US005498993A ### United States Patent [19] ### Ohtsuka et al. [56] ### [11] Patent Number: 5,498,993 [45] Date of Patent: Mar. 12, 1996 | [54] | PULSE LIGHT-RECEIVING CIRCUIT WITH MEANS TO MINIMIZE POWER SOURCE NOISE | | | | | |------|---|--|--|--|--| | [75] | | Yoshihiro Ohtsuka, Nara; Yoshihumi
Masuda, Kashihara, both of Japan | | | | | [73] | Assignee: | Sharp Kabushiki Kaisha, Japan | | | | | [21] | Appl. No.: | 180,335 | | | | | [22] | Filed: | Jan. 12, 1994 | | | | | [30] | Foreign Application Priority Data | | | | | | | 27, 1993 [J
22, 1993 [J | JP] Japan 5-011815
JP] Japan 5-150071 | | | | | | | H03K 3/42; H03K 17/78 | | | | | [52] | U.S. Cl | | | | | | [58] | | 327/77; 250/214 C
arch | | | | | 4,714,828 | 12/1987 | Bacou et al. | 250/214 C | |-----------|---------|------------------|-----------| | 4,733,398 | 3/1988 | Shibagaki et al. | 250/205 | | | | Nohira et al | | | 4,994,692 | 2/1991 | Wolke | 327/78 | | 5,047,667 | 9/1991 | Howie | 327/71 | | 5,247,211 | 9/1993 | Sakura | 307/311 | | 5,371,763 | 12/1994 | Ota et al | 327/72 | #### FOREIGN PATENT DOCUMENTS 58-114637A 7/1983 Japan. Primary Examiner—Timothy P. Callahan Assistant Examiner—Terry L. Englund Attorney, Agent, or Firm—Nixon & Vanderhye ### [57] ABSTRACT A pulse light-receiving circuit includes a pair of preamplifiers made up of the same circuit components, a difference amplifier for amplifying the outputs from the preamplifiers, and a pair of peak value-detecting circuits made up of the same circuit component for obtaining the amplitude of an input pulse signal. The median of that amplitude is used as a reference voltage for comparison with an output from the difference amplifier. ### References Cited #### U.S. PATENT DOCUMENTS ### 6 Claims, 10 Drawing Sheets # FIG. 1 PRIOR ART # FIG. 3 PRIOR ART . FIG.4A PRIOR ART FIG.4B PRIOR ART FIG. 4C PRIOR ART FIG. 4D PRIOR ART FIG. 5A PRIOR ART FIG. 5B PRIOR ART FIG. 5C PRIOR ART FIG. 8A FIG. 8B FIG. 8C FIG. 8D FIG. 8E • FIG. 10 # PULSE LIGHT-RECEIVING CIRCUIT WITH MEANS TO MINIMIZE POWER SOURCE NOISE ### BACKGROUND OF THE INVENTION #### (1) Field of the Invention The present invention relates to a pulse light-receiving circuit wherein light pulse signal is received, photoelectrically converted and shaped into an electric signal. ### (2) Description of the Prior Art A typical example of a prior art optical fiber system linking configuration is shown in FIG. 1 in which a 50M Baud TTL linking arrangement is schematically illustrated. 15 In this system, a pair of apparatus each made up of a transmitting device T and a receiving device R are disposed in a distance 1 apart from one another and input and output of the data is effected through the linking arrangement. Of these components, the receiving device the present 20 invention. FIG. 2 shows a prior art example one of such receiving device which includes a single preamplifier A_{31} and further includes a peak-holding circuit A_{32} for holding a positive peak value V_{31} of the output from the preamplifier A_{31} and a bottom-holding circuit A_{33} which is constructed 25 with the polarities thereof inverted relative to those in the peak-holding circuit A_{32} , so that a peak-to-bottom value of the pulse (or pulse amplitude) can be obtained. The thus obtained peak- to-bottom value is used as a reference value and compared at a comparator A_{34} to an output voltage from 30 the preamplifier A_{31} . Another prior art example is shown in FIG. 3. In this figure, designated at A_{51} is a preamplifier, which is connected to a noninverting input terminal of a comparator A_{53} . Here, reference numeral A_{52} designates an amplifier with a negative feed back connection made through a diode D_{52} . A cathode of the diode D_{52} is grounded by way of a capacitor C. The diode D_{52} is connected by way of a resistor R_{52} to an inverting input terminal of a comparator A_{53} . In this arrangement, the comparator A_{53} compares the output value from the preamplifier A_{51} with a half of the peak value outputted from the same preamplifier A_{51} . In the conventional example previously shown in FIG. 2, if an inphase noise Ns such as power supply noises arises, the peak value of the noise Ns may be held. This would cause the reference value for the comparator A_{34} to be shifted as is shown in FIG. 4C, giving rise to a problem that comparator A_{34} will not respond to a real input signal to which a response should be made. Further, the peak hold circuit A_{32} differs from the bottom hold circuit A_{33} in that these circuits are not perfectly symmetrical. Therefore, the conventional system suffers from a problem that if the system is affected by power supply noise, the system cannot completely compensate for the influence of that noise. Moreover, in the circuit of the prior art example shown in FIG. 3, half of the peak value of the output from the preamplifier A_{51} is compared with the output of A_{51} . Therefore, if an input pulse light having a duty ratio of 50% has an increased frequency as shown in FIGS. 5A to 5C, the response of the output V_{51} from the preamplifier A_{51} does not follow the input pulse exactly, as shown in FIG. 5B. In this case, the bottom value of the output from the preamplifier A_{51} is not reduced to a non-signal level, and the 65 potential level of the comparative reference voltage V_{53} for the comparator A_{53} does not agree with a potential level 2 corresponding to a median amplitude of the output of A_{51} . Therefore, the waveform of the output V_{54} from the comparator A_{53} is distorted from a duty ratio of 50%. On the other hand, Japanese Patent Application Laid-Open Sho 58 No.114637 discloses a publicly known prior art example of light pulse receivers. Peak and minimum values of a pulse signal are obtained by a peak value-holding circuit and a minimum value-holding circuit, respectively so as to yield an amplitude of the pulse signal from the difference. Then, a half of the pulse amplitude is used as a reference value for a comparator in order to compare the original pulse signal therewith. In this configuration, however, the peak value-holding circuit and the minimum value-holding circuit are different circuits. As a result, in the presence of noise such as power supply noise, these circuits hold a peak value and a minimum value of the noise. This method therefore suffers from a drawback that the reference value used in the comparator erroneously set by that noise. ### SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a pulse light-receiving circuit in which the influence of power supply noise is eliminated and distortion of pulse signals having a duty ratio of 50% is prevented. A first aspect of the present invention resides in that a pulse light-receiving circuit wherein pulse light is received, photoelectrically converted, amplified and shaped in its waveform so as to output a electric pulse signal, comprises: a difference amplifier having two output terminals, one for positive output (non-inverting output) and one for negative output (inverting output); a first peak value-holding circuit for holding a peak value of the positive output from the difference amplifier; a second peak value-holding circuit for holding a peak value of the negative output from the difference amplifier; means for calculating a median value of the amplitude of the positive output from the difference amplifier based on the output voltages obtained from the first peak value-holding circuit and the second peak valueholding circuit; and a comparator comparing the positive output from the difference amplifier with the calculated value. By this arrangement, the noninverting output and the inverting output from the difference amplifier are held at their respective peak signal values so as