

US005494886A

United States Patent [19]

Kehne et al.

[11] Patent Number:

5,494,886

[45] Date of Patent:

Feb. 27, 1996

[54] PYRIDYL SULPHONYL UREAS AS HERBICIDES AND PLANT GROWTH REGULATORS

[75] Inventors: Heinz Kehne, Hofheim am Taunus;

Lothar Willms, Hillscheid; Oswald Ort, Kelkheim/Taunus; Klaus Bauer,

Hanau; Hermann Bieringer, Eppstein/Taunus, all of Germany

[73] Assignee: Hoechst Aktiengesellschaft, Germany

[21] Appl. No.: **337,139**

Jan. 10, 1990

[22] Filed: Nov. 10, 1994

Related U.S. Application Data

[60] Continuation of Ser. No. 108,896, Aug. 18, 1993, abandoned, which is a division of Ser. No. 859,513, Jun. 8, 1992.

[30] Foreign Application Priority Data

[DE]

Sep.	27, 1990 [DE]	Germany
Dec.	24, 1990 [WO]	WIPO PCT/EP90/02308
[51]	Int. Cl. ⁶	C07D 401/12; A01N 43/54
[52]	U.S. Cl	504/215 ; 544/320; 544/321;
	•	544/324; 544/331; 544/122; 544/123
[58]	Field of Search	1 504/215; 544/320,

Germany

544/122, 123, 321, 324, 331

[56] References Cited

U.S. PATENT DOCUMENTS

4 421 550	12/1983	Selby et al	548/268
•		Zimmerman	
, ,		Taylor	
• •		Kimura et al.	
, ,			

FOREIGN PATENT DOCUMENTS

0013480B1	7/1980	European Pat. Off 544/317	
0084224B1	7/1983	European Pat. Off 544/212	
0103543A2	3/1984	European Pat. Off 544/331	
0125864B1	11/1984	European Pat. Off 544/278	
0178101B1	4/1986	European Pat. Off	
0272855B1	6/1988	European Pat. Off 544/321	

0314505	5/1989	European Pat. Off
0451468A1	10/1991	European Pat. Off
4000503A1	7/1991	Germany .
WO88/04297	6/1988	WIPO.
WO90/06308	6/1990	WIPO.
WO91/10660	7/1991	WIPO.

OTHER PUBLICATIONS

Kehne et al., Chemical Abstract, vol. 115: 183348e (1991).

Primary Examiner—John M. Ford Attorney, Agent, or Firm—Curtis, Morris & Safford

[57]

ABSTRACT

PYRIDYL SULPHONYL UREAS AS HERBICIDES AND PLANT GROWTH REGULATORS

$$R^2$$
 N
 SO_2NH_2
 $O)_n$
 (II)

Compounds of formula (I), where R¹, R², n, W, R³ and A are as defined in claim 1, are suitable for use as herbicides and plant growth regulators. They can be produced by a process similar to known processes. To produce them, new compounds of formula (II) are reacted with a carbamate of formula

where R³ stands for phenyl or alkyl.

The compounds of formula (II) can be obtained from the corresponding sulphochlorides.

6 Claims, No Drawings

PYRIDYL SULPHONYL UREAS AS HERBICIDES AND PLANT GROWTH REGULATORS

This application is a continuation of application Ser. No. 5 08/108,896, filed Aug. 18, 1993, now abanconed which in turn is a divisional of application Ser. No. 07/859,513, filed Jun. 8, 1992 pending.

It is known that some 2-pyridylsulfonylureas have herbicidal and plant growth-regulating properties; cf. EP-A-13, 480, EP-A-272,855, EP-A-84,224, U.S. Pat. No. 4,421,550, EP-A-103,543 (U.S. Pat. No. 4,579,583), U.S. Pat. No. 4,487,626, EP-A-125,864, WO 88/04297.

It has now been found that 2-pyridylsulfonylureas having specific radicals in the 3-position of the pyridyl radical are particularly highly suitable as herbicides and growth regulators.

The present invention relates to compounds of the formula (I) or their salts

in which

R¹ is —OSO₂NR⁴R⁵, —NR⁶R⁷ or iodine,

 R^2 is H, (C_1-C_4) alkyl, preferably (C_1-C_3) alkyl, (C_1-C_3) haloalkyl, halogen, NO₂, CN, (C_1-C_3) alkoxy, (C_1-C_3) haloalkoxy, (C_1-C_3) alkylthio, (C_1-C_3) alkoxy- $_{30}$ (C_1-C_3) alkyl, (C_1-C_3) alkoxy-carbonyl, (C_1-C_3) alkylamino, (C_1-C_3) alkylamino, (C_1-C_3) alkylsulfinyl, (C_1-C_3) alkylsulfonyl, (C_1-C_3) alkylsulfonyl, (C_1-C_3) alkylsulfonyl, (C_1-C_3) alkylsulfonyl, (C_1-C_3) alkylsulfonyl, (C_3-C_4) alkenyl, $(C_3$

 R^3 is H or CH_3 ,

 R^4 is H, (C_3-C_4) alkyl) (C_1-C_3) alkenyl, (C_1-C_3) alkoxy or (C_3-C_4) alkynyl, preferably propargyl, and

 R^5 is H, (C_1-C_3) alkyl, (C_1-C_4) alkenyl or (C_1-C_4) alkynyl, preferably propargyl, or

 R^4 and R^5 together are $-(CH_2)_4$ —, $-(CH_2)_5$ — or $-CH_2CH_2OCH_2CH_2$ —,

⁶ is H, (C₁-Cs)alkyl, which is unsubstituted or substituted by one or more radicals from the group comprising (C_1-C_4) alkoxy, halogen, (C_1-C_4) alkylthio, (C_1-C_4) alkylsulfinyl, (C_1-C_4) alkylsulfonyl, (C_1-C_4) alkoxy) carbonyl and CN, (C₃-C₆)alkenyl which is 50 unsubstituted or substituted by one or more halogen atoms, (C₃—C₆)alkynyl which is unsubstituted or subby one or more halogen (C_1-C_4) alkylsulfonyl which is unsubstituted or substituted by one or more halogen atoms, phenylsulfonyl 55 where the phenyl radical is unsubstituted or substituted by one or more radicals from the group comprising (C_1-C_4) alkyl and (C_1-C_4) alkoxy, halogen, (C_1-C_4) alkoxy or $(C_1-C_4-alkyl)$ carbonyl which is unsubstituted or substituted by one or more halogen 60 atoms,

 R^7 (C_1 – C_4)alkylsulfonyl which is unsubstituted or substituted by one or more halogen atoms, phenylsulfonyl where the phenyl radical is unsubstituted or substituted by one or more radicals from the group comprising 65 halogen, (C_1 – C_4)alkyl and (C_1 – C_4)alkoxy, or di-[(C_1 – C_4)alkyl]aminosulfonyl or

2

 R^6 and R^7 together are a chain of the formula — $(CH_2)_m$ — SO_2 —, where the chain can additionally be substituted by 1 to 4 (C_1-C_3) alkyl radicals and m is 3 or 4,

n is zero or 1,

W is O or S,

A is a radical of the formula

X is H, halogen, (C_1-C_3) alkyl, (C_1-C_3) alkoxy, where the two last-mentioned radicals are unsubstituted or monosubstituted or polysubstituted by halogen or monosubstituted by (C_1-C_3) alkoxy,

Y is H, (C_1-C_4) alkyl, (C_1-C_3) alkoxy or (C_1-C_3) alkylthio, where the abovementioned alkyl-containing radicals are unsubstituted or monosubstituted or polysubstituted by halogen. or monosubstituted or disubstituted by (C_1-C_3) alkoxy or (C_1-C_3) alkylthio, and also a radical of the formula NRsR⁹, (C_3-C_6) cycloalkyl, (C_2-C_4) alkenyl, (C_2-C_4) alkynyl, (C_3-C_4) alkenyloxy,

Z is CH or N,

 R^8 and R^9 independently of one another are H, (C_1-C_3) alkyl or (C_3-C_4) alkenyl,

X¹ is CH₃), OCH₃, OC₂H₅)or OCF₂H,

 Y^{1} is —O— or —CH₂—,

X² is CH₃C₂H₅ or CH₂CF₃,

Y² is OCH₃, OC₂H₅, SCH₅, SC₂H₅, CH₃ or C₂H₅,

X³ is CH₃ or OCH₃,

Y³ is H or CH₃,

X⁴ is CH₃, OCH₃, OC₂H₅, CH₂OCH₃ or Cl,

Y⁴ is CH₃, OCH₃, OC₂H₅ or Cl,

Y⁵ is CH₃, C₂H₅, OCH₃ or Cl.

In the formula (I), alkyl, alkoxy, haloalkyl, alkylamino and alkylthio radicals and the corresponding unsaturated and/or substituted radicals can in each case be straight-chain or branched. Alkyl radicals, also in combined meanings such as alkoxy, haloalkyl etc., are methyl, ethyl, n- or i-propyl, alkenyl and alkynyl radicals have the meaning of the possible unsaturated radicals corresponding to the alkyl radicals, such as 2-propenyl, 2- or 3-butenyl, 2-propynyl, 2- or 3-butynyl. Halogen is fluorine, chlorine, bromine or iodine.

The compounds of the formula (I) can form salts in which the hydrogen of the —SO₂—NH group is replaced by a cation which is suitable for agricultural purposes. These salts

are, for example, metal salts, in particular alkali metal or alkaline earth metal salts, or alternatively anunonium salts or salts with organic amines. Salt formation can also take place by addition of a strong acid to the pyridine moiety of the compound of the formula (I). Suitable acids for this are HCl, ⁵ HBr, H₂SO₄ or HNO₃.

Preferred compounds of the formula (I) or their salts are those in which n=zero, W=O and A is a radical of the formula

in which X, Y and Z are defined as described above.

Preferred compounds of the formula I or their salts are 20 also those in which

R², R⁴, R^b, W and A are as defined above and

 R^4 and R^5 independently of one another are (C_1-C_3) alkyl, allyl or propargyl or

$$R^4$$
 and R^5 together are —(CH₂)—, —(CH₂)₅— or —CH₂CH₂OCH₂CH₂—,

 R^6 is H, (C_1-C_4) alkyl which is unsubstituted or substituted by one or more halogen atoms or by a radical from the group comprising (C_1-C_4) alkoxy, 30 (C_1-C_3) alkylthio, (C_1-C_4) alkylsulfonyl, (C_2) alkoxycarbonyl and CN, (C_1-C_3) alkenyl, (C_1-C_4) alkyl, (C_1-C_3) alklysulfonyl, phenylsulfonyl which is substituted by one to three radicals from the group comprising halogen, 35 (C_1-C_4) alkyl and (C_1-C_4) alkoxy, (C_1-C_4) alkoxy or (C_1-C_4) alkylcarbonyl,

R⁷ (C₁-C₄)alkylsulfonyl, phenylsulfonyl or phenylsulfonyl which is substituted by 1, to 3 radicals from the group comprising halogen, (C₁-C₄)alkyl and (C₁-C₃)alkoxy, or di-(C₁-C₄-alkyl)-aminosulfonyl or R⁶ and R⁷ together are a chain of the formula

R° and R' together are a chain of the formula $-(CH_2)_mSO_2$ — where m is 3 or 4.

Particularly preferred compounds of the formula (I) or their salts are those in which R^2 is H, (C_1-C_3) alkyl, (C_1-C_3) alkoxy, halogen or (C_1-C_3) alkylthio, R^4 and R^5 independently of one another are (C_1-C_3) alkyl, R^6 is hydrogen, (C_1-C_4) alkyl or (C_1-C_3) alkylsulfonyl, R^7 is (C_1-C_3) alkylsulfonyl and A is a radical of the formula

$$X$$
 $N \longrightarrow Z$
 $N \longrightarrow Z$
 $N \longrightarrow Y$

in which Z is CH or N, X is halogen, (C_1-C_2) alkyl, (C_1-C_2) alkoxy, OCF₂H, CF₃ or OCH₂CF₃ and Y is $_{60}$ (C_1-C_2) alkyl, (C_1-C_2) alkoxy or OCF₂H, and in particular the compounds defined above in which n=zero and W is an oxygen atom.

The present invention further relates to processes for the preparation of the compounds of the formula (I) or their 65 salts, which comprise

(a) reacting a compound of the formula (II)

$$R^2$$
 N
 SO_2NH_2
 $O(O)_n$
 $O(II)$

with a heterocyclic carbamate of the formula (III)

$$\begin{array}{c|c}
O & & (III) \\
R^* - O - C - N - A & & & \\
& & | & & \\
R^3 & & & & \\
\end{array}$$

in which R* is phenyl or (C₁-C₄)alkyl, or

(b) reacting a pyridylsulfonylcarbamate of the formula (IV)

$$R^{2} \xrightarrow{\qquad \qquad \qquad N \qquad \qquad } O \qquad \qquad O \qquad \qquad \\ N \qquad \qquad SO_{2}NH-C-OC_{6}H_{5} \qquad \qquad (IV)$$

with an aminoheterocycle of the formula (V)

or

(c) reacting a sulfonyl isocyanate of the formula (VI)

$$R^2$$
 N
 SO_2NCO
 $(O)_n$
 (VI)

with an aminoheterocycle of the formula R³—NH—A (V) or

(d) first reacting an aminoheterocycle of the formula R³—NH—A (V) in a one-pot reaction with phosgene in the presence of a base, such as, for example, triethy-lamine, and reacting the intermediate formed with a pyridinesulfonamide of the formula (II) (for example analogously to EP-A-232,067).

The reaction of the compounds of the formulae (II) and (III) is preferably carried out under base catalysis in an inert organic solvent, such as, for example, dichloromethane, acetonitrile, dioxane or THF at temperatures between 0° C. and the boiling point of the solvent. 1,8-Diazabicyclo[5.4.0] undec-7-ene (DBU) or trimethylaluminum or triethylaluminum is preferably used as the base.

The sulfonamides (II) are novel compounds. The invention also relates to them and their preparation. They are obtained starting from suitably substituted 2-halopyridines, which are reacted with S-nucleophiles such as, for example, benzylmercaptan or thiourea. The compounds formed in this way are converted with sodium hypochlorite or chlorine into the sulfochlorides (analogously to EP-A-272,855), which are then either reacted directly with ammonia or with tert.-butylamine via the tert.butylamides with subsequent protective group removal to give the sulfonamides of the formula (II).

The carbamates of the formula (III) can be prepared by methods which are described in South African patent applications 82/5671 and 82/5045, or EP-A-70804 (US-A-4,480, 101) or RD 275056.

The reaction of the compounds (IV) with the aminoheterocycles (V) is preferably carried out in inert aprotic

solvents such as, for example, dioxane, acetonitrile or tetrahydrofuran at temperatures between 0° C. and the boiling point of the solvent. The starting materials (V) required are known from the literature or can be prepared by processes which are known from the literature. The pyridylsulfonyl-scarbamates of the formula (IV) are obtained analogously to EP-A-44,808 or EP-A-237,292.

The pyridylsulfonylisocyanates of the formula (VI) can be prepared analogously to EP-A-184,385 and reacted with the aminoheterocycles (V).

