PR T 0

US005477448A
United States Patent (19 (111 Patent Number: 5,477,448
Golding et al. - 1451 Date of Patent: Dec. 19, 1995
[54] SYSTEM FOR CORRECTING IMPROPER a sentence as to parts of speech, an improper determiner
DETERMINERS correction module detects improper referents of a noun
Idine. Cambridee: ¥ phrase and suggests insertion of a determiner should one be
[75] Inventors: Andrew R. Golding, Cambridge; Yves necessary or the deletion of an improper determiner. To
Schabes; Emmanuel Roche, both of ' nd _] o
Boston, all of Mass. detect improper use cT a determiner, parts o s;_:)eec . ags are
utilized to characterize a sentence, thus to identify noun
[73] Assignee: Mitsubishi Electric Research phrases by maximally matching a pattern that defines which
Laboratories, Inc., Cambridge, Mass. sequences of parts of speech tags constitute valid noun
phrases. This is accomplished by identifying the start of the
[21] Appl. No.: 251,978 noun phrase and its end to permit checking for either missing
(22] Filed: Jun. 1, 1994 determiners, extranet?us determiners, or lack of agreement 1n
~ number for the constituents of the noun phrase. Once a noun
[51] Int. CLO oot seeeeresensesnasases GO6F 17/28 phrase is found, the system tests to see if the noun is a head
[52] US. Clo e vsnaieens 364/419.08 noun and thereafter if the head noun is a singular non-proper
[58] Field of Search 364/419.08, 419.01, noun, whether the noun phrase contains a determiner,
364/419.02, 419.1, 419.11 whether the noun phrase is a title, whether the head noun is
' . | hether the noun phrase is part of an 1diom.
Cited a mass noun or w _ |
10] References Clte The system also checks to see if the head noun 18 a proper
U.S. PATENT DOCUMENTS noun and if so whether the noun phrase contains a deter-
4,864,502 9/1989 Kucera et al.eemenn 364/419.08 miner. Finally, if the noun phrase contains a determiner the
4:994:966 2/1991 HULChINS .cvvenrvereerecrmseserseases 364/419.08 system checks if the determiner agrees in number with the
5,083,268 1/1992 Hemphill et al. 364/419.08 head noun. In this manner, both missing determiners, extra-
5,218,537 6/1993 Hemphill et al. ..vvreev. - 364/41901 peous determiners and determiner noun number disagree-
Primary Examiner—Robert A. Weinhardt ment are detected and reported.
Attorney, Agent, or Firm—Robert K. Tendler
[57] ABSTRACT
In a grammar checking system which includes first tagging 7 Claims, 14 Drawing Sheets
= INPUT SENTENCE iﬂﬂ
“““““““““““““ TG
: PART OF SPEECH i
; ANALYZER ;
22
E PART OF SPEECH §
. | SEQUENCE PROBABILITY | !
h— GRAMMAR CORRECTION

O O T O B A A A B B e e B b bl chis e e o am ap mie oam o W Ee EE EE o Em e o i -ﬁ---.-‘-.ﬂ---------—--_---———-----—‘

. 2% :
| PART OF SPEECH SEQUENCE 2% ™"\ CORRECT SENTENCE =
5 VERIFICATION SELECTION g
5 28 [30 E
LI] UNDERLYING sPetung | 7)) INFLECTION :
; RECOVERY CHECKER :

32

! 34 _
: AUXILARY-VERB CORRECT SENTENCE
E CORRECTION | SELECTION

36

’ 42 i
: ‘ I/ INDEFINITE ARTICLE ;
! DETERMINER CORRECTION ? CORRECTION }‘— |

38

i WORD INSERTION/ - SPELLING
i DELETION 44 CHECKER

U.S. Patent Dec. 19, 1995 Sheet 1 of 14 5,477,448

———————————————— ' INPUT SENTENCE I/‘O

PART OF SPEECH
ANALYZER

| PART OF SPEECH
SEQUENCE PROBABILITY

22 |

-“----—___'-'_"‘“'F"-“'_—""'"*-‘*"ﬂ'_-_-—--—l"-————-——_.'-—-"l"—'-'-——"‘-l--lrl-lr-ll-——hﬁ“---—-——--ﬂ--———_———Hﬂ—--‘

. ' 2
| PART OF SPEECH SEQUENCE %% “" N CORRECT SENTENCE
VERIFICATION SELECTION ,

: — 28 [30~ —— :
| UNDERLYING SPELLING L) INFLECTION
o RECOVERY I CHECKER
' | 32| 1, - |
AUXILARY-VERB ' CORRECT SENTENCE
| CORRECTION SELECTION
36| P
| 1"\ INDEFINITE ARTICLE ,
CORRECTION .
38| | —

[WORD INSERTION/ SPELLING
| DELETION' | 44 CHECKER

AR il by S oy Em oy

iy P P vallieniislier

DETERMINER CORRECTION

ek gl air e i el i wih wiE EE A A S P T

EE A T AR i s e W W W A EEm

U.S. Patent Dec. 19, 1995 Sheet 2 of 14 5,477,448

— -
i INPUT SENTENCE S1 l/ LIST OF CONFUSED WORDS '/’36

I

CANDIDATE SENTENCE S2 |94

PART OF SPEECH TAGGER |/34

r__f_ N

| PARTS OF SPEECH SEQUENCE T
| PROBABILITY P1

PARTS OF SPEECH SEQUENCE T2 | 40
PROBABILITY P2

NO CHANGE TO 51

YES

log(P2) Iog(Pl)
1S21 IST1

Fig. 2B

U.S. Patent Dec. 19, 1995

INPUT SENTENCE
OF n WORDS

300

STOP NOYES l

| - =i+ 1
l w1 :=i th WORD | ~306
w2 :=l+1 WORD

Sheet 3 of 14

5,477,448

CHANGE THE wl to "a”

IF W'I - "Gn",

IF wl == "a’,
| CHANGE THE w1 fo "an®| ~316

318
NO 2 STARTS WITH "eu” YES J B |

 Fwl=="an",

| CHANGE THE wl to "a" \320
318 |

“0",“e“,"i“,HOHOR"U“ 4 I_ L

IF wl =="a",

CHANGE THE w1 to "an" | 324

—IF-Wi ;: “an",
CHANGE THE wl to "a”

326

Fig. 3

U.S. Patent Dec. 19, 1995 Sheet 4 of 14 5,477,448

SENTENCE 410

- — 412
PART OF SPEECH TAGGER

. 414
SENTENCE WITH PARTS OF SPEECH

~ ENDING POINT DETECTOR

END POSITION OF THE
INCORRECT VERB SEQUENCE

I STARTING POINT DETECTOR |

1 ‘ 426

450 | ~ START POSITION OF THE
INCORRECT VERB SEQUENCE

428

4347 | CORRECTED SENTENCE l

FIg. 4A

CORRECT VERB SEQUENCES 420

INCORRECT VERB SEQUENCES [_4,,
494 | — 426

— Y~

ENDING POINT DETECTOR STARTING POINT DETECTOR |

Fig. 4B

OBA
08S

5,477,448

el —

ONI38
¢CS ~

144

915 OLS

VIS _90c

805

A M U N

0S
SY0S 208

NEA] [N8A

O8A
oV

<3>

00§

- HONIAVH
96t

.

89y
7

067
98v

Sheet 5 of 14

Dec. 19, 1995

U.S. Patent

4744

5,477,448

Dec. 19, 1995

U.S. Patent

Sheet 6 of 14

YT T T O -, Qv b
O3N/Q8A /-a8A / | __39'N339 RIMIEM
- NSA/Q8A /-Q8A bereet ECENED) YEECEYEEL:
—NSN/ZENZ8A BECEE i
OGN/ZIN/ZIN (“
 NEA/QSAV-QBA. NIIGRV;
NEA/OEA/-O8A N338-39IM|

N138-5VM

NSA/ZBN/-Z8A

NSA/8A/-BA Zm_um.”m_ ONIAVYHSYH
idiéd (U N339-39 T30 500 [—1 ONIAVHIAVH
QINOIA— (O éeéieeé (O 38<T> [« NIIF<I> .f ONIAVH-ONIAVH 0eC
o —~—[avH:avH
OGNOAA O] eeiiii. *| ONIAVHONIAVH «~—]{SVHSVH
INVHQVH IAVHIAVH
SANINNaA — NVH SVH— THOW-IHOW
VATV 9<BO] T | JAVHIAVH— 5500
¢L5 [aVZaNZ8A kg0 goc—1_iéiiiis AYWAYW
NIA/QIN-QIARA O éééiéée (O AH <O« IAVH <> ASOW:LSNWI
. . aVaaN-ag il dINOM-aINOM
0£S v ofc VES NVOINVD
_ @INOHS'GINOHS
— = ey

A TIMTIM

A%

U.S. Patent ' Dec. 19,1995 Sheet 7 of 14 5,477,448

NORMAL RULES OF

ENGLISH WORD FORMATION
L 602 L _
; ;f | l - - 608
| —j NON-REAL ENGLISH WORDS DICTIONARY
i 604 : 606
E ~— Y Y .
i l INCORRECT ENGLISH WORDS I ;
 ENGLISH WORDS CORRECTOR |
. 600
FIg. 5
TAGGED SENTENCE

IDENTIFY NEXT

NOUN PHRASE (IF ANY])

IN THE SENTENCE. NOUN

PHRASE FOUND
>

END

' CHECK NOUN PHRASE FOR /702
A MISSING DETERMINER
_] Y
720
CHECK NOUN PHRASE FOR

AN EXTRANEQUS DETERMINER

I |

CHECK NOUN PHRASE FOR 730
NUMBER DISAGREEMENT

Hg. 7/

5,477,448

9 by

P19~ {QYOM Q31033302

¢l9

- Sheet 8 of 14

SIINLYIH TVIIO0TOHJIOW ANV LOOY

Dec. 19, 1995

v09 o9 _ _ 209

JAOM 1O34JODNI AIVNOILIIQ SAIOM HSITONT

SQYOM HSIMONI 1DINJOINI

U.S. Patent

- U.S. Patent

NOUN PHRASE

704

IS THE HEAD NOUN

A SINGULAR, NON-PROPER

NOUN
4

YES
706

DOES THE

NOUN PHRASE CONTAIN

A DETERMINER
?

NO

IS THE
NOUN
PHRASE A TITLE
?

NO

S THE HEAD NOUN
A MASS
NOUN
?

NO

Dec. 19, 1995

5,477,448

Sheet 9 of 14

NO

YES

712

S THE HEAD NOUN
A MASS TITLE
NOUN
?

YES. YES |

NO

YES

S THE NOUN
PHRASE PART OF

AN IDIOM
?

NO

REPORT MISSING

YES

716
END

DETERMINER

U.S. Patent

Dec.

Fig. 9

Fig. 10

19, 1995 Sheet 10 of 14
NOUN PHRASE

722

1S THE HEAD NOUN NO

A PROPER NOUN
?

YES
724

DOES THE

NOUN PHRASE CONTAIN

A DETERMINER
?

YES 726

REPORT EXTRANEQUS
DETERMINER

NOUN PHRASE

IS THE HEAD NOUN
A PROPER NOUN
?

YES

YES
734

DOES THE
NOUN PHRASE CONTAIN

A DETERMINER
| ?

NO

YES
736

DOES THE

DETERMINER ACREE IN

NUMBER WITH THE

HEAD NOUN
?

YES

NO 738

REPORT
DISAGREEMENT

5,477,448

U.S. Patent Dec. 19, 1995 Sheet 11 of 14 - 5,477,448

. 800
| TAGGED TRAINING |802

: CORPUS :

* - - 804 '

: UNCAPITALIZE WORDS THAT :

i ARE NOT PROPER NOUNS i

g (OR OTHER INTRINSICALLY ;

; CAPITALIZED WORDS) :

REVISED TRAINING CORPUS |

TRAIN A TRIGRAM MODEL §

; ON THE REVISED CORPUS 820 :
S N TRICRAMMODEL .. | PREPROCESSING

822

A WORD IN DECIDE WHETHER THE WORD UNDERLYING SPELLING
A SENTENCE IS INTRINSICALLY CAPITALIZED OF THE WORD

FIg. 11

U.S. Patent

Dec. 19, 1995 Sheet 12 of 14 5,477,448

CORPUS

GET NEXT WORD/TAG

PAIR {IF ANY) FROM CORPUS.

WORD/TAG PAIR FOUND
?

NO '
__ END

YES

312

NO IS THE WORD
CAPITALIZED
?

L YES

1S THE WORD THE
FIRST WORD OF A SENTENCE,
OR DOES IT FOLLOW
AN OPEN QUOTE OR

NO

YES
816

S THE WORD TAGGED

AS A PROPER NOUN OR TITLE,

OR IS IT AN ACRONYM OR

THE PRONOUN [/
?

| YES

NO

L UNCAPITALIZE 018
THE WORD

Fig. 12

U.S. Patent Dec. 19, 1995 Sheet 13 of 14 5,477,448

A WORD IN A |\ -
SENTENCE 830

852

15 THE WORD
CAPITALIZED
?

YES

854

15 THE WORD THE FIRST
WORD OF THE SENTENCE, OR
DOES IT FOLLOW AN OPEN
QUOTE OR A
COLON ?

IS THE WORD ™_ YES
AN ACRONYM “"‘ ‘ "
?
NO 858 | 851
- / Y
859 | LET P = PROBABILITY OF THE SENTENCE RETURN THE
WITH THE WORD CAPITALIZED SPELLING OF THE
TRIGRAM WORD AS IT
MODEL LET Py = PROBABILITY OF THE SENTENCE APPEARS IN THE
WITH THE WORD UNCAPITALIZED SENTENCE

862

RETURN THE

UNCAPITALIZED
SPELLING OF

THE WORD
560 NO 864

YES

| RETURN THE

CAPITALIZED

— > SPELLING OF

THE WORD

Fig. 13

U.S. Patent Dec. 19, 1995

|

9]0\—_{—

MORPHOLOGICAL
ANALYZER

920

SET OF PAIRS OF ROOTS
AND PARTS-OF-SPEECH
(R1,1), (R2,T2), ...

950

e

" SET OF PAIRS OF ROOTS
" AND PARTS-OF-SPEECH
IN CONTEXT

9380

ENTRIES

IN CONTEXT

FIg. 14

Sheet 14 of 14 5,477,448

—
A WORD IN A

SENTENCE

900

930
Y

~ PARTOF
SPEECH TAGGER

940

PART-OF-SPEECH T

960

SET OF PAIRS OF ROOTS
AND PARTS-OF-SPEECH
OUT OF CONTEXT

970

DICTIONARY

990

Y

ENTRIES
OUT OF CONTEXT

5,477,448

1

SYSTEM FOR CORRECTING IMPROPER
DETERMINERS

FIELD OF INVENTION

This invention relates to grammar checking systems and

more particularly to a system for detecting incorrect deter-
miners.

BACKGROUND OF THE INVENTION

As discussed in U.S. Pat. No. 4,868,750 issued to Henry

Kucera et al, a colloquial grammar checking system
involves automated language analysis via a computer for
receiving digitally encoded text composed in a natural
language and using a stored dictionary of words and analysis
and an analysis program to analyze the encoded text and to
identify errors. In particular such a system 1s utilized in the
Microsoft Word program for detecting grammar errors.

One of the most troublesome problems associated with
such systems is extremely high error rate when the system
suggests a proper usage. The reason for the unreasonably
high error rate derives from the system’s incorrect analysis
of a sentence. Also assuming a correct analysis of a sentence
the Microsoft system often suggests an incorrect word.

There is also a class of systems which attempt to analyze
a sentence based on the probability that the entire sentence
is correct. The largest problem with such systems 1s that they
require storage and processing power beyond the capability
of present PCs and related memories.

Other systems attempt to detect incorrect grammar by
analyzing sentences based on a training corpus. However,
system constraints preclude this type of system from being
utilizable in personal computing environments due to the
massive storage involved as well as high speed processing
required.

By way of example, prior grammar checking systems
routinely miss inserting indefinite articles such as “a” and
“an”, which is indeed a large problem for foreign speaking
individuals when trying to translate into the natural language
presented by the system.

Also of tremendous importance is the lack of ability to
insert the appropriate article such as “the” or “a” when
-sentences are composed by those not familiar either with the
grammar rules or with the colloquial usage of such articles.
Moreover, common mistakes made by prior art grammar
checking systems include no recognition of incorrect verb
sequences in which multiple verbs are used. Although mul-
tiple verbs can be used properly in a sentence, most foreign
speaking individuals routinely make mistakes such as “He
has recognize that something exists.” Here “has” is a verb
and “recognize” is a verb. As can be seen there is an obvious
misusage of multiple verbs.

Most importantly, problems occur in so-called determin-
ers such that for instance the sentence “I have cigarette”
obviously is missing the determiner “a”. Likewise there are
often missing determiners such as “some” or “a few”. Thus
a proper sentence could have read “I have a few cigarettes”.
Note that the same sentence could properly be constructed
by putting the noun in plural form, e.g. “I have a few
cigarettes’’; or “‘I have cigarettes”.

An even further typical grammar error not corrected by
either spell checkers or prior grammar systems includes the
failure to correct improper word inflection. For instance as
to improper verb inflections, such systems rarely correct a
sentence such as “I drived to the market.”

10

15

20

25

30

35

40

45

50

55

60

63

2

The above problems become paramount when taken from
the view of a nonnative speaker unfamiliar both with the
idiom and the rules of the language. Especially with English,
the rules are not as straightforward as one would like, with

- the correct “grammar’” often determined by idiom or rules

which are not familiar to those native speakers utilizing the
language.

It is therefore important to provide a grammar checking
system which takes into account the most frequent errors
made by non-native speakers of a particular nationality.
Thus for instance there is a body of errors normally made by
Japanese native speakers which are translated into English in
ways which are predictable and therefore correctable. Like-
wise for instance for French or any of the Romance lan-

guages, there are certain characteristic errors made when
translating into English which can be detected and correcied.