to obtain a peak-to-peak value (pulse amplitude) of the pulse signal. The voltage having half of the pulse amplitude value is used as a reference voltage to be compared to the original signal. By this configuration, it is possible to realize a pulse light-receiving circuit which has a high processing speed and excellent resistance to power source noise. A second aspect of the present invention lies in that a pulse light-receiving circuit comprises: a first light-receiving element photoelectrically converting pulse light from the outside to output a current; a first preamplifier amplifying the output current from the first light-receiving circuit; a second light-receiving element isolated from the outside light; a second preamplifier connected to the second light-receiving element and made up of a circuit equivalent to that of the first preamplifier; a difference amplifier amplifying the output difference between the first preamplifier and the second preamplifier; an auxiliary difference amplifier for outputting a reference voltage, made up of a circuit equivalent to that of the difference amplifier, with both input terminals thereof being commonly connected to an output terminal of the second preamplifier; a first peak valuedetecting circuit portion for obtaining a first output peak value of the output from a first difference output terminal of the two output terminals of the difference amplifier, the first difference output terminal being connected to the first 5 preamplifier; a second peak value-detecting circuit portion for obtaining a second output peak value of the output from a second difference output terminal of the two output terminals of the difference amplifier, the second difference output terminal being connected to the second preamplifier; a median value calculating means for calculating a median value of maximum and minimum values of the output from the
first difference output terminal of the difference amplifier, on the basis of the reference voltage obtained from the auxiliary amplifier, the first output peak value obtained from the first peak value-detecting circuit portion and the second 15 output peak value obtained from the second peak valuedetecting circuit portion; and a comparator comparing the median value of maximum and minimum values of the output, calculated in the median value calculating means to the output from the first difference output terminal of the 20 difference amplifier. A third aspect of the present invention resides in that a pulse light-receiving circuit having the second feature described above includes the median value calculating means comprising: an inverting amplifier inverting the second output peak value obtained from the second peak value-detecting circuit portion relative to the reference voltage from the auxiliary amplifier; and an average value output portion outputting an average value of the inverted value obtained from the inverting amplifier and the first output peak value obtained from the first peak value-detecting circuit portion. A fourth aspect of the present invention resides in that a pulse light-receiving circuit having the third feature described above includes the average value outputting portion comprising: a high-voltage side resistance connected to the first peak value-detecting circuit portion; and a low-voltage side resistance connected to the inverting amplifier and the resistances having the same characteristics. In the configuration having the second to fourth features of the present invention, if a noise such as power source noise is mixed in the circuit, the noise appears equally in both preamplifiers connected to respective light-receiving elements. Since difference amplifiers exhibit no amplifica- 45 tion to inphase signals, the inphase noise cancels. A peak value of the output from the first difference output terminal of the difference amplifier is held at the first peak valuedetecting circuit portion to form the first peak value. Further the second peak value obtained at the second peak value- 50 detecting circuit portion is inverted (so as to hold a bottom value) by the inverting amplifier relative to the reference voltage. These values, or the first peak value and the inverted value are averaged at the average value outputting portion to output an output median value, so that the output from the 55 first difference output terminal of the difference amplifier is compared at the comparator to the output median value. By this method, the threshold level for the comparator as to be a reference for pulse height judgment of the pulse signal can be set at a median level of the amplitude of the output from 60 the first difference output terminal. Accordingly, it is possible to reproduce pulse signals having a pulse duty ratio of 50% and prevent distortion of the pulse. Next, a fifth aspect of the present invention resides in that a pulse light-receiving circuit having the second feature 65 includes the median value calculating means comprising: a negative-feedback amplifier having a gain of 0.5, connected 4 at a noninverting input terminal thereof with the first peak value-detecting circuit portion and connected at an inverting input terminal thereof with both the second peak value-detecting circuit portion and an output terminal thereof; and a reference voltage adding circuit portion adding the reference voltage obtained from the auxiliary amplifier to the output from the negative-feedback amplifier. A sixth aspect of the present invention resides in that a pulse light-receiving circuit having the fifth feature described above includes the reference voltage adding circuit portion, being disposed between the noninverting input terminal of the negative-feedback amplifier and the auxiliary difference amplifier, and comprising an adding input portion adding the first output peak value obtained from the first difference output terminal and the reference voltage obtained from the auxiliary amplifier in a ratio of 1: 2 and inputting the sum to the noninverting input terminal of the negative-feedback amplifier. A seventh aspect of the present invention resides in that a pulse light-receiving circuit having the sixth feature described above includes the reference voltage adding circuit portion comprising a buffer amplifier for removing the influences of the negative-feedback amplifier by way of the noninverting input terminal upon the auxiliary amplifier. In the configuration having the fifth to seventh features of the present invention, a peak value of the output from the first difference output terminal of the difference amplifier is held at the first peak value-detecting circuit portion to form the first peak value while a peak value of the output from the second difference output terminal of the difference amplifier is held at the second peak value-detecting circuit portion to form the second peak value. The difference between the two output peak values is gain-reduced in half at the negativefeedback amplifier. The halved gain of the difference of the two output peak values is added at the reference voltage adding circuit portion with the reference voltage obtained from the auxiliary difference amplifier, so as to calculate an output mesial value of the output from the first difference output terminal of the difference amplifier. Then, the output from the first difference output terminal of the difference amplifier is compared at the comparator to the output median value to reproduce the pulse signal having a pulse duty ratio of 50%. At this time, at the adding input portion, the first output peak value and the reference voltage are added in a ratio of 2: 1, and the sum is inputted to the noninverting input terminal of the negative-feedback amplifier, to thereby maintain the ratio of the gain to the