The salts of the compounds of the formula (I) are preferably prepared in inert solvents such as, for example, water, methanol or acetone at temperatures of 0°–100° C. Suitable bases for the preparation of the salts according to the invention are, for example, alkali metal carbonates, such as 15 potassium carbonate, alkali metal and alkaline earth metal hydroxides, ammonia or ethanolamine. HCl, HBr, H₂SO₄ or HNO₃ are particularly suitable as acids for salt formation.

By 'inert solvents' in the process variants above, solvents are in each case meant which are inert under the particular 20 reaction conditions, but which do not have to be inert under all reaction conditions.

The compounds of the formula (I) according to the invention have an excellent herbicidal activity against a broad spectrum of economically important monocotyledon 25 and dicotyledon weeds. Even perennial weeds, which are difficult to control and shoot from rhizomes, root stocks or other perennial organs, are well controlled by the active compounds. It is irrelevant here whether the substances are applied pre-sowing, pre-emergence or postemergence. In 30 particular, some representatives of the monocotyledon and dicotyledon weed flora which can be controlled by the compounds according to the invention may be mentioned by way of example without a restriction to certain species being intended by their mention.

On the monocotyledon weed species side, for example, Avena, Lolium, Alopecurus, Phalaris, Echinochloa, Digitaria, Setaria and Cyperus species from the annual group and on the perennial species side Agropyron, Cynodon, Imperata and Sorghum and also perennial Cyperus species are well 40 controlled.

In the case of dicotyledon weed species, the spectrum of action extends to species such as, for example, Galium, Viola, Veronica, Lamium, Stellaria, Amaranthus, Sinapis, Ipomoea, Matricaria, Abutilon and Sida on the annual side 45 and Convolvulus, Cirsium, Rumex and Artemisia in the case of the perennial weeds.

Under the specific cultivation conditions, weeds occurring in rice, such as, for example, Sagittaria, Alisma, Eleocharis, Scirpus and Cyperus are also outstandingly controlled by the 50 active compounds according to the invention.

If the compounds according to the invention are applied to the surface of the soil before germination, the emergence of the weed seedlings is either completely prevented or the weeds grow to the seed leaf stage, but then cease their 55 growth and finally die completely after the passage of three to four weeks.

On application of the active compounds to the green parts of plants post-emergence, a drastic stop to growth also occurs very rapidly after the treatment and the weed plants 60 remain at the growth stage present at the time of application or die completely after a certain time, so that in this manner weed competition which is damaging for the crop plants is eliminated very early and in a lasting manner.

Although the compounds according to the invention have 65 an excellent herbicidal activity against monocotyledon and dicotyledon weeds, crop plants of economically important

6

crops such as, for example, wheat, barley, rye, rice, corn, sugarbeet, cotton and soya are only damaged insubstantially or not at all. For these reasons, the present compounds are very highly suitable for selectively controlling undesired plant growth in agricultural productive plantings.

Moreover, the substances according to the invention show excellent growth regulatory properties in crop plants. They intervene in a regulating manner in the plant's own metabolism and can thus be employed for influencing plant contents in a controlled manner and for simplifying harvesting such as, for example, by causing desiccation and stunting of growth. In addition, they are also suitable for the general control and inhibition of undesired vegetative growth without killing the plants. In many monocotyledon and dicotyledon crops, inhibition of the vegetative growth plays a great role, as lodging can be reduced by this or completely prevented.

The compounds according to the invention can be used in the customary preparations in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusting agents or granules. The invention therefore also relates to herbicidal and plant growth-regulating agents which contain compounds of the formula (I) or their salts.

The compounds of the formula (I) can be formulated in various ways, depending on which biological and/or physicochemical parameters are given. Examples of suitable formulation possibilities are: wettable powders (WP), watersoluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-inwater and water-in-oil emulsions, sprayable solutions, suspension concentrates (SC), dispersions based on oil or water, oil-miscible solutions, capsule suspensions (CS), dusting agents (DP), seed dressings, granules for broadcasting and application to the soil, granules (GR) in the form of microgranules, sprayable granules, swellable granules and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes.

These individual formulation types are known in principle and are described, for example, in: Winnacker-Küchler, "Chemische Technologie", volume 7, C. Hauser Verlag Munich, 4th Edition 1986; Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker N.Y., 1973; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

The necessary formulation auxiliaries such as inert materials, surfactants, solvents and other additives are also known and are described, for example, in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J.; H.v. Olphen, "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley and Sons, N.Y.; C. Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte" (Surface-active ethylene oxide adducts), Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie" (Chemical Technology), Vol. 7, C. Hauser Verlag Munich, 4th Edition, 1986.

Combinations with other pesticidally active substances, fertilizers and/or growth regulators can also be prepared based on these formulations, for example in the form of a finished formulation or as a tank mix.

Wettable powders are preparations which can be dispersed uniformly in water which apart from the active compound and in addition to a diluent or inert substance also

contain wetting agents, for example polyoxyethylated alkylphenols, polyoxyethylated fatty alcohols and fatty amines, fatty alcohol polyglycol ether sulfates, alkane sulfonates or alkylbenzenesulfonates and dispersants, for example sodium ligninsulfonate, sodium 2,2'-dinaphthylmethane- 6,6'-disul- 5 fonate, sodium dibutylnaphthalenesulfonate or alternatively sodibm oleylmethyltaurate.

Emulsifiable concentrates are prepared by dissolving the active compound in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, rylene or alternatively high-boiling aromatics or hydrocarbons with the addition of one or more emulsifiers. Examples of emulsifiers which can be used are: calcium alk-ylarylsulfonates such as Ca dodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol esters, alk-ylary. polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide 15 condensation products, alkyl polyethers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol esters.

Dusting agents are obtained by grinding the active compound with finely divided solid substances, for example talc, 20 natural clays such as kaolin, bentonire and pyrophyllite, or diatomaceous earth.

Granules can be prepared either by spraying the active compound onto adsorptive, granulated inert material or by applying active compound concentrates by means of adhe- 25 sives, for example polyvinyl alcohol, sodium polyacrylate or alternatively mineral oils, to the surface of carriers such as sand, kaolinires or granulated inert material. Suitable active compounds can also be granulated in the manner customary in the preparation of fertilizer granules, if desired mixed 30 with fertilizer granules.

The agrochemical preparations as a rule contain 0.1 to 99 percent by weight, in particular 0.1 to 95% by weight, of active compound of the formula (I).

is, for example, about 10 to 90% by weight, the remainder to 100% by weight is composed of customary formulation components. In emulsifiable concentrates, the active compound concentration can be about 1 to 85% by weight, usually 5 to 80% by weight. Pulverulent formulations con- 40 tain about 1 to 25% by weight, usually 5 to 20% by weight of active compound, sprayable solutions about 0.2 to 20% by weight, usually 2 to 20% by weight of active compound. In the case of granules, the active compound content in some cases depends on whether the active compound is liquid or 45 solid. As a rule, the content in the water-dispersible granules is between 10 and 90% by weight.

In addition, said active compound formulations optionally contain the adhesives, wetting agents, dispersants, emulsifiers, penerrants, solvents, fillers or carriers customary in 50 each case.

For application, the formulations in commercially available form are optionally diluted in a customary manner, for example by means of water in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible 55 granules. Pulverulent preparations, granules for application to the soil or broadcasting and sprayable solutions are customarily not diluted further with other inert substances before application.

The required application rate of the compounds of the 60 formula (I) varies, inter alia, with the external conditions such as temperature, humidity and the nature of the herbicide used. It can vary within wide limits, for example between 0.001 and 10.0 kg/ha or more of active substance, but it is preferably between 0.005 and 5 kg/ha.

Mixtures or mixed formulations with other active compounds, such as, for example, insecticides, acaricides, her8

bicides, safeners, fertilizers, grow-oh regulators or fungicides are also optionally possible.

A. CHEMICAL EXAMPLES

Example 1

2-Benzylthio-3-iodopyridine

A solution of 34.0 g (0.15 mol) of 2-fluoro-3-iodopyridine and 18.6 g (0.15 mol) of benzylmercaptan in 250 ml of acetonitrile is heated under reflux with 22.8 g (0.165 mol) of potassium carbonate for 8 h. The mixture is cooled, the solvent is removed on a rotary evaporator, the residue is taken up in dichloromethane and the organic phase is washed with water. After drying with sodium sulfate, evaporating and distilling the oily residue in vacuo, 37.3 g (76%) of theory) of 2-benzylthio- 3-iodopyridine of boiling point 150°–153° C. at 0.1 mbar are obtained.

Example 2

3-Iodo-2-pyridinesulfonamide

510 ml (0.34 mol) of a 5% strength sodium hypochlorite solution are added dropwise at 0° C. to a mixture of 25.0 g (76.5 mmol) of 2-benzylthio-3-iodopyridine, 125 ml of dichloromethane, 60 ml of water and 38 ml of concentrated hydrochloric acid. The mixture is stirred at 0° C. for 30 min, extracted 3× using 100 ml of dichloromethane each time and the organic phase is dried using sodium sulfate. The solution thus obtained is cooled to -20° C. 6.8 g (0.4 mol) of ammonia is passed in at this temperature in the course of 20 min, and the mixture is stirred at -20° C. for 2 h and allowed to come to room temperature. The reaction mixture is In wettable powders the active compound concentration 35 washed with water and the organic phase is dried and evaporated. Trituration of the residue with diisopropyl ether gives 15.5 g (71% of theory) of 3-iodo- 2-pyridinesulfonamide of melting point 247°-250° C. (dec.)

Example 3

3-(4,6-Dimethoxypyrimidin-2-yl)-1-(3-iodo-2-pyridylsulfonyl) urea

1.2 g (0.081 mol) of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) are added to a suspension of 2.1 g (7.4 mmol) of 3-iodo- 2-pyridinesulfonamide and 2.2 g (8.1 mmol) of N-(4,6-dimethoxypyrimidine-2-yl)phenyl carbamate in 30 ml of ace=onitrile. The resulting solution is stirred at room temperature for 45 min and 20 ml of water are then added. The mixture is acidified to pH 4 using hydrochloric acid and the precipitated product is filtered off with suction. 3.2 g (93% of theory) of 3-(4,6-dimethoxypyrimidin- 2-yl)-1-(3iodo-2-pyridylsulfonyl) urea of melting point 161°-162° C. (dec.) are obtained.

Example 4

3-Dimethylsulfamoyloxy-2-pyridinesulfonamide

107 ml (72 mmol) of a 5% strong-oh sodium hypochlorite solution are added dropwise at 0° C. to a mixture of 5.7 g (17.6 mmol) of 2-benzylthio-3-dimethylsulfamoyloxypyridine, 30 ml of dichlorome=hane, 15 ml of water and 8.5 ml of concentrated hydrochloric acid. The mixture is stirred at 65 0° C. for 30 min, extracted 3× using 20 ml of dichloromethane each time and the organic phase is dried using sodium sulfate. The solution thus obtained is cooled to -70°

C. Ammonia is passed in at this temperature until the reaction mixture gives a distinctly alkaline reaction. After stirring at -70° C. for 3 hours, the mixture is allowed to come to room temperature and is washed with water. The organic phase is dried and evaporated. 3.0 g (61% of theory) 5 of 3-dimethylsulfamoyloxy- 2-pyridinesulfonamide are obtained;

NMR (CDCl₃): δ (ppm)=3.06 (s, 6H, N(CH₃)₂), 5.80 (s, 2H, NH₂), 7.48 (dd, 1H), 7.98 (dd, 1H), 8.38 (dd, 1H).

Example 5

3-(4,6-Dimethoxypyrimidin-2-yl)-1-(3-dimethylsulfamoyloxy- 2-pyridylsulfonyl) urea

1.9 g (12.7 mmol) of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) are added to a suspension of 3.0 [lacuna] (10.6 mmol) of 3-dimethylsulfamoyloxy-2-pyridinesulfonamide and 3.4 g (12.7 mmol) of N-(4,6-dimethoxypyrimidin- 2-yl) phenyl carbamate in 40 ml of acetonitrile. The resulting solution is stirred at room temperature for 1 h and 30 ml o f water are then added. The mixture is acidified to pH 4 using hydrochloric acid and the precipitated product is filtered off with suction. After triturating with diethyl ether, 2.1 g (42% of theory) of 3-(4,6-dimethoxypyrimidin-2-yl)-1-(3-dimeth-

ylsulfamoyloxy- 2-pyridylsulfonyl) urea of melting point 155°- 157° C. are obtained.

Example 6

3-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-1-(3-iodo-2-pyridylsulfonyl)urea

9.0 ml (18 mmol) of a 2M solution of trimethylaluminum in toluene are added dropwise at room temperature to 4.3 g (15 mmol) of 3-iodo-2-pyridinesulfonamide in 150 ml of dichloromethane. After evolution of gas has ceased, 3.85 [lacuna] (18 mmol) of methyl 4,6-dimethoxy-1,3,5-triazin-2-yl-carbamate in 20 ml of dichloromethane is added dropwise and the resulting solution is refluxed for 24 hours. The mixture is cooled and poured into 150 ml of ice-cold 1N hydrochloric acid. The organic phase is separated off and the aqueous phase is extractd 2× using dichloromethane. The organic phase is dried and evaporated. After triturating the crude product with diethyl ether, 3.1 g (44% of theory) of 3-(4,6-dimethoxy-1,3,5-triazin-2-yl)-1-(3-iodo-2-pyridyl-sulfonyl)urea of melting point 155 ° C. (dec.) are obtained.

The compounds in the following Tables 1 to 4 are obtained analogously to the processes of Examples 1–6.

TABLE 1

					•			· · · · · · · · · · · · · · · · · · ·
			R^2 7 1 N	$ \begin{array}{c c} & R^1 \\ \hline & S - N \\ \hline & O & O \end{array} $	O N N N R3 N	\\ Z /		
Сре	d. No.	R ¹	R ²	R³	X	Y	Z	M.p. [°C.]
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	I	H H H H H H H H H H H H H H H H H H H	Н СН₃ СН₃ Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	OCH ₃ OCF ₂ H OCH ₃ OCH ₂ CF ₃ OCH ₃ COCH ₃ OCH ₃	OCH ₃ OCH ₃ CH ₃ CCH ₃ OCH ₃ CI CH ₃ OCF ₂ H Br OC ₂ H ₅ SCH ₃ OC ₂ H ₅ OC ₂ H ₅ OC ₂ H ₅ OCH ₃ CH ₃ OCH ₃ CH ₃ CCH ₄	CH CH N CH CH CH CH CH CH CH CH CH CH CH CH CH C	161–162 (D.) 186 (D.) 177–178 156–157 (dec.) 155 (dec.)