Syntax recognizing systems have in general been limited
to operating on text having a small, well-defined vocabulary,
or to operating on more general text but dealing with a
limited range of syntactic features. Extensions of either
vocabulary or syntactic range require increasingly complex
structures and an increasing number of special recognition
rules, which make a system too large or unwieldy for
commercial implementation on commonly available com-
puting systems.

Another popular system for detecting and correcting
contextual errors in a text processing system is described
U.S. Pat. No. 4,674,065 issued to Frederick B. Lang et al, 1n
which a system for proofreading a document for word use
validation and text processing is accomplished by coupling
a specialized dictionary of sets of homophones and confus-
able words to sets of di-gram and n-gram conditions from
which proper usage of the words can be statistically deter-
mined. As mentioned before, doing statistics on words as
opposed to parts of speech requires an exceptionally large
training corpus and high speed computation, making the
system somewhat unwieldy for personal computing appli-
cations. Moreover, this system, while detecting confusable
words in terms of like-sounding words, is not sufficient to
provide correction for those words which are confused 1mn
general usage but which do not sound alike.

Finally, U.S. Pat. No. 4,830,521 is a patent relating to an
electronic typewriter with a spell checking function and
proper noun recognition. It will be appreciated that the
problem with noun recognition revolves around a capitali-
zation scenario which may or may not be accurate in the
recognition of a proper noun. Most importantly this patent
tests words only to find if they are the first word in a sentence
to determine the function of the capitalization, whereas
capitalization can obviously occur for words anywhere in
the sentence.

By way of further background numerous patents attack
the grammar problem first through the use of spelling
correction. Such patents include U.S. Pat. Nos. 5,218,536;
5,215,388; 5,203,705; 5,161,245; 5,148,367; 4,995,740;
4,980,855; 4,915,546, 4,912,671; 4,903,206; 4,887,920;
4,887,212; 4,873,634; 4,862,408; 4,852,003; 4,842,428;
4,829,472; 4,799,191; 4,799,188; 4,797,855; and 4,689,768.

There are also a number of patents dealing with text
analysis such as U.S. Pat. Nos. 5,224,038; 5,220,503; 5,200,
893; 5,164,899; 5,111,389; 5,029,085; 5,083,268; 5,068,
789; 5,007,019; 4,994,966; 4,974,195; 4,958,285; 4,933,
896; 4,914,590; 4,816,994; and 4,773,009. It will be
appreciated that all of these patents relate to systems that
cannot be practically implemented for the purpose of check-
ing grammar to the levels required especially by those

5,477,448

3

non-native speakers who are forced to provide written
documents in a given natural language. It will also be
appreciated that these patents relate to general systems
which are not specifically directed to correcting grammar
and English usage for non-native speakers.

Finally there exists a number of patents which relate to
how efficiently one can encode a dictionary, these patents
being U.S. Pat. Nos. 5,189,610; 5,060,154, 4,959,785; and
4,782,464. It will be appreciated that encoding a dictionary
1s but one step in formulating a system which can adequately
check grammar.

More particularly, in the prior art, systems have not been
capable of detecting when determiners such as “the”, *“a”
and “some” are improperly used for referring to a noun.
Thus neither missing determiners, nor extraneous determin-
ers have heretofore been detected by prior grammar check-
Ing systems. Moreover, these prior art systems do not check
for lack of agreement between a determiner and the asso-
ciated noun. As result such grammer checking system are
incapable of assisting non-native speakers.

SUMMARY OF THE INVENTION

In order to assist non-native speakers in the severe prob-
lem of determiner usage, part of speech tags are utilized to
brake down the sentence to be able to identify noun phrases.
Having identified a noun phrase by maximally matching a
pattern that defines which sequences of part of speech tags
constitute valid noun phrases, the Subject System deter-
mines the type of nouns in the noun phrase by determining
the so-called head nouns, noun phrases as a title, mass
nouns, and whether or not the noun phrase is part of an
idiom. The system also identifies in the case of a title,
whether the head noun is a mass title noun. The system also
checks to see if the head noun is a proper noun and whether
or not the corresponding noun phrase contains a determiner.
Moreover, all head nouns which are proper nouns are
identified. If the noun phrase in this case does contain a
determiner, then the system checks to see if the determiner
agrees in number with the head noun. As a result, the system
detects and reports missing determiners, extraneous deter-
miners, and disagreement between determiners and the
associated nouns.

In summary, in a grammar checking system which
includes first tagging a sentence as to parts of speech, an
improper determiner correction module detects improper
referents of a noun phrase and suggests insertion of a
determiner should one be necessary or the deletion of an
improper determiner. To detect improper use of determiner
parts of speech tags are utilized to characterize a sentence,
thus to identify noun phrases by maximally matching a
pattern that defines which sequences of parts of speech tags
constitue valid noun phrases. This is accomplish by identi-
fying the start of the noun phrase and its end to permit
checking for either missing determiners, extrancous deter-
muiners, or lack of agreement in number for the constituents
of the noun phrase. Once a noun phrase is found, the system
tests to see if the noun i1s a head noun and thereafter 1f the
head noun 1s a singular non proper noun, whether the noun
phrase contains a determiner, whether the noun phrase is a
title, whether the head noun is a mass noun or whether the
noun phrase is part of an idiom. The system also checks to
see 1f the head noun i1s a proper noun and if so whether the
noun phrase contains a determiner. Finally, if the noun
phrase contains a determiner the system checks if the
determiner agrees in number with the head noun. In this

10

I35

20

23

30

35

40

45

50

35

60

65

4

manner, both missing determiners, extraneous determiners

and determiner noun number disagreement are detected and
reported.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the Subject Invention will be
better understood taken into conjunction with the Detailed
Description in conjunction with the Drawings of which:

FIG. 1 is a block diagram of a complete grammar check-
ing system illustrating the various modules utilized for
complete grammar checking;

FIG. 2A is a block diagram illustrating the correction of
easilly confused words utilizing the probability of part of
speech sequences;

FIG. 2B is a block diagram illustrating the use of sentence
length averaging for determination of a probabilistic thresh-
old for the correction of easily confused words for the
probability determination component of FIG. 2A;

FIG. 3 is a flow chart illustrating the correction of the
definite articles “a” and “an” utilizing specialized tables of
English exceptions based on the way that words are pro-
nounced as opposed as the way that words are spelled to
derive the proper usage of the article;

FIG. 4A is a block diagram illustrating the correction of
incorrect auxiliary verb sequences through the utilization of
a stariing point and ending point detector to achieve a
corrected sentence;

FIG. 4B 1s a block diagram of the construction of the
starting point and ending point detectors of FIG. 4A utilizing
a directed acyclic graph representing correct verb sequences;

FIG. 4C 1s a directed acyclic graph representing the set of
correct auxiliary-verb sequences of the English language;

FIG. 4D 1s a directed acyclic graph representing a finite
state transducer for proposing corrections for an incorrect
auxihary-verb sequence;

FIG. § is a block diagram illustrating an improved spell
checking system for non-native speakers in which a list of
incorrect words corresponding to a non-real English word
dictionary is computed based on normal rules of English
word formation applied systematically to all English words;

FIG. 6 is a block diagram illustrating the process of
correct detected incorrect words utilizing the incorrect word
dictionary derived from the system of FIG. 5§ as well as an
English word dictionary in which root and morphological
features are utilized in the analysis of the detected incorrect

word with respect to a list of previously generated incorrect
English words;

FIG. 7 15 a flow chart for use in detecting and correcting
the improper use of determiners in which noun phrases are
identified by maximally matching a pattern that defines
which sequences of part of speech tag constitute valid noun
phrases including a check to ascertain a missing determiner,
an extraneous determiner, or number disagreement;

FIG. 8 1s a flow chart illustrating the determination for a
noun phrase of whether it is a title, if it contains a deter-
miner, if it 1s a mass title noun, a mass noun, or a part of an
idiom to permit reporting a missing determiner;

FIG. 9 1s a flow chart illustrating the checking of a noun
phrase for an extraneous determiner through the determina-
tion of whether or not the head noun is a proper noun and
then ascertaining whether or not the noun phrase contains a
determiner thereby to report an extraneous determiner;

5,477,448

S

FIG. 10 is a flow chart illustrating the checking of a noun
phrase for number disagreement in which the determination
is accomplished by detecting whether the head noun is a
proper noun, or if not the presence of a determiner and
whether or not the determiner agrees in number with the
head noun thereby to report disagreement;

FIG. 11 is a block diagram illustrating a system for the
recognition of proper nouns and other intrinsically capital-
ized word to recover underlying spelling of the word, in
which a preprocessing module i1s utilized to ascertain
whether or not a noun is a proper noun utilizing a traimng
corpus revised to uncapitalized words that are not proper
nouns or are not intrinsically capitalized, with a trigram
model trained on the revised corpus;

FIG. 12 is a flow chart illustrating the tagging of the
training corpus of FIG. 11 which is utilized to obtain the next
word/tag pair, to see if it 18 capitalized and if the word is the
first word of a sentence or it follows an open quote or colon,
also testing to see if the word has been tagged as a proper
noun or title, or if it is an acronym or the pronoun “I”’ thereby
to ascertain if the word is uncapitalized,

FIG. 13 is a flow chart illustrating the decision making
process for determining whether the word 1s intrinsically
capitalized as illustrated in FIG. 11 by analyzing whether the
word is capitalized, if it is the first word of a sentence or
follows an open quote or colon, 1f the word 1s an acronym,
and if not the probability of the sentence with the word
uncapitalized is determined to see if it exceeds the prob-
ability of the sentence with the word capitalized; and,

FIG. 14 is a block diagram illustrating dictionary access
based on context in which both a part of speech tagger and
a morphological analyzer is utilized to determine which
entries in the dictionary correspond to the word as it is used
in context, and which entries in the dictionary do not
correspond to the word as 1t 18 used in context.

DETAILED DESCRIPTION

Modular Grammar Checking System

While the Subject Invention relates to determiner detec-
tion and the improper use thereof, what 1s now described is
a total grammar checking system in which various modules
rely on the part of speech probability.

Referring now to FIG. 1, especially for foreign language
spelling individuals, it is important to provide instant gram-
mar checking for inputted sentences which 1s both accurate
and easily used even for those not particularly computer
literate. In order to accomplish grammar checking, an input
sentence 10, is entered by a keyboard 12 into the CPU 14 of
a word processing system 16.

It is important for reliable grammar verification that the
parts of speech of the input sentence be accurately deter-
mined. While prior grammar checking systems have utilized
the input sentence directly, it is a feature of the subject
invention that the input sentence be broken down into parts

of speech so as to provide a part-of-speech sequence. This1s

accomplished by part-of-speech analyzer 20 which 1s avail-
able as an implementation of Kenneth Church’s Stochastic
Parts Program published as “A Stochastic Parts Program and
Noun Phrase Parser for Unrestricted Text” in the Proceed-
ings of the Second Conference on Applied Natural Language
Processing, Austin Tex., 1988. The result of having derived
parts of speech is a part of speech sequence such as
“PRONOUN, VERB, DETERMINER, NOUN, VERB” for

an input sentence “I heard this band play”.

10

15

20

25

30

35

40

45

50

55

60

65

6

Having merely derived parts of speech does not reliably
assure that the derived parts of speech reflect a proper
sentence.

In order to analyze and construct proper sentences, it 18
important to ascertain the probability that the part of speech
sequence corresponds to a correct word sequence. In order
to derive the probability of a sequence of an input sentence,
the output of analyzer or tagger 20 is coupled to a part of
speech sequence probability determination unit 22. The
output of this unit is utilized by various modules in the
analysis of the input sentence 10.

The first module is a part of speech verification unit 24
which selects between a set of easily confused words or
sentences based on the probability of the corresponding
parts of speech sequence. Selection of the correct word or
sentence is determined, in one embodiment, by the prob-
ability exceeding a predetermined threshold. The selection
of the correct sentence is accomplished by a unit 26, the
inputs to which are of the probabilities of the various
sentences as well as the input sentence. As will be described
here and after, unit 26 is provided with a list of easily

confused words.

While easily confused sentences may be corrected in the
above fashion, a further module 28 is utilized to determine
the underlying spelling of a word. While conventional spell
checkers utilize lookup tables for spelling verification, they
do not take into account capitalization which can result in
annoying indications of spelling errors. Moreover, those
erammar checking systems which rely on proper spelling are
often mislead by capitalized words either at the beginning of
a word, sentence, or acronym.

In order to provide more reliable spell checking and
grammar correction, an underlying spelling recovering unit
28 treats capitalized words as “confused” words. In so
doing, the above technique is used to provide the probability
of a capitalized word being in one category or another based
on a training corpus such as Brown'’s corpus.

Thus while traditional language processing systems have
recovered the underlying spelling of a word by imposing the
restriction that a word be either an ordinary noun or proper
noun but not both, the subject recovery unit vtilizes context
and probabilities to categorize each word. This 1S accom-
plished by analyzing the sentence with the word 1n capital-
ized and uncapitalized form to ascertain which one has the
higher probability. Thereafter, the word analyzed for spell-
ing is that form of the word in the higher probability
sentence. Having recovered the most likely spelling, the
output of the recovery unit 28 is coupled to a inflection
checking and correcting system 30. This spelling corrector
may be either the conventional spell check variety or one
tuned for a particular foreign speaking individual.

As an additional module, an auxiliary-verb correction unit
32 also requires correct parts of speech denived from part of
speech sequence probability unit 22. An auxiliary-verb
correction problem exists when there are multiple verbs 1n a
sentence some of which are improper. This can occur 1n
complex auxiliary-verb sequences when incorrect tenses are
utilized. For instance, the sentence “he would living”
involves the two verb “would” and “living”. One correct
form of the sentence would be “he would live”. Thus the
tense of the verb “live” is required {0 be corrected.

In order to accomplish this, auxiliary-verb correction unit
32 detects any incorrect auxiliary-verb sequence and then
proposes corrections. This is accomplished first by utilizing
a directed acyclic graph which describes a finite set of verb
sequences. It would be appreciated that prior to establishing
correct verb sequences it is important to correctly identify

5,477,448

7

correct parts of speech which is accomplished by unit 22 as
noted above.

The output of auxiliary-verb correction unit 32 is coupled
to a correct sentence selection unit 34 for suggesting appro-
priate alternative sentences. 5

An additional module utilizing parts of speech is a deter-
miner correction unit 36. It is the purpose of this unit to
correct for those words that determine the referent of a noun
phrase. Examples of determiners are words such as “the”,
“a’, and “some”. There are three classes of errors detected 10
and corrected by this unit, namely, missing determiners,
extraneous determiners, and lack of agreement between the
determiner and a noun.

Examples of a missing determiner is “John read book” in
which “the” is left out. An example of an extraneous 15
determiner 1s “John went to the New York™ with “the” to be
deleted. Lack of agreement is evident in the sentence “John

read many book” where the noun “book™ must be pluralized

to agree with the determiner “many’”. In order to detect an
improper determiner, parts of speech tags identified so as to 5
be able to identify noun phrases. The system identifies noun
phrases by maximally matching a regular expression that
defines which sequences of part of speech tags constitute
valid noun phrases.

The system then tests each noun phrase to see if it is 25
missing a determiner. As part of this process, a head noun is
first detected followed by determination of whether this head
noun 1S a mass nouns, mass title nouns, idiom or is missing
a determiner. The system then tests each noun phrase to see
if it has an extraneous determiner. Finally the system test 30
whether the determiner and head noun of the noun phrase
agree in number. The result is either the insertion, deleting
or replacement of a word as illustrated at 38.

In addition, module 42 corrects the usage of the indefinite
articles “a” and “an’” based on input sentence 10. 33

Finally the accuracy provided by the part of speech
sequence is useful in a context-sensitive dictionary lookup
40. Typically a given word can have out of context many
parts of speech, each one of them corresponding to sub
entries 1n a dictionary. The context-sensitive dictionary
lookup module 40 accesses a dictionary and selects the
appropriate definitions based on the part of speech of the
word obtained by the part-of-speech module 20. For
example, the word “love” can be a noun or a verb, and the
noun “love” has many difierent entries in a dictionary, as for
the verb “love”. Assuming that the input sentence is “She
was my first love”, the word “love” is identified as a noun
by the part-of-speech module, and the context-sensitive
dictionary lookup module only selects the entries of the
dictionary for the noun “love” and those for the verb “love”.

It will be appreciated that once the underlying spelling of
a word has been recovered by module 28 not only can this
underlying spelling be utilized for inflection correction by
module 30, it can also be utilized in a conventional spelling
system 44, Thus conventional spell checking system can be
made to overlook acronyms during the spell checking pro-
cess rather than presenting an incorrect array of suggestions.

a) Grammar Correction Based on Part of Speech Prob-
abilities 60
In the past, several of the aforementioned grammar check-

ing systems have attempted to correct English usage by
correcting improper use of some troublesome words, espe-
cially those in those identical sounding words are spelled
differently. For example: “too”, “to”, and “two’”;, “their”, 65
they’re” and “there”. Other common mistakes revolve
around whether a word should be one word or two words

40

45

30

55

S

such as “maybe” and “may be”. There are also words which
do not sounds alike but that are often misused such as which
and whose.

In the past, in order to ascertain proper usage, the gram-
maticality of a sentence was computed as the probability of
this sentence to occur in English. Such statistical approach
assigns high probability to grammatically correct sentences,
and low probability to ungrammatical sentences. The statis-
tical is obtained by training on a collection of English
sentences, or a training corpus. The corpus defines correct
usage. As a result, when a sentence is typed in to such a
grammar checking system, the probability of the entire
sentence correlating with the corpus is computed. It will be
appreciated in order to entertain the entire English vocabu-
lary. about 60,000 words, a corpus of at several hundred
trillion words must be used. Furthermore, a comparable
number of probabilities must be stored on the computer.
Thus the task of analyzing entire sentences is both compu-
tationally and storage intensive.