reference voltage at 0.5. Influence of the negative-feedback amplifier by way of the noninverting input terminal upon the auxiliary difference amplifier is removed by the buffer amplifier. ### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic illustrative view showing a prior art linking configuration of an optical fiber system; FIG. 2 is a circuit diagram showing an example of a prior art pulse light-receiving circuit; FIG. 3 is another circuit diagram showing an example of a prior art pulse light-receiving circuit; FIG. 4A is a chart showing a waveform of pulse light inputted to the circuit shown in FIG. 2; FIG. 4B is a chart showing a waveform of a power supply noise in the circuit shown in FIG. 2; FIG. 4C is a chart showing a waveform in which voltages V_{31} through V_{34} at different points in the circuit shown in FIG. 2 are specified; FIG. 4D is a chart showing a waveform of a final voltage V_{35} in the circuit shown in FIG. 2; FIG. 5A is a chart showing a waveform of pulse light inputted to the circuit shown in FIG. 3; FIG. 5B is a chart showing a waveform in which voltages V_{51} through V_{53} in different points in the circuit shown in FIG. 3 are specified; FIG. 5C is a chart showing a waveform of a final voltage V_{54} in the circuit shown in FIG. 3; FIG. 6 is a circuit diagram showing an embodiment of a pulse light-receiving circuit of the present invention; FIG. 7 is a circuit diagram showing another embodiment of a pulse light-receiving circuit of the present invention; FIG. 8A is a chart showing a waveform of pulse light ¹⁵ inputted to the circuit shown in FIG. 7; FIG. 8B is a chart showing a waveform of an output of a first preamplifier in the circuit shown in FIG. 7; FIG. 8C is a chart showing a waveform of an output of a second preamplifier in the circuit shown in FIG. 7; FIG. 8D is a chart showing waveforms in which voltages V_{13} to V_{19} in different points in the circuit shown in FIG. 7 are specified; FIG. 8E is a chart showing a waveform of a final voltage 25 V_{20} in the circuit shown in FIG. 7; FIG. 9 is a circuit diagram showing still another embodiment of a pulse light-receiving circuit of the present invention; and FIG. 10 is a chart showing waveforms in which voltages in different points in the circuit shown in FIG. 9 are specified. ## DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG.6, one embodiment of a pulse light-receiving circuit of the present invention will be described. In FIG. 6, PD₁₁ designates a light-receiving element (a photo-diode) for photoelectrically converting light pulses ⁴⁰ externally received. Designated at A_{11} is a first preamplifier for amplifying a current output from the light-receiving element PD_{11} . The first preamplifier A_{11} is connected at its input terminal with the light-receiving element PD_{11} . The input terminal of the first preamplifier A_{11} is connected to an output terminal thereof by way of a feedback resistor R_{11} . Designated at A_{12} is a second preamplifier. An input terminal of the second preamplifier A_{12} is connected to an output terminal thereof by way of a feedback resistor R_{12} . This resistor R_{12} has the same resistance as the resistor R_{11} in the first preamplifier A_{11} . Designated at A_{13} is a typical difference amplifier for amplifying a difference between outputs of A_{11} and A_{12} , 55 including a pair of transistors of which collectors are both connected to a power supply Vcc by way of resistors R_{13} and R_{14} , respectively. Here, the resistors R_{13} and R_{14} have the same resistance. A first transistor of the pair transistors in the difference 60 amplifier A_{13} is connected at its base terminal to the output terminal of the first preamplifier A_{11} . A second transistor of the pair transistors is connected at its base terminal to the output terminal of the second preamplifier A_{12} . Emitters of the pair transistors are both connected to a constant current 65 source I_{11} . A resistor R_{116}
is connected at an intermediate point of the connection between the collector of the first 6 transistor and the resistor R_{13} whereas another resistor R_{115} is connected with an intermediate point of the connection between the collector of the second transistor and the resistor R_{14} . A junction between these resistors R_{115} and R_{116} is connected to a noninverting input terminal of an amplifier B_{111} . An output terminal of the amplifier B_{111} is connected to the inverting input terminal of the amplifier B_{111} to form a negative-feedback connection. Designated at A_{15} is a first peak value-detecting circuit portion (peak-holding circuit) which holds a peak of the output from one of the two output terminals in the difference amplifier A_{13} or the one which is connected to the first preamplifier A_{11} , so as to yield a first output peak value (peak-hold value) V_{119} . On the other hand, designated at A_{16} is a second peak value-detecting circuit portion (peak-holding circuit) which holds a peak of the output from the other output terminal in the difference amplifier A_{13} so as to yield a second output peak value (peak-hold value) V_{120} . The first peak value-detecting circuit portion A₁₅ is composed of a couple of operational amplifier elements A_{115} and B_{112} forming a positive follower, and a positive-peak valueholding circuit made up of a diode D₁₁ and a capacitor C₁₁ is provided as a closed loop. A noninverting input terminal of the operational amplifier element A_{115} on the input side of the first peak value-detecting circuit portion A_{15} is connected to a middle point (where the voltage is designated by V_{13}) between the collector of the first pair transistor and the resistor R_{13} of the difference amplifier A_{13} . An inverting input terminal of the A_{115} is connected to a junction between the diode D_{11} and the capacitor C_{11} so as to form a negativefeedback connection. A noninverting input terminal of the operational amplifier element B_{112} on output side of the first peak value-detecting circuit portion A₁₅ is connected to a middle point between the diode D_{11} and the capacitor C_{11} . An inverting input terminal of B_{112} is connected to an output terminal thereof to form a negative feedback loop. The second peak value-detecting circuit portion A_{16} , like the first peak value-detecting circuit portion A₁₅, forms a positive follower with a couple of operational amplifier elements A_{116} and B_{113} , and a positive-peak value-holding circuit is provided in the closed loop. Specifically, a noninverting input terminal of the operational amplifier element A₁₁₆ on the input side of the second peak value-detecting circuit portion A₁₆ is connected to a middle point (the voltage is V₁₄) between the collector of the second pair transistor and the resistor R_{14} in the difference amplifier A_{13} . An inverting input terminal of the A_{116} is connected to a junction between a diode D_{12} and a capacitor C_{12} , which are equivalent to the diode D_{11} and the capacitor C_{11} , respectively, so as to form a negative feedback connection. A noninverting input terminal of the operational amplifier element B₁₁₃on the output side of the second peak valuedetecting circuit portion A₁₆ is connected to the middle point between the diode D_{12} and the capacitor C_{12} . An inverting input terminal of B_{113} is connected to an output terminal thereof to form a negative feedback loop. Designated at A_{117} is an inverting amplifier which inverts the first output peak value V_{119} obtained by the first peak value-detecting circuit portion A_{15} relative to a second output peak value V_{120} obtained in the second peak value-detecting circuit portion A_{16} . An inverting input terminal of