TABLE 1-continued

		$R^{2} = \begin{bmatrix} \frac{3}{5} & 4 \\ \frac{7}{7} & 1 \\ N & N \end{bmatrix}$	R^1 $S-NI$	O N-(/	X X Z		
Cpd. No.	\mathbb{R}^1	\mathbb{R}^2	,, O R ³	R ³	N = \(\bigve{Y} \) Y	Z	M.p. [°C.]
**	11	**************************************			CII		
38 39	"	11	H	CH_3 OCH_3	CH_3 OCH_3	CH N	
40	11	11	H	OCH ₃	CH ₃	N	
41	11	††	H	OC_2H_5	NHCH ₃	N	
42	11 11	" ~ ~ TTT	CH ₃	OCH ₃	CH ₃	N	
43 44	11	6-CH ₃	H H	OCH_3 OCH_3	OCH_3 CH_3	CH CH	
45		n	H	OCH ₃	Cl	CH	
46	11	"	H	CH ₃	CH ₃	CH	
47	11		H	OCH ₃	OCH ₃	N	
48	11) i	H	OCH₃	CH ₃	N	
49 50	11		H CH ₃	OC_2H_5 OCH_3	NHCH ₃ CH ₃	N N	
51	1 1	4-C1	H	OCH ₃	OCH ₃	CH	
52	11	"	H	OCH ₃	CH ₃	CH	
53	H	11	H	OCH ₃	C1	CH	
54	"		H	CH ₃	CH₃	CH	
55 56	11	"	H	OCH ₃	OCH ₃	N N	
56 57	II .	117	H H	OCH_3 OC_2H_5	CH ₃ NHCH ₃	N N	
58	II .	+1	CH ₃	OCH ₃	CH ₃	N	
59	II .	5-C1	H	OCH ₃	OCH₃	CH	•
60			H	OCH ₃	CH ₃	CH	
61	11 11	11	H	OCH ₃	CI CII	CH	
62 63	***	***	H H	CH_3 OCH_3	CH_3 OCH_3	CH N	
64	11	**	H	OCH ₃	CH ₃	N	
65	Ħ	***	Н	OC_2H_5	NHCH ₃	N	
66	1 1	II	CH ₃	OCH ₃	CH ₃	N	
67	11 11	6-C1	H	OCH ₃	OCH₃	CH	
68 69	11		H H	OCH_3 OCH_3	CH₃ Cl	CH CH	
70	† ‡	44	H	CH ₃	CH ₃	CH	
71	**	41	H	OCH ₃	OCH ₃	N	•
72)	•••	H	OCH ₃	CH ₃	N	
73	1) }	11	H	OC_2H_5	NHCH ₃	N	
74 75	11	4-CF ₃	CH ₃ H	OCH_3 OCH_3	CH_3 OCH_3	N CH	
7 6	U	11 T	H	OCH ₃	CH ₃	CH	
77	tt -	11	H	OCH ₃	Cl J	CH	
78	**	11	H	CH ₃	CH ₃	CH	
79	11	11	Н	OCH ₃	OCH ₃	N	•
80 81	11	4-F	H H	OCH_3 OC_2H_5	CH_3 $NHCH_3$	N N	
82	11	-	CH ₃	OC_2	CH ₃	N	
83	11	5-CF ₃	н	OCH ₃	OCH_3	CH	
84			H	OCH ₃	CH₃	CH	
85 86	11	II	H	OCH ₃	CI	CH	
86 87	Ħ	"	H H	CH_3 OCH_3	CH_3 OCH_3	CH N	
88	tt	***	H	OCH ₃	CH ₃	N	
89	11	5-F	H	OC_2H_5	NHCH ₃	N	
90	"	**	CH_3	OCH_3	CH ₃	N	
91)) 	6-F	H	OCH ₃	OCH ₃	CH	
92 93	"	17	H H	OCH_3 OCH_3	CH_3 Cl	CH CH	
93 94	**	11	H	CH ₃	CH ₃	CH	
95	II .	11	H	OCH ₃	OCH ₃	N	
96	••	†!	H	OCH ₃	CH ₃	N	
97	11	11	H	OC ₂ H ₅	NHCH ₃	N	
98 99	11	" 4-OCH₃	CH₃ ⊔	OCH ₃	CH₃ OCH	N	
100	H	4-UСП ₃	H H	OCH_3 OCH_3	OCH_3 CH_3	CH CH	
101	II .	***	H	OCH ₃	Cl	CH	
102	**	11	H	CH ₃	CH ₃	CH	
103	11 11	· 11	H	OCH ₃	OCH_3	N	
104	••	••	H	OCH_3	CH ₃	N	

TABLE 1-continued

		\mathbb{R}^2 \mathbb{T}^4	3		N —		
		N			z		
Cpd. No.	\mathbb{R}^1	R ²	R ³	X	`Y Y	Z	M.p. [°C.]
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 145 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174	OSO ₂ N(CH ₃) ₂	5-OCH ₃ " " " " 6-C ₂ H ₅ 6-C ₄ H ₉ 6-OC ₂ H ₅ 6-OCH ₂ CF ₃ 6-SO ₂ CH ₃ 6-NO ₂ 6-CO ₂ CH ₃ 6-OCF ₂ H H H H H H H H H H H H H H H H H H H	СНИННИН НИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИ	OCH ₃ OC	CH ₃ CCH ₃ CH ₃ CCH ₄	N CH CH CH N N N N CH N N N CH	155–157 137–138 (dec.)

TABLE 1-continued

			$ \begin{array}{c c} & 3 \\ \hline & 3 \\ \hline & 7 \\ \hline & 1 \\ & N \end{array} $	R ¹ S-NI	O N—	X N — (Z		
Cpd. No.	\mathbb{R}^1	${f R}^2$		R ³	R ³	N — Y	2	M.p. [°C.]
175	11	11	.	Н	OCH ₃	CH ₃	N	
176	11			H	OC_2H_5	NHCH ₃	N	
177	11	"		CH ₃	OCH_3	CH ₃	N	
178	11	6-1 "	CH ₃	H	OCH ₃	OCH ₃	CH	
179		" "		Н	OCH ₃	CH ₃	CH	
180 181		***		H H	OCH_3 CH_3	Cl CH₃	CH CH	
182		"		H	OCH ₃	OCH ₃	N	
183	••	"		H	OCH ₃	CH ₃	N	
184	,,			H	OC_2H_5	NHCH ₃	N	
185	11 11	11 .a	~ 1	CH_3	OCH ₃	CH₃	N	
186 187	"	4-1	CI	H H	OCH_3 OCH_3	OCH_3 CH_3	CH CH	
188	**	. 1)		H	OCH ₃	Cl	CH	
189	**	11		H	CH ₃	CH ₃	CH	
190	11	***		H	OCH_3	OCH₃	N	
191	ff ff	11		H	OCH₃	CH₃	N	
192 193	"	11		H	OC_2H_5	NHCH ₃	N N	
193	11	5-4	CI	CH₃ H	OCH_3 OCH_3	CH_3 OCH_3	CH	
195	11	**		H	OCH ₃	CH ₃	CH	
196	EF	11		H	OCH ₃	Cl	CH	
197	"	†† ††		H	CH ₃	CH ₃	CH	
198 199	"	11		H H	OCH ₃	OCH₃ CU	N N	
200		11		H	OCH_3 OC_2H_5	CH ₃ NHCH ₃	N	
201	•			CH ₃	OC_2H_3	CH ₃	N	
202	u	6-	C1	H	OCH_3	OCH₃	CH	
203	**			H	OCH ₃	CH ₃	CH	
204	11	II		H	OCH ₃	CI	CH	
205 206	ŧf.	u		H H	CH_3 OCH_3	CH_3 OCH_3	CH N	
207	ti	11		H	OCH ₃	CH ₃	N	
208	**	f1		H	OC_2H_5	NHCH ₃	N	•
209	11	f1		CH_3	OCH_3	CH ₃	N	
210	"	4-)	F	H	OCH ₃	OCH ₃	CH	
211 212	"	 19		H H	OCH_3	CH_3 Cl	CH CH	
212		11		H	OCH_3 CH_3	CH ₃	CH	
214		PP		H	OCH ₃	OCH ₃	N	
215	"	11		H	OCH_3	CH ₃	N	
216				H	OC_2H_5	NHCH ₃	N	
217	"	" - بح	ייו	CH ₃	OCH ₃	CH ₃	N	
218 219		5 -7	L'	H H	OCH_3 OCH_3	OCH_3 CH_3	CH CH	
220		,,		H	OCH ₃	Cl Cl	CH	
221	"	***		H	CH ₃	CH ₃	CH	
222	"	;; ;;		H	OCH ₃	OCH ₃	N	
223 224	"			H	OCH ₃	CH₃ NHCH	N N	
225	0	**		H CH ₃	OC_2H_5 OCH_3	NHCH ₃ CH ₃	N N	
226	11	6-	F	H	OCH ₃	OCH ₃	CH	
227	"	••		H	OCH_3	CH ₃	CH	
228	"	**	•	H	OCH ₃	Cl	CH	
229 230	"	••		H H	CH_3 OCH_3	CH_3 OCH_3	CH N	
231	**	***	•	H	OCH_3	CH ₃	N	
232	11	,		H	OC_2H_5	NHCH ₃	N	
233	**			CH₃	OCH_3	CH ₃	N	
234	"		OCH ₃	H	OCH ₃	OCH ₃	CH	
235	"	"		H	OCH ₃	CH ₃	CH	
236 237	11	**		H H	OCH_3 CH_3	Cl CH ₃	CH CH	
238	"	•		H	OCH ₃	OCH ₃	N	
239	11	••		H	OCH ₃	CH ₃	N	•
240	"			H	OC_2H_5	NHCH ₃	N	
241	11	" E	OCT T	CH ₃	OCH ₃	CH ₃	N	
242		5 -	OCH ₃	H	OCH ₃	OCH ₃	CH	-

TABLE 1-continued

TABLE 1-continued

		R^2 $\begin{bmatrix} 7 \\ 7 \\ 1 \\ N \end{bmatrix}$	$ \begin{array}{c c} R^1 \\ \hline S-N \\ O & O \end{array} $	O N N R3 N	\\ Z /		
Cpd. No.	R^1	R ²	R³	X	Y Y	Z	M.p. [°C.]
298	$-OSO_2N$ C_2H_5 C_2H_5	H	H	OCH ₃	OCH ₃	CH	157–158
299 300 301 302 303 304 305 306 307 308 309 310 311		H H H H H H 4-CH ₃ 4-Cl 6-CH ₃ 6-OCH ₃ 6-Cl 6-F	H H H H CH ₃ H H H H	OCH ₃	CH ₃ Cl CH ₃ OCH ₃	CH CH N N N CH CH CH CH CH	151–153 (D.) 159–160 (D.) 146–149 (D.)
312	-OSO ₂ N	H	H	OCH ₃	OCH ₃	CH	158–159
313 314 315 316 317 318 319 320 321 322 323 324 325	11 11 11 11 11 11 11 11 11 11 11 11 11	H H H H H H 4-CH ₃ 4-Cl 6-CH ₃ 6-OCH ₃ 6-Cl 6-F	H H H H H H H H R	OCH ₃	CH ₃ Cl CH ₃ OCH ₃ CH ₃ NHCH ₃ CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	CH CH N N N CH CH CH CH CH CH	170–171 169–170 155
326	$-oso_2N$	H	H	OCH ₃	OCH ₃	CH	173–174 (D.)
327 328 329 330 331 332 333 334 335 336 337 338 339	1) 10 11 11 11 11 11 11 11 11 11 11 11 11	H H H H H H 4-CH ₃ 4-Cl 6-CH ₃ 6-OCH ₃ 6-Cl 6-F	H H H H H H H	OCH ₃	CH ₃ Cl CH ₃ OCH ₃ CH ₃ NHCH ₃ CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	CH CH N N N CH CH CH CH CH	185–186 (D.)
340	$- OSO_2N$ O	H	H	OCH ₃	OCH ₃	CH	141–142 (D.)
341 342 343 344 345	11 11 11 11	H H H H	H H H H	OCH ₃ OCH ₃ CH ₃ OCH ₃ OCH ₃	CH ₃ Cl CH ₃ OCH ₃ CH ₃	CH CH CH N	

TABLE 1-continued

		R^2 $\frac{3}{7}$	4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$N \longrightarrow \bigcap_{n}$		
			N = S - N $O = N$ O	N——(1 R ³	$N = \langle Z \rangle$		
Cpd. No.	R^1	R ²	R ³	X	Y	Z	M.p. [°C.]
346	11	H	Н	OC_2H_5	NHCH ₃	N	
347	11	H	CH ₃	OCH ₃	CH ₃	N	
348 349	4-CH ₃	H 4-Cl	OCH ₃ H	OCH_3 OCH_3	CH OCH₃	CH	
350	11	6-CH ₃	H	OCH ₃	OCH ₃	CH	
351	11	6-OCH ₃	H	OCH ₃	OCH ₃	CH	
352	**	6-C1	H	OCH ₃	OCH ₃	CH	
353 354	" NITTOO CIT	6-F	H	OCH ₃	OCH ₃	CH	101 100 (7)
354 355	-NHSO ₂ CH ₃	H H	H H	OCH_3 OCH_3	OCH ₃ CH ₃	CH CH	191–192 (D.)
356		H	H	OCH ₃	Cl	CH	
357	11	H	H	CH ₃	CH ₃	CH	
358		H	H	OCH ₃	OCH ₃	N	
359	11	H	H	OCH ₃	CH ₃	N	
360 361	tt	H H	H CH ₃	OC_2H_5 OCH_3	NHCH ₃ CH ₃	N N	
362	41	4-CH ₃	H	OCH ₃	OCH ₃	CH	
363	11	4-Cl	H	OCH ₃	OCH ₃	CH	
364	II	6-CH ₃	H	OCH ₃	OCH ₃	CH	
365 366	"	6-OCH₃ 6-Cl	H H	OCH ₃	OCH_3	CH	
367	n	6-C1	H	OCH_3 OCH_3	OCH_3 OCH_3	CH CH	
368	-NHSO ₂ C ₂ H ₅	H	Ĥ	OCH ₃	OCH ₃	CH	
369	11 *	H	H	OCH_3	CH ₃	CH	
370	11 11	H	H	OCH₃	Cl	CH	
371 372	"	H H	H H	CH_3 OCH_3	CH_3 OCH_3	CH N	
373	†1	H	H	OCH ₃	CH ₃	N	
374	77	H	H	OC_2H_5	NHCH ₃	N	•
375	11 11	H	CH ₃	OCH ₃	CH ₃	N	
376 277	11	4-CH ₃	H	OCH ₃	OCH ₃	CH	
377 378	••	4-Cl 6-CH ₃	H H	OCH_3 OCH_3	OCH_3 OCH_3	CH CH	
379	tt .	6-OCH ₃	H	OCH ₃	OCH ₃	CH	
380	††	6- C l	\mathbf{H}^{\cdot}	OCH_3	OCH ₃	CH	
381	" NITTEO O IT	6-F	H	OCH ₃	OCH₃	CH	
382 383	-NHSO ₂ C ₃ H ₇	H H	H H	OCH_3 OCH_3	OCH_3 CH_3	CH CH	
384	***	Ĥ	H	OCH ₃	Cl ·	CH	
385	u	H	H	CH ₃	CH ₃	CH	
386	H .	H	H	OCH ₃	OCH ₃	N	
387 388	11	H H	H H	OCH_3 OC_2H_5	CH ₃ NHCH ₃	N N	
389	11	H	CH ₃	OCH ₃	CH ₃	N	
390	11	4-CH ₃	Н	OCH ₃	OCH ₃	CH	
391	11 11	4-Cl	H	OCH_3	OCH ₃	CH	
392 393	" "	6 -CH $_3$ 6 -OCH $_3$	H H	OCH_3 OCH_3	OCH_3 OCH_3	CH CH	
394	11	6-Cl	H	OCH ₃	OCH ₃	CH	
395	tı	6-F	Н	OCH_3	OCH ₃	CH	
396	-NHSO ₂ C ₈ H ₅	H	H	OCH ₃	OCH ₃	CH	
397 398	11	H H	H H	OCH_3 OCH_3	CH ₃ Cl	CH CH	
399	11	H	H	CH ₃	CH ₃	CH	
401	11	H	H	OCH ₃	OCH ₃	N	
402	11 11	H	H	OCH ₃	CH ₃	N	
403 404	"	H H	H CH ₃	OC_2H_5 OCH_3	$NHCH_3$ CH_3	N N	•
405	*17	4-CH ₃	H	OCH ₃	OCH ₃	CH	
406	11	4-Cl	H	OCH ₃	OCH ₃	CH	
407	11	6-CH ₃	H	OCH_3	OCH ₃	CH	
408 400	!! !!	6-OCH ₃	H	OCH ₃	OCH OCH	CH	
409 410	II .	6-Cl 6-F	H H	OCH_3 OCH_3	OCH_3 OCH_3	CH CH	
411	$-N(SO_2CH_3)_2$	H	H	OCH ₃	OCH ₃	CH	219-220 (D.)
412	11	H	H	OCH_3	CH ₃	CH	- ·
413	!! !!	H	H	OCH ₃	CI	CH	
414		H	H	CH ₃	CH ₃	CH	