In order to establish correct usage in the Subject System,
it 1s the probability of a sequence of parts of speech which
1s derived. For this purpose, one can consider that there are
between 100 and 400 possible parts of speech depending
how sophisticated the system is to be. This translates to a
several million word training corpus as opposed to several
hundred trillion. This type of analysis can be easily per-
formed on standard computing platforms including the ones
used for word processing.

Thus in the subject system, a sentence is first broken up
into parts of speech. For instance, the sentence “I heard this
band play” 1s analyzed as follows: PRONOUN, VERB,
DETERMINER, NOUN, VERB. The probability of this part
of speech sequence, is determined by comparing the
sequence to the corpus. This 1s also not feasible unless one
merely consider the so-called tri-grams. Tri-grams are triple
of parts of speech which are adjacent in the input sentence.
Analyzing three adjacent parts of speech is usually sufficient
to establish correctness; and it the probability of these
tri-grams which is utilized to establish that a particular
sentence involves correct usage. Thus rather than checking
the entire sentence, the probability of three adjacent parts of
speech 1s computed from the training corpus.

Assuming two sentences, one which 1s confused with the
other, it 1s possible with the above technigue to determine
which would be the correct usage. Since the above system
can determine this with a low error rate, there are two
benefits. The first benefit is obviously ascertaining which of
the two sentences is correct. The second benefit, is that
having established a correct sentence, its parts of speech can

‘be used by other grammar checking modules for further

processing.

Referring now to FIG. 2, an input sentence S1 as indicated
at 31, is coupled to a part-of-speech tagger 32 and also a
candidate S2 as illustrated in 34 which is provided with an
input comprising a list of confused words 36. Tagger 32
brakes up sentence S1 into the most likely part of speech
sequence T1 and its probability P1 as can be seen at 38. This
is accomplished by an algorithm such as that described by
Church in which the most likely part of speech sequence is
obtained by computing the most likely product of probabili-
ties of all possible overlapping triples of parts of speech.
One algorithm for accomplishing this task is provided here
in as Appendix A.

The words in the sentence S1 may be part of a list of easily
confused words 36, in which case, all possible alternative

sentences S2 to the sentence S1 are generated according to
list 36. The output of sentence generator 34 is applied to
tagger 32 to produce the most likely part-of-speech sequence
T2 as shown at 40 and its probability P2, again by the

5,477,448

9
algorithm of the Appendix A.

Having derived the probabilities P1 and P2 of the sen-

tences S1 and S2 at 38 and 40, it i1s now important to
determine which part of speech sequence is the most likely
to be correct. In order to determine the appropriate sentence
to be selected, and as shown at 42, P2 is compared to P1 and

if P2—P1 is greater than some threshold e, than as illustrated
in 44 sentence S2 is suggested. If P2—Pl<=¢ then no change
is suggested as illustrated at 46.

For example, assuming the input sentence 1s “1 want to
here this band” where “here” i1s misused instead of the
correct word “hear”’, one needs to compare the two sentences
S1: “T want to here this band” and S2: “I want to hear this
band”.

In order to compare those two sentences, one can try to
compare the overall probabilities of the sentences given
some statistical model of English text. This approach,
explored in an article by Eric Mays, Fred Damereau and
Robert Mercer entitled “Context Based Spelling Correction”
published in “Information Processing and Management”,
27(5):517-422, 1991, is computationally extremely expen-
sive and therefore impractical on standard computers when
dealing with unrestricted text which requires vocabulary of
more than 40,000 words. Being able to directly compute the
sentence probabilities requires tremendous amounts of train-
ing data, e.g. a minimum of 400,000,000 training words, and
tremendous amounts of storage space.

In contrast, the subject system as illustrated in FIG. 2A
compares the probability of the most likely part-of-speech
sequence for the given input sentence and the -possible
sentence with which it is likely to be confused. For example,
instead of computing the probability of sentence ““I want to
here this band”, the system derives the most likely part of
speech sequence, e€.2.“PRONOUN VERB TO ADVERB
DETERMINER NOUN?” for that sentence and computes the
probability of this part of speech sequence for the input
sentence. Similarly the system derives the most likely part of
speech sequence for “I want to hear this band”, e.g. “PRO-
NOUN VERB TO VERB DETERMINER NOUN”, and
computes its probability for the related sentence. Then, the
subject system decides between the usage of here and hear
by comparing the probabilities. |

Rather than comparing the above mentioned probabilities,
in a preferred embodiment, the subject system compares the
geometric average of these probabilities by taking. into
account their word lengths , i.e. by comparing the logarithm
of P1 divided by the mumber of words in S1, and the
logarithm of P2 divided by the number of words in S2. This
is important in cases where a single word may be confused
with a sequence of words such as “maybe” and “may be”.
Directly comparing the probabilities of the part of speech
sequences would favor shorter sentences instead of longer
sentences, an not necessarily correct result, since the statis-
tical language model assigns lower probabilities to longer
sentences. The above is illustrated in FIG. 2B.

The list of confused words 36 typically includes the
following sets: to, too, two; I, me; its, it’s ; their, they’re,
there; whose, which; then, than; whose, who’s ; our, are;
hear, here; past, passed; accept, except; advice, advise; lose,
loose; write, right; your, you're; affect, effect and maybe,
may be.

Note that the subject system is applicable to other con-
fused words and other languages such as French, Italian and
Spanish among others. Note that the method is general, in so
far as part-of-speech tagging can be performed using the
method described in Church, namely the trigram model.

10

15

20

25

30

35

40

45

50

55

60

65

10

In summary, the system of FIGS. 2A and 2B in addition
to selecting more probably correct sentences is important in
ascertaining other judgments about the grammaticality of -
sentences. The above provides a better and more reliable
modality for breaking up sentences into parts of speech.

In order to correct sentences, it 1s first important to be able
to break the sentence down into parts of speech. How
accurately a grammar checker can operate depends critically
on the accuracy of this break down. By providing more
reliable part of speech generation, the end result for gram-
mar checking can be made that much more reliable.

b) Correction of “a” vs “an’”

It will be appreciated that one of the most frequently
occurring mistakes for foreign speaking individuals 1s the
correct usage of the indefinite articles “a” and “‘an”. The
rules of English specify that the indefinite “a” should be used
before words that are pronounced with an initial consonant
and “an” should be used before words that are pronounced
with an initial vowel. A naive and incorrect implementation
of these rules of English test whether the first letter of the
next word is a vowel or a consonant. Although it is the case
that most words that are pronounced with an initial conso-
nant (resp. vowel) are actually spelled with an initial con-
sonant (resp. vowel), it is not always the case as in the
following examples: an hour; a European. For example, the
word “hour” has an initial consonant (h) but is pronounced
with an initial sound corresponding to a vowel (e.g. ow).
Similarly, the word “European” starts with an initial vowel
(the letter “E”) but is pronounced with an initial sound
corresponding to a consonant (e.g. “ye").

Previous solutions to this problem consist in storing a
dictionary of the pronunciation of all English words. These
solutions are correct but require massive amount of storage
for all words in the English language. Rather than utilizing
a dictionary lookup table for all words in the English
language, the subject system applies simple rules when no
exceptiion to the rules is found. The exception to the rules are
stored in two small tables corresponding respectively to the
words not handled by the rules that start with a vowel but are
initially pronounced with a consonant, and to the words not
handled by the rules that start with a consonant but are
initially pronounced with a vowel. The lookup tables for
these words contain less than 300 words as opposed to a
generalized dictionary based system of 60,000 words. The
tables below list of the words for which there are English
exceptions.

TABLE 1

Ewell
Ewell’s

U

U’s

U-boat
U-boat’s
U-turn
U-turn’s
UFO
UFQO’s
Uganda
Uganda’s
Ugandan
Unitarian
Unitarianist
Unitarianism’s
Uranus

Uranus’
Uruguay
Uruguay’s
Uruguayan
Utah
Utah’s
Utopia
Utopia’s
Utopian
Utrecht
Utrecht’s
ewe

ewe’s
ewer
ewer’'s
once

one

one’s
one-armed
one-eyed
one-horse
one-sided
one-step
one-time
one-upmanship
onecself
ouija
ouija’s
ouija-board
ouija-board’s
ouljas

u

us
ubiquitous
ubiquity
ubiquity’s
ukase
ukase’s
ukulele
ukulele’s
“ululate

ululation’s
unanimity
unanimity’s
unanimous
unanimously
unicorn
unicorm’s
unification
unification’s
unified
uniform
uniformed
uniformity
uniformly
unity
unifying
unilateral
unilaterally
union
union’s
unionist
unionist’s
unique

11

5,477,448

10

15

20

25

30

35

4()

45

50

55

60

65

uniquely
uniqueness
unisex
unison
unison’s
unit
unit’s
unite
united
unitedly
uniting
unity
unity’s
universal
universality
universality’s
universally
universe
university
university’s
uraninm

uric

urinal

urinary
urinate
urinated
urinating
urine

urine’s

urines

usable

usage

usage’s

use

use’s

used

useful
usetully
usefulness
useless
uselessly
uselessness
user

user’'s

using

usual

usually

usurer
usurer’s
usurious
usurp
usurpation
usurpation’s
usurper
usurper’s
usury

usury’s
utensil
utensil’s
uterine
uterine’s
uterus

uterus’
utilitarian
utilitarianism
utilitarianism’s
utility

12

utility’s
utilizable
utilization
utilization’s
utilize
uvula
uvula’s
uvular

3

cm

>

un

F

F’'s

H

H’s
H-bomb
L

L’s

LSD

M

M’s

MP

MP’s

N

N’s

NB

NHS

R

R’s

S

S’s

SOS

X

X’s

X-ray
Xmas
Yvonne

f

I's

h

h’s
hauteur
heir
heiress
heirloom
honest
honestly
honesty
honorarium
honorary
honorific
honor
honorable
honorably
honour
honourable
honourably
hour
hourglass

hourly
]

I’s
m
m’s
n

13

TABLE 2

5,477,448

10

15

20

25

30

35

40

45

50

55

60

65

14

.

n’'s
nb
r
'S
S
S’S
X
XS

From the above it will be appreciated that a portion of the
subject invention revolves around recognition that it is the
initial sounds which are uttered when pronouncing a word
that is important in determining the correct use of the
indefinite article.

Having first established a limited list of exceptions, the
following three rules are applied. The first rule applies when
the word following the indefinite articles “a” or “an’ starts
with the characters “eu’”. In which case, the indefinite “a”
should be used. The second rule applies when the word

following the indefinite articles “a” or “an’ starts with vowel

character, “a”, “e”, “i”, “0” or “u”. In which case, the

indefinite article “an” should be used. The third rule applies

Uy -

when the word following the indefinite articles “a” or “an”
starts with consonant character. In which case, the indefinite

-article “a” should be used.

Referring to FIG. 3, each word wl of an input sentence
300 and the word following it w2 are established by keeping
track of the position of the current word 1 in the input
sentence as determined by blocks 302, 304, 306. If the
current word is not “a” or “an” as established by 308, the
algorithm goes to the next word through blocks 404, 306. If

¢C 7%

the current word w1l is either “a” or “an”, and the next word
w2 is found in Table 1 as established by block 310 then the
current word wl must be corrected to “a” if needed as
specified by 312. If the next word w2 is not found in Table
1 but is found in Table 2 as established by block 314, then,
the current word w1l must be corrected to “an” if needed as
specified by 316. Otherwise, if the next word starts with the
letters “eu” as established by block 318, then, the current
word w1 must be corrected to “a” if needed as specified by
320. Otherwise if the next word w2 starts with “a”’, “e”, “1”,
“0” or “u” as established by block 322, then, the current
word w1 must be corrected to “an” if needed as specified by
324. Otherwise, the current word wl must be corrected to
“a” if needed as specified by 326.

c¢) Correction of Incorrect Auxiliary-Verb Sequences

As mentioned here and before when non-native speakers
try to write English text they often use an incorrect tense in
a complex auxiliary-verb sequence. An example 1s “he has
consider”’. Here the incorrect usage is the tense of the verb
“consider”. None of the current grammar checking systems
check for auxiliary-verb sequences due to the apparent
difficult in recognizing such sequences and also due to the
fact that part of speech tags are usually not computed.

In the subject system, and referring now to FIG. 4, a
sentence 410 is analyzed by a part of speech tagger 412. to
derive the parts of speech of the sentence involve as illus-
trated at 414.

In order to detect the error, one has to detect both the
ending point and the beginning point of the incorrect aux-
iliary-verb sequence. For instance, in the sentence “He has
been consider this fact” it is important to detect the end of
the error namely “consider’” which is the fourth word in the
sentence. All words after “consider ” namely “this fact” do
not affect the correctness of the auxiliary-verb sequence.
Likewise, it is important to detect the starting point of the

error namely “has” which 1s the second word in the sentence.

All words before “has” are irrelevant to the determination of
the correctness of the auxiliary-verb sequence.

5,477,448

15

Having generated the parts of speech of the sentence, an
ending point detecting 416 is utilized to compute the end
position of the incorrect auxiliary-verb sequence. In order to
detect the end of the incorrect verb-sequence and as can be
seen 1n FIG. 4B as indicated at 420, all correct part of speech
sequences of all auxiliary-verb sequences are stored in a
directed acyclic graph shown in FIG. 4C to be described
hereinafter. |

From the directed acyclic graph of all correct auxiliary-
verb sequences, another directed acyclic graph correspond-
ing to all possible incorrect auxiliary-verb sequences is
generated at 422. Having the graph corresponding to 422,
this graph will contain the incorrect auxiliary-verb sequence
“have-3rd-person verb-infinitive”. This corresponds to the
incorrect auxiliary-verb sequence ‘“has consider”. In order to
detect the ending point of the error, the graph is traversed
from left to right until an end state is reached while the input
string 1s read from left to right. Since the parts of speech
correspond to words in the input sentence, when the input
sentence parts of speech are read into the incorrect auxiliary-
verb sequence graph, when the graph reaches a final state,
this uniquely identifies the word at the end of the auxiliary-
verb sequence in question. The identification of this word in
term of its position in the sentence is then indicated by
ending point detector 424.

Likewise, starting point detector 426 detects the word
corresponding to the starting point of the auxiliary-verb
sequence In question. This is accomplished by having
detected the end point of the error and working backwards
in the graph from right to left until one reaches the starting
state of the graph. For instance, going from left to right, the
system has identifies has as have-3rd-singular and consider
as verb-infinitive. The system has detected that there is an
error at this point and has identified the word “consider” as
being the last word in the incorrect auxiliary-verb sequence.
Then, moving backwards in the graph and in the input string,
one goes past “consider” and past “has”. This reaches the
beginning of this particular graph and therefore identifies the
word “has” as being the first word in the auxiliary-verb
sequence.

Referring back to FIG. 4A, having determined the ending
point of the auxiliary-verb sequence, the end position of this
incorrect sequence is determined at 428 as the position of the
last word 1n the incorrect sequence of the input sentence,
- likewise, the starting position of the incorrect sequence is
determined at 430 as the position of the word starting the
incorrect sequence as a number reflecting its position in the
input sentence. As illustrated at 432, another directed acyclic
graph illustrated in FIG. 4D specifies a set of possible
correct sequences for each incorrect auxiliary-verb
sequence. Unit 432 then runs through the incorrect auxil-
iary-verb sequence into the directed acyclic graph illustrated
in FIG. 4D and outputs a set of possible correct auxiliary-
sequences for view by the user as illustrated at 434.

Referring to FIG. 4C, a directed acyclic graph describing
the set of correct auxiliary-verb sequences is constructed as
follows for all possible auxiliary-verb sequences. As can be
seen in FIG. 4C, at the left hand side of the graph from its
starting point 440 are boxes 442 which contain all of the
auxiliary verbs in the English language such as “be”,
“were”, “was”, “is”, “am”, “are”, “been’’, “had”, “have”,
“has”, “could”, “should”, “might”, “may”, “can”, “must”,
“would”, “*shall”, “will”, ““do”, “does” and “doesn’t”, “did”.
It will be appreciate that the words “be*-“been” are associ-
ated with node 444. In general a node specifies that the verbs
that can follow those auxiliary verbs are the same. For
instance, “is” can be followed by the word “being” as can the

10

15

20

25

30

35

40

45

30

55

60

65

16

word “were” e.g. “were being”. Thus the node 444 indicates
that there is a set of auxiliary verbs for which following
verbs can be the same. For instance node 446 associated

~with the set of words “had”, “have” and “has” can be

followed by the word “been”. Similarly for node 448, the
words “could“-“will” can be followed by the word “have”.
Also, these words can be followed by the word “do”. Finally,
node 430 specifies that the words “does”, “do”, “doesn’t”
can be followed by “have” but not by “do”.

'This way of graph English usage in fact assimilates all of
the rules info a compact graphical representation so that
correctness of incorrectness of auxiliary-verb sequences can
be obtained.

As can be seen there exists boxes labeled “??77” which
follow the aforementioned nodes. For instance, box 452 It
will be remnembered that the input to this graph is a sequence
of word followed by part of speech. This in essence tags the
input with two variables. In order for the graph to remain
compact the symbol “?7?7” stands for anything not described
at this node. Referring to node 454, box 456 indicates
anything but “been” and “had” can go to node 458. Thus it
can be seen that the utilization of a “???” box stands the
ability to connect to the next node any symbol not described
on the output of the state.

In addition to words, the input sentence also involves
parts of speech. For instance, when the system analyzes the
sequence “have considered”, this graph is compared with the
sequence “have have considered vbn™ in which “vbn” stands
for the past participle form. One start at the left hand side of
the graph and finds the word “have” as illustrated at 460.
From there, one moves to the right past node 446 to box 462
which as described above permits the passage of this word
to node 434. From node 454 the possibilities are “been” at
464 or “had” at 466, neither of which match the input
sentence. The other alternative i1s to go to box 456 which
permits passage to the right to node 458 and then to the box
460 which specifies “vbn* standing for the past participle
form. This permits the passage to node 470. The word
considered is deemed to be acceptable because the analysis
has passed through box 456 such that the sequence “have
considered” is allowed to go to the end point 472 of the
graph. Between the intermediate node 470 and end point 472
1s a block 474 with the symbol<E> denoting an empty word.
The use of <E> denoted box indicates that one can pass from
one node to a following node without consideration of such
things as a following word or a following part of speech.

