a value provided on the W bus means by the
AOR memory means and producing an output;

second adder means for subtracting the selecting means
end value from the first adder means output and pro-
ducing an output;

third adder means for subtracting the selecting means

sizemli+1 value from the first adder means output and
producing an output; and

second selecting means for selecting and outputting one
of the first adder means output and the third adder
means output in response to the sign of the second

adder means output, the second selecting means output
being fed back to the SPR memory.

15. The digital signal processor of claim 14, wherein the
values of base, sizem1 and end specify, in one of modulo and
non-modulo modes, regions in external physical memory.

5,517,436

31

16. The digital signal processor of claim 14, wherein the
AOR memory means provides address offsets to the W bus
and provides source and destination operands for the MAC/
BS means and ALU means to the bus means.

17. A multiplier accumulator/barrel shifter (MAC/BS)
means coupled to a bus means including an X bus, a Y bus
and a Z bus for performing a plurality of MAC and shifting
functions in response to an instruction word comprising:

multiplier means responsive to the instruction word for
multiplying the values provided to input ports by the X
and Y busses to produce a product output value;

accumulator means responsive to the instruction word for
accumulating the product output value provided by

multiplier means with a feedback value and for pro-

viding the accumulated values as an output value;

MAC latch means for temporarily storing the output value
provided by the accumulator means;

MAC Preload latch means for temporarily storing a value
which 1s received directly from the Z bus;

selecting means for selecting and outputting one of the
output values of the accumulator means, the value
stored in the MAC latch means, the value stored in the
MAC Preload latch means, and a constant zero value;
and

a single barrel shifter means responsive to the instruction
word for shifting an input value and producing an
output, the output of the barrel shifter means provides
the feedback value, the barrel shifter means being
capable of shifting both the input value at a beginning
of an instruction cycle and the input value at an end of
the instruction cycle in order to shift both an input to
the accumulator means and the output of the accumu-
lator means during the same instruction cycle.

18. The MAC/BS means of claim 17, wherein the MAC
latch means is selectively inhibited from holding the output
value provided by the accumulator means as a function of
the instruction word. |

19. The MAC/BS means of claim 17, further comprising:

overflow detect means for detecting and saturating an
overflow/underflow of the output value of the barrel
shifter means and for producing an output value based
on the detection.

20. A multiplier accumulator/barrel shifter (MAC/BS)
means coupled to a bus means including an X bus, a 'Y bus
and a Z bus for performing a plurality of multiply/accumu-
late and shifting functions in response to an instruction word
comprising:

multiplier means responsive to the instruction word for

multiplying the values provided by the X and Y busses
to produce a product output value;

accumulator means responsive to the instruction word for
accumulating the product output value provided by

multiplier means with a feedback value and for pro-

viding the accumulated values as an output value;

10

15

20

25

30

35

40

45

50

32

MAC latch means for temporarily storing the output value
provided by the accumulator means;

MAC Preload latch means for temporarily storing a value
which is received directly from the Z bus;

selecting means for selecting one of the output value of
the accumulator means, the value stored in the MAC
latch means, the value stored in the MAC Preload latch
means and a constant zero value, the selecting means
provides the selected value as an output value;

barrel shifter means responsive to the instruction word for
shifting the output value provided by the selecting
means to more or less significant bit positions and for
producing an output value, said barrel shifter means
output provides the feedback value; and

overflow detect means for detecting an overflow/under-
flow of the output value of the barrel shifter means and
for producing an output signal based on the detection.
21. An address generator (AGEN) means coupled to a bus
means for performing a plurality of address calculation
functions in response to a microinstruction word compris-
Ing:
first memory means, responsive to a microinstruction
word, for exchanging data with the bus means, the first
memory means includes a general purpose register
(GPR) memory means and a special purpose register
(SPR) memory means;

address offset register (AOR) memory means, separate
from the first memory means and responsive to a
microinstruction word, for exchanging data with the

bus means, wherein the AOR memory means is the
only source of data values for the W bus;

first selecting means for selecting and outputting a value
from one of a plurality of SPR memory means locations
in response to the microinstruction word, the value
comprises a base value, an end value and a sizeml
value;

first adder means for adding the first selecting means base
value to a value provided on the bus means by the AOR
memory means and producing an output;

second adder means for subtracting the selecting means
end value from the first adder means output and pro-
ducing an output;

third adder means for subtracting the selecting means

sizeml+1 value from the first adder means output and
producing an output; and

second selecting means for selecting and outputting one
of the first adder means output and the third adder
means output in response to the sign of the second
adder means output, the second selecting means output
being fed back to the SPR memory.
22. The AGEN means of claim 21, wherein the values of
base, sizem1 and end specify, in one of modulo and non-
modulo modes, regions in external physical memory.

* ko X ¥

	Front Page
	Drawings
	Specification
	Claims