TABLE 1-continued

		R^2 $\frac{3}{7}$ $\frac{1}{N}$	R^1 $ S-N $	O N /	\mathbf{z}		
Cpd. No.	\mathbf{D}^{1}	R^2	°O R ³	R ³ N	1 ={ Y	Z	M.p. [°C.]
	· · · · · · · · · · · · · · · · · · ·				. 		wi.p. (C.)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 479 470 471 472 473 474 475 476 477 478 479 479 470 471 472 473 474 475 476 477 478 479 479 470 471 472 473 474 475 476 477 478 479 470 471 472 473 474 475 476 477 478 479 470 471 472 473 474 475 476 477 478 479 470 471 472 473 474 475 476 477 478 479 479 470 471 472 473 474 475 476 477 478 479 479 470 471 472 473 474 475 476 477 478 479 479 470 471 472 473 474 475 476 477 478 479 479 470 471 472 473 474 475 476 477 478 479 479 470 471 472 473 474 475 476 477 478 479 479 479 479 479 479 479 479 479 479	"" "" "" "" "" "" "" "" "" "" "" "" ""	H H H H H H H H H H H H H H H H H H H	ннныннннннннннннннннннннннннннннннннннн	OCH ₃ OC	OCH ₃ CH ₃ NHCH ₃ CH ₃ OCH ₃ CH ₃ CH ₃ CH ₃ CH ₃ OCH ₃ CH ₃ CCH ₃ OC ₂ H ₅ CC ₂ H ₅ OC ₂ H ₅ OC ₂ H ₅ OCH ₃ OCH ₃ OCH ₃ CCH ₃ OCH ₃ CCH ₃ OCH ₃ CCH ₃ OCH ₃ CCH ₄ CCH	NNNNCCCCCCCCCCCNNNCCCCCCCCCCCCCCCCCCCCC	177–178 152–153 185–186 (D.) 169–170 (D.) 158–159 (D.) 173–174 (D.) 167–169
482	11	11	Н	OCH ₃	CH ₃	CH	

TABLE 1-continued

		\mathbb{R}^2	$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	X $N \longrightarrow X$ Z		
Cpd. No.	\mathbb{R}^1	\mathbb{R}^2	ro R ³	N — Y	Z	M.p. [°C.]
483	11		H OCH ₃	C1	СН	
484	***	**	H CH ₃	CH ₃	CH	
485	11	••	H OCH ₃	OCH ₃	N	
486	!! !!	"	H OCH ₃	CH ₃	N	
487 488	!!		$H OC_2H_5$ $CH_3 OCH_3$	$NHCH_3$ OCH_3	N CH	
489	Ħ	4-C1	CH_3 OCH_3 H OCH_3	OCH ₃	CH	
490	n	"	H OCH ₃	CH ₃	CH	
491	H	11	H OCH ₃	Cl	CH	
492	tı	11	H CH ₃	CH ₃	CH	
493	rt		H OCH ₃	OCH ₃	N	
494	TP .	17	H OCH ₃	CH ₃	N	
495	11	11	$H OC_2H_5$	NHCH ₃	N	
496	11	v .	CH_3 OCH_3	OCH ₃	CH	
497	11	5-C1	H OCH_3	OCH_3	CH	
498	11	11	H OCH ₃	CH ₃	CH	
499	11	. 11	H OCH ₃	Cl	CH	
500	11	11	H CH ₃	CH ₃	CH	
501	11	"	H OCH ₃	OCH ₃	N	
502	.,		H OCH ₃	CH ₃	N N	
503	11	,ı	H OC ₂ H ₅	NHCH ₃	N	
504 505	"	6-C1	CH ₃ OCH ₃ H OCH ₃	OCH_3 OCH_3	CH CH	
505 506		0-C1 "	$H OCH_3$ $H OCH_3$	CH ₃	CH	
507	••	11	H OCH ₃	Cl 13	CH	
508	II.	11	H CH ₃	CH ₃	CH	
509	11	11	H OCH ₃	OCH ₃	N	
510	***	Př	H OCH ₃	CH ₃	N	
511	FP .	***	$H OC_2H_5$	NHCH ₃	N	
512	T †	H	CH_3 OCH_3	OCH ₃	CH	
513	II	4-CF ₃	H OCH ₃	OCH ₃	CH	
514	It	· tl	$H OCH_3$	CH ₃	CH	
515	tt .	11	H OCH ₃	Cl	CH	
516	11	***	H CH_3	CH ₃	CH	
517	11		H OCH ₃	OCH ₃	N	
518	11 11	" 4 To	H OCH ₃	CH ₃	N	
519	"	4-F	$H OC_2H_5$	NHCH ₃	N	
520 521	11		CH_3 OCH_3	OCH ₃	CH	
521 522		5-CF ₃	H OCH_3 H OCH_3	OCH_3 CH_3	CH CH	
523	"	TP .	H OCH ₃	Cl	CH	
523 524	tt	11	H CH ₃	CH ₃	CH	
525	n	11	H OCH ₃	OCH ₃	N	
526	tt	11	H OCH ₃	CH ₃	N	
527	tr	5-F	$H OC_2H_5$	NHCH ₃	N	
528	11	***	CH ₃ OCH ₃	OCH ₃	CH	
529	11	6-F	H OCH ₃	OCH ₃	CH	
530	11	11	H OCH ₃	CH ₃	CH	
531	41	***	H OCH_3	Ci	CH	
532	11 	·· .	H CH ₃	CH ₃	CH	
533			H OCH ₃	OCH ₃	N	
534	# #	11	H OCH ₃	CH ₃	N N	
535 536	"	••	$H OC_2H_5$ $CH_3 OCH_3$	$NHCH_3$ OCH_3	N CH	
536 537	u .	4-OCH ₃	H OCH ₃	OCH ₃	CH	
538	u	4-OCr13	H OCH ₃	CH ₃	CH	
539	u	11	H OCH ₃	Cl Cl	CH	
540	11	••	H CH ₃	CH ₃	CH	
541	11	11	OCH ₃ OCH ₃	N		
542	11	***	H OCH ₃	CH ₃	N	
543	11	11	$H OC_2H_5$	NHCH ₃	N	
544	**		CH_3 OCH_3	OCH ₃	CH	•
545	11	5-OCH ₃	H OCH₃	OCH ₃	CH	
546	11	11	H OCH ₃	CH ₃	CH	
547	11	11	H OCH ₃	CI CII	CH	
EAO	11	11	H CH ₃	CH ₃	CH	
548 540	11	- -	. , , , , , , , , , , , , , , , , , , ,	OCH_3	N	
548 549 550	1f 11	11	H OCH_3 H OCH_3	CH ₃	N	

TABLE 1-continued

TABLE 1-continued

TABLE 1-continued

		R^2 $\begin{bmatrix} 3 \\ 7 \\ 1 \end{bmatrix}$	R ¹	O N	x		
		N	S = N	H N—(/ R ³ N	Z /		•
		•		14	Y		
Cpd. No.	R ¹	R ²	R ³	X	Y	Z	M.p. [°C.]
676 677 678 679 680 681 682 683 684	11 11 11 11 11 11 11 11 11 11	H H 4-CH ₃ 4-Cl 6-CH ₃ 6-OCH ₃ 6-Cl 6-F	H CH ₃ H H H	OCH ₃	CH ₃ NHCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	N CH CH CH CH CH CH	
685	CH ₂ CH ₂ OCH ₃ -N SO ₂ CH ₃	H	H	OCH ₃	OCH ₃	CH	
686 687 688 689 690 691 692 693 694 695 696 697 698	II	H H H H H H 4-CH ₃ 4-Cl 6-CH ₃ 6-OCH ₃ 6-Cl 6-F	H H H H H H H	OCH ₃	CH ₃ Cl CH ₃ OCH ₃	CH CH N N N CH CH CH CH CH	
699	CH ₂ SCH ₃ -N SO ₂ CH ₃	H	H	OCH ₃	OCH ₃	CH ·	
700 701 702 703 704 706 707 708 709 710 711 712 713		H H H H H H H 4-CH ₃ 4-Cl 6-CH ₃ 6-OCH ₃ 6-Cl 6-F	H H H H H H H	OCH ₃	CH ₃ Cl CH ₃ OCH ₃	CH CH N N CH CH CH CH CH CH CH CH	
714	CH ₂ SO ₂ CH ₃	H	H	OCH ₃	OCH ₃	CH	
715 716 717 718 719 720 721 722 723 724 725 726 727	SO ₂ CH ₃	H H H H H H 4-CH ₃ 4-Cl 6-CH ₃ 6-OCH ₃ 6-Cl 6-F	H H H H H H H	OCH ₃	CH ₃ Cl CH ₃ OCH ₃	CH CH N N CH CH CH CH CH	

TABLE 1-continued

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
Cpd. No.	R ¹	R ²	R ³	X	Y	Z	M.p. [°C.]			
728	CH ₂ CO ₂ CH ₃ -N SO ₂ CH ₃	H	H	OCH ₃	OCH3	CH				
729 730 731 732 733 734 735 735 737 738 739 740 741	11 11 11 11 11 11 11 11 11 11 11 11 11	H H H H H H 4-CH ₃ 4-Cl 6-CH ₃ 6-OCH ₃ 6-Cl 6-F	H H H H CH ₃ H H H	OCH ₃	CH ₃ Cl CH ₃ OCH ₃	CH CH N N CH CH CH CH CH				
742	CH ₂ CN -N SO ₂ CH ₃	H	H	OCH ₃	OCH ₃	CH				
743 744 745 746 747 748 749 750 751 752 753 754 755	11 11 11 11 11 11 11 11 11	H H H H H H H 4-CH ₃ 4-Cl 6-CH ₃ 6-OCH ₃ 6-Cl 6-F	H H H H H H H H	OCH ₃	CH ₃ Cl CH ₃ OCH ₃	CH CH N N CH CH CH CH CH				
756	Allyl -N SO ₂ CH ₃	H	H	OCH ₃	OCH ₃	CH	208–210 (D.)			
757 758 759 760 761 762 736 764 765 766 767 768 769		H H H H H H H 4-CH ₃ 4-Cl 6-CH ₃ 6-OCH ₃ 6-Cl 6-F	H H H H H H H	OCH ₃	CH ₃ Cl CH ₃ OCH ₃	CH CH N N CH CH CH CH CH CH				
770	Propargyl -N SO ₂ CH ₃	H	H	OCH ₃	OCH ₃	CH	167–168 (D.)			
771 772 773		H H H	H H H	OCH ₃ OCH ₃ CH ₃	CH ₃ Cl CH ₃	CH CH CH				