For words which are not found in boxes 442, they can be
analyzed by passing them through box 476 and node 480 to
parts of speech box 482 and thence to node 484. Box 486
provides an arc to end point 472 if appropriate or passed
node 484 through box 488 to node 490 and thence to part of
speech box 492 or 494 prior to arriving at end point 472.
Finally, node 484, if coupling the word with having passed
to node 496 and box 498 to node 500. Box 502 passes node
484 via node 504 to part of speech box 506 and then to end
point 472 if appropriate. If the word at 484 is to be coupled
to both “having” and “been” it is passed to node 508 through
box 510 to node S12 and thence through box 514 to node
516. Thereafter it is either part of speech 518 to end point
472 or box 520. Thus proper usage of the input word
“having” “been” is determined as correct if it reaches end
point 472 via the route previously noted above. If however
the word “being” is to be added to this sequence the output
of node 512 is passed to node 522 and box 524 to node 516.

In summary, the direct acyclic graph specifies all correct
auxiliary-verb usages. Consequently, a similar graph can be
constructed of all incorrect auxiliary-verb sequences. Thus
having constructed a graph representing all correct usage,
one mstantly has a graph representing all incorrect usage.

The compactness of this approach is exceptionally efficient

5,477,448

17

in the analysis of sentences as can be seen from the instruc-
tion set of Appendix B.

Referring now to FIG. 4D a finite state transducer in the
form of a directed acyclic graph is utilized for proposing
corrections for incorrect auxiliary verb sequences as deter-
mined by the acyclic graph of incorrect verb sequences
generated above. In order to propose approprate corrections
the auxiliary verbs are paired such that the left word in each
pair is identified as being incorrect, and the right word 1s the
correction. For instance, having identifies that the auxiliary
verb sequence “will had” is incorrect the graph of FIG. 4D
is utilized for specifying a correct sequence. Starting with an

10

input node 530 one is permitted to go through box 532 with

the left of this box is the same as the first word of the input.

15

Having passed through nodes 534 and box 536 to arrive at

node 538 the word now considered is the word “had”. Box

540 indicates that “had’ should be changed to “have” which
fact is outputted to node 542 and thence through box 544 to
end point 546. Having reaches end point 546 by this path the
correct sequence suggested is “will have”.

A more complicated case is one considering the incorrect
sequence “would considered”. The corresponding part of
speech tags is “would would considered vbn”. In this case
one first reaches node 534 by having passed through box 550
denoting “would;would” and through box 536 to box 538.
Here none of the boxes 540, 552, 5§54, 556, 558 or 560 apply.
This is because none of these boxed have the word “con-
sider” in. Note that via box 562 an appropriate and correct
proposal via part of speech analysis box 564 is “would
consider”. This was arrived at because the graph detects that
“considered” is a part tense of the word “consider” This box
suggest the present tense be used and therefore suggest the
word “consider”. The analysis is denoted by “vbd:/vbd/vb™.
Note that vbd means past tense and vb means present tense.
There are alternative nodes from node 538 which provide
other correct changes to the input. For instance, the sug-
gested sequence could “would have considered”. Here box
566 specifies that the word “have’” should be added. Box 568
specifies that the part of speech of “have”, hv, should added
also to the sets if tags. After proceeding through box 570 box
572 specifies that the past tense form should be transformed
to the past participle form. In that case the word “consid-
ered” remains unchanged because it is both a past tense and
a past participle. If the input word had been “knew” as
opposed to “considered” then box §72 would have specified
a change from “knew” which is the past tense to “known”
which is the past participle.

The remainder of the graph of FIG. 4D 1is self explanatory
to provide various suggested changes to incorrect verb

20

25

30

35

40

45

50

sequences once having determined that they are incorrect.

The program listing for this graphical sequences is presented
in Appendix C.

d) Inflection Correction for Non-Native Speakers

As is common, spell checking systems typically detect a
misspelled word through a dictionary lookup algorithm.
While this is successful in detecting misspellings typically
due to inadvertent key strokes or character transpositions,
these systems are ineffective for other types of spelling
errors. Most notably, spelling errors of non-native speakers
or not usually inadvertent transpositions of letters in word,
or inadvertent character insertion or omission, they are
mainly due to grammar problems. For instance, taking the
sentence “He drived his car yesterday”, the error is not one
of either inadvertence or lack of knowledge of a particular
spelling, but rather an uncertainty as to the past tense of the
verb “drive” in this case. |

35

60

65

18

Typically, spell checkers suggest proper spellings based
on the distance between the mistyped word and a word in the
dictionary. The distance is typically based on the number of
characters which would have to be replaced, inserted, trans-
posed, or deleted. The result is oftentimes curious. For
instance, while in the above example the correct suggestion
would be the past tense of “drive”, namely “drove”, current

spell checkers suggest “dried”, and “dripped” amongst oth-
ers. It is interesting to note that the correct word “drove” 1s

not suggested. This is because current spell checking sys-
tems do not analyze detected spelling errors in terms of
grammar.

Another example of the difficulty present systems have in
the suggestion of proper spelling includes 1mproper com-
parative adjectives. For instances a nonnative speaker in
selecting the comparative for “good” will oftentimes select
gooder based on the usual rule for forming the comparative
adjective. As a further example, a non-native speaker when
wishing to form the plural of the noun “child” might select

“the word “childs” as opposed to “children” based again the

usual pluralization rule involving in the addition of “'s” to a
singular noun.

To indicate the inability of current spell checkers to
suggest appropriate words in the above example, a typical
spell checkers suggest the following words, non of which are
correct in context: “chills”, “child’s”, “chill’s”, “child”,
“tildes”. An even more inadequate suggestion by current
spell checker, is the suggestion of how to properly spell
“ooo0dest” namely: “gooiest” and “goosed’.

These types of errors not only are annoying to native-
speaking individuals causing them to refuse to use the spell
checking function, the level of frustration for non-native
speaking individuals is even higher when forced to select
amongst words unfamiliar in or out of context.

Referring now to FIG. 5 in the Subject Invention, it 1s
important to identify typical examples of words which do
not follow normal rules either as to pluralization, past tense,
past participle, comparative formation, superlative forma-
tion. It is from this unique list of incorrect words generated
on the basis of grammar that the subject system suggest
more suitable replacement words. The subject spell check-
ing system operates normally to detect misspellings by a
dictionary lookup system. Thereafter, correct words are
suggested based on both the compendium of typical incor-
rect words and root and morphology features as will be
discussed below.

In FIG. 5, an English words corrector 600 includes an
English words dictionary 602 and a list of incorrect English
words 604 generated by comparing at 606 words from the
English word dictionary 602 and a dictionary 608 generated
by normal rules of English word formation. The result of the
comparison is the above mentioned unique listing of trouble-
some words based not on spelling mistakes but rather on
Incorrect grammar.

Referring now to FIG. 6, in the process of actually
correcting detected incorrect words, English words dictio-
nary 602 is used along with the list 604 of incorrect English
words previously generated as discussed in connection to
FIG. 5. The detected incorrect word is available at 610,
derived conventionally through dictionary lookup. Both the
incorrect word which has been detected and the list of
incorrect English words is applied to a umit 612 which
determines the root of the incorrect word and its morpho-
logical features such as tense, number, comparative Vvs.
superlative forms. For instance if the incorrect word
“drived” the root form of this word is “drive” and its
morphological feature is “past tense or past participle”. The

5,477,448

19

root and the morphological features are provided to a unit
614 which correlates the root and the morphological features
with the corresponding English words in the English words
dictionary 602 to provide a suggested corrected word
thereby taking into account both rules of grammar and
exceptions there too.

In essence, the system having derived the root and mor-
phology based on typical incorrect usages is now capable of
- suggesting appropriate words correlated with these uncor-
rected usages. The system does provide a sophisticated
lookup having identified problem words which are problems
due to grammar as opposed to simple misspellings. The
program listing describing the process is contained in
Appendix D.

It will be appreciated that a part of speech tagger can be
beneficial in improving the accuracy of the words suggested
by the system. For instance, where a misspelled word could
either be a past tense or a past participle. An example is from
the above 1s the correction of “drived” which could lead to
“drove” or “driven”. Knowing the way in which the “incor-
rect” word is used in the sentence can result in a proper
selection based on parts of speech.

e) Detecting and Correcting Improper Usage of Deter-
miners

One of the more difficult problems for non-native speak-
ers 1S the problem of determiner usage. Determiners are

words such as “the”, “a”, and “some” that determine the

referent of a noun phrase. There are three categories of errors
mvolving determiners. The first is the missing determiner.
For example, the sentence, “John read book™ is missing a
determiner for the noun phrase “book”. A second class of
determiner errors is the use of extraneous determiners. An
example is “John went to the New York”. Here the deter-
miner “‘the” 1s improper and is to be deleted. The third class
of determiner errors is the lack of agreement between a
determiner and the associated noun. For instance, “John read
many book™ illustrates the lack of agreement in number
between “many’” and “book”.

In order to detect the improper use of determiners, part of
speech tags are utilized in the analysis. The part of speech
tagger 1s described here and above in connection with FIGS.
2A, 4A, 11, 12 and 14. As an example of a tagged sentence,
consider the sentence “John read long novel”. Here the tag
for “John” 18 “proper-noun”; the tag for “read” is “verb-
past”; the tag for “long” is “adjective”; and the tag for
“novel” is “singular-noun”.

As illustrated in FIG. 7, the system identifies noun-
phrases as illustrated in decision block 700, which identifies
noun phrases in the sentence by maximally matching a
pattern that defines which sequences of part of speech tags
constitute valid noun-phrases. The pattern for noun-phrases
1S given by: |

[DET}(MODS NOUN AND)* MODS NOUN,,..,
and the pattern for MODS is given by:
(MOD*AND)*MOD

where DET, MOD, NOUN, and AND are defined as sets of
part-of-speech tags for determiners, modifiers, nouns and
coordinating conjunctions, respectively. The notation
[X]means zero or one occurrences of the enclosed expres-
sion X. The notation (X)* means zero or more occurrences
of the enclosed expression X. A plus superscript, as in X",
means one or more occurrences of the expression X.

10

15

20

25

30

35

40

45

50

35

60

65

20

‘The purpose of the above is for identifying noun phrases.
For example, in the sentence given above, the noun phrases
are “John”, corresponding to the part of speech sequence
“proper-noun”, and “long novel”, corresponding to the part
of speech sequence “adjective singular-noun”. The above
uniquely 1dentifies noun phrases by identifying the start of
the noun phrase and its end, as can be seen by the program
listed 1in Appendix E. It 1s of major importance that noun
phrases be identified in order to check for either missing
determiners, extraneous determiners, or lack of agreement in
number for the constituents of the noun phrase.

Once a noun phrase is found, as illustrated at 702, the
system tests whether the noun phrase is missing a deter-
miner. The test looks at the entire noun-phrase, NP, and also
looks at the head noun, NOUN, ,_,, which is the last word in
the noun phrase. Head refers to the most important noun in
the phrase and has been found to be the last word in most
instances. The test for a missing determiner also looks at the
determiner of the noun-phrase, DET, which either is the first
word of the noun phrase or does not occur at all. If the head
noun is a singular, non-proper noun, and DET is not present,
as determined at 704 and 706 in FIG. 8, then the noun phrase
is tested at 708 to see whether it is a title. A title is taken to
be any capitalized phrase other than a proper noun; for
instance, “The Atlanta Police Department” and *“Grady
Hospital™ are titles. If the noun phrase is not found to be a
title, then the head noun is tested to see whether it is a mass
noun at 710. A mass noun is a noun that represents an
unspecified quantity of a substance, for instance, “rice”,
“fish”, or “carbon”. It will be appreciated that mass nouns do
not require determiners because they function effectively as
plural nouns.

If the noun phrase is a title, then an analysis is done to
ascertain whether the head noun 1s a mass title noun, as
illustrated at 712. A mass title noun is analogous to a mass
noun, but occurs in a title. For instance, in the sentence, “She
attended Harvard University”’, the noun phrase “Harvard
University” is a title, and “University” is a mass title noun.
Note that “University” therefore appears in the sentence
with no determiner. Observe also that mass title nouns are
not the same as mass nouns. For instance, while “Univer-
sity’’ 1s a mass title noun, it is not a mass noun. This can be
seen from the sentence, “She attended a fine university”,
where the noun “university” is given the determiner “a”. It
will thus be appreciated that no suggestions are made if it is
determined that one has a mass title noun.

There 1s, however, a problem for idiomatic usage. As
illustrated at 714, the noun phrase is analyzed to see if it is
part of an 1diom. This 1s done through lookup in an idiom
dictionary. If the noun phrase is part of an idiom, again no
suggestion 1s made. For example, in the sentence, “The
evert took place”, no suggestion is made for the noun phrase
“place”, although it lacks a determiner, because it is part of
the idiom “to take place™.

For singular non-proper nouns which have no determiner,
if the head noun 1s not either a mass noun or a mass title
noun, and if the noun phrase is not part of an idiom, then the
system suggests that there i1s a missing determiner, as
illustrated at 716.

Referring now to FIG. 9, the system then checks the noun
phrase 720 for an extrancous determiner. This is accom-

- plished as follows. Whether or not the head noun is a proper

noun 1s determined at 722 by introducing the noun phrase
and ascertaining 1f a determiner is present as illustrated at
724. If the above conditions are met, it is determined that
one has an extraneous determiner, as illustrated at 726. For
example, “John went to the New York™ would be indicated

5,477,448

21

as having an extraneous determiner because the noun phrase
“the New York™ contains a head noun which 1is a proper noun
and because there is a determiner, namely the word “the”, 1n
the noun phrase. Proper nouns are identified by the tagger
which determines the existence of a proper noun based on
probabilities and context.

Again referring back to FIG. 7, as illustrated at 730, the
subject system then checks the noun phrase for number
disagreement, How this is accomplished is illustrated in
FIG. 10. The determination of number agreement is accom-
plished by introducing the noun phrase to a detector which
determines whether the head noun in the noun phrase is a
proper noun, as illustrated at 732. If it is, there can be no
disagreement in number. This i1s because if a proper noun
phrase contains a determiner, then it already will have been
reported as an extraneous determiner error. Assuming that
the head noun is not a proper noun, as illustrated at 734, the
system determines whether or not the noun phrase contains
a determiner. If not, there can be no problem of number
disagreement.

As illustrated at 736, if there is a determiner, then the
number of the determiner is checked against the number of
the head noun, i.e., singular or plural. If they agree, then no
~error is signaled; whereas if they disagree, a suggestion 1is
made to change the number of the head noun to agree with
the number of the determiner. Thus for the sentence, “John
read one books”, it is suggested that the head noun “books™
be changed to agree with the determiner, and is made
singular. Likewise, for the sentence, “John read many book”,
the subject system suggests changing the head noun to plural
to agree with the determiner. Alternatively, the system may
be adapted to change the determiner as opposed to the head

10

15

20

25

30

noun. However, this is a more unlikely course of action. The .

former yields better results because of the difficulty of
ascertaining what the proper determiner should be. It 1s
therefore assumed that the individual has properly entered
the correct determiner as regards to number.

In summary, the subject system utilizes a number of
techniques for detecting and correcting improper usage of
determiners, through the utilization of a tagged sentence and
the detection of noun phrases, head nouns, proper nouns,
mass nouns, mass title nouns, and idioms. Critical to the
proper determination of determiner misuse 1s the detection
of noun phrases through the use of pattern matching
described above in connection with FIG. 7.

f) Recognition of Proper Nouns and Other Intrinsically
Capitalized Words

It is of some importance in the analysis of sentences to be
able to recognize when a word is a proper noun, because it
then behaves in a uniquely identifiable way as opposed to all
other nouns. By having the ability to recognize not only
proper nouns but also other intrinsically capitalized words,
such as those that occur in titles, such as “Harvard Univer-
sity”’, sentences can be parsed and understood so that gram-
mar can be analyzed. |

A word may appear capitalized in an English sentence for
two reasons. First, it is either a proper noun or other
intrinsically capitalized word. Secondly, it occurs at the
beginning of a sentence, or after certain punctuation, but
would otherwise not be capitalized. As an example, consid-
ering the sentence, “Wells was an English novelist”, it will
be appreciated that “Wells” is capitalized because it 15 a
proper noun. Considering the sentence, “Wells were dug to
provide drinking water”, “wells” is capitalized because 1t 1s
the first word of the sentence.

40

45

50

55

60

65

22

Thus in the first sentence, a grammar-checking system
must recognize that “Wells” is intrinsically capitalized and
is therefore a proper noun. In the second sentence, the
grammar-checking system must recognize that “wells™ 1s not
intrinsically capitalized and is therefore an ordinary plural
noun. |

In previous approaches to determining whether or not a
noun is a proper noun, systems have applied relatively
limited techniques to recognizing intrinsically capitalized
words. One approach has been to assume that the first word
of a sentence is never intrinsically capitalized. This fails as
indicated by the first sentence and for any sentence that
begins with a proper noun.

Another approach has been to classify every word as
either a proper noun or an ordinary word, but not both. It will
be apparent from the above two sentences that “Wells” can

be both a proper noun and an ordinary word, causing this

- type of classification system to fail.

The obvious problem with failing to properly identify
whether or not a word is a proper noun 1s that in dictionary
lookup, the wrong definition will be retneved. While in
simple grammar checking, definitions are not required,
sophisticated word-processing and grammar-checking sys-
tems which provide tutorial or informational data when
determining proper usage require correct identification of
proper nouns and other intrinsically capitalized words. Even
when dictionary-lookup functions are not part of a grammar-
checking system, recognition of proper nouns and other
intrinsically capitalized words is important.