A_{117} is connected via a resistor R_{118} to the output terminal of the second peak value-detecting circuit portion A_{16} . The inverting input terminal of the inverting amplifier A_{117} is further connected via a resistor R_{120} with an output terminal thereof to form a negative feedback connection. On the other hand, a noninverting input terminal of A_{117} is connected via a resistor R_{117} to the output terminal of the first peak value-detecting circuit portion A_{15} . The noninverting input terminal is further connected via a resistor R_{119} with an output terminal of an amplifier B_{111} . In this case, resistors R_{117} , R_{118} , R_{119} and R_{120} have the following relations: $$R_{117} = R_{118} = 2 \times R_{119} = 2 \times R_{120}$$ amplifier A_{13} . Designated at A_{18} is a comparator. The comparator A_{18} is supplied at its noninverting input terminal with the output V_{13} as one of the outputs from the difference amplifier A_{13} . An inverting input terminal of A_{18} is supplied with an output V_{21} from the inverting amplifier A_{117} . The comparator A_{18} compares the output provided from the output terminal that is connected to the first preamplifier A_{11} of the difference amplifier A_{13} , with a comparative reference value, namely, a difference between the output of the first peak value-detecting circuit portion A_{15} and the output of the second peak value-detecting circuit portion A_{16} . In the above arrangement, when the first light-receiving element PD_{11} detects a pulse light the light pulse is photoelectrically converted to yield an output current, which in turn is amplified at the first preamplifier A_{11} . The output V_{11} from the first preamplifier A_{11} is supplied to the base terminal of the first transistor in the difference amplifier A_{13} . On the other hand, output V_{12} will not be generated by the second preamplifier A_{12} except is present. Once, however, occurs a noise, the output V_{12} carrying the noise is provided to the base terminal of the second transistor of the difference Here, if V_{11} is greater than V_{12} , a current flowing through the resistor R_{13} is greater than a current that flows through the resistor R_{14} . When V_{11} is equal to V_{12} , the current flowing through the resistor R_{13} is equal to the current that flows through the resistor R_{14} ($V_{13}=V_{14}$). In this case, if 35 there is generated a noise in the circuit, both the preamplifiers A_{11} and A_{12} are of the same structure, so that the noise gives equivalent effects on the both elements. Next, the output V_{13} is supplied to the noninverting input terminal of the comparator A_{18} . The output V_{13} is simultaneously supplied to the noninverting input terminal of the operational amplifier element A_{115} on the input side of the first peak value-detecting circuit portion A_{15} . Here, when the voltage V_{13} is great, the voltage V_{13} is amplified by the operational amplifier element A_{115} disposed on the input 45 side in the first peak value-detecting circuit portion A_{15} . The amplified voltage charges the capacitor C_{11} via the diode D_{11} , and the charged potential gives a noninverting input voltage to the operational amplifier B_{112} disposed on the output side. In this case, the peak value is maintained in the 50 capacitor C_{11} for a long period of time. On the other hand, when the voltage V_{13} becomes low, the output from the operational amplifier element A₁₁₅ on the input side drops down almost to the negative power source voltage to cut off the diode D₁₁. Nevertheless, the nonin- 55 verting input terminal of the operational amplifier B_{112} on the output side is supplied with the peak voltage kept in a prolonged time by the capacitor C_{11} . As a result, a peak value of the output from the first peak value-detecting circuit portion A_{15} may be held. On the other hand, the output V_{14} 60 is inputted to the noninverting input terminal of operational amplifier element A_{116} on the input side of the second peak value-detecting circuit portion A₁₆. At the instance, a peak value of the output from the second peak value-detecting circuit portion A₁₆ is held in the same manner as in the first 65 peak value-detecting circuit portion A₁₅. The peak value is then inverted by the inverting amplifier A_{117} in this case. Thus, the comparative reference voltage V_{21} provided for the comparator A_{18} is set at a voltage level which corresponds to the median point of the pulse amplitude of the output of the difference amplifier A_{13} . This allows the comparator A_{18} to reproduce a pulse output having a pulse duty ratio of approximately 50% with reduced distortion of waveform. Referring next to FIG. 7, another embodiment of the present invention will be described. In FIG. 7, PD₁₁ designates a first light-receiving element (a photo-diode) for photoelectrically converting received light pulses. Designated at A_{11} is a first preamplifier for amplifying a current output from the first light-receiving element PD_{11} . A noninverting input terminal of the first preamplifier A_{11} is connected to a reference voltage source Vref. The first preamplifier A_{11} is connected at its inverting input terminal with the first light-receiving element PD_{11} . In addition, the inverting input terminal of the first preamplifier A_{11} is connected to an output terminal thereof by way of a resistor R_{11} to form a negative feedback connection. PD₁₂ designates a second light-receiving element (a photo-diode) which is isolated from any light source so as to serve as a dummy element. Designated at A₁₂ is a second preamplifier which is connected to the second light-receiving element PD_{12} . The second preamplifier A_{12} is provided so as to conform the output environment of the second light-receiving element PD₁₂ to the conditions imposed on the
first light-receiving element PD₁₁. Accordingly, the second preamplifier A_{12} is connected at its noninverting input terminal with the reference voltage source Vref like the first preamplifier A_{11} . An inverting input terminal of A_{12} is connected to the second light-receiving element PD₁₂. The inverting input terminal of A_{12} is also connected to an output terminal thereof by way of a resistor R₁₂ to form a negative feedback connection. This resistor R₁₂ has the same resistance as the resistor R_{11} in the first preamplifier A_{11} . Designated at A_{13} is a typical difference amplifier for amplifying a difference between outputs of A_{11} and A_{12} , including a pair of transistors of which collectors are both connected to a power supply Vcc by way of resistors R_{13} and R_{14} , respectively. Here, the resistors R_{13} and R_{14} have the same resistance. A first transistor of the pair transistors in the difference amplifier A_{13} is connected at its base terminal to the output terminal of the first preamplifier A_{11} . A second transistor of the pair transistors is connected at its base terminal to the output terminal of the second preamplifier A_{12} . Emitters of the pair transistors are both connected to a constant current source I_{11} . A middle point of a connection between the collector of the first pair transistor and the resistor R_{13} is connected to the base terminal of a transistor Q_{13} . A middle point of a connection between the collector of the second pair transistor and the resistor R_{14} is connected to the base terminal of a transistor Q_{14} . Collectors of the transistors Q_{13} and Q_{14} are both connected to a power supply Vcc. Emitters of the transistors Q_{13} and Q_{14} are connected to constant current sources I_{12} and I_{13} , respectively. In addition, in the present embodiment, another auxiliary difference amplifier A_{14} is provided separately from the difference amplifier A_{13} . The auxiliary difference amplifier A_{14} outputs a reference voltage V_{17} which is equivalent to the output of the difference amplifier A_{13} when the amplifier A_{13} is provided with no light signal. The auxiliary difference amplifier A_{14} includes resistors R_{15} and R_{16} , as shown in FIG. 7, which are equivalent to the resistors R_{13} and R_{14} , so as to compose an identical circuit having characteristics totally equivalent to those of the difference amplifier A_{13} . Input terminals of the auxiliary difference amplifier A_{14} are both connected to the output terminal of the second preamplifier A_{12} . Designated at A_{15} is a first peak value-detecting circuit portion (peak-holding circuit) which holds a peak of the 5 output from a terminal of the two output terminals in the difference amplifier A_{13} or a first difference output terminal T1 which is connected to the first preamplifier A_{11} , so as to yield a first output peak value (peak-hold value) V_{15} . On the other hand, designated at A_{16} is a second peak value-detecting circuit portion (peak-holding circuit) which holds a peak of the output from the other terminal or a second difference output terminal T_2 in the difference amplifier A_{13} so as to yield a second output peak value (peak-hold value) V_{16} . The first peak value-detecting circuit portion A_{15} is com- 15 posed of a couple of operational amplifier elements forming a positive follower, and a positive-peak value-holding circuit made up of a diode D_{11} and a capacitor C_{11} is provided in the closed loop. A noninverting input terminal of one of the operational amplifier elements which is on the input side of 20 the first peak value-detecting circuit portion A₁₅ is connected to an emitter (the voltage is V_{13}) of the transistor Q_{13} in the difference amplifier A_{13} . An inverting input terminal of the same operational amplifier element is connected to a junction between the diode D_{11} and the capacitor C_{11} so as 25 to form a negative feedback connection. On the other hand, a noninverting input terminal of the other operational amplifier element which is on the output side of the first peak value-detecting circuit portion A₁₅ is connected to a middle point between the diode D_{11} and the capacitor C_{11} . An 30 inverting input terminal of the same operational amplifier element is connected to an output terminal thereof to form a negative feedback loop. The second peak value-detecting circuit portion A_{16} , like the first peak value-detecting circuit portion A₁₅, is com- 35 posed of a couple of operational amplifier elements forming a positive follower, and a positive peak value holding circuit is provided in the closed loop. Specifically, a noninverting input terminal of one of the operational amplifier elements which is on the input side is connected to an emitter (the 40 voltage is V_{14}) of the transistor Q_{14} in the difference amplifier A₁₃. An inverting input terminal of the same operational amplifier element is connected to a junction between the diode D_{12} and the capacitor C_{12} that are equivalent to the diode D_{11} and the capacitor C_{11} , respec- 45 tively, so as to form a negative feedback connection. On the other hand, a noninverting input terminal of the other operational amplifier element which is on the output side of the second peak value-detecting circuit portion A₁₆is connected to a middle point between the diode D₁₂ and the 50 capacitor C_{12} . An inverting input terminal of the same operational amplifier element is connected to an output terminal thereof to form a negative feedback loop. Designated at A_{17} is an inverting amplifier which inverts the second output peak value V_{16} obtained by the second 55 peak value-detecting circuit portion A_{16} relative to the reference voltage V_{17} outputted from the auxiliary difference amplifier A_{14} . An inverting input terminal of A_{17} is connected via a resistor R_{17} to the output terminal of the second peak value-detecting circuit portion A_{16} . On the 60 other hand, a noninverting input terminal of A_{17} is supplied with the output voltage V_{17} from the auxiliary difference amplifier A_{14} . This output voltage V_{17} serves as the inversion reference voltage for the inverting amplifier A_{17} . Here, the inverting input terminal of A_{17} is further connected by 65 way of a resistor R_{18} to an output terminal of the inverting amplifier A_{17} to form a negative feedback connection. 10 R_{19} and R_{20} designate resistors that serve as an average outputting portion for providing an average value of an inverted value (bottom hold value) V₁₈ obtained in the inverting amplifier A_7 and the first output peak value V_{15} obtained in the first peak value-detecting circuit portion A_{15} . These resistors are disposed in series between the output terminal (potential V_{15}) of the first peak value-detecting circuit portion A_{15} and the output terminal (potential V_{18}) of the inverting amplifier A_{17} . Here, the two resistors R_{19} and R_{20} have the same characteristics, and the average value V_{19} obtained by the resistors R_{19} and R_{20} is given by $V_{19}=(V_{15} V_{18}$)/2+ V_{18} . Thus, the resistors R_{19} and R_{20} and the inverting amplifier A₁₇ constitute a median value calculating means which provides a median of the amplitude of the output V_{13} (a voltage level that corresponds to the medial point of variation of the output) from the first difference output terminal T1 in the difference amplifier A_{13} , on the basis of the reference voltage V_{17} obtained in the auxiliary difference amplifier A_{14} , the first output peak value V_{15} obtained in the first peak value-detecting circuit portion A₁₅ and the second output peak value V_{16} obtained in the second peak value-detecting circuit portion A_{16} . Designated at A_{18} is a comparator. The comparator A_{18} is supplied at its noninverting input terminal with the first output V_{13} as one of the outputs of the difference amplifier A_{13} . More specifically, the emitter voltage V_{13} of the transistor Q_{13} on the first preamplifier A_{11} side. An inverting input terminal of A_{18} is supplied with the output average value V_{19} of the output V_{15} of the first peak value-detecting circuit portion A_{15} and the output V_{18} of the inverting amplifier A_{17} . The comparator A_{18} compares the output provided from the output terminal that is connected to the first preamplifier A_{11} of the difference amplifier A_{13} , with a comparative reference value, namely, the average of the output of the first peak value-detecting circuit portion A_{15} and the output of the second peak value-detecting circuit portion A_{16} . In the above arrangement, when the first light-receiving element PD_{11} detects pulse light, the light pulse is photoelectrically converted to yield an output current, which in turn is amplified at the first preamplifier A_{11} . The output V_{11} from the first preamplifier A_{11} is supplied to the base terminal of the first transistor in the difference amplifier A_{13} . On the other hand, the second light-receiving element PD_{12} is isolated from light, so that the second preamplifier A_{12} will not generate any output except noise. The detected noise is provided to the base terminal of the second transistor of the difference amplifier A_{13} . In this instance, if V_{11} is greater than V_{12} , a current flowing through the resistor R_{13} is greater than a current that flows through the resistor R_{14} . Accordingly, the base voltage of the transistor Q_{13} drops as compared with the base voltage of the transistor Q_{14} .
When V_{11} is equal to V_{12} , the current flowing through the resistor R_{13} is equal to the current that flows through the resistor R_{14} ($V_{13}=V_{14}$). In this case, if there is generated a noise in the circuit, the noise gives equivalent effects on both elements because both the preamplifiers A_{11} and A_{12} are of the same structure. Next, the output V_{13} of the transistor Q_{13} is supplied to the noninverting input terminal of the comparator A_{18} . The output V_{13} of the transistor Q_{13} is simultaneously supplied to the noninverting input terminal of the operational amplifier element on the input side of the first peak value-detecting circuit portion A_{15} . Here, when the voltage V_{13} is great, the voltage V_{13} is amplified by the operational amplifier element on the input side in the first peak value-detecting circuit portion A_{15} . The amplified voltage charges the capacitor C_{11} via the diode D_{11} , and the charged voltage gives a noninverting input voltage to the operational amplifier on the output side. In this case, the peak value is maintained in the capacitor C_{11} for a long period of time. On the other hand, when the voltage V_{13} becomes low, the 5 output of the operational amplifier element on the input side falls down near to the negative power source voltage to cut off the diode D_{11} . Nevertheless, the noninverting input terminal of the operational amplifier on the output side is supplied with the peak voltage kept in a prolonged time by 10 the capacitor C_{11} . As a result, a peak value of the output from the first peak value-detecting circuit portion A₁₅ is held. On the other hand, the output V_{14} from the transistor Q_{14} is inputted to the noninverting input terminal of the operational amplifier element on the input side of the second peak 15 value-detecting circuit portion A₁₆. At the instance, a peak value of the output from the second peak value-detecting circuit portion A₁₆is held in the same manner as in the first peak value-detecting circuit portion A₁₅. The peak value is then inverted by the inverting amplifier A_{17} . In this case, the output voltage V_{17} from the auxiliary difference amplifier A_{14} is used as an inversion-referential voltage for the inverting amplifier A_{17} . Since the auxiliary difference amplifier A_{14} is constructed identically with the difference amplifier A_{13} , if there occurs a noise, the noise 25 causes an equivalent influence on the two amplifiers. Outputs from the first peak value-detecting circuit portion A_{15} and the inverting amplifier A_{17} are supplied in parallel through respective resistors R_{19} and R_{20} to the inverting input terminal of the comparator A_{18} . Here, $R_{19}=R_{20}$, so that 30 the following relation holds: $V_{19}=(V_{15}-V_{18})/2+V_{18}$. Then, the comparator A_{18} compares the voltage V_{13} with the reference voltage V_{19} to judge whether V_{13} is greater or smaller than the reference voltage. FIGS. 8A to 8E show waveforms in different points in the 35 above circuit. FIG. 8A indicates a light input waveform. FIG. 8B shows a waveform of the output V_{11} from the first preamplifier A₁₁. FIG. 8C shows a waveform of the output V_{12} from the first preamplifier A_{12} . FIG. 8D shows waveforms in which voltages V_{13} to V_{19} in different points and 40 GND level are specified. FIG. 8E shows a waveform of a final output V_{20} . As shown in FIGS. 8A to 8E, the comparative reference voltage V₁₉ provided for the comparator A₁₈ is set at a voltage level which corresponds to the median point of the pulse amplitude of the output of the difference 45 amplifier A_{13} . This allows the comparator A_{18} , when a pulse signal having a pulse duty ratio of 50% is inputted, to reproduce a pulse output having a pulse duty ratio of approximately 50%. Therefore, it is possible to reduce distortion of waveform. Next, still another embodiment of the present invention will be shown in FIG. 9. In the previous embodiment shown in FIG. 7, the output terminal of the first peak value-detecting circuit portion A_{15} is directly to the resistor R_{19} while the output terminal of the 55 second peak value-detecting circuit portion A_{16} is connected to the resistor R_{20} by way of the inverting amplifier A_{17} . Therefore, although the two peak value-detecting circuit portions A_{15} and A_{16} have a perfect symmetry, the median value calculating means disposed on their output sides 60 cannot afford a perfect symmetry. For this reason, if an inphase noise occurs, V_{15} and V_{18} could not form signals perfectly opposite to one another, and therefore, it is difficult to offset the noise appearing on the positive side against that appearing on the negative side. The embodiment of the 65 present invention described hereinafter is to substantially perfectly balance the noise appearing on the positive side 12 against that appearing on the negative side. This embodiment includes, as shown in FIG. 9, a first light-receiving element PD_{11} and a first preamplifier A_{11} for amplifying a photoelectric current outputted from the first light-receiving element PD₁₃. The circuit further includes a second lightreceiving element (dummy element) PD₁₂ which has the same structure as of the first light-receiving element PD₁₁ or a different structure but a PN-junction producing the same capacity and which is isolated from light from the outside. There is provided also a second preamplifier A₁₂ which is identical with the first preamplifier A₁₁, a difference amplifier A₁₃ for amplifying a difference between an output from the first preamplifier A_{11} and an output from the second preamplifier A_{12} . Here, the difference amplifier A_{13} has no negative feedback connection. A₁₄ designates an auxiliary amplifier which is formed identically with the difference amplifier A₁₃, and is connected to a constant current source I₁₄ which is identical with a constant current source I₁₁ for the difference amplifier A_{13} . Resistors R_{15} and R_{16} which are connected to respective collectors of pair transistors are identical with each other, and equivalent to a pair of resistors R_{13} and R_{14} in the difference amplifier A_{13} . Both base (input) terminals of the pair transistors in the auxiliary difference amplifier A₁₄ are connected in common with the output terminal of the second preamplifier A₁₂. A collector (output) terminal of one of the transistors in the auxiliary difference amplifier A_{14} outputs a voltage V_{21} that is the same with the output from the difference amplifier A_{13} when no light signal is inputted to the first light-receiving element PD_{11} . Designated at B_{11} is a buffer amplifier (voltage follower circuit) with a negative feedback loop. The buffer amplifier B₁₁ is used as a buffering circuit for the output voltage V_{21} from the auxiliary difference amplifier A_{14} . Here, if the offset voltage of the voltage follower circuit B₁₁ is equal to zero, V_{21} is equal to V_{17} . A noninverting input terminal of the voltage follower circuit B₁₁ is connected to the collector terminal of one of transistors in the auxiliary difference amplifier A₁₄. There are also provided a first peak value-detecting circuit A₁₅ and a second peak value-detecting circuit A₁₆. The internal structures of these circuits are identical with those used in the second embodiment, therefore, the description on these circuits will be omitted. Designated at A_{21} is a negative-feedback amplifier for obtaining a difference between an output V_{15} from the first peak value-detecting circuit portion A_{15} and an output V_{16} from the second peak value-detecting circuit portion A_{16} . The noninverting input terminal of A_{21} is connected to the first peak value-detecting circuit portion A_{15} and the inverting input terminal of the same is connected to the second peak value-detecting circuit portion A_{16} . Here the negative-feedback amplifier A_{21} is provided with an input resistor R_{22} and a negative feedback resistor R_{24} which serve to set up the gain to be 0.5. The relation between the two resistors R_{22} and R_{24} is as follows: $R_{22}=2\times R_{24}$. By this relation, the output gain of the negative-feedback amplifier A_{21} relative to input is set up as to be 0.5. There is also provided a reference voltage adding circuit portion A_{22} for adding the reference voltage V_{17} obtained from the auxiliary difference amplifier A_{14} to the output from the negative-feedback amplifier A_{21} . The reference voltage adding circuit portion A_{22} includes a lead wire from a noninverting input terminal of the negative-feedback amplifier A_{21} to the auxiliary difference amplifier A_{14} and an adding input portion A_{23} for adding the first output peak value V_{15} from the first difference output terminal T1 and the reference voltage V_{17} obtained from the auxiliary difference amplifier A_{14} in a ratio of 1: 2 and supplying the sum to the noninverting input terminal of the negative-feedback amplifier A₂₁. The reference voltage adding circuit portion A₂₂ further includes a buffer amplifier B₁₁ for removing the 5 influence of the negative-feedback amplifier A₂₁ by way of the noninverting input terminal of A_{21} upon the auxiliary difference amplifier A_{14} . The adding input portion A_{23} is composed as seen in FIG. 9 of a resistor R₂₁ between the first peak head value-detecting circuit portion A₁₅ and the noninverting input terminal of the negative-feedback amplifier A_{21} and a resistor R_{23} disposed between the lead wire as a part of the reference voltage adding circuit portion A₂₂ and the noninverting input terminal of the negative-feedback amplifier A₂₁.
Here, these resistors suffice the following relations: $$R_{21} = 2 \times R_{23}$$ $R_{21} = R_{22}$ $R_{23} = R_{24}$. Here, among the output V_{19} from the negative-feedback amplifier A_{21} , the two output peak values V_{15} and V_{16} and the reference voltage V_{17} , a relation generally holds as follows: $$V_{19} = (R_{24}/R_{22}) \times (V_{15} - V_{16}) + V_{17}$$ On the other hand, since $R_{21}=R_{22}=2\times R_{23}=2\times R_{24}$, the gain of the difference amplifier A_{21} is 0.5, and consequently V_{19} can be represented as follows: $$V_{19} = (V_{15}V_{16})/2 + V_{17}$$ (1). Here, a median value V_{19} calculating means which is constructed by the negative-feedback amplifier A_{21} and the reference voltage adding circuit portion A_{22} , determines a median value of the output variation of the output V_{13} from the first difference output terminal T1 of the difference amplifier A_{13} , based on the reference voltage V_{17} obtained in the auxiliary difference amplifier A_{14} , the first output peak value V_{15} obtained in the first peak value-detecting circuit portion A_{15} and the second output peak value V_{16} obtained in the second peak value-detecting circuit portion A_{16} . FIG. 10 shows waveforms in different points in the pulse light-receiving circuit thus constructed, when the circuit 45 receives a high frequency pulse light having a duty ratio of 50%. As the frequency of the input pulse light becomes higher, the output response of the difference amplifier A_{13} cannot exactly follow the input pulses. At this time, the bottom value of the output from the difference amplifier A₁₃ does not return to the level V_{17} that represents the non-signal state. To deal with this phenomenon, or in order to reduce distortion of output pulses from the comparator A_{18} and make the duty ratio of the output pulse signal close to 50%, it is necessary to compare the output V_{13} from the first $_{55}$ difference output terminal of the difference amplifier A₁₃ with a median value (a voltage level corresponding to a median amplitude) V_{19} of the variation of the output of the difference amplifier A₁₃. Referring now to FIG. 10, consider Va in the following relation with regard to the output V_{13} 60 supplied from one terminal of the difference amplifier A_{13} : $$V_{13} = V_{17} + Va + Vx$$, and Vb in the following relation with regard to the first output peak value V_{15} : $$V_{15} = V_{17} + Va + Vb$$. 14 Here, Vx indicates a periodically varying component. As seen in FIG. 10, the second output peak value V_{16} is: $$V_{16} = V_{17} - Va$$, so that $$V_{15} - V_{16} = 2Va + Vb$$ $$: (V_{15} - V_{16})/2 = Va + Vb/2$$ (2). Here, V₁₉ to be sought can be represented as seen in FIG. 10, $$V_{19} = Va + Vb/2 + V_{17}$$ (3) From (2) and (3), $$V_{19} = (V_{15} - V_{16})/2 + V_{17}$$ This corresponds to the above expression (1). The configuration of this embodiment, without use of an inverting amplifier as used in the second embodiment, compares one of outputs from the difference amplifier A₁₃ with reference to the median value V_{19} of the variation of the output of the difference amplifier A_{13} in order to judge whether the output is greater or smaller than the reference voltage. Accordingly, the median value calculating means in the second embodiment does not have a perfect symmetry since no inverting amplifier A_{17} is equipped to the comparator A_{18} on its noninverting input terminal side. In contrast to this, in the present embodiment, the entire circuit including the first peak value-detecting circuit portion A₁₅, the second peak value-detecting circuit portion A₁₆ and the median value calculating means has a perfect symmetry, so that it is possible to eliminate inphase noises by offsetting the noises on the positive side with the negative side. It should be noted that the present invention is not limited to the above embodiments described herein, many variations and modifications can of course be made in the above embodiments within a scope of the present invention. For example, detailed circuit constructions such as of providing voltage-adjustment resistors for various parts of the circuit are not limited to those shown in FIGS. 6, 7 and 9. As is apparent from the foregoing description, in accordance with the first aspect of the present invention, it is possible for the configuration having the first feature to realize a pulse light-receiving circuit which has a high processing speed and is excellent in resistance to power source noise, by holding at their peaks the noninverting output and inverting output created from an original signal by the difference amplifier so as to obtain a peak-to-minimum value (amplitude value) and comparing the original signal to the half of the obtained amplitude value. In accordance with the second through fourth aspects of the present invention, an additional light-receiving element isolated from the outside light is provided separately of the first light-receiving element for photoelectric conversion. Output currents from the two light-receiving elements are amplified respectively in different preamplifiers made up of the same circuit components, and the amplified currents are detected respectively in different peak value detecting circuit portions of the same circuit components to form respective peak values. An output median value of the output from one of the terminals of the difference amplifier is calculated based on the two peak values. The comparator compares the output signal height from one output terminal of the difference amplifier with reference to the output median value. Accordingly, inphase noise such as power source noise and the like can be cancelled improving resistance to noise. In addition, even if a pulse signal having a higher frequency is inputted to the pulse light-receiving circuit, the circuit may inhibit the distortion of the output waveform. Especially, in accordance with the embodiments of the third and fourth 5 features of the present invention, it is possible to realize improvement in noise resistance and reduction in distortion of output waveform using a simple configuration. In accordance with the fifth feature of the present invention, the first peak value-detecting circuit portion is connected to the noninverting input terminal of the negative-feedback amplifier and the second peak value-detecting circuit portion is connected to the inverting input terminal of the same amplifier. Accordingly, the first peak value-detecting circuit portion and the second peak value-detecting circuit portion can be connected keeping perfect symmetry. Therefore, inphase noise may substantially offset each other, or noise signals on the positive and negative sides can offset each other. As a result, it is possible to improve the noise resistance. Further, in accordance with the sixth feature of the present invention, since the reference voltage adding circuit portion include an adding input portion, by a simple configuration it is possible to add the first output peak value obtained from the first difference output terminal and the reference voltage 25 obtained from the auxiliary difference amplifier in a ratio of 1:2. In accordance with the seventh feature of the present invention, since the pulse light-receiving circuit is made to include a buffer amplifier, it is possible to remove the 30 influence of the negative-feedback amplifier by way of the noninverting input terminal on the auxiliary amplifier. Accordingly, the reference voltage for calculating an output median value can be detected with precision, whereby the height-determination of the pulse signals is carried out with 35 precision. What is claimed is: - 1. A pulse light-receiving circuit comprising: a first light-receiving element photoelectrically converting a pulse light into an electrical current; - a first preamplifier amplifying the electrical current from said first light-receiving element; - a second light-receiving element shielded from light; - a second preamplifier, connected to said second lightreceiving element and made up of a circuit equivalent to that of said first preamplifier for amplifying an output from said second light-receiving element; - a primary difference amplifier amplifying a light-receiving element difference between output signals from 50 said first preamplifier and said second preamplifier; - an auxiliary difference amplifier for outputting a reference voltage, made up of a circuit equivalent to that of said primary difference amplifier, with both input terminals thereof being commonly connected to an output terminal of said second preamplifier; - a first peak value-detecting circuit for obtaining a first peak value of an output from a first difference output terminal of said primary difference amplifier, said first **16** - difference output terminal being connected to said first peak value-detecting circuit; - a second peak value-detecting circuit for obtaining a second peak value of an output from a second difference output terminal of said primary difference amplifier, said second difference output terminal being connected to said second peak value-detecting circuit; - a median value calculator for calculating a median value between maximum and minimum values of the output from said first difference output terminal based on the reference voltage, the first peak value, and the second peak value; and - a comparator comparing the median value to the output from said first difference output terminal. - 2. A pulse light-receiving circuit according to claim 1, wherein said median value calculator comprises: - an inverting amplifier inverting the second peak value relative to the reference voltage from said auxiliary amplifier; and - an average value output circuit outputting an average value of the inverted value and the first peak value. - 3. A pulse light-receiving
circuit according to claim 2, wherein said average value outputting circuit comprises: - a high-voltage side resistance connected to said first peak value-detecting circuit; and - a low-voltage side resistance connected to said inverting amplifier, - said high voltage and low-voltage side resistances having the same characteristics. - 4. A pulse light-receiving circuit according to claim 1, wherein said median value calculator comprises: a negative-feedback amplifier having a gain of 0.5, connected at a noninverting input terminal thereof with said first peak value-detecting circuit and connected at an inverting input terminal thereof with both said second peak value-detecting circuit and an output terminal thereof; and - a reference voltage adding circuit adding the reference voltage obtained from said auxiliary amplifier to the output from said negative-feedback amplifier. - 5. A pulse light-receiving circuit according to claim 4, wherein said reference voltage adding circuit is disposed between said noninverting input terminal of said negative-feedback amplifier and said auxiliary difference amplifier, and comprises an adding input for summing the first peak value and the reference voltage in a ratio of 1:2 and inputting the sum to said noninverting input terminal of said negative-feedback amplifier. - 6. A pulse light-receiving circuit according to claim 5, wherein said reference voltage adding circuit comprises a buffer amplifier for removing an influence of said negative-feedback amplifier by way of said noninverting input terminal on said auxiliary amplifier. * * * * :