TABLE 1-continued

TABLE 1-continued

Cpd. No. R ² R ² R ³ X Y Z M.p. °C.			R ² 7	$ \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & &$	O H N—	X X Z		
S22	Cpd. No.	\mathbf{R}^1	R ²	°O R³		N = \(\bigve{Y} \) Y	Z	M.p. [°C.]
Section	—		6 CI	T T	OCII	OCU	CH	· · · · · · · · · · · · · · · · · · ·
SE25		***	-		-	- ·		
S26					•			
827					_			
829 * HI H Cth, CHa CHa CHa 830 * H H H OCHa 831 * H H H OCHa 832 * H H H OCHa 832 * H H H OCHa 833 * H CTh 834 * A-CHa 835 * A-CHa 836 * A-CHa 837 * A-CHa 837 * A-CHa 838 * A-CHa 839 * A-CHa 840 * A-NCHa)SO ₂ CF ₃ H H DCHa 841 * CTh 842 * H H CCHa 843 * H H CCHa 844 * H H CCHa 845 * H H CCHa 846 * H H CCHa 847 * CTh 848 * A-CHa 848 * A-CHa 849 * A-CHa 840 * A-CHa 841 * A-CHa 844 * A-CHa 845 * A-CHa 846 * A-CHa 847 * CCHa 849 * A-CHa 849 * A-CHa 849 * A-CHa 840 * A-CHa 840 * A-CHa 841 * A-CHa 844 * A-CHa 845 * A-CHa 846 * A-CHa 847 * CCHa 847 * CCHa 848 * A-CHa 849 * A-CHa 849 * A-CHa 840 * A-CHa 840 * A-CHa 841 * A-CHa 844 * A-CHa 845 * A-CHa 846 * A-CHa 847 * CCHa 848 * A-CHa 849 * A-CHa 849 * A-CHa 849 * A-CHa 840 * A-CHa 840 * A-CHa 841 * A-CHa 844 * A-CHa 845 * A-CHa 845 * A-CHa 846 * A-CHa 847 * A-CHa 848 * A-CHa 849 * A-CHa 849 * A-CHa 840 * A-CHa 840 * A-CHa 841 * A-CHa 844 * A-CHa 845 * A-CHa 845 * A-CHa 846 * A-CHa 847 * A-CHa 848 * A-CHa 849 * A-CHa 849 * A-CHa 840 * A-CHa 840 * A-CHa 841 * A-CHa 844 * A-CHa 844 * A-CHa 845 * A-CHa 845 * A-CHa 846 * A-CHa 847 * A-CHa 848 * A-CHa 849 * A-CHa 840 * A-CHa 840 * A-CHa 841 * A-CHa 841 * A-CHa 844 * A-CHa 844 * A-CHa 844 * A-CHa 844 * A-CHa 845 * A-CHa 846 * A-CHa 847 * A-CHa 848 * A-CHa 849 * A-CHa 840 * A-CHa 840 * A-CHa 841 * A-CHa 841 * A-CHa 844 * A-CHa 844 * A-CHa 845 * A-CHA 846 * A-CHA 847 * A-CHA 848 * A-CHA 848 * A-CHA 849 * A-CHA 849 * A-CHA 840 * A-CHA 840 * A-CHA 840 * A-CHA 841 * A-CHA 841 * A-CHA 844 * A-CHA 844 * A-CHA 845 * A-CHA 846 * A-CHA 847 * A-CHA 848 * A-CHA 848 * A-CHA 849 * A-CHA 849 * A-CHA 840 * A-CHA 84					•	₩		
830					₩.			
831 - H H H OCH, CH3 NICH, N 832 - H H H OCH, OCH, SICH, SIC					_	_		
832 - H H H OCH, NHCH, N 834 - 4-CH, H OCH, OCH, CH 835 - 4-CH H OCH, OCH, CH 836 - 6-CH, H OCH, OCH, CH 837 - 6-CCT, H OCH, OCH, CH 839 - 6-CT H OCH, OCH, CH 839 - 6-CT H OCH, OCH, CH 840 - N(CH,)SO ₂ CF, H H OCH, OCH, CH 841 - N(CH,)SO ₂ CF, H H OCH, OCH, CH 842 - H H CCH, CH, CH, CH 844 - H H CCH, CH, CH, CH 845 - H H H OCH, CH, CH 846 - H H H OCH, CH, CH 847 - CCH 848 - CCH 848 - CCH 848 - CCH 848 - CCH 849 - CCH 840 - N(CH,)SO ₂ CF, H H CCH, CH 841 - N(CH,)SO ₂ CF, H H H CCH, CH, CH 842 - CCH 845 - CCH 846 - H H H OCH, CCH, CCH, CCH 847 - CCH 849 - CCH, CCH, CCH, CCH 849 - CCH, CCH, CCH, CCH, CCH 840 - CCH, CCH, CCH, CCH, CCH, CCH 841 - CCH, CCH, CCH, CCH, CCH, CCH, CCH, CC		11			_	•		
834 - 4-CH, H OCH3 OCH4 CH 836 - 6-CH, H OCH3 OCH4 CH 837 - 6-OCH5 H OCH3 OCH4 CH 838 - 6-CH H OCH3 OCH5 CH 839 - 6-CF H OCH3 OCH5 CH 839 - 6-F H OCH3 OCH5 CH 839 - 6-F H OCH3 OCH5 CH 839 - NICH3SO2CF H H OCH3 OCH5 CH 839 - NICH3SO2CF H H OCH3 OCH5 CH 840 - NICH3SO2CF H H OCH3 OCH5 CH 841 - H H OCH5 CH CH 842 - H H H OCH5 CH CH 843 - CH CH 844 - H H H OCH5 CH CH 845 - H H H OCH5 CH CH 846 - H H H OCH5 CH CH 847 - CH CH 848 - H H H OCH5 CH CH 848 - CH CH 848 - CH CH CH 849 - CH CH 840 - NICH3SO2CH H CH 841 - CH CH 845 - CH CH 846 - CH CH 847 - CH CH 848 - CH CH 848 - CH CH 849 - CH CH 840 - CH CH 841 - CH CH 845 - CH CH 847 - CH 848 - CH CH 848 - CH CH 849 - CH CH 849 - CH CH 840 - CH CH 841 - CH 845 - CH 847 - CH 848 - CH 848 - CH 848 - CH 848 - CH 849 - CH 840 - CH 850 - CH 850 - CH 851 - CH 852 - CH 853 - CH 854 - NICH3SO2E H OCH5 CH 855 - NICH3SO2E H OCH5 CH 855 - NICH3SO2E H OCH5 CH 857 - CH 858 - NICH3SO2E H OCH5 CH 859 - CH 859 - CH 850 - CH 851 - CH 855 - CH 856 - CH 857 - CH 857 - CH 858 - CH 858 - CH 859 - CH 859 - CH 850 - CH 851 - CH 851 - CH 852 - CH 853 - CH 854 - CH 855 - CH 855 - CH 856 - CH 857 - CH 857 - CH 858 - NICH3SO2Ph H H OCH5 CH 867 - CH 868 - NICH3SO2Ph H H OCH5 CH 867 - CH 868 - NICH3SO2Ph H H OCH5 CH 877 - CH 878 - CH 879 - CH 870 - CH 871 - CH 879 - CH 870 - CH 871 - CH 872 - CH 873 - CH 874 - CH 875 - CH 876 - C	832		H	H	OC_2H_5	NHCH ₃	N	
835 " 4-Cl H OCH3 OCH3 CH 836 " 6-CH3 H OCH3 OCH3 CH 837 " 6-CH3 H OCH3 OCH3 CH 6-CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3				_		•		
836 " 6-CH ₃ H OCH ₃ OCH ₃ CH 837 " 6-OCH ₅ H OCH ₃ OCH ₃ CH 838 " 6-CCH 839 " 6-CCH 839 " 6-CCH 839 " 6-CCH 839 " 6-CCH 840 —N(CH ₃)SO ₂ CF ₅ H R OCH ₃ OCH ₃ CH 841 " H R OCH ₃ OCH ₃ CH 842 " H R CCH 842 " H R CCH 843 " H R CCH 844 " H R OCH ₃ CCH 845 " H R OCH ₃ OCH ₃ CH 845 " H R OCH ₃ OCH ₃ CH 846 " H R OCH ₃ OCH ₃ CH 847 " CCH 848 " H R OCH ₃ OCH ₃ CH 848 " H R OCH ₃ OCH ₃ CH 849 " A-CCH 849 " A-CCH 849 " A-CCH 849 " A-CCH 850 " 6-CCH 850 " 6-CCH 851 " 6-CCH 852 " R OCH ₃ OCH ₃ CH 853 " 6-CCH 853 " 6-CCH 854 " N(CH ₃)SO ₂ ER H R OCH ₃ OCH ₃ CH 855 " H R OCH ₃ OCH ₃ CH 857 " H R OCH ₃ OCH ₃ CH 858 " H R OCH ₃ OCH ₃ CH 859 " A-CCH 850 " 6-CCH 851 " CCH 852 " CCH 853 " CCH 855 " CCH 856 " H CCH ₃ OCH ₃ CH 857 " H R OCH ₃ OCH ₃ CH 858 " H R OCH ₃ OCH ₃ CH 859 " CCH 850 " CCH 851 " CCH 852 " CCH 853 " CCH 854 " CCH 855 " CCH 857 " CCH 858 " CCH 858 " CCH 859 " CCH 850 " CCH 851 " CCH 852 " CCH 853 " CCH 854 " CCH 855 " CCH 855 " CCH 856 " CCH 857 " CCH 857 " CCH 858 " CCH 858 " CCH 859 " CCH 859 " CCH 850 " CCH 851 " CCH 851 " CCH 852 " CCH 853 " CCH 854 " CCH 855 " CCH 855 " CCH 856 " CCH 857 " CCH 857 " CCH 858 " CCH 858 " CCH 859 " CCH 859 " CCH 850 " CCH 851 " CCH 852 " CCH 853 " CCH 854 " CCH 855 " CCH 855 " CCH 856 " CCH 857 " CCH 857 " CCH 858 " CCH 858 " CCH 859 " CCH 859 " CCH 850 " CCH 851 " CCH 851 " CCH 852 " CCH 853 " CCH 854 " CCH 855 " CCH 856 " CCH 857 " CCH 857 " CCH 858 " CCH 858 " CCH 859 " CCH 850 " CCH 851 " CCH 851 " CCH 852 " CCH 853 " CCH 854 " CCH 855 " CCH 856 " CCH 857 " CCH 858 " CCH 858 " CCH 858 " CCH 859 " CCH 850 " CCH 851 " CCH 851 " CCH 852 " CCH 853 " CCH 854 " CCH 855 " CCH 856 " CCH 857 " CCH 857 " CCH 858 " CCH 858 " CCH 859 " CCH 859 " CCH 850 " CCH 850 " CCH 851 " CCH 851 " CCH 852 " CCH 853 " CCH 854 " CCH 855 " CCH 856 " CCH 857 " CCH 857 " CCH 858 " CCH 858 " CCH 859 " CCH 850 " CCH 850 " CCH 850 " CCH 851 " CCH 851 " CCH 852 " CCH 853 " CCH 854 " CCH 855 " CCH 856 " CCH 857 " CCH 858 " CCH		H	_			_		
838 " 6-Cl H OCE, OCE, CH CH S S S S S S S S S S S S S S S S S		n			OCH_3	OCH_3	CH	
849 — N(CH ₃)SO ₂ CF ₅ H H H OCH ₃ OCH ₃ CH 840 — N(CH ₃)SO ₂ CF ₅ H H H OCH ₃ CH ₃ CH 842 " H H H OCH ₃ CH ₃ CH 843 " H H H OCH ₃ CH ₃ CH 844 " H H H OCH ₃ CH ₃ CH 845 " H H H OCH ₃ CH ₃ CH 846 " H H H OCH ₃ CH ₃ CH 847 " CH ₃ OCH ₃ OCH ₃ CH 848 " 4-CH ₃ OCH ₃ OCH ₃ CH 849 " 4-CH H OCH ₃ OCH ₃ CH 850 " 6-CH ₃ H OCH ₃ OCH ₃ CH 851 " 6-CCH ₃ H OCH ₃ OCH ₃ CH 852 " 6-CC H OCH ₃ OCH ₃ CH 853 " 6-CC H OCH ₃ OCH ₃ CH 854 — N(CH ₃)SO ₂ ER H H OCH ₃ OCH ₃ CH 855 " H H CH ₃ OCH ₃ CH 856 " H H CH ₃ CH ₃ CH 857 " H H CH ₃ CH ₃ CH 858 " H H OCH ₃ CH ₃ CH 859 " H H OCH ₃ CH ₃ CH 850 " CH CH 851 " CH CH 852 " CH CH 853 " CH CH 854 — N(CH ₃)SO ₂ ER H H OCH ₃ CH ₃ CH 855 " H H CH ₃ CH ₃ CH 856 " H H CH ₃ CH ₃ CH 857 " H H CH ₃ CH ₃ CH 858 " H H CH ₃ CH ₃ CH 860 " H H CH ₃ CH ₃ CH 861 " H CH ₃ CH ₃ CH 862 " 4-CH ₃ H OCH ₃ OCH ₃ CH 863 " CH CH 864 " CH CH ₃ CH ₃ CH 865 " CH CH ₃ CH 866 " CH CH ₃ CH 867 " CH CH ₃ CH 868 " CH CH ₃ CH 869 " H H CH ₃ CH ₃ CH 860 " CH CH ₃ CH 860 " CH CH ₃ CH 861 " CH CH ₃ CH 862 " CH CH ₃ CH 863 " CH CH ₃ CH 864 " CH CH ₃ CH 865 " CH CH ₃ CH 866 " CH CH ₃ CH 867 " CH CH ₃ CH 868 " CH CH ₃ CH 870 " CH CH ₃ CH 871 " CH CH ₃ CH 872 " CH CH ₃ CH 873 " CH CH ₃ CH 874 " CH CH ₃ CH 875 " CH CH ₃ CH 876 " CH CH ₃ CH 877 " CH CH ₃ CH 877 " CH CH ₃ CH 878 " CH CH ₃ CH 879 " CH CH ₃ CH 870 " CH CH ₃ CH 871 " CH CH ₃ CH 872 " CH CH ₃ CH 873 " CH CH ₃ CH 874 " CH CH ₃ CH 875 " CH CH ₃ CH 876 " CH CH ₃ CH 877 " CH CH ₃ CH 878 " CH CH ₃ CH 879 " CH CH ₃ CH 870 " CH CH ₃ CH 871 " CH CH ₃ CH 872 " CH CH ₃ CH 873 " CH CH ₃ CH 874 " CH CH ₃ CH 875 " CH CH ₃ CH 876 " CH CH ₃ CH 877 " CH CH ₃ CH 877 " CH CH ₃ CH 878 " CH CH ₃ CH 879 " CH CH ₃ CH 870 " CH CH ₃ CH 870 " CH CH ₃ CH 871 " CH CH ₃ CH 872 " CH CH 873 " CH CH 874 " CH 875 " CH 876 " CH 877 " CH 877 " CH 878 " CH 878 " CH 878 " CH 879 " CH 870 " CH			_		-	_		
840 -N(CH ₃)SO ₂ CF ₃ H H H OCH ₃ CH ₃ CH 841 - H H H OCH ₃ CL CH 842 - H H H CCH ₃ CL CH 843 - H H H CCH ₃ CCH ₃ N 844 - H H H CCH ₃ CCH ₃ N 845 - H H H CCH ₃ CCH ₄ N 846 - H H H CCH ₃ CCH ₄ N 847 - CCH ₄ OCH ₃ CCH ₄ N 848 - CCH ₄ CCH ₄ CCH ₅ CCH 849 - CCH ₄ CCH ₅ CCH 849 - CCH ₅ CCH 850 - 6-CH ₅ H OCH ₃ CCH ₄ CCH 851 - 6-CCH ₅ H OCH ₄ CCH ₅ CCH 852 - CCH 853 - CCH 854 -N(CH ₃)SO ₂ EI H H CCH ₄ CCH ₅ CH 855 - H H CCH ₅ CCH ₅ CCH ₅ CH 857 - H H CCH ₅ CCH ₅ CCH ₅ CH 858 - H H H CCH ₅ CCH ₅ CCH ₅ CH 859 - H H CCH ₅ CCH ₅ CCH ₅ CH 850 - CCH ₅ CCH ₅ CCH 851 - CCH ₅ CCH ₅ CCH 852 - CCH ₅ CCH ₅ CCH 853 - CCH ₅ CCH ₅ CCH 854 -N(CH ₃)SO ₂ EI H CCH ₅ CCH ₅ CCH ₅ CCH 855 - CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH 857 - CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH 858 - CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH 859 - CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH 860 - CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH 861 - CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH 862 - CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH 863 - CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH 864 - CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH 865 - CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH 866 - CCH ₅ CCH ₅ CCH ₅ CCH ₅ CCH 867 - CCH ₅ CCH ₅ CCH ₅ CCH 868 - CCH ₅ CCH ₅ CCH ₅ CCH 869 - CCH ₅ CCH ₅ CCH ₅ CCH 860 - CCH ₅ CCH ₅ CCH ₅ CCH 861 - CCH ₅ CCH ₅ CCH ₅ CCH 862 - CCH ₅ CCH ₅ CCH ₅ CCH 863 - CCH ₅ CCH ₅ CCH 864 - CCH ₅ CCH ₅ CCH ₅ CCH 865 - CCH ₅ CCH ₅ CCH ₅ CCH 866 - CCH ₅ CCH ₅ CCH ₅ CCH 867 - CCH ₅ CCH ₅ CCH 868 - CCH ₅ CCH ₅ CCH 869 - CCH ₅ CCH ₅ CCH 870 - CCH ₅ CCH 871 - CCH ₅ CCH ₅ CCH 872 - CCH ₅ CCH ₅ CCH 873 - CCC ₅ CCH 874 - CCH ₅ CCH 875 - CCC ₅ CCH 876 - CCH ₅ CCH 877 - CCC ₅ CCH 878 - CCC ₅ CCH 878 - CCC ₅ CCH 879 - CCC ₅ CCH 879 - CCC ₅ CCH 879 - CCC ₅ CCH 870 - CCC ₅ CCH 870 - CCC ₅ CCH 871 - CCC ₅ CCH 871 - CCC ₅ CCH 872 - CCCC ₅ CCH 873 - CCCC ₅ CCH 874 - CCCC ₅ CCCC 875 - CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC					-	2		
S42	840	$-N(CH_3)SO_2CF_3$			OCH ₃	_	CH	
843 " H H H CH ₃ CH ₃ CH 844 " H H H OCH ₃ OCH ₃ N 845 " H H H OCH ₃ OCH ₃ N 846 " H H H OCH ₃ OCH ₃ N 846 " H H H OCH ₃ OCH ₃ N 847 " CH ₃ OCH ₃ OCH ₃ OCH ₃ CH 848 " 4-CH ₃ H OCH ₃ OCH ₃ CH 848 " 4-CH ₄ H OCH ₃ OCH ₄ CH 850 " 6-CH ₃ H OCH ₃ OCH ₄ CH 851 " 6-CH ₃ H OCH ₃ OCH ₄ CH 852 " 6-CC H OCH ₃ OCH ₄ CH 853 " 6-CH H OCH ₃ OCH ₄ CH 853 " 6-CH H OCH ₃ OCH ₄ CH 855 " H H H OCH ₃ OCH ₄ CH 856 " H H H OCH ₃ OCH ₄ CH 857 " H H H OCH ₃ CH 858 " CH 858 " H H H OCH ₃ CH 859 " H H H OCH ₃ CH 859 " H H H OCH ₃ CH 859 " H H H OCH ₃ CH 850 " CH 850 " CH 851 " CH 852 " CH 853 " CH 855 " CH 855 " CH 856 " CH 857 " CH 857 " CH 858 " CH 858 " CH 859 " CH 859 " CH 850 " CH 851 " CH 852 " CH 853 " CH 855 " CH 855 " CH 856 " CH 857 " CH 857 " CH 858 " CH 858 " CH 859 " CH 859 " CH 859 " CH 850 " CH 851 " CH 852 " CH 853 " CH 854 " CH 855 " CH 855 " CH 856 " CH 857 " CH 857 " CH 858 " CH 858 " CH 859 " CH 859 " CH 850 " CH 850 " CH 851 " CH 852 " CH 853 " CH 854 " CH 855 " CH 855 " CH 856 " CH 857 " CH 857 " CH 858 " CH 858 " CH 859 " CH 859 " CH 850 " CH 851 " CH 852 " CH 853 " CH 854 " CH 855 " CH 855 " CH 856 " CH 857 " CH 857 " CH 858 " CH 858 " CH 859 " CH 850 "					•	<u>-</u>		
844 " H H H OCH, OCH, N N 846 " H H H OCH, CH, N N 846 " H H H OCH, NCH, N N 847 " CCH, OCH, OCH, N N 847 " CCH, NCH, NCH, N CCH, N N 848 " 4-CH, H OCH, OCH, OCH, CH 850 " 6-CH, H OCH, OCH, CH 851 " 6-OCH, H OCH, OCH, CH 852 " 6-CC H OCH, OCH, CH 853 " 6-CC H OCH, OCH, CH 853 " 6-CC H OCH, OCH, CH 855 " H H H OCH, OCH, CH 857 " H H H OCH, CH 858 " H H H OCH, CH 858 " H H H OCH, CH 859 " H H H OCH, CH 850 " H H H OCH, CH 851 " CH 853 " N 855 " H H H OCH, CH 855 " H H H OCH, CH 856 " H H H OCH, CH 857 " H H H OCH, CH 858 " H H H OCH, CH 859 " H H H OCH, CH 850 " H H H OCH, CH 851 " CH 852 " CH 853 " CH 854 " CH 855 " CH 855 " CH 856 " CH 857 " CH 858 " CH 859 " CH 859 " CH 850 " CH 850 " CH 851 " CH 852 " CH 853 " CH 854 " CH 855 " CH 855 " CH 856 " CH 857 " CH 857 " CH 858 " CH 858 " CH 859 " CH 859 " CH 859 " CH 850 " CH 850 " CH 851 " CH 852 " CH 853 " CH 854 " CH 855 " CH 855 " CH 855 " CH 856 " CH 857 " CH 857 " CH 858 " CH 858 " CH 859 " CH 859 " CH 859 " CH 850 " CH 850 " CH 851 " CH 852 " CH 853 " CH 854 " CH 855 " CH 855 " CH 856 " CH 857 " CH 858 " CH 858 " CH 859 " CH 859 " CH 850 " CH 850 " CH 851 " CH 851 " CH 852 " CH 853 " CH 854 " CH 855 " CH 855 " CH 856 " CH 857 " CH 857 " CH 858 " CH 858 " CH 859 " CH 859 " CH 850 " C					_			
846 " H H OCH3 OCH3 NICH3 N 847 " CH3 OCH3 OCH3 CH 848 " ACH3 H OCH3 OCH3 CH 848 " ACH3 H OCH3 OCH3 CH 849 " ACH CH H OCH3 OCH3 CH 850 " GCH3 H OCH3 OCH3 CH 851 " GCH3 H OCH4 CH 852 " GCH H OCH4 CH 853 " GCH3 H OCH4 CH 853 " GCH3 H OCH4 CH 853 " GCH3 H OCH4 CH 854 " ACH CH H OCH4 CH 855 " H H OCH4 CH4 CH 855 " H H H OCH4 CH4 CH 857 " H H H OCH3 CH3 CH 858 " H H H OCH3 CH3 CH 859 " H H H OCH4 CH3 CH3 N 860 " H H H OCH4 CH3 CH3 N 860 " H H H OCH4 CH4 CH3 CH3 N 861 " H CH4 CH4 CH4 CH4 CH4 862 " ACH4 CH4 H OCH4 CH4 CH4 863 " ACH CH4 CH4 CH4 CH4 864 " GCH4 CH4 CH4 CH4 CH4 865 " GCH4 CH4 CH4 CH4 CH4 866 " GCH4 CH4 CH4 CH4 CH4 CH4 867 " GCH4 CH4 CH4 CH4 CH4 CH4 868 " ACH4 CH4 CH4 CH4 CH4 CH4 CH4 869 " H H H OCH4 CH4 CH4 CH4 CH4 860 " GCH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 861 " GCH4 CH4 CH4 CH4 CH4 CH4 CH4 863 " GCH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 864 " GCH4 CH4 CH4 CH4 CH4 CH4 CH4 865 " GCH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 866 " GCH4 CH4 CH4 CH4 CH4 CH4 CH4 867 " GCH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 868 " GCH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 869 " H H H OCH4 CH4 CH4 CH4 CH4 860 " GCH CH4 CH4 CH4 CH4 CH4 CH4 861 " GCH4 CH4 CH4 CH4 CH4 CH4 CH4 866 " GCH4 H OCH4 CH4 CH4 CH4 CH4 867 " GCH4 CH4 CH4 CH4 CH4 CH4 868 " GCH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 869 " H H H OCH4 CH4 CH4 CH4 CH4 870 " H H H CH4 CH4 CH4 CH4 CH4 CH4 871 " H H H CH4 CH4 CH4 CH4 CH4 CH4 873 " H H H CH4 CH4 CH4 CH4 CH4 CH4 874 " H H H CH4 CH4 CH4 CH4 CH4 875 " H H H CH4 CH4 CH4 CH4 CH4 876 " H CH4 CH4 CH4 CH4 CH4 CH4 877 " GCH4 CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 888 " H H H CH4 CH4 CH4 CH4 888 " H H H CH4	844				OCH_3	_		
847					•			
## 4-CH3							14	•
S50		**	_	_	_		CH	
S51					-	-		
852					_	_		
854 - N(CH ₃)SO ₂ Et H H H OCH ₃ OCH ₅ CH 176–177 855		11	_		***			
855 " H H H OCH3 CH3 CH3 856 " H H H OCH3 CI CH 857 " H H H OCH3 CI CH 8588 " H H H OCH3 CH3 N 858 " H H H OCH3 CH3 N 859 " H H H OCH3 CH3 N 860 " H H H OCH3 CH3 N 861 " H H CH3 CCH3 N 862 " 4-CH3 H OCH3 CH3 CH 862 " 4-CH3 H OCH3 CH3 CH 863 " 4-CI H OCH3 OCH3 CH 864 " 6-CH3 H OCH3 OCH3 CH 865 " 6-OCH3 H OCH3 OCH3 CH 866 " 6-CI H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 -N(CH3)SO2Ph H H H OCH3 OCH3 CH 871 " H H H OCH3 CH3 CH 872 " H H H OCH3 CH3 CH 873 " H OCH3 CH3 CH 877 " H OCH3 OCH3 CH 877 " H OCH3 CH3 CH 877 " CH 878 " H OCH3 CH3 CH3 CH 879 " GOCH3 CH 881 " H OCH3 CH3 CH 882 " H OCH3 CH3 CH 883 " H OCH3 CH3 CH 884 " H OCH3 CH3 CH 885 " CH 886 " H OCH3 CH3 CH 887 " H OCH3 CH3 CH 887 " CH 888 " H OCH3 CH3 CH 888 " CH 888 " H OCH3 CH3 CH 888 " CH 888 " H OCH3 CH3 CH 888 " CH					•	_		176 177
856 " H H H CCH3 CCH CCH CCH 857 " H H CH3 CCH3 CCH CCH3 N CCH3 N CCH3 N N CCH3 N N CCH3 CCH3 N N CCH3 CCH3 N N N CCH3 N					-			1/0-1//
858 " H H OCH3 N 859 " H H OCH3 CH3 N 860 " H H CH3 OCH3 CH 861 " H CH3 OCH3 CH 862 " 4-Cl3 H OCH3 CH 863 " 4-Cl H OCH3 CH 864 " 6-CH3 H OCH3 CH 193-194 (D.) 865 " 6-CO1 H OCH3 CH 193-194 (D.) 866 " 6-CO1 H OCH3 CH 193-194 (D.) 866 " 6-CO1 H OCH3 OCH3 CH 867 " 6-CO1 H OCH3 OCH3 CH 868 "N(CH3)SO2Ph H H H OCH3 CH 869 " H H H OCH3 CH3		••				_		
859 " H H H OCH3 CH3 NN 860 " H H H OC2H5 NHCH3 N 861 " H CH3 OCH3 OCH3 CH 862 " 4-CH3 H OCH3 OCH3 CH 863 " 4-CH H OCH3 OCH3 CH 864 " 6-CH3 H OCH3 OCH3 CH 865 " 6-OCH3 H OCH3 OCH3 CH 866 " 6-CH H OCH3 OCH3 CH 867 " 6-F H OCH3 OCH3 CH 868 —N(CH3)SO2Ph H H H OCH3 OCH3 CH 870 " H H H OCH3 CH CH 871 " H H H OCH3 CH N 872 " H H H OCH3 CH N 873 " H H H OCH3 OCH3 N 874 " H H H OCH3 OCH3 N 875 " H OCH3 OCH3 N 876 " ACH 877 " H H H OCH3 OCH3 CH 877 " H H H OCH3 OCH3 CH 878 CH 878 CH 879 " H H H OCH3 CH N 871 " H H H OCH3 CH N 872 " H H H OCH3 OCH3 N 873 " H H H OCH3 OCH3 N 874 " H H H OCH3 OCH3 N 875 " H OCH3 OCH3 N 876 " ACH 877 " ACH 877 " ACH 878 CH 878 CH 879 " OCH 879 CH 870 CH 871 CH 872 CH 873 CH 874 CH 875 CH 876 " ACH 877 CH 877 CH 878 CH 878 CH 879 CH 879 CH 870 CH 871 CH 872 CH 873 CH 874 CH 875 CH 876 CH 877 CH 877 CH 878 CH 878 CH 879 CH 879 CH 870 CH 871 CH 872 CH 873 CH 874 CH 875 CH 876 CH 877 CH 877 CH 878 CH 878 CH 879 CH 879 CH 870 CH 871 CH 872 CH 873 CH 874 CH 875 CH 876 CH 877 CH 877 CH 878 CH 879 CH 879 CH 870 CH 871 CH 872 CH 873 CH 874 CH 875 CH 876 CH 877 CH 877 CH 878 CH 879 CH 879 CH 870 CH 871 CH 871 CH 872 CH 873 CH 874 CH 875 CH 876 CH 877 CH 877 CH 878 CH 879 CH 879 CH 870 CH 871 CH 871 CH 872 CH 873 CH 874 CH 875 CH 876 CH 877 CH 878 CH 878 CH 879 CH 879 CH 870 CH 871 CH 871 CH 872 CH 873 CH 874 CH 875 CH 876 CH 877 CH 878 CH 878 CH 879 CH 879 CH 870 CH 871 CH 871 CH 872 CH 873 CH 874 CH 875 CH 876 CH 877 CH 878 CH 87					_	_		
860 " H H CCH ₅ NHCH ₅ N 861 " H CH ₃ OCH ₃ CH 862 " 4-CH ₃ H OCH ₃ CH 863 " 4-CI H OCH ₃ CH 864 " 6-CH ₃ H OCH ₃ CH 865 " 6-OCH ₃ H OCH ₃ CH 866 " 6-CI H OCH ₃ CH 867 " 6-F H OCH ₃ CH 868 -N(CH ₃)SO ₂ Ph H H OCH ₃ CH 869 " H H OCH ₃ CH 870 " H H OCH ₃ CH 871 " H H OCH ₃ CH 872 " H H OCH ₃ CH 873 " H H OCH ₃ CH 874 " H H OCH ₃ CH 873					•	•		
862 " 4-CH ₃ H OCH ₃ OCH ₃ CH 863 " 4-CI H OCH ₃ OCH ₃ CH 864 " 6-CH ₃ H OCH ₃ CH 193-194 (D.) 865 " 6-OCH ₃ H OCH ₃ CH 6-CH H OCH ₃ CH 6-CH H OCH ₃ OCH ₃ CH CH 6-CH H OCH ₃ OCH ₃ CH CH 6-CH H A-CH A-		H .			**-		N	
863 " 4-Cl H OCH3 OCH3 CH 193-194 (D.) 864 " 6-CH3 H OCH3 OCH3 CH 193-194 (D.) 865 " 6-OCH3 H OCH3 OCH3 CH 193-194 (D.) 866 " 6-Cl H OCH3 OCH3 CH 193-194 (D.) 867 " 6-F H OCH3 OCH3 CH 1886 CH 193-194 (D.) 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 193-194 (D.) 869 " H H OCH3 OCH3 CH 193 CH 1				_				
864 " 6-CH ₃ H OCH ₃ CH 193-194 (D.) 865 " 6-OCH ₃ H OCH ₃ CH 866 " 6-Cl H OCH ₃ OCH ₃ CH 867 " 6-F H OCH ₃ OCH ₃ CH 868 -N(CH ₃)SO ₂ Ph H H OCH ₃ OCH ₃ CH 870 " H H OCH ₃ CH CH 870 " H H OCH ₃ CH CH 871 " H H OCH ₃ CH CH 871 " H H OCH ₃ CH CH CH 872 " H H OCH ₃ OCH ₃ N N ST ST N ST ST N ST ST ST ST ST ST ST ST			_			_		
866 " 6-Cl H OCH3 CH 867 " 6-F H OCH3 CH 868 -N(CH3)SO2Ph H H OCH3 OCH3 CH 869 " H H OCH3 CH CH 870 " H H OCH3 CH CH 871 " H H OCH3 CH3 CH 872 " H H OCH3 OCH3 N 873 " H H OCH3 CH3 N 874 " H H OCH3 OCH3 N 875 " H CH3 OCH3 CH 876 " 4-CH3 H OCH3 OCH3 CH 877 " 4-CI H OCH3 OCH3 CH 878 " 6-CH3 H OCH3 OCH3 CH 880 " 6-CH3 H OCH3 OCH3 CH		11	6-CH ₃	H	_	OCH ₃	CH	193-194 (D.)
867 " 6-F H OCH ₃ CH 868 -N(CH ₃)SO ₂ Ph H H OCH ₃ OCH ₃ CH 869 " H H OCH ₃ CH CH 870 " H H OCH ₃ CI CH 871 " H H OCH ₃ CH ₃ CH 872 " H H OCH ₃ OCH ₃ N 873 " H H OCH ₃ OCH ₃ N 874 " H H OCH ₃ OCH ₃ N 875 " H H OCH ₃ OCH ₃ CH 876 " 4-CH ₃ H OCH ₃ OCH ₃ CH 877 " 4-CI H OCH ₃ OCH ₃ CH 878 " 6-CH ₃ H OCH ₃ OCH ₃ CH 879 " 6-OCH ₃ H OCH ₃ OCH ₃ CH 881 " 6-F		••	•		_	_		
868 -N(CH ₃)SO ₂ Ph H H H OCH ₃ CH 869 " H H OCH ₃ CH ₃ CH 870 " H H OCH ₃ CI CH 871 " H H CH ₃ CH ₃ CH 872 " H H OCH ₃ OCH ₃ N 873 " H H OCH ₃ CH ₃ N 874 " H H OCH ₃ OCH ₃ N 875 " H CH ₃ OCH ₃ CH 876 " 4-CH ₃ H OCH ₃ OCH ₃ CH 877 " 4-CI H OCH ₃ OCH ₃ CH 878 " 6-CH ₃ H OCH ₃ OCH ₃ CH 880 " 6-CI H OCH ₃ OCH ₃ CH 881 " 6-F H OCH ₃ OCH ₃ CH 882 -N(CH ₃)SO ₂ NMe ₂					_	_		
870 " H H H OCH3 Cl CH 871 " H H CH3 CH4 872 " H H OCH3 OCH3 N 873 " H H OCH3 CH3 N 874 " H H OCH3 CH3 N 875 " H CH3 OCH3 CH 876 " 4-CH3 H OCH3 CH 877 " 4-Cl H OCH3 CH 878 " 6-CH3 H OCH3 CH 879 " 6-OCH3 H OCH3 CH 880 " 6-CI H OCH3 CH 881 " 6-F H OCH3 CH 882 -N(CH3)SO2NMe2 H H OCH3 CH3 CH 883 " H H OCH3 CH4 CH 885 " H H OCH	868		H	H	OCH_3	OCH ₃	CH	
871 " H H CH3 CH 872 " H H OCH3 OCH3 N 873 " H H OCH3 CH3 N 874 " H H OCH3 CH3 N 875 " H CH3 OCH3 CH 876 " 4-CH3 H OCH3 CH 877 " 4-CI H OCH3 CH 878 " 6-CH3 H OCH3 CH 879 " 6-OCH3 H OCH3 CH 880 " 6-CI H OCH3 CH 881 " 6-F H OCH3 CH 882 -N(CH3)SO2NMe2 H H OCH3 CH 885 " H H H OCH3 CH 885 " H H H OCH3 CH 886 " H H H OCH3 OCH3 </th <th></th> <th></th> <th></th> <th></th> <th>•</th> <th>•</th> <th></th> <th></th>					•	•		
872 " H H OCH ₃ N 873 " H H OCH ₃ CH ₃ N 874 " H H OCH ₃ NHCH ₃ N 875 " H CH ₃ OCH ₃ CH 876 " 4-CH ₃ H OCH ₃ CH 877 " 4-Cl H OCH ₃ CH 878 " 6-CH ₃ H OCH ₃ CH 879 " 6-OCH ₃ H OCH ₃ CH 880 " 6-Cl H OCH ₃ CH 881 " 6-F H OCH ₃ CH 882 -N(CH ₃)SO ₂ NMe ₂ H H OCH ₃ CH 883 " H H OCH ₃ CH 884 " H H H OCH ₃ CH 885 " H H OCH ₃ CH ₃ CH 886 " H H OCH ₃ <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th>					_			
874 " H H OC ₂ H ₅ NHCH ₃ N 875 " H CH ₃ OCH ₃ CH 876 " 4-CH ₃ H OCH ₃ OCH ₃ CH 877 " 4-CI H OCH ₃ OCH ₃ CH 878 " 6-CH ₃ H OCH ₃ OCH ₃ CH 879 " 6-OCH ₃ H OCH ₃ OCH ₃ CH 880 " 6-CI H OCH ₃ OCH ₃ CH 881 " 6-F H OCH ₃ OCH ₃ CH 882 - N(CH ₃)SO ₂ NMe ₂ H H OCH ₃ OCH ₃ CH 883 " H H H OCH ₃ CH 884 " H H H OCH ₃ CH 885 " H H H OCH ₃ N 887 " H H H OCH ₃ N 888 " H	872		H	H	OCH_3	OCH ₃	N	
875 " H CH ₃ OCH ₃ CH 876 " 4-CH ₃ H OCH ₃ OCH ₃ CH 877 " 4-CI H OCH ₃ OCH ₃ CH 878 " 6-CH ₃ H OCH ₃ OCH ₃ CH 879 " 6-OCH ₃ H OCH ₃ OCH ₃ CH 880 " 6-CI H OCH ₃ OCH ₃ CH 881 " 6-F H OCH ₃ OCH ₃ CH 882 -N(CH ₃)SO ₂ NMe ₂ H H OCH ₃ OCH ₃ CH 883 " H H H OCH ₃ CH 884 " H H H OCH ₃ CH 885 " H H H OCH ₃ N 887 " H H H OCH ₃ N 888 " H H H OCH ₃ N N H H H					_			
876 " 4-CH ₃ H OCH ₃ CH 877 " 4-Cl H OCH ₃ CH 878 " 6-CH ₃ H OCH ₃ CH 879 " 6-OCH ₃ H OCH ₃ CH 880 " 6-Cl H OCH ₃ CH 881 " 6-F H OCH ₃ CH 882 -N(CH ₃)SO ₂ NMe ₂ H H OCH ₃ CH 883 " H H OCH ₃ CH 884 " H H OCH ₃ CH 885 " H H OCH ₃ CH 886 " H H OCH ₃ N 887 " H H H OCH ₃ N 888 " H H OCH ₃ N						_		
878 " 6-CH ₃ H OCH ₃ OCH ₃ CH 879 " 6-OCH ₃ H OCH ₃ OCH ₃ CH 880 " 6-Cl H OCH ₃ OCH ₃ CH 881 " 6-F H OCH ₃ OCH ₃ CH 882 - N(CH ₃)SO ₂ NMe ₂ H H OCH ₃ OCH ₃ CH 883 " H H OCH ₃ CH CH 884 " H H OCH ₃ CI CH 885 " H H CH ₃ CH ₃ CH 886 " H H OCH ₃ OCH ₃ N 887 " H H OCH ₃ CH ₃ N 888 " H H OCH ₃ N	876		4-CH ₃	H	OCH_3	OCH ₃	CH	
879 " 6-OCH ₃ H OCH ₃ OCH ₃ CH 880 " 6-Cl H OCH ₃ OCH ₃ CH 881 " 6-F H OCH ₃ OCH ₃ CH 882 —N(CH ₃)SO ₂ NMe ₂ H H OCH ₃ OCH ₃ CH 883 " H H OCH ₃ CH ₃ CH 884 " H H OCH ₃ CH ₃ CH 885 " H H H CH ₃ CH 886 " H H OCH ₃ CH ₃ CH 887 " H H OCH ₃ CH ₃ N 888 " H H OCH ₃ N					•			
880 " 6-Cl H OCH ₃ OCH ₃ CH 881 " 6-F H OCH ₃ OCH ₃ CH 882 -N(CH ₃)SO ₂ NMe ₂ H H OCH ₃ OCH ₃ CH 883 " H H OCH ₃ CH ₃ CH 884 " H H OCH ₃ CL CH 885 " H H H CH ₃ CH ₃ CH 886 " H H OCH ₃ CH ₃ N 887 " H H OCH ₃ CH ₃ N 888 " H H H OCH ₃ N			_		_	•		
882 — N(CH ₃)SO ₂ NMe ₂ H H OCH ₃ OCH ₃ CH 883 " H H OCH ₃ CH ₃ CH 884 " H H OCH ₃ Cl CH 885 " H H CH ₃ CH ₃ CH 886 " H H OCH ₃ OCH ₃ N 887 " H H OCH ₃ CH ₃ N	880		6-Cl	H	OCH_3	OCH ₃	CH	
883 " H H OCH ₃ CH ₃ CH 884 " H H OCH ₃ Cl CH 885 " H H CH ₃ CH ₃ CH 886 " H H OCH ₃ OCH ₃ N 887 " H H OCH ₃ CH ₃ N 888 " H H OC ₂ H ₅ NHCH ₃ N						•		
884 " H H OCH ₃ Cl CH 885 " H H CH ₃ CH ₃ CH 886 " H H OCH ₃ OCH ₃ N 887 " H H OCH ₃ CH ₃ N 888 " H H OC ₂ H ₅ NHCH ₃ N					_			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	884		H	H	OCH ₃	Cl	CH	
887 " H H OCH_3 CH_3 N 888 " H OC_2H_5 $NHCH_3$ N					-	2		
H H OC_2H_5 $NHCH_3$ N					•			
889 " CH ₃ OCH ₃ OCH ₃ CH	888		H	H	OC_2H_5	NHCH ₃	N	
	889	11	H	CH ₃	OCH ₃	OCH ₃	CH	-

TABLE 1-continued

TABLE 2

					Y		
Cpd. No.	\mathbb{R}^1	R ²	R ³	X	Y	Z	M.p. [°C.]
896	I	Н	Н	OCH ₃	OCH ₂	CH	I
897	11	H	H	OCH ₃	_	CH	
898	11	H	Н	OCH_3	_	CH	
899	17	H	H	CH ₃		CH	
900	tI	H	Н	OCH_3	_	N	
901	ff	H	H	OCH ₃	_	N	
902	11	H	H	_	NHCH ₃	N	
903	11	H	CH_3	OCH ₃	-	CH	Ĭ
904	11	4-CH ₃	Н	OCH ₃	_	CH	
905	11	$6-CH_3$	H	OCH ₃	_	CH	
906	17	4-C1	H	OCH ₃	_	CH	
907	11	6-C1	H	OCH ₃	**-	CH	
908	TP	4-F	H	OCH ₃	-	CH	
909	ft	6-F	H	OCH ₃	_	CH	[
910	11	$4-OCH_3$	H	OCH ₃	OCH ₃	CH	
911	f)	6-OCH ₃	H	OCH ₃	OCH ₃	CH	I
912	$-OSO_2N(CH_3)_2$	H	H	OCH ₃	OCH ₃	CH	I
913	† †	$4-CH_3$	H	OCH_3	OCH_3	CH	I
914	TP .	$6-CH_3$	H	OCH_3	OCH_3	CH	I
915	1)	4-Cl	H	OCH_3	OCH ₃	CH	I
916	11	6-Cl	H	OCH_3	OCH_3	CH	Ī
917	11	4- F	H	OCH_3	_	CH	
918	11	6-F	H	OCH_3	_	CH	
919	!!	4-OCH ₃	H	OCH_3	-	CH	
920	II	6-OCH ₃	H	OCH ₃	_	CH	
921	-N(CH ₃)SO ₂ CH ₃	H	H	OCH ₃	_	CH	
922	II 	H	H	OCH ₃	•	CH	
923		H	H	OCH ₃		CH	
924)) N	H	H	_	CH ₃	CH	
925	1) 1)	H	H	OCH ₃	_	N	
926	"	H	H	OCH ₃	_	N	
927	 H	H	H		NHCH ₃	N	•
928	n	H 4 CU	CH ₃	OCH ₃	_	CH	
929 930	!1	4-CH ₃	Н	OCH ₃	_	CH	
931	"	6-CH ₃	Н	OCH ₃	_	CH	
931	H	4-Cl 6-Cl	H H	OCH ₃		CH	
933	t)	4-F	Н	OCH ₃	_	CH	
933 934	11	4-r 6-F	H	OCH_3 OCH_3		CH CH	
935	tt	0-1 4-0CH₃	Н	OCH ₃		CH	
936	Ħ	6-OCH ₃	H	OCH ₃	_	CH	
937	-NHSO ₂ CH ₃	H	H	OCH ₃	•	CH	
938	-NHSO ₂ C ₂ H ₅	H	H	•	OCH ₃	CH	
939	$-N(SO_2CH_3)_2$	H	H	OCH ₃	_	CH	
940	$-N(CH_3)SO_2Et$	H	H	OCH ₃	_	CH	
941	-N(Et)SO ₂ CH ₃	H	H	OCH ₃	_	CH	
_	·	 		3	- 3		

•

.

	TABLE	E 3		TABLE 3-continued					
	N O S NI	0	5		R ¹ N O S-NH	O NH—A			
Cpa. No.	\mathbf{R}^1	A	- 10	Cpa. No.	R ¹	Α			
942	I	OCH ₃ N — O	15	950	I	CN OCH_3 N CH_3			
943	-OSO ₂ N(CH ₃) ₂	$N \longrightarrow CH_3$ $N \longrightarrow N$ $N \longrightarrow N$	20	951	-OSO ₂ N(CH ₃) ₂	CN CH_3 N OCH_3			
944	I	$N \longrightarrow CH_3$ $N \longrightarrow CH_3$ $N \longrightarrow CH_3$	25	952	I	CN OCH ₃			
945	-OSO ₂ N(CH ₃) ₃	$N \longrightarrow OCH_3$ $N \longrightarrow O$ $N \longrightarrow CH_3$	35	953	-OSO ₂ N(CH ₃) ₂	CH_3 N N OCH_3			
946	I	$N \longrightarrow CH_3$ $N \longrightarrow N$	40 45	954	I	CH_3 N N CI			
947	-OSO ₂ N(CH ₃) ₂	O OCH ₃ $N-N$ $N-N$ OCH ₃	50	955	-N(CH ₃)SO ₂ CH ₃	$N \longrightarrow OCH_3$ $N \longrightarrow O$			
948	I	$N-N$ $N-N$ SCH_3	55	956	11	\sim \sim \sim \sim			
949	-OSO ₂ N(CH ₃) ₂	OCH_3 $N \longrightarrow N$ $-CH_2 \longrightarrow N$ $N \longrightarrow N$	60			N — O			
•	•	N 							

	TABLE 3-co	ntinued			TABLE	3-continued		
	N O S-NH NH-A			$ \begin{array}{c c} & O \\ & O \\ & N \\ & O \\$				
Cpa. No.	\mathbb{R}^1	A	10	Cpa. No.	R^1		A	
957		$N \longrightarrow CH_3$ $N \longrightarrow N$	- 10	965			N OCH ₃	
958		O CH ₃ OCH ₃	20	966	••		OCH ₃ CH ₃	
959		$N = CH_3$ CH_3 $N = CH_3$	25	967	••		OCH ₃ CH ₃	
		N = 0 OCH ₃	30				N N Cl	
960	-N(CH ₃)SO ₂ CH ₃	CH_3 $N-N$ OCH_3 CH_3	35		$ \begin{array}{c c} & TA \\ \hline R^2 & 5 \\ \hline 6 & 1 \\ N \end{array} $	BLE 4 R1 S-NH2		
		N-N	40	Cpd. No.	\mathbb{R}^1	R ²	M.p. [°C.]	
962		N SCH_3 OCH_3 N \longrightarrow	45	970 971 972 973	I '' '' '' '' '' '' '' '' '' '	H 4-CH ₃ 5-CH ₃ 6-CH ₃ 4-OCH ₃ 5-OCH ₃ 6-OCH ₃	247-250 (dec.)	
963	***	N = OCH ₃ CN OCH ₃	50	975 976 977 978 979 980	11 11 11 11 11	4-Cl 5-Cl 6-Cl 4-F 5-F 6-F		
964	•11	N CH ₃	55	982 983 984 985 986 987	11 11 11 11	$6-C_2H_5$ $6-C_4H_9$ $6-OC_2H_5$ $6-OCH_2CF_3$ $6-SCH_3$ $6-SO_2CH_3$ $6-NO_2$		
		$ \begin{array}{c} $	60	989 990 991 992 993 994	" " OSO ₂ N(CH ₃) ₂	6-CO ₂ CH ₃ 6-Br 6-CF ₃ 6-OCF ₃ 6-OCF ₂ H H 4-CH ₃ 5-CH ₃	oil	
			65	996	11	6-CH ₃ 4-OCH ₃		

TARI	TG .	4-continued
IADI		4-COHUIHUEA

TABLE 4-continued

65

TABLE 4-continued

B. FORMULATION EXAMPLES

- a) A dusting agent is obtained by mixing 10 parts by weight of a compound of the formula (I) and 90 parts by weight of talc or inert material and comminuting in a hammer mill.
- b) A wettable powder which is easily dispersible in water is obtained by mixing 25 parts by weight of a compound of 45 the formula (I), 64 parts by weight of kaolin-containing-quartz as inert material, 10 parts by weight of potassium ligninsulfonate and 1 part by weight of sodium oleoylmethyltaurate as wetting agent and dispersant and grinding in a pin-disk mill.
- c) A dispersion concentrate which is easily dispersible in water is obtained by mixing 20 parts by weight of a compound of the formula (I) with 6 parts by weight of alkylphenol polyglycol ether (®Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8) EO) and 71 55 parts by weight of paraffinic mineral oil (boiling range, for example, about 255° to over 277° C.) and grinding to a fineness of less than 5 microns in a friction ball mill.
- d) An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I), 75 parts by weight of cyclohexane as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier.
- e) Granules which are dispersible in water are obtained by mixing
 - 75 parts by weight of a compound of the formula (I),
 - 10 parts by weight of calcium ligninsulfonate,

- 5 parts by weight of sodium lauryl sulfate,
- 3 parts by weight of polyvinyl alcohol and
- 7 parts by weight of kaolin,

grinding in a pinned-disk mill and granulating the powder in a fluidized bed by spraying water as a granulating fluid.

- f) Granules which are dispersible in water are also obtained by homogenizing and precomminuting 25 parts by weight of a compound of the formula (I),
 - 5 parts by weight of sodium 2,2'-dinaphthylmethane-6,6'-disulfonate,
 - 2 parts by weight of sodium oleolymethyltaurate,
 - 1 parts by weight of polyvinyl alcohol,
 - 17 parts by weight of calcium carbonate and
 - 50 parts by weight of water,

then grinding in a bead mill and atomizing the suspension thus obtained in a spray tower by means of a single substance nozzle and drying.

g) Extruder granules are obtained by mixing 20 parts by weight of active compound, 3 parts by weight of sodium ligninsulfonate, 1 part by weight of carboxymethylcellulose and 76 parts by weight of kaolin, grinding and moistening with water. This mixture is extruded and then dried in a stream of air.

C. Biological examples

1. Weed action pre-emergence

Seeds or pieces of rhizome of monocotyledon and dicotyledon weed plants were planted in sandy loam soil in plastic pots and covered with earth. The compounds according to the invention formulated in the form of wettable powders or emulsion concentrates were then applied in various dosages to the surface of the covering earth as aqueous suspensions or emulsions using a water application rate of 600 to 800 1/ha after conversion.

After the treatment, the pots were placed in a greenhouse and kept under good growth conditions for the weeds. visual assessment of the plants and the emergence damage was carried out in comparison to untreated controls after the emergence of the experiment plants after an experiment time of 3 to 4 weeks. As the assessment values show, the compounds according to the invention have a good herbicidal pre-emergence activity against a broad spectrum of weed grasses and weeds (cf. Table 5).

TABLE 5

	Pre-emergence action of the compounds according to the invention									
	Ex.	Dose (kg			Herbicid	al action				
	No.	a.i./ha)	LOMU	ECCR	AVSA	STME	CHSE	SIAL		
•	1	0.3	5	5	5	5	5	5		
	136	0.3	5	5	4	5	5	5		
	4	0.3	5	5	5	5	5	5		
	411	0.3	5	5	5	5	5	5		
	354	0.3	5	5	5	5	5	5		
	439	0.3	5	5	5	5	5 -	5		
	312	0.3	4	4	2	4	4	5		
	326	0.3	2	2	2	3	3	4		
	7	0.3	5	5	5	5	5	5		
	299	0.3	5	5	4	5	5	5		
	443	0.3	5	5	5	5	5	5		
	301	0.3	2	2	2	2	2	3		
	298	0.3	5	5	4	5	5	5		
	313	0.3	3	3	2	4	3	5		

20

TABLE 5-continued

	Pre-emergence action of the compounds according to the invention									
Ex.	Dose (kg		Herbicidal action							
No.	a.i./ha)	LOMU	ECCR	AVSA	STME	CHSE	SIAL			
446	0.3	5	3	5	4	3	· 5			
445	0.3	5	4	5	5	2	4			
756	0.3	5	5	5	5	5	5			
442	0.3	5	5	5	5	5	5			
455	0.3	3	2	2	3	3	5			
770	0.3	5	5	5	5	5	5			
854	0.3	5	5	5	5	5	5			
8	0.3	5	5	5	5	5	5			
5	0.3	5	5	5	5	5	5			
142	0.3	5	5	5	5	5	5			
340	0.3	5	5	3	5	5	5			
573	0.3	5	5	5	5	5	5			

Abbreviations:

Ex. No. = Preparation example from TABLES 1 to 4

a.i. = active ingredient (based on pure active compound)

LOMU = Lolium multiflorum

ECCR = Echinochloa crus-galli

AVSA = Avena sativa

STME = Stellaria media

CHSE = Chrysanthemum segetum

STAL = Sinapis alba

2. Weed action post-emergence

Seeds or pieces of rhizome of monocotyledon and dicotyledon weeds were planted in sandy loam soil in plastic pots, covered with earth and raised in a greenhouse under good growth conditions. Three weeks after sowing, the experimental plants were treated in the three-leaf stage.

The compounds according to the invention formulated as wettable powders or as emulsion concentrates were sprayed onto the green parts of plants in various dosages using a water application rate of 600 to 800 l/ha after conversion and, after a standing time of the experimental plants in the greenhouse under optimum growth conditions of about 3 to 4 weeks, the action of the preparations was assessed visually in comparison to untreated controls.

The agents according to the invention also show a good herbicidal activity post-emergence against a broad spectrum of economically important weed grasses and weeds (cf. Table 6).

TABLE 6

Dose (kg		Herbicidal action									
a.i./ha)	LOMU	ECCR	AVSA	STME	CHSE	SIAL					
0.3	5	5	5	5	5	5	55				
0.3	3	4	1	5	5	5					
0.3	5	5	5	5	5	5					
0.3	5	5	4	5	5	5					
0.3	5	5	5	5	5	5					
0.3	5	5	5	5	5	5					
0.3	5	5	5	5	5	5	60				
0.3	3	3	2	3	2	5	00				
0.3	5	5	5	5	3	5					
0.3	3	5	2	4	3	5					
0.3	3	2	2	3	4	3					
0.3	5	4	3	4	4	5					
0.3	5	2	3	3	2	4	<i>(</i>				
0.3	5	3	3	3	3	3	65				
0.3	4	5	4	4	5	5					
	(kg a.i./ha) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	(kg a.i./ha) LOMU 0.3 5 0.3 5 0.3 5 0.3 5 0.3 5 0.3 5 0.3 5 0.3 5 0.3 5 0.3 5 0.3 5 0.3 5 0.3 5 0.3 5 0.3 5 0.3 5	Dose (kg a.i./ha) LOMU ECCR 0.3 5 5 0.3 3 4 0.3 5 5	Dose (kg Herbicid a.i./ha) LOMU ECCR AVSA 0.3 5 5 5 0.3 3 4 1 0.3 5 5 5 0.3 5 5 5 0.3 5 5 5 0.3 5 5 5 0.3 5 5 5 0.3 3 2 2 0.3 3 2 2 0.3 5 4 3 0.3 5 2 3 0.3 5 2 3 0.3 5 2 3 0.3 5 2 3 0.3 5 2 3 0.3 5 2 3 0.3 5 2 3 0.3 5 2 3 0.3 5 2 3 0.3 5 3 3	Dose (kg Herbicidal action a.i./ha) LOMU ECCR AVSA STME 0.3 5 5 5 5 0.3 3 4 1 5 0.3 5 5 5 5 0.3 5 5 5 5 0.3 5 5 5 5 0.3 5 5 5 5 0.3 5 5 5 5 0.3 3 3 2 3 0.3 3 2 2 3 0.3 3 2 2 3 0.3 5 4 3 4 0.3 5 2 3 3 0.3 5 2 3 3 0.3 5 2 3 3 0.3 5 2 3 3 0.3 5 3 3 3 0.3 5 3 3 3 0	Dose (kg Herbicidal action a.i./ha) LOMU ECCR AVSA STME CHSE 0.3 5 5 5 5 5 0.3 3 4 1 5 5 0.3 5 5 5 5 5 0.3 5 5 5 5 5 0.3 5 5 5 5 5 0.3 5 5 5 5 5 0.3 5 5 5 5 5 0.3 5 5 5 5 5 0.3 5 5 5 5 5 0.3 3 3 2 3 2 0.3 3 5 5 5 5 3 0.3 3 2 2 3 4 0.3 5 4 3 4 4 0.	(kg Herbicidal action a.i./ha) LOMU ECCR AVSA STME CHSE SIAL 0.3 5 5 5 5 5 5 0.3 3 4 1 5 5 5 0.3 5 5 5 5 5 5 0.3 5 5 5 5 5 5 0.3 5 5 5 5 5 5 0.3 5 5 5 5 5 5 0.3 5 5 5 5 5 5 0.3 5 5 5 5 5 5 0.3 3 3 2 3 2 5 0.3 5 5 5 5 5 5 0.3 3 2 2 4 3 5 0.3 3 2 2 <td< td=""></td<>				

TABLE 6-continued

Ex.	Dose (kg	Herbicidal action							
No.	a.i./ha)	LOMU	ECCR	AVSA	STME	CHSE	SIAL		
 8 5	0.3 0.3	5 5	5 5	5 5	5	3 5	5 5		
142	0.3	4	2	2	4	1	3		
340	0.3	3	3	0	5	2	5		
573	0.3	5	5	5	5	5	5		

Abbreviations:

Ex. No. = Preparation example from TABLES 1 to 4

a.i. = active ingredient (based on pure active compound)

LOMU = Lolium multiflorum

ECCR = Echinochloa crus-galli

AVSA = Avena sativa

STME = Stellaria media

CHSE = Chrysanthemum segetum

STAL = Sinapis alba

3. Crop plant tolerability

In further experiments in a greenhouse, seeds of a relatively large number of crop plants and weeds were planted in sandy loam soil and covered with earth.

Some of the pots were immediately treated as described under 1 and the others were placed in a greenhouse until the plants had developed two to three true leaves and then sprayed with the substances according to the invention in various dosages, as described under 2.

Four to five weeks after application and standing in a greenhouse, it was determined by means of optical assessment that the compounds according to the invention left dicotyl crops such as, for example, soya, cotton, rape, sugarbeet and potatoes undamaged pre- and post-emergence even at high active compound dosages. Moreover, some substances also spared gramineous crops such as, for example, barley, wheat, rye, sorghum millet, corn and rice. The compounds of the formula (I) thus have a high selectivity when used for controlling undesired plant growth in agricultural crops.

We claim:

1. A compound of the formula (I) or its salts

in which

R¹ is iodine,

 R^2 is H, (C_1-C_4) alkyl, (C_1-C_3) haloalkyl, halogen, NO_2 , CN, (C_1-C_3) alkoxy, (C_1-C_3) haloalkoxy, (C_1-C_3) alkylthio, (C_1-C_3) alkoxy- (C_1-C_3) alkyl, (C_1-C_3) alkoxycarbonyl, (C_1-C_3) alkylamino, (C_1-C_3) alkylamino, (C_1-C_3) alkylsulfonyl, (C_1-C_3) alkyl, (C_3-C_4) alkenyl, propargyl, or together are (C_1-C_3) alkyl, (C_3-C_4) alkenyl, propargyl, or together

R³ is H or CH₃,

n is zero or 1,

W is O or S,

A is a radical of the formula

$$\begin{array}{c|cccc}
X & NC \\
N & & & \\
N & & & \\
Z, & \text{or} & & \\
N & & & \\
Y & & & \\
\end{array}$$

X is H, halogen, (C_1-C_3) alkyl, (C_1-C_3) alkoxy, where the two last-mentioned radicals are unsubstituted or monosubstituted or polysubstituted by halogen or monosubstituted by (C_1-C_3) alkoxy,

Y is H, (C_1-C_3) alkyl, (C_1-C_3) alkoxy or (C_1-C_3) alkylthio, where the above-mentioned alkyl-containing radicals 15 are unsubstituted or monosubstituted or polysubstituted by halogen or monosubstituted or disubstituted by (C_1-C_3) alkoxy or (C_1-C_3) alkylthio, or is a radical of the formula NR^8R^9 , (C_1-C_6) -cycloalkyl, (C_2-C_4) alkenyl, (C_2-C_4) alkynyl, (C_3-C_4) alkenyloxy,

Z is CH,

 R^8 and R^9 independently of one another are H, (C_1-C_3) alkyl or (C_3-C_4) alkenyl,

X⁴ is CH₃, OCH₃, OC₂H₅, CH₂OCH₃ or Cl,

Y⁴ CH₃, OCH₃, OC₂H₅ or Cl.

2. A compound as claimed in claim 1, wherein

W is an oxygen atom,

n is the number zero and

A is a radical of the formula

$$X$$
 $N \longrightarrow Z$
 X
 X

5

3. A compound as claimed in claim 1, wherein

 R^2 is H, (C_1-C_3) alkyl, (C_1-C_3) alkoxy, halogen or (C_1-C_3) alkylthio,

and A is a radical of the formula

$$X$$
 $N \longrightarrow Z$
 X
 X
 Y

in which

Z is CH,

X is halogen, (C₁–C₂)alkyl, (C₁–C₂)alkoxy, OCF₂H, CF₃ or OCH₂CF₃ and

Y is (C_1-C_2) alkyl, (C_1-C_2) alkoxy or OCF_2H .

4. The compound of claim 3 wherein R² is H, R³ is H, n is zero, W is 0,)and X and Y are each —OCH₃.

5. A herbicide or plant growth-regulating composition, which comprises a herbicidally or growth-regulatingly effective amount of a compound of the formula (I) or its salts as defined by claim 1 and formulation auxiliaries.

6. A method of combating undesired plants or of regulating the growth of plants, comprising applying an amount of a compound of the formula (I) or its salts as defined by claim 1, which is herbicidally effective or effective for regulating the growth of plants to the plants, plant seed or a cultivated area.

* * * *