The importance of identifying whether a word is a proper
noun or not affects the operation of the part-of-speech tagger
which must accurately determine the part of speech of each
word in a sentence through the use of trigram probabilities.

- Because the capitalized and uncapitalized versions of a word

have different trigram probabilities, it is important for the
tagger to know which version of the word 18 present 1n the
sentence in order to apply the correct trigram probabilities.
For example, the trigram probabilities for the proper noun
“Wells” are different from the trigram probabilities for the
ordinary noun “wells”. Thus the tagger would have to realize
that in the sentence, “Wells was an English novelist”, the
word “Wells” is a proper noun, and therefore it should apply
the trigram probabilities for the capitalized version of
“Wells”.

In order to establish whether a word is an ordinary word,
as opposed to a proper noun or other intrinsically capitalized
word, the subject system determines which of the two
interpretations of each word is the best one: the interpreta-
tion of the word as a proper noun, or the interpretation as an
ordinary noun. It does this by generating two versions of the
sentence, one assuming the noun is proper, the other assum-
ing it is ordinary. It then compares the trigram probabilities
of the two sentences. If the sentence assuming that the word
is a proper noun has the higher probability, then the word is
considered to be a proper noun. Otherwise the word 1is
considered to be an ordinary noun.

Referring now to FIG. 11, in order to ascertain whether or
not a noun is a proper noun, there are two steps to the
decision-making process. The first step, as illustrated at 800,
is a preprocessing step in which, as illustrated at 802, one
starts with a tagged training corpus. This refers to a set of
sentences in which the words of each sentence are annotated
with their part-of-speech tags. Next, training corpus 802 is
revised as illustrated at 804 to uncapitalize words that are not
proper nouns, or, in general, are not intrinsically capitalized.
A word is considered to be intrinsically capitalized if the
word has been tagged as a proper noun or title, or 1f 1t 1s an

5,477,448

23

acronym, or if it 1s the pronoun “I”’. Moreover, words are
uncapitalized if and only if they occur at the beginning of a
sentence, or atter an open quote or colon.

More particularly, as illustrated in FIG. 12, the tagged
training corpus 808 1s analyzed at 810 to obtain the next
word/tag pair, if any, from the corpus. If one is found, the
word is analyzed at 812 to sec if it is capitalized. If the word
1s capitalized, as illustrated at 814, it is ascertained if the
word 1s the first word of a sentence or if it follows an open
quote or a colon. If so, as 1llustrated at 816, the word is tested
to see if 1t has been tagged as a proper noun or title, or if it
1§ an acronym or the pronoun “I”. If it is not, then the word
1S to be uncapitalized in the revised training corpus as shown
at 818.

Reterring back now to FIG. 11, the revised training corpus
1S analyzed at 820 to obtain a trigram probability model of
the words. This provides a modified trigram model to
eliminate errors associated with misidentifying a word as a
proper noun when it is in fact an ordinary noun, or vice
versa. After having preprocessed the tagged training corpus
to eliminate errors, the trigram model is utilized at 822 in the
decision-making for determining whether the word in ques-
tion is intrinsically capitalized. This requires as an input a
word in the sentence, with the output being the underlying
spelling of the word. |

As seen in FIG. 13, the decision-making process
described at 822 to determine whether or not a word is
intrinsically capitalized, starts with a word in the sentence,
as illustrated at 850. This word is analyzed to determine if
1t 1s capitalized in that its initial letter is a capital letter. If not,
as illustrated at 851, the interpretation of the word is that
which is given literally by the sentence. That is, if it appears
capitalized 1n the sentence, it is interpreted as a proper noun.
If 1t appears uncapitalized in the sentence, it is interpreted as
an ordinary word. Thus if the word is not capitalized, no
special action is taken.

Now, assuming the word is capitalized, as can be seen at
854, it is determined if the word is the first word of a
sentence or if it follows an open quote or colon. If not, no
further action is taken. If so, as illustrated at 856, the word
is processed further to ascertain if it is an acronym. An

acronym 1s characterized by all of its alphabetic letters being
capitalized or its existing in an acronym dictionary. If the
word 1s determined to be an acronym, again there is no
further processing.

If the word is not an acronym, then as illustrated at 858,
the system calculates the probabilities of the two versions of
the sentence, one with the word at issue treated as a proper
noun, which is capitalized, and the other with the word at
1ssue treated as an ordinary noun, which is uncapitalized, in
accordance with the trigram model as illustrated at 859. The
calculation is as described in accordance with the aforemen-
tioned part-of-speech tagger.

If, as illustrated at 860, the probability of the sentence
with the word uncapitalized exceeds that of the sentence
with the word capitalized, then the system returns the
uncapitalized spelling of the word as the most probable
underlying spelling, so that this spelling can be utilized for
further grandmas checking, Otherwise, as illustrated at 864,
the system returns the capitalized spelling of the word as the
most probable underlying spelling.

The algorithms associated with the FIGS. 11-13 block
diagrams is presented hereinafter as Appendix F

What will be appreciated is that by recovering the under-
lying spelling of the word, grammar-checking systems can
be made more accurate and more useful. The recovery of the
underlying spelling involves two steps in which the first step
corrects the part-of-speech tags of the training corpus for
errors which are induced through the mischaracterization of

10

15

20

25

30

35

40

45

50

55

60

65

24

whether the words are proper nouns or not. Secondly, a
series of analyses are performed to ascertain whether the
capitalized or uncapitalized spelling of the word is more
appropriate. This 1s accomplished through decision-making
elements which decide if the word is intrinsically capitalized
using the revised trigram probability model obtained in the
preprocessing step.

g) Dictionary Access Based on Context

When writing text, non-native speakers rely on the avail-
ability of a monolingual or bilingual dictionary. A dictionary
is one of the most useful sources of information about
language that non-native speakers rely on. It will be appre-
ciated that the use of a dictionary is not confined to the
problem of grammar checking but is generally useful when
writing text. It will also be appreciated that even native
speakers heavily rely on the use of a dictionary or a
thesaurus when composing text.

Accessing an dictionary entry is not as simple as it may
appear because words out of context are very ambiguous,
both 1n their syntactic behavior and in their meaning. It will
be appreciated that a given word in a dictionary may have
typically as many as twenty, thirty or even more entries. This
large number of entries make the usage of a dictionary very
time consuming.

For example, out of context the word “left” has many
enfries 1n an English dictionary: entries for the adjective
“left” as in the sentence “His left arm”; entries for the adverb
“left” as 1n the sentence “he moved left on entering the
room’’; entries for the noun “left” as “Make a left at the next
corner’’; and entries for the past tense of the verb “leave” as
in the sentence “He left a minute ago”. However, when the
word “left” occurs in an English sentence, only one of this
entries 18 relevant to the context. Currently, no dictionary
provides the ability to access the correct entries of a word
based on context.

In the subject system, the entries of a dictionary are
selected and ranked based on the part of speech assigned to
the given word in context. The entries corresponding to the
word 1In context are first selected. The other entries not
relevant t0 the current context are still available at the
request of the user. The part of speech of the given word in
context 1s disambiguated with the part of speech tagger
described above.

By way of illustration, assuming the word “left” in the
sentence “‘He left a minute ago”, the part of speech tagger
assigns the tag “verb past tense” for the word “left” in that
sentence. For this case, the Subject System selects the
entries for the verb “leave” corresponding to the usage of
“left” 1n that context and then selects the entries for “left”
not used in that context, in particular the ones for “left” as
an adjective, as an adverb and as a noun.

Assuming the word “bases” in the sentence “It has several
bases”, the part of speech tagger assigns the two tag “noun
plural” for the word “bases” in that sentence. It will be
appreciated that out of context the word “bases” can be the
plural of the noun “basis”, the plural of the noun “base”, as
well as the third person of the verb “base”. For the context
"It has several bases™, the Subject System selects the entries
for the nouns “base” and “basis” corresponding to the word
“bases” in that context, and then selects the entries for
“bases” not used in that context, in particular the ones for the
verb *“‘base’.

Referring now to FIG. 14, in order to select entries of a
word occurring in a sentence 900 from a dictionary based on
context, the word 1s analyzed by a morphological analyzer
910 which computes the set of pairs of root forms and
parts-of-speech corresponding to the word independent of
the context. As an example, for the word “left”, the mor-

5,477,448

25

phological analyzer will output the following set of pairs of
root forms and parts-of-speech: (“left”, “adjective™), (“left”,
“adverb”), (“left”, “37 singular noun”), (“leave”, “verb past
tense’’). Morphological analyzer 910 operates by looking up
into a table indexed by all inflections of all words of English
and whose entries are sets of pairs of root forms and
paris-of-speech. The word is also analyzed by a part of
speech tagger 930 in context in order to produce the unique
Part of Speech Tag T 940 corresponding to the word in
context. This is achieved by a part-of-speech tagger which 1s
available as an implementation of Kenneth Church’s Sto-
chastic Parts Program described in “A Stochastic Parts
Program and Noun Phrase Parser for Unrestricted Text” in
the Proceedings of the Second Conference on Applied
Natural Language Processing, Austin Tex., 1988.

For example, if the word is “left” in the context “He left
a minute ago”, the part of speech tagger outputs the part-
of-speech tag “verb past tense”. In order to separate the
morphological roots that correspond to the context from the
ones that do not correspond to the context, a unit 920 splits
the set of pairs of roots and parts- of-speech 920 into two
sets, a set 950 that corresponds to the part of speech tag 940,
and the set 960 that do not correspond to the part-of-speech
tag 940. In the previous example, the set of pairs of roots and
parts-of-speech that correspond to the context is: “leave”,
“verb past tense”. The set of pairs of roots and parts-of-
speech that do not correspond to the context is: (“left”,

“adjective”), (“left”, “adverb”), (“left”, “singular noun™). In

10

15

20

25

26

order to display the entries from the dictionary that corre-
spond to the context, all the entries in a dictionary 970 that
correspond to a root found in the set of pairs of roots and
parts-of-speech that correspond to the context 950 are dis-
played at 980. In the above example, all entries for the verb
“leave” will be displayed as entries relevant to the context.
In order to display the entries from the dictionary that do not
correspond to the context, all the entries in the dictionary
970 that correspond to a root found in the set of pairs of roots
and parts-of-speech that do not correspond to the context

960 arc displayed at 980. In the above example, all entries
for the word “left” as an adjective, as an adverb and as a
singular noun are displayed as entries not relevant to the
context. A program listing for the above is available as

Appendix G.
It will be appreciated that the ability of selecting entries

from a dictionary based on context can be used for mono-
lingual dictionaries as well as bilingual dictionaries, for
native or non-native speakers. The subject system is able to
select those entries relevant to the context therefore drasti-
cally reducing the number of entries that the user has to read.

Having above indicated several embodiments of the Sub-
ject Invention, it will occur to those skilled in the art that
modifications and alternatives can be practiced within the
spirit of the invention, It is accordingly intended to define
the scope of the invention only as indicated in the following
claims.

5,477,448
27

Finclude <stdio.h>
#ifdef MAC

#£ include <stdlib.h>
Jtelse

include <malloc.h>
Fendif

Finclude <ctype.h>
Finclude <string.h>
#include <math.h>
#include <stdio.h>
Finclade "stdlib.h"

Fifndef TAG
F#define TAG.

typedef unsigned int uint:
typedef short unsigned int postag;
typedef 1nt wint;

F#define MAXTAG 500 /¥ moez number of tags ¥/
##define MAXTAGLN 20 /¥ mar number of chars for a tag */

extern void ReadTextTag():
extern postag FindTagNum(char *tag);

extern char *tagsiMAXTAG]; /* all tags */

extern unsigned int ntags; /* number of tags */

Fendif

/* - —— —— B ——

| Header file for mazier.h

P

#ifndef MAXLEX
#define MAXLEX

/* The following number must be smaller than USHRT MAX (63535} */

#define MAXWORDS 33718
#define MAXLEX 58610

#define MAXLAST3 5000
#define MAXLAST3LEX 11000

Fdefine MAXBIGRAMS 5000
Fdefine MAXBITABLE 400

10:56 May 25 1994

“#“—-_-__‘“__*_—

L8 N B % W T L B e A A sl ——— L I

28

(appendixA.c)

10

20

30

30

Page 1 of appendizA.c

_ 5,477,448
29 30

(appendixA.c)

tdefine MAXTRIGRAMS 60500
#define MAXTRITABLE 8610

#Fendif

#ifndef HASH.
#define HASH_

extern wint wordhash(char *s):

extern wint wordhashe (char *s):

extern wint last3hash(char cl, char c2, char ¢3):

extern wint last3hashc (char cl, char c2, char ¢3):

extern unsigned int bihash{postag i,postag j):

extern unsigned int trihash(postag i,postag j,postag k); 70

stendif

/¥ _ — - e S Uk i b S A e o . . e e e e

Header file for misc.c |
Defines miscellaneous utilities. |

#Hifndef MISC.
#define MISC_

#ifndef TRUE
#define TRUE 1
#Hendif

Fifndef FALSE 90
#define FALSE 0 '
Fend:rf

/¥ Macros to consiruct filenames in the gcheck direclory tree.
Example of usage: GCHECK SRC FILE("dels.c”)
These macros can only be used by other #DEFINEs io define
constant filenames. */

#define GCHECK SRC_DIR "/projects/gcheck/gc04"
#define GCHECK _DATA_DIR "/projects/gcheck/gc04/data”
F#define GCHECK SRC FILE(X) GCHECK SRC DIR "/* X 100

#define GCHECK DATA FILE(X) GCHECK DATA DIR /" X

/* Macros to shorien Tecl declarations */
#define DEF_TCL(x) int x (ClientData data, Tcl_Interp *interp, \
int arge, char *argv(])

#define TCL_CREATE(x.y) Tcl_CreateCommand{interp, x, y, (ClientData) NULL. \

10:36 May 25 1994 | Page 2 of appendizA.c

5477448
31 32

(appendixA.c)
(Tcl_ CmdDeleteProc *) NULL)

extern int prefix_p(char *prefix. char *string);

extern int suffix p(char *suffix, char *string}): 110
extern char *mystrdup(char *string);

extern char *mysubstr(char *string. int first. int next);

extern int next_token{char *line. int *first, 1int *next. char *separators);

‘extern int next_nonspace_token(char *line. int *first, int *next};

extern char **new string array(int n);

extern void free_string array(char **strings);

‘extern int string array_len{char **strings):

extern void *mymalloc{size t n);

extern voild *mycalloc(size t nelem, size_t elsize):

extern void myfree(void *ptr); 120
extern char *strip_pos(char *pos);

extern void myerror();

extern int fsprintf():

extern Int mystrcmp{char **sl, char **s2):

extern FILE *mv{open{const char *filename. const char *mode};

Fendif

#ifndef EXTERN.
#define EXTERN_

#define MAX SENT 1000 /* mar number of words in a senience */

#define MAXTAG 500 /* mar number of tags */

#define MAX_INPUT (MAX_SENT+2) /* maz length of the input with vight */
/* padding*/

F#define MAXTAGLN 20 [/ * maz number of chars for a tag */ 140
#define MAXLINE 1000 /* maz number of chars on a line */

#define MAXWORD 30 /¥ mar characters in a word */

#define MINLOGP (~1E100) /* minimum of log prob */

Fendif

I I T S A LA L. LA I S S s s s il AN R T I TEEE T S EEE Selr smiskl Sibpk lpDay S skl SR st Sm—

#ifndef SENT._
#define SENT.

extern wordptr SENTENCE[]:
extern mnt SLEN;
extern char RAW SENTENCE[;

extern char *GetSpelling(int n);

10:56 May 25 199/ n Page 3 of appendizA.c

5,477,448
33 34

(appendixA.c)

extern void InitSentence{void); 160
extern void SplitSentence(char *buf):

extern void TokenizeSentence(char *buf);

extern void add_word_to_sentence(word *wp);

extern int penult_capitalized_p(void);

extern int char_to_word_index(int_char_1);

extern int word_first_index{int word_1);

extern int word_next_index{int word_i}:

extern void FPrintSentence(FILE *stream);

extern void fsprint_np bracketing(FILE *fp, char *str);

extern void sprint_np _bracketing(char *str). | 170
extern void fprint_np_bracketing{FILE *fp});

#endif

— — -.“--_——————-————ﬂ———‘l_““—_“_—'__ — —

#ifndef TEXTLEX_

#define TEXTLEX_ - 180
struct lexinfo {

postag pos; /* part of speech ¥/

double lp; /* log probabilaty */

struct lexinfo *next; /* next lexinfo in the hist ¥/

char *root; | /* root form */ |

};

typedef struct lexinfo *lexlist;

struct tri { 190
postag 1,j.k;
double lp;
struct tr1 *next;

}:

struct bi {
postag 1,);
double lp;
struct bi *next:

} 200

struct lastd {
char cl,c2.cd;
lexlist lex:
struct lastd *next:

}:

struct lexge {
struct lexinfo *car;
struct lexge *cdr: 210

};

10:56 May 25 1894 Page 4 of appendizd.c

3,477,448
35 36

(appendixA.c)
typedef struct lexge *lexgclist:
typedef struct word *wordlist:
typedef struct tn *trilist;
typedef struct b1 *bilist:
typedef struct lastd *lastdlist;
extern lexlist lexalloc(postag pos. double Ip. lexlist next. char *root);
220
Hendif
/* ______________ e e e " T A 4 S " S o ke i Tk S M o . S T S A S o _— A ok o 7o v o S . A
| Header file for findbin.h
X _ _ @ i A i . e s e e o T S —— —— A o et o o e e e e s e e
#Fifndef FINDBIN_
#define FINDBIN_
extern lexlist bin_findword(char *wd): 230
extern lexlist bin_findlastd(char cl.char c2.char ¢3):
extern lexlist bin_findwordas(char *word, char *tag):
extern double bin_findbi(postag 1. postag j):
extern double bin_findtri(postag i. postag j, postag k):
#Hendif
/* e e —————_———— - o o . e e e e ———— i e e oo o T . — e
| header file for word.h
¥ —_——— ————— e, - D46 ———
Fifndef WORD_
#define WORD_
/¥ Codes used 1n the ‘annolations’ field of ‘word' structs */
#define START_NP 0x01
Fdefine END_ NP 0x02
/* —— e e e e e e e e e e e e e ~B5— — — — — — —
| Struclure containing information aboul words
K e e e e e o — — — — — — —_ e e o e — — — — —— et — o — o — —_ - -
struct word {
char *spelling; /¥ the word itself */
int spelling static: /¥ whether spelling dynamic or static */
postag tag: /¥ code for part of speech lag */
int ood: /* TRUE if outl of dictionary */ |
int start; /¥ wndez in senfence of Ist char of word */
in¢ end: /* wndez in sentence of Ist char after word */
int annotations; /* for NP boundaries, elc.; sec codes above */ 260

}

typedef struct word word:
typedef struct word *wordptr;

10:06 May 25 199 Page 3 of appendizA.c

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

5,477,448
37 38

(appendixA.c)
wordptr WordAlloc(void) ;
wordptr MakeWord(char *, int, postag, int. int, int, 1nt);
wordptr Copy Word(wordptr);
void FreeWord{wordptr);
void initialize annotations{word *wd); 270

void mark np start{word *wd);

void mark_np_end(word *wd);

int start_np p{word *wd):

int end_np_p(word *wp):

void SscanSentence{word **words, char *buf):

int SentLength(word **s):

vord FreeSentence(word **):

void CopySentence(wordptr *. wordptr *, int):

void CopySentButN(wordptr *NEWSENT. wordptr *SENT, int LEN, int n);

void CopylnsertSent(wordptr *, wordptr *, int , int, char *); 280

#define WORD SPELLING{X) (X->spelling)
#define WORD SPELLING_STATIC(X) (X->spelling static)

#define WORD_POS(X) (X~>tag)
#tdefine WORD TAG(X) (X—>tag)
#define WORD START(X) (X—>start)
#define WORD_END({X) (X —>end)
#Fdefine WORD_QOD(X) (X—=>00d)
| 290
Fendif
extern postag FindTagNum{char *tag):
char *starttag = "S-T-A-R-T";
char *endtag = "E-N-D";
char *defaulttag = "nn"™; /* defaull lag */
char *cardtag = "cd"; /* lag for cardinal number */
struct atable *tritable *wordtable, *suftable; | , 300
double minbis, mintris.minunts,minsuf;
lexgclist lexgarbage = NULL;
char *1ags[MAXTAG]: /* all lags */
unsigned int ntags; /* number of lags */
/* — —_— e e o e e e o e e e i S —————— .t o s — —
statecons, Stalelist
The stale is indered by the pair (tagl tag?) 310

p 15 the manimum forward log probabilily of this slale

up lo the current npul)
nerl is a pointer to the next state for the same current nputl.
prev potnis lo the siale that caused this state to exisi. If

is used for retrieving the decoded sequence.

e mE— SR sl _-..-——!-Il-i—'-—u-l--——_——““——-ﬂlﬂﬂ__-—————- ke e =l TS e bl B AP SIS S-S E—

struct statecons {

10:56 May 25 1994

Page 6 of appendirA.c

5,477,448
39 40

(appendixA.c)

postag tagl; _ |
postag tagZ; : 320
double logp;
struct statecons *next;
struct statecons *prev:
};

typedef struct statecons *Statelist;

char *get_stag(postag n)
{
if ((n < ntags) && (n >= 0))
return(tags[n]);
else
myerror("get_stag: tag number %d is out of the range [%d,%d]\n",
n, 0, ntags—1);

char *word stag{word *wptr)

{

if (wptr)
return(get stag{ WORD_TAG(wptr)));
else
myerror("word _stag: null word pointer\n");
} 350

lexgcalloc

- T S R ksl s S Sppees ESES RN SRS I . L] e bl Seppll Sipliar wewenr velis PN SJEEENS- S e el oAl ahelar S GRS SRR e S R

lexgchist lexgcalloc(lexlist car, lexgelist cdr)
{ |

lexgclist lexge;

lexge = (lexgclist) mymalloc(sizeof(struct lexge)); |

if (lexge==NULL) { 360
fprintf(stderr, "Out of memory\n");
exit(0);

}

lexgc— >car=car;

lexge—>cdr=cdr:

return(lexgc);

T — . e ey L VNN VEEN PR Al Sy S — el S Sl VR el S e e e W T S S LS e e . S Ak e S S sk T SRS iy RN VEEEE S ek Pk s el sl sk s E— f——

10:56 May 25 199/ | Page 7 of appendizA.c

5,477,448
41 42

(appendixA.c)
void FreeLex(}exlist lex)
i
if (lex) {
if (lex—>next) FreeLex(lex—>next);
free(lex);
}
J
[e —— — — —_—— e — L R
FreeGCLer
voild FreeGceLex(lexgehist lexge)
{
if (lexge) {
if (lexge—>cdr) FreeGeLex(lexge—>cdr):
FreeLex{lexgc—>car):
free(lexge);
}
} 390
[* _____ —_—— e e e e e e e e e o e o e i e A o . o . o e Sl o M S T o o o . o e . e A o o i
PushLexGarbage
vold PushLexGarbage{lexlist lex)
{
if (lexgarbage == NULL)
lexgarbage = lexgcalloc{lex, NULL):
else -
lexgarbage = lexgcalloc{lex,lexgarbage);
} | | 400
/* S S Sy
{ezalloc¢
lexlist lexalloc(postag pos, double Ip, lexlist next. char *root)
{
lexlist lex;
lex = (lexlist) malloc(sizeof{struct lexinfo}}: 410
if (lex==NULL} {
fprintf(stderr. "Qut of memory\n"):
exit(0);
}
lex — >pos=pos;
tex—>1p=lp;
lex — >next==next:
lex—>root = root;
return(lex);
} 420

/* ______ e ——— - e ————————— e ———
WildCharWord

Guesses all possible parts of speech information

10:536 May 25 1994 | Page 8 of appendirA.c

43

I I iy Ui e a——

lexlist WildCharWord ()

{

}

/* ——-

lexlist result:
uing i

result = NULL;

for(i=0; 1 < ntags; i++) {

result = lexalloc(i.—0.1.result. "*),
PushLexGarbage(result):

}

return(result);

5,477,448

GuessFromLast3Char

44

(appendixA.c)

430

=ranfe oS-l SR S

Guesses the part of speech information of unknown words

based on the last three charalers.

lexlist GuessFromLast3Char(char *s)

{

}

lexhist result = NULL;
char cl,¢2,¢3;
int n;

n = strlen(s);

if (n>3)
¢c3 = toupper(s{n—1)});
¢2 = toupper(s(n—2]);
¢l = toupper(s{n—3});
result = bin_findlast3(c1,c2.c3);

}

return(result):

f‘* ______ S —— ———

GuessDefault Tag
Guesses the defaull lag

lexlist GuessDefaultTag()

{

lexiist result = NULL:
postag pos;
double lp;:
lexlist next:

next=NULL;

pos = FindTagNum(defaulttag);
Ip = minsuf;

result = lexalloc{pos,ip,next, *");
PushLexGarbage(result):

10:56 May 25 1994

430

480

470

Page 9 of appendizA.c

5,477,448
45 46

(appendixA.c)

return{result);

}

480

/* — — e B e e e e e e e e e ke ot i At e e e et o T

(ruess Word

Guesses the part of speech information of unknown words
Return a hst of lerical information based on the lasi
three characlers

lexlist GuessWord(char *s)

{

Jexlist result = NULL:
450

if (stremp(s."xxx")==0)} result=WildCharWord():
if ('result) result = GuessFromLast3dChar(s);

if (Iresult) result = GuessDefaultTag():
return(result):

)

/* - - - —- - -

UnusualWord(char *word)
Returr a list of lexical information of unusual words such

as numbers, ... 500

F_ B B SIS s s e sk THrier el dkinler GGkl it S A= L — il A - —— sl S—

lexlist UnusualWord({char *word})

{
lexlist result = NULL;

postag pos;

double lp;

lexlist next:

if (isdigit(word{0})) {
next=NULL: 510
pos = FindTagNum(cardtag);
lp = 0 /* this prob s wrong */
result = lexallo¢(pos.ip.next.).
PushLex(Garbage(result):

}

return(result};

}

/¥ NEW */
lexhist CopyLex(lexlist lex) 590

{

lexlist newlex:;

newlex = (lexlist) mymalloc(sizeof{struct lexinfo});
newlex—>pos = lex—>pos;

newlex—>ip = lex—>1p;

newlex—>next = lex—>next;

newlex—>root = lex—>root;

return(newlex); | 530

10:56 May 25 1984 | Page 10 of appendizA.c

_ 5,477,448
47 48

(appendixA.c)

}

[* NEW */
lexlist LexAppend(lexlist lexl. lexlist lex2)

{

lexlist lex, newlex, prev, firstlex:

newlex = NULL:
prev = NULL: |
firstlex = NULL: 540

if (lex] == NULL)
return(iex2);

else if (lex2 == NULL)
return(lexl};

else {

firstlex = CopyLex(lexl);
prev = firstlex;
550

for(lex = lexl—>next: lex; lex = lex—>next) {

newlex = CopyLex(lex);

prev—>next = newlex:

prev = newlex:
j
for(lex = lex2; lex; lex = lex—>next) {

newlex = CopyLex(lex);

prev—>next = newlex;

prev = newlex;
} - 560
PushLexGarbage(firstlex);
return(firstlex);

}
}

*‘_I__HH-__-—_—'-—--_———_—_-—__.—._.—

Return 1 if the word appeared as proper noun in the corpus |
0 if the word did not appear as proper noun in the corpus |
—1 if the word never appeared in the corpus |

L

—'—__———_“_q—___—--—_——-ﬂ_——.—“*—

int proper_noun(char *speiling)

{

lexhist lex, first;
int found = {;

reset_lexmem();
lex = first = bin findword(spelling);

if (lex) {
for (lex: (lex '= NULL) && (found == 0); lex = lex~>next)

if (strncmp(get_stag(lex—>pos), "np", 2} == 0) /* begins with np */
found = 1:

10:56 May 25 1894 Page 11 of appendizA.c

580 -

5,477,448
49 50

(appendixA.c)
) .
else { /* not found ¥/
found = -1;
spelling{0] = tolower(spelling[0]):
for (lex = first; (lex != NULL) && (found == 0): lex = lex—>next)
if (strncmp(get_stag(lex—>pos), "np". 2) == 0) /* begins with np */ |
found = 1: * 590
spelling[0] = toupper(spelling{0}): /* undo */
} .
return({found);
’f* ________ —_ R R SN
Return 1 if the word appeared as title—noun in the corpus |
0 if the word did not appear as noun fille in the corpus [
—1 if the word never appeared in the corpus i
¥ — — — e e e e e e e e e o ——— s~ ——— - -— [— 506 -
int is noun_title(char *spelling)
{
lexlist lex;
int found = 0;
reset_lexmem();
lex = bin_findword(spelling);
if (iex) { 610
for (lex: (lex '= NULL) && (found == 0); lex = lex—>next) { |
if {(stremp(get_stag(lex—>pos), "an=tl"} == () /* noun fitle */
found = I; |
if (stremp(get_stag(lex—>pos), "nnd-tl") == 0} /* possesive */
found = 1;
if (strcmp(get_stag(lex—>pos), "nns-tl") == 0) /* plural */
found = 1;
}
} . .
else 620
found = -1;
return(found);
}
/’* ———————————— — P - e e e e e e e et e o o o e e e et it e e e e
FindTags
Jexlist FindTags{word *wd, int pos) |
/* reiurn a linked list of tags with its probability */ 630

{

lexlist lex, lex2:
char *spelling;
extern char linebuf{]:

spelling = WORD_SPELLING(wd);

10:56 May 25 1994 Page 12 of appendizA.c

5,477,448
51 | 52

(appendixA.c)
lex = bin_findword(spelling);

if ((pos == 0) && isupper(spelling[0]) && (strcmp(spelling, "I") != 0)) {
strepy(linebuf, spelling): "
linebuf]0] = tolower(linebuff0]):
lex2 = bin_findword({linebuf):
lex = LexAppend(lex. lex2);

]

644

if ('lex) lex = UnusualWord(spelling):
if []ex —_—= NULL] {
WORD OO0OD(wd)=1:
lex = GuessWord(spelling):
} 650
return(lex):

}

- R) e
BiProb

— slegeplly — ¥ gyl el — —-“—--_-ﬂ—_——pq_-—————_-—————--.,_—-__

double BiProb(postag i, postag j)
/T relurn the probabilily of the bigram of paris of speech */

{
double p; 660

p=bin_findbi(ij);
if (p!=0) return(p);
else return(minbis);

)

TriProb

double TriProb(postag 1. postag j, postag k) 670
/T return the probabihty of the trigram of paris of speech */

{

double result;

result=bin_findtri(i j.k);
if (result>0) return(result);
else return(mintris);

}

_i—l—'-“-——._ﬂ—“_‘_—__ mninlr Pl w—— _—_-—-_"---I’-ﬁi___—“-_'_.—“__—__————__—“_

double alpha = 0.9

double STriProb(postag i, postag j, postag k)
/* return the smoothed probabilily of the irigram of parts of speech */

{

double tri;

10:56 May 25 1994 A Page 13 of appendizA.c

5,477,448

53 54
(appendixA.c)
double bi; 650
double ptri;
double pbi;
double p:

tri=bin_findtri(ij.k):
bi=bin findbi(j.k):
if ((tri <= 0) && (bi <= 0)) {
ptr1 = exp(tri};
pbi = exp(bi);
p = log(alpha * ptri + {1 — alpha) * pbi); ' 700
#ifdef DEBUGS
printf(*=>tri+bi %s %s %s %E\n". tags[i]. tags]j]. tags[k]. p);
#endif
}
else if (tri <= 0) {
p = tri + log(alpha);
Fifdef DEBUGS
printf("=>tri %s %s %s %E\n", tags{i]. tagsj], tagslk], p);
#endif
} 710
else if (bi <= 0) {
p = bi + log(l-—alpha);
#ifdef DEBUGS
printf("->bi %s %s %s %E\n", tags[i], tags[j], tags[k]. p):
Fendif
}
else {
p = mintris;
#ifdef DEBUGS
printf("->mintris %s %s %s %E\n", tags[i], tagsj]. tagsik], p); 720
Fendif
}
F#ifdef DEBUGS
printf("stxri %8 %s s =%E\n", tagsi], tags{j], tags[k], p);
Fendif
- return{p);

}

[e ——————————————————— e —————————
StateAlloc 730

Statelist StateAlloc(postag tagl, postag tag2, double p,
struct statecons *next,
struct statecons *prev)

Statelist new;

new=(Statelist) mymalloc(sizeof(struct statecons});

new->tagl = tagl;

new—>tag?2 = tag?; 740
new—>logp = p;

new->next = next;

10:56 May 25 1994 Page 14 of appendizA.c

5,477,448
33 56

FreeStateNext(appendixA.c)

new—>prev = prev,

return(new),
)
/* _______________________________ —_
. FPushState
void PushState{Statelist *Stateptr. postag tagl. postag tag?, double logp, Statelist prev) 750
/* Create a new Stale added inlo Staleplr (note Stateptr can be NU'LL) */
{

Statelist newstate:

newstate = StateAlloc(tagl.tag.logp.NULL.prev);
if (*Stateptr==NULL) *Stateptr = newstate;
else {
newstate—>next=(*Stateptr)—~>next:
(*Stateptr)—>next=newstate:
} 760

SelMazState P

vold SetMaxStateP(Statelist *Stateptr, postag tagl. postag tag2. double logp, Statelist prev}
/¥ Find the stale with lagl, tag? set its prob to p if p ts mar
(note when Stateptr is NULL a new slaie is crealed) */

{

Statelist sptr. found=NULL; T70

if (*Stateptr==NULL)"
PushState(Stateptr, tagl. tag2, logp, prev);
else {
for (sptr=*Stateptr; (sptr != NULL) && (found == NULL); sptr = sptr—>next)
if ((sptr—>tagl == tagl) && (sptr—>tag2 == tagl))
found = sptr;
if (found == NULL) PushState(Stateptr, tagl. tag2, logp, prev);
else if (found—>logp < logp) {

found—>logp = logp: 780
found—>prev = prev;
)
}
}
¥ e e e e e e e e e e e e e e e e e
FreeStateNert
FreeStateNext(Statelist slist) FreeStateNext
{ 790

if (slist '= NULL) {
FreeStateNext(slist—>next);
free(slist):

}
)

10:56 May 25 1994 Page 15 of appendizA.c

5,477,448
57 58

FreeStateNext(appendixA.c)

int FindLexAstag(lexlist lex, postag tag)

{

lexlist Ix:
int found = FALSE: 8OO

for(lx = lex; (found == FALSE) L& Ix; Ix = Ix —>next)
if (Ix—>pos == tag) found = TRUE;
return(found):

)

void SetFirstWord{wordptr wdptr. postag tag)

{
jexlist lex;
char *spelling: 810
extern char linebuf{];

spelling = WORD _SPELLING(wdptr):

if ({(isupper(spelling[0])) && (stremp(spelling, “I") = 0)) {
lex = bin_findword(speiling}:
if (!FindLexAstag{lex, tag)) {
#ifdef DEBUGS
printf("%s static = %d\n", wdptr—>spelling, wdptr—>spelling_static};
#endif 320
if (WORD SPELLING_STATIC(wdptr)) {
strepy(linebuf, spelling);
]inebuf[ﬂ] = tolawer(spelling[@]);
wdptr—>spelling = mystrdup(linebuf);
wdptr—>spelling_static = FALSE;

}
else { |
spelling[0] = tolower(spelling[0]}:
;
} A 830
)
)
/*'__ —— e o e e e v ——— et e e it e
MazFoward

Return the probability of the path with mazimum probabilily and
sets the array of part of speech lags _

senl | 840
is an array of poinlers to words, the last one pointing lo null

fagged
is an array of parl of speech lag which s filled on return

Foruwfij |
poinls to the list of stales corresponding lo the 1th

mmpul loken.
Relurn MINLOGP if the senlence is nol recognized

10:56 Mey 20 1994 A Page 16 of appendizA.c

3,477,448
59 60

FreeStateNext(appendixA.c)

e vaew SRR SIS S S S S Sl AL S B S B - i S Sy e s e il sl P P G D T T -a— ——r i i —— - —

double MaxForward(wordptr SENT[], int LEN)
{

char **w;

int i.k.n:

postag tagl. tag2, tagi:

lexlist tagptr:

Statelist FORW[MAX_INPUT]:

Statejist s.t:

double maxlogp;

a2

860
for(i=0; i< LEN42; i++} {
FORW/[i]J=NULL: /* reset forward probabilities */
)

reset_lexmem();
/¥ Inthialization, Padding to the left */
for(tagptr=FindTags(SENT]0],0):
tagptr = NULL;
tagptr = tagptr—>next) {
tagl = FindTagNumf(starttag); 870
tag?2 = tagl;
tagd = tagptr—>pos;
maxlogp = STriProb(tagl, tag2, tagd) + tagptr—>lp;
PushState(&FORW/[0]. tag?2, tagd, maxlogp, NULL):
)

/¥ Induction */
for{i=1]; 1 < LEN; i4+4)
for(s=FORWI[i—1]; s != NULL: s=s—>next) {
tagl = s—>tagl; 880
tag = s—>tag2;
reset_lexmem();
for(tagptr=FindTags(SENT[].i):
tagptr != NULL;
tagptr = tagptr—>next) {
tagld = tagptr—->pos:.
maxlogp = s—->logp 4+ STriProb{tagl, tag2, tag3) + tagptr—>Ilp;
SetMaxStateP(&FORWIi], tag2, tag3, maxlogp. s);

}

} 890
reset_lexmem();

/* FIRST PAD TO THE RIGHT */

/¥ lastword END */

/¥ -1 1 ¥

for(s=FORW[i—1]; s '= NULL; s=s~>next) {
tagl = s—>tagl.

tagl = s—>tag?:
tagd = FindTagNum(endtag):
maxlogp = s—>logp + STriProb(tagl, tag2, tagd);
} SetMaxStateP{(&FORW([i], tag2, tag3, maxlogp. s); 900

10:56 May 25 1994 A Page 17 of appendizA.c

5,477,448
61 62

FreeStateNext{appendixA.c)

144
/¥ SECOND PAD TO THE RIGHT ¥/
/* lastword END FEND ¥/
/" =2 =1 ¥
for(s=FORW|[i~1}); s '= NULL: s=s—>next) {
tagl = s—>tagl;
tag2 = s—>tagl:
tagd = FindTagNumi(endtag);
maxlogp = s—>logp + STriProb(tagl, tag2. tagd); 910
SetMaxStateP(&FORVWT(i], tag2, tagd. maxlogp. s);

F
n=i: /* lastword/i—2 END/1—~1 END/t ¥/

/¥ Sentence Probability */

s=NULL:

maxlogp = MINLOGP:

for(t=FORW|n}; t '= NULL: t=t—>next)

if (t—>logp > maxlogp) { 920
maxlogp = t—>logp:
$ = ¢,

}

/* Fill the tags */
if (maxlogp '= MINLOGP)
for(t=s; t '= NULL; t=t—>prev){
if ((n < LEN} && (n >= 0)) {
WORD_POS(SENT|[n]})=t—>tag2:
if (n==0) SetFirstWord(SENT[n], t—>tag?): 930
}
n—-—:

)

/* Free the memory used by FORW */
for(1=0: 1< LEN + 2; 1++4)
if (FORWI[i] != NULL) FreeStateNext(FORWI[i]->next);

/¥ Free the memory used for lezical information */ 940
if (lexgarbage) FreeGcLex(lexgarbage);
lexgarbage = NULL; |

return{maxlogp);

10:56 May 25 1994 A Page 18 of appendizA.c

5,477,448
63

/*akes a tagged sentence and the DAG representing the wncorrecl usage
and oulpuis the sentence with markers around the incorrect parts*/

typedef union {
unsigned char str[4];
unsigned long L
} UBLOC;
#define TAILLE UBLOC (sizeof(long))

typedef struct strd_cell {
unsigned long cel_d:
unsigned long cel_g;
struct strd_cell *suivant:
} *CELL44:
#define TAILLE_CELL44 (2*sizeof(long)+sizeof(CELL44))

typedef struct s_celll3{

UBLOC nombre;

struct s_celll3 *suivant;

} *CELLL3:
f*#define TAILLE CELL1S (sizeof(long)+sizeof(CELL13)}™/
#define TAILLE CELL13 16

typedef struct {
CELLI13 lste;
unsigned long sorte:
} *ET_L13;
#define TAILLE ETL13 (sizeof(CELL13)+sizeof{long))

typedef struct {

ET L13 *etats:

unsigned long nb_etat;

unsigned long taille;

} *AUT_L13,;
#define TAILLE_ AUTL13 (sizeof(ET _L13 *)-+sizeof(long)*2)
#define T AUT_L13 48

typedef struct {
UBLOC *bloc;
unsigned long *cardt;
unsigned long taille;
unsigned long nb_etat;

unsigned long nb_mot;
} *AUT_T_DI3; |

#define TAILLE AUTTDI13 (sizeof(long)*3+sizeof(long *)+sizeof(UBLOC *))

#define T AUT_T_DI3 &85

typedef struct {
AUT. T DI3 autl;
unsigned int stat;
AUT L13 aut2;

11:.08 May 25 1994 A

64

(appendixB.c)

10

20

30

40

50

Page | of appendirB.c

5,477,448
65 66

(appendixB.c)

unsigned long nb_motl;
unsigned long nb mot:
unsigned char **motls:
unsigned long taille:

} *ALP_T D13, |
- #define TAILLE_ALPTDI3 (sizeof(AUT_T_DI13)+sizeof(AUT_L13)+3*sizeof(long)+sizeof(int)+sizeof(char **)’
F#dehine T _ ALP.T DI3 44 60

typedef struct {
CELL44 liste:
unsigned long sorte:
} *ET L44;
#define TAILLE ETL44 (sizeof{long)+sizeof(CELL44))

typedef struct {
ALP_E LT13 alpl: 70
ALP_T D13 alp2:
ET_L44 *etats:
unsigued long nb_etat:
unsigned long taille;
} *AUT_L44;
#tdefine TAILLE AUTL44 (sizeof(ALP_E_LT13)+sizeof(ALP_T D13)+sizeof(ET_L44 *)+sizeof{long)*2)
Fdefine T AUT L44 57

typedef struct {
unsigned long g: 80
unsigned long d;

} BLOC_D44;
#define TAILLE BLOCD44 (2*sizeof(long))

typedef struct {

ALP T D13 alp2:

BLOC D44 *bloc;

unsigned long nb etat;

unsigned long taille:

} *AUT_D44: ap
#define TAILLE AUTD44 (sizeof(ALP_T_D13) + sizeof(BLOC D44 *)}+2*sizeof(long))
#define T_AUT_D44 166

#define SORTE POS D44 -1
Fdefine COD SORTE D44 1000001

typedef struct {

CELLT44 liste;

unsigned long sorte:

} *ET_T_L44: 100
#define TAILLE.ETTL44 (sizeof{long)+sizeof(CELLT44))

typedef struct strd4 _cellt {
unsigned long cel_d;
unsigned long cel gl:
unsigned long cel _g2;

11:08 May 25 1994 Page 2 of appendizB.c

_ 5,477,448
67 , 68

(appendixB.c)

struct str4 ceilt *suivant:

} *CELLT44:
#define TAILLE CELLT44 (3*sizeof{long)+sizeof(CELLT44))

t10

typedef struct {

ALP_E_LTI3 alpl:

ALP T DI3 alp2:

ET T 144 *etats:

unsighed long nb_etat:

unsigned long taille:

} *TRANS L44:
F#define TAILLE TRANSL44 (sizeof(ALP_E_LT13)+sizeof(ALP_T_D13)4sizeof(ET_T_L44 *)+sizeof(long)*2)
#define T TRANS L44 157

120

unsigned char *tabcod:
#define MAX CHEMIN 100
F#define MAX LONG_ CHEMIN 100

void string double_array(char **word.char **pos,char *buff);

void main(int nb,char **arg}{
FILE *f:
AUT D44 wl,w2;
TRANS L44 trans; 130
problem *probs;
char buff{10000];
char **word.**pos;
unsigned long i
unsigned long *wo *wc,*po,*pc;

init_morpho_cor();

[Yone tniftalizes the double array*/ 140
word=(char **)malloc(sizeof{char *)*100);
for(i=01<=9914+)

word{i}=(char *)malloc(sizeof(char)*100):
pos=(char **)malloc¢(sizeof(char *)*100):
for(i1=0:1<=99:14++)

pos{i]=(char *)malloc(sizeof(char)*100):

150
f=fopen(arg{l],"xb"):
getc(f);
wl=read_autd44(f):
fclose(f):

f=fopen(arg[2],"rb");
gete(f);
wl=read_autd44(f):
fclose(f);

11:08 May 25 1994 Page 3 of appendizB.c

R T .

5,477,448
69 70

(appendixB.c)

160
f=fopen({arg{3d],"xd"):
gete(l);
trans=read_transl44(f):
fclose(f):

init_look_wrong pattern{&wo,
Lwe,
“Lpo.
Lpe):

while(fgets(buff.1000.stdin)){
if ((*buffl="\n") && (*buffl="\0")){

string_double_array(word,pos.buff),

/ *creates an emply list of errors messages™/
probs=new_problem list(};

look wrong_pattern(word,
pOS, 180
wli,
w2,
trans,
&probs,
AUXILIARY,
WO,
we,

po,
pc);
180

[*print the list of problems encouniered®/
print_problem list(stdout.&probs);
free_problem list(&probs);

}
j

|

200
void string double array(char **word.char **pos.char *buff){
char *ligne *lg2;
int count=0;

ligne=buff;

count=0;
while(*ligne!="\n’ && *ligne!=2\0"}{
if ((count % 2)==0)
lg2=word[count/2]; 210
else
|g2=pos|count/2].

11:08 May 25 1994 | A Page 4 of eppendizB.c

}

71

5,477,448
72

(appendixB.c)

while(*ligne'=" * && *ligne!="\n’ && *lignel='\0")

*1g24-4+=*ligne++;
if (*higne==* ?)
ligne++;

*lg2="\0":
count++:

]
*(word[count/2])="\0";
*(posf{count/2])=’\0";

220

230

void init_Jook_wrong_pattern{unsigned long **pwo,

}

unsigned long **pwe,
unsigned long **ppo.

unsigned long **ppc){

*pwo=(unsigned long *)malloc(sizeof{long)*100):
*pwe=(unsigned long *)malloc(sizeof{long)*100):
*ppo=(unsigned long *)malloc(sizeof(long)*100):
*ppe=(unsigned long *)malloc(sizeof(long)*100): | 240

void look_wrong_pattern(word
unsigned long len,

AUT.
AUT.

**sent

D44 wi.
D44 w2,

TRANS L44 trans.

problem **pprobs,

int tp, 250
unsigned long *word open.

unsigned long *word close,

unsigned long *pos open.

unsigned long *pos_close){

problem *probs;
unsigned long nb,i.dep.arr j:
char *comm,com1[1000];

probs=*pprobs:

260

(*nav_w_pos)(INIT_NAVIGATE,(void *)sent. NULL, &len.NULL);

nb=bmatch_abstr{wl,
| w2,

11:08 May 25 199/

A Page 5 of appendirB.c

5,477,448
13 - 74

(appendixB.c)
1, /*one looks for the longest sequence™/
word_open.
word_close,
pos_open,)
pos_close. 270
(char * (*)(int.
void *,
void *,
unsigned long *,
unsigned long *))nav_w_pos);
if (nb){ |
for(i=0;i<=(nb—1);1++){
dep=(word_open(i] / 2):
arr={word_closeli] / 2) +- 1. 280
find suggs(&probs.
trans.
(unsigned long)dep,
(unsigned long)arr,
(unsigned long)(word openli]),
(char *(*)(int,
void *,.
void *,
unsigned long *, | 290
unsigned long *))nav_w_pos),
}
}
*pprobs=probs;
} 300
char *nav_w_pos(int tp,
void *argl,
void *arg?,
unsigned long *pl,
unsigned long *p2}{
static unsigned long countl;
static unsigned long count2;
static word **sent; . 310

static unsigned long len;
extern char *word stag(word *wptr);

char *buff2=NULL;

if (tp::RESET_NAVIGATE]{
countl=count2=0:

)

11:08 May 25 1994 A Page 6 of appendizB.c

3,477,448

75 76
(appendixB.c)
else if (tp==NEXT_NAVIGATE)}{
if {(E‘Dlll'ltl % 2)::){ : 370
buff2=(WORD SPELLING(sent[count]/2])):
countl—+-; |
}
else{

if (countl/2 < len){
buff2=(word_stag(sent]{count1/2])):
| countl—++;
}
}
count2=counti; 330
}
else if (tp==PREV_NAVIGATE){
if (count2){ |
count2——:
if ((count2 % 2)==0){
if (count2/2 < len){
buff2=(WORD_SPELLING(sent[count2/2})):
}
)

else{ | 340
if (count2/2 <len){
buff2=(word_stag{sent[count2/2]});
}
;

)
}
else if (tp==INIT_NAVIGATE){
sent={word **)argl; .
len = (ant) (*pl):
} 350
else if (tp==GIVE_COUNT_NAVIGATE){

*pl=countl-—1;

*p2=count?;

}

else if (tp==GIVE_POS_NAVIGATE){
*pl=0;
*p2=0;

}

else if (tp==GIVE_WORD_PQOS){
if ((*pl % 2)==0){ 360

buﬂ‘l:(WORD__SPELLING(sent[(*p1)/2])]:

}
else{

if ((*p1)/2 < len){
buﬁ?z(word_stag(sent[(*p 1}/21));
)

}
} |
else if (tp==IS_END_OF _STRING){
if ({(*p1)/2<len) 376
buff2=NULL:

11:08 May 25 1894 _25 | Page 7 of appendizB.c

5,477,448
77 ' 78

(appendixB.c)
else |
buff2={char *)I.
}
return buff2;
)
unsigned long bmatch abstr{AUT D44 al.
AUT_D44 a2, 380
it tp,
unsigned long *word_open,
unsigned long *word close,
unsigned long *pos_open.
unsigned long *pos_close,
char *(*navigate)(int,
void *,
void *,
unsigned long *,
unsigned long *)){ 390
unsigned long nb.num,last.countl,count2.last_count last_pos;
unsigned long posi,pos2.dep.interogl.interog? dep?;
unsigned char *str, *str2;
ALP_T_Dl13 alphl,alph2;
int fin;
BLOC_D44 *blocl,*bloc2;
nb=0;
(*navigate)(RESET_NAVIGATE NULL NULL.NULL NULL); 400
blocl=al—>bloc;
bloc2=a2—>bioc;
“alphl=al—->alp2;
alph2=a2—>alp2;
interogl =ord_alptd13({unsigned char *)"???“ alphl);
interog2=ord_alptd13({unsigned char *)"?7??" alph2);
dep=0:
while(str=(unsigned char *)(*navigate)(NEXT_NAVIGATE,NULL,NULL,NULL,NULL)){ 410
num==ord_alptdi3(str.alphl);
if (num!=LONG_OUT){
if (bloci[dep+num].g==num)
dep=blocl{dep+num].d;
else if (blocl|{dep+interogl].g==interogl)
dep=bloc1{dep+interogl}.d;
else{
iprintf(stderr,"error bmtach_abstr 0: al should have a ?7? transition at state %ld\n".dep);
exit(0);
} 420
}
else{

if (blocl|{dep+interogl].g==interogl)
dep=blocl[dep+interogl].d;

11:08 May 25 199} -26- Page 8 of appendizB.c

5,477,448

79 -- 80
(appendixB.c)
else{ |
fprintf(stderr,"error bmtach_abstr 0: al should have a 777 tramnsition at state %ld\n" dep);
exit{0);
}
}

430

if(bloc1{dep+SORTE_POS_D44].g==COD_SORTE_D44}4
[*one looks backward®/

dep2=0;
if (tp==1)/*we look for the longest match*/{
in=NON:

last=LONG _OUT:
while(fin!=0U]){ |
if {bloc2[dep2+SORTE_P0S_D44|.g==COD_SORTE_D44){
(*navigate)(GIVE_COUNT_NAVIGATE NULL NULL,&count1.&count2);
(*navigate)(GIVE_POS_NAVIGATE.NULL.NULL,&posl .&pos2); 440
last_count=count2; |
last_pos=pos2;

}

str2z=(unsigned char *)(*navigate)(PREV_NAVIGATENULLNULL ,NULL,NULL)
if (Istr2)
fin=0UI;
else{ |
num=ord_alptd13(str2,alph2);
if (num!=LONG_OUT}){ 450
if (bloc2[dep24-numj.g==num)
dep2=bloc2[dep2+num].d;
else if (bloc2[dep2+interog?].g==interog2)
dep2=bloc2[dep2+interog2].d:
else

fin=0U1;
}

else 1f (bloc2{dep2+interog?].g==interog?2)
dep2=bloc2[dep2+interog2}.d;
else 460

in=0QU]:
}

}

if (last_count==LONG_OUTH
fprintf(stderr."error bmatch 1 inconsistency between the two dags, the backward search failed\s
ex1t(0);

}

(*navigate){GIVE_COUNT_NAVIGATE ,NULL ,NULL,&count1 &count2):

(*navigate}){ GIVE_POS_NAVIGATE NULL.NULL,&pos! ,&pos2):

word_open[nb]=last_count; 470

word_close[nb]=count1;

pos_open{nb]=last_pos:

pos_close[nb]=posl;

nb++;

11:08 May 25 1994 i 2 . Page 9 of appendizB.c

]
}

81

return nb:

}

AUT_D44 read_autd44(FILE *f)

A

unsigned long i.nb_etat. taille;
unsigned char c:

AUT D44 aut;

BLOC D44 *bloc:

ALP_T_D13 alph:

UBLOC

ubl:

c=gete(f);

if (¢!=T AUT D44)

{

5,477,448
82

(appendixB.c)

480

390

fprintf(stderr." error 0 read_autd44 incorrect file format\n");
fprintf(stderr,”Le fichier n’est pas au bon format dans read_autd44\n");
ex11((): '

}

c=getc(f);

if (c==T ALP_T D13)

{
}

else

alph=read_alptd13(f):

alph=NULL;

Fifndef INV

ubl.str{Q]
ubl.str[1]
ubl.str[2

:gEtC(f: .
:getc(f:;
=gete(f);

ubl.str[3
FEelse
ubl.str{3]
ubl.str[2]
ubl.str[1]
ubl.str[0]
Fendif

nb etat=

=getc(f)

ubl.l;

#Fifndef INV

ubl.str{0;
ubl.strfl
ubl.str[2
ubl.str[3
#else
ubl.str{3)
ubl.str[2]

11:08 May

=getc(f);
=getc(f);
=getc(f);
=getc(f);

=getc(f);
=getc(f):

25 1894

200

510

520

330

A Page 10 of appendizB.c

5,477,448
83 84

(appendixB.c)

ubl.str[l]=getc(f);
ubl.str[0]=gete(f);
Fendif

taille=ubl.}:

aut=init_autd44(taille):

aut—>nb etat=nb_etat:

aut—>taille=taille;

aut— >alp2=alph; 540

bloc=aut—>bloc:

for(1=0:i<=(aut—>taille~1):1+4+)
{

Fifndef INV

ubl.str[0]=getc(f):

ubl.str[l]=getc(f);

ubl str[2)=getc(f);

ubl.str{3}=getc(f); 550
Felse

ubl.str[3]=getc(f);
ubl.str[2]=getc(f);

|

0

ubl.str[1]=getc(f);
J=getc(f);

bloc{il.g=ubl.l;

#Fifndef INV 560
ubl.str{0]=getc(f);
ubl.str{l}=getc(f);
ubl.str2]=getc(f):
ubl.str]3]=getc(f);

.Felse
ubl.str[3]=getc(f);
ubl.str{2]=getc(f):
ubl.str[l]=getc(f);
ubl.str[0]=getc(f);
#endif 570

blocli].d==ubl.1;

}

return(aut);

)

TRANS_L44 init_transl44(unsigned long nbetat) 580

{
TRANS_L44 aut;

ET T L44 tr;

11:08 May 25 1994 -29- Page 11 of appendizB.c

5,477,448
85 ' 86

(appendixB.c)

unsigned long i:

aut=(TRANS_L44)malloc(TAILLE TRANSL44):

aut—>alpl=NULL:

aut—>alp2=NULL:

aut—>nb_etat=0:

aut—>taille=nbetat. | 590

aut—>etats=(ET_T_L44 *)malloc(nbetat*sizeof(ET_T_L44)):
aut—>etats[0]=(ET_T_L44)malloc(nbetat*TAILLE_ETTL44);
tr=aut—>etats{0]: |

for(i=0;i<=(nbetat—1):1+4+)
{
aut—>etats[i|=tr+-+:
aut—>etats[i]—>sorte=0:
aut->etatsi]—>liste=NULL: 600

}

return{aut};

)

TRANS 144 read_transl44(FILE *f)
f |
TRANS_L44 aut;
UBLOC ubl;
unsigned char c; 610
ET T L44 tr;
unsigned long i,nbetat taille;
CELLT44 112;
ALP T D13 alpZ2:

c=getc(f); |
if (c!=T_ TRANS_L44)
{

fprintf(stderr,"le fichier n’est pas au bon format dans read_transl44\n");
exit{0}; 620

}
alp2=NULL;

c=getc(f);
if (c==T_ALP_T_D13)

{
alp2=read_alptd13(f);
| 630

#ifndef INV

ubl.str|0]=getc(f);
ubl.str[1]=getc(f);
ubl.str[2]=getc{f):
ubl.str[3]=gete{D);
11:08 May 25 199] A Page 12 of appendizB.c

AN

3,477,448

g7 . 88
(appendixB.c)
#else
ubl.str[3]=getc(f);
ubl.str[2]=getc(f);
ubl.str[1)=gete(f): o
ubl.str{0]=gete(f);
Fendaf

nbetat=ubl.l:

#ifndef INV
ubi.str{0]=getc(f):
ubl.str[1)=getc(f):
ubl.str[2]=getc(f);
ubl.str[3]=getc(f): 650

Felse
ubl.str[3]=gete(f):
ubl.str{2]=gete(f);
ubl.str{1]=getc(f):
ubl.str[0}=getc(f);

#endif

tatlle=ubl.l;

660
aut=nit_transl44(nbetat):

aut~>nb_etat=nbetat;
aut—>taille=taille:
aut—>alpl=NULL:
aut—>alp2=alp2:

if (aut—>nb_etat>0)
for(i=0;i<=(aut—>nb_etat—1);i++)
{

#ifndef INV .
ubl.str[0}=getc(
ubl.str{i]}=getc(
ubl.str[2]=getc(
ubl.str{3j=getc(

#else
ubl.str[3]=gete(f);
ubl.str[2]=gete(f):
ubl.Str[l]zgetc(f);
ubl .Str[ﬂ]:getc(f);

#endif -

aut—>etatsij—>sorte=ubl.l;

Fifndef INV
ubl.str{Q]=getc(f);
ubl.str{l]=getc(
ubl.str(2]
ubl.str[3]=getc(f):

#else

11:08 May 25 199/ S Page 13 of appendizB.c

ubl.str{3]
ubl.str{2:

ubl.strfl

89

=getc(f):
=getc(f);
=getc(f):

ubl.str{0}=getc(f):
Fendif

I=NULL:

while(ubl.l'=FIN LONG)

{

5,477,448

12={CELLT44)malloc(TAILLE CELLT44);

12-—->cel_gl=ubl.l:
2 —>suivant=l;
I=12:

Fifudef INV
ubl.str[0)=getc(
ubl.str[1]=getc(
ubl.str{2]=getc(
ubl.str[3]=getc(

Helse
ubl.str[3)=getc(f);
ubl.str[2]=gete(f);

?

)
f);
f)
f)

ubl.strl]=getc(f);

ubl.str[0]=getc(f);
Ftendif
12~ >cel_p2=ubl.};

#Fifndef INV
ubl.str[0]=getc(f);
ubl.str{l]=getc(f):
ubl.str[2]=gete(f);
ubl.str{3]=getc(f);

#else
ubl.str[3]=gete(f);
ubl.str[2]=gete(f);
ubl.str{l]=getc({):
ubl.str[0]=getc(f);

FHendif
12—>cet_d=ubl.l:

Fifndef INV
ubl.str[0]=getc{f);
ublstr(1)=getc(f);
ubl.str[2|=getc(f):
ubl.str[3]=gete(f);

F#else

ubl.str[2]=gete(f):
ubl.stril|=getc(D);
, ubl.str{0]=getc(f);
#Fendif

ubl.str{3}=getc(f):
!

-
_
-
-
-
"

0

9

(appendixB.c)

690

700

710

730

740

Page 14 of appendizB.c

5,477,448
91 92

(appendixB.c)

}

renv_cellt44{&l):
aut—>etats[i]—>liste=l;

} 750
return(aut);
}
ALP. T D13 read_alptd13(FILE *{)
{
iBLOC 1bl;
UBLOC ubl: 760

ALP T D13 alph:
unsigned long 1;
unsigned char *ligne,c;

c=getc(f);
if (¢!=T_ALP_T DI13)
{
fprintf(stderr,"Le fichier n’est pas au bon format dans read_alptdi3\n");
exit(0): |
) 770

alph=(ALP_T_D13)malloc(TAILLE ALPTD13):

#ifndef INV
ibl.str{0}=getc(f);
ibl.str{1]=gete(f);
Felse
ibl.str{l]=getc(f):
ibi.str[0]=getc(f):
#endif | 780

alph—>stat=1bl.i;

+ c=getc(f);
if ((ibla==0) && (c==T_AUT_T_DI13))
{
alph—>autl=read_auttd13({);
getc(f);
)
else 790

alph->aut]=NULL:

alph—>aut2=read aut|13(f);

11:08 May 25 1994 -33- Page 15 of appendizB.c

5,477,448
93

#ifndef INV
ubl.str[0]=getc(f);
ubl.str{1]=getc(f);
ubl.str{2]=getc(f);
ubl.str[3]=gete(f);

Felse |
ubl.str[3}=getc(f)
ubl.str{2]=getc(f)
ubl.str[l]=getc{f);
ubl.str[0)=getc(f):

FHendif

alph—>nb_motl=ubl.I:

F#ifndef INV
ubl.str[0]=gete(f):
ubl.str[1]=getce(f);
ubl.str{2]=getc(f);
ubl.str{3]=getc(f);

FHelse

- ubl.str[3]=getc(f);
ubl.str[2]=getc(f);
ubl.str{l]=getc(f);
ubl.str[0]=getc(f);

Fendif

alph—>nb_mot=ubl.;

#ifndef INV

ubl.str{0j=getc(f);
ubl.str[l}=getc{f);
ubl.str[2]|=getc(f);
ubl.str[3]=getc(f);
#Helse
ubl.str[3]=getc(f);
ubl.str[2]=getc(f)
ubl.str{l]=getc(f);
ubl.str[0j=getc(f);
Fendif

alph—~>taille=ubl.I:

#ifndef OS2
alph—>mot2s=(unsigned char **)malloc(alph—>taille+100000*sizeof(char *));
#a:ph—>mpt'25[0]=(un5igned char *)malloc(alph—>taille+100000*sizenf(char));
else
alph—>mot2s=(unsigned char **)malloc(alph—>taille+10000*sizeof{char *)):

alph—>mot2s[0]=(unsigned char *)malloc(alph->taille+10000*sizeof char));
Fendif

ligne=alph—>mot2s{0];
if (alph—>nb_mot>alph—>nb_motl)

94

(appendixB.c)

800

810

820

830

&840

11:08 May 25 1994 A | Page 16 of appendizB.c

5,477,448
05 96

(appendixB.c)
{

for(i=0;i<=(alph-—:>nb_mot—aiph—->nb_m0t] —1_)':i++) 850
{
alph—>mot2sfi)=ligne:
c=getc(f);
while{c!="\0")
{
*ligne++=¢:
c=gete(f);
}
*ligne4++=1\0": |
} | 860

}

return{alph):

}

AUT_D44 init_autd44(unsigned long nb) ,
[*DOC Initwalisation of o AUT_ D44 automaton. nb is the size og the lab where the transitions are going to be si

{ .
AUT D44 aut: 870
unsigned long i: |
BLOC_D44 *bloc:

aut=(AUT_D44)malloc(TAILLE A UTD44):

bloc:aut—)an:(BLOC_DM *)mallc:-c(TAILLE_BLOCD44*nb):
aut->nb _etat=1:

aut—>taille=nb:

for(i=0;i<=(nb~1)i++) .
bloc[i].g=LONG_OUT: 850

return(aut);

}

AUT_L13 read_autl13(FILE *f)
{

AUT.L13 aut:

UBLOC ubl;

unsigned char c:

ET L13 tr:

unsigned long i

CELL13 112

830

c=getc(f):
if (c!=T A LT L13)
{

fprintf(stderr."le fichier n’est pas au bon format dans read_autli3\n"):
ex1t(0):

) 900

11:08 May 25 1994 -35. Page 17 of appendizB.c

aut=(AUT L13)malloc(TAILLE AUTLI13):

97

#i1fndef INV

ubl.str[0
ubl.str[l
ubl.strl2]

=getc(f):
=getc(f);
=getc({):

ubl.str{3]
Felse
ubl.str
ubl.str
ubl.str

=getc(f):

=getc(f):
=getc(f);
=gete(f):

3
2
L
0

ubl.str
#Hendrf

=petc{f):

aut—>nb_etat=ubl.l;

5,477,448

98

(appendixB.c)

2]0

aut—>etats=(ET_L13 *)malloc{(aut—>nb_etat+1+RES_ET _L13)*sizeot(ET_L13)).

aut —>etats{0]=(ET_L13)malloc{(aut—>nb_etat+RES_ET_L13)*TAILLE_ETLI13);

tr=aut—>etats[0]:
if (aut—>nb_etat>0)
for(i=0;i<=(aut—>nb_etat~1}:i++)

{

aut- >etats|i]=tr+-+;

Fifndef IN
ubl.str|
ubl.strf
ubl.strf
ubl.strf

#else
ubl.str[3}=getc(f):
ubl.str{2]=getc(f);
ubl.str{l]=getc(f);
ubl.str{0]=getc(f):

Fendif

Lo = O
1.
oY
T
-t
2

aut—>etats|i]— >sorte=ubl.I;

Fifndef INV
ubl.str[0]=getc({f);
ubl.str[1]=getc(f);
ubl.str[2]=getc(f):
ubl.str[3|=getc(f);

Felse
ubl.str[3]=getc(f):
ubl.str|2)=getc(f);
ubl.str[1]=getc(f):
ubl.str[0]=getc(f):

#endif

I=NULL:
while(ubl.!=FIN_LONG)

11:08 May 25 1994

- Y

920

930

940

Page 18 of appendizB.c

5,477,448
99 ' 100

(appendixB.c)

}12=(CELL13)malloc(TAILLE CELL13);
12—>nombre.l=ubl.l;
12— >suivant=l;
1=12:

860

#Fifndef INV

ubl.str[0]=getc
ubl.str{l
ubl.str{2]=getc
ubl.str[3

#else

ubl.str[3]=getc(f):

ubl.str[2l=gete(f);

ubl.str[1}=gete(f):;

ubl.str[0j=getc{f): 570
#endif

)

aut— >etats{ij— >liste=];

J

for(i={aut~>nb_etat);i<=(aut—>nb_etat+RES ET_L13-1);i++) 980

{

aut—>etats[ij=tr4++;
aut—>etats[i]—>sorte=NON_TERMINAL,;
aut—>etats[i]—>liste=NULL;

}

return(aut);

;

unsigned long ord_alptdl3{unsigned char *mot, ALP_T_DI3 alph)
{

unsigned long num;

530

if (alph—>autl!=NULL)
{
num=ord_auttdl3{mot,alph—>autl);
if {(num==LONG QUT)
{
num=ds_autl13(mot.alph—>aut2); | 1000
1f (num!=LONG OUT)

num-—=1_-

}

else

11:08 May 25 1994 Page 19 of appendizB.c

- 37 =

5,477,448
101

num=ds_autl13(mot.alph—>aut2).
if (num!=LONG_OUT)

num-=1;
}

return{num);

1

unsigned long ds_autll3(unsigned char *mot AUT _L13 aut)
{ :
unsigned char *ligne:
signed int fin;

unsigned long dep.num:
UBLOC nb: |
CELL13 I

num=LONG OUT,;

ligne=mot;
An=NON;
dep=0;
while(fin!=0UI)
{
if {((*ligne=='\0?) || (*ligne=="\n"})
{
fin=0U1:
if (aut—>etats[dep]—>sorte!=NON_TERMINAL)
{
num=aut-—>etats{dep]—>sorte;
}
}

else

{

|=aut—>etats[dep]—>liste:
while((l!=NULL) && {cel_g 13(1}!=*ligne))
|=]-—->sujvant;
if (l==NULL)
fin=0UI:

else

{

nb.l=l—>nombre.l;
#ifndef INV

nb.str{3}=0;
#else

nb.stx[0]=0;
#endif

dep=nb.l;

)

*ligne++;
)
}

11:08 May 25 1994 -38-

102

(appendixB.c)

1010

1020

1030

1040

1050

1060

Page 20 of appendizB.c

3,477,448
103 104

(appendixB.c)

return{num);

;

unsigned char cel g 13(CELL13 1)

{ .

Hifndef INV
return(l—>nombre.str{3]):

F#else

return({l—>nombre.str{0}); | 1070
#endif ‘

}

void renv_celll3(CELL13 *pl}

{
CELL13 11.12.];

|=*pl;
12=NULL;
while(l!=NULL) 1080
{
[=l—>suivant;
|—>suivant=I12;
12=l;
I=I1;
}

*pl=12;
}

1090
void find_suggs{problem **pprobs,
TRANS _L44 trans,

unsigned long dep,
unsigned long arr,

unsigned long dep_pos.

char *(*navigate)(int,
void *,
void *,
unsigned long *,

unsigned long *))}{ 1100
unsigned long nb.i;

char *rep;

point_nut_problem(dep, arr, "Incorrect verb sequence”,

"This sequence is either not correctly ordered or a verb is incorrectly inflected
pprobs);

} 1110

int build_repl(char *rep.char **chem){
~char *ligne,res{100].tag2[100];

11:08 May 25 1994 Page 21 of appendizB.c

5,477,448
105 106

(appendixB.c)

int pre=1;
int pos;
mt rr;

rr=1;
*rep=’\0‘; | 1120
for(pos=0;*(chem|[pos])!="\0":pos+=2)}{
if (*(chem[pos+1])=="/"){
for(ligne=& (chem{pos+1][1]}:*lignel=’/";)
hgne++:
*hgne++="\0";
ConvertBrowntagMorphtag(tag?2.ligne}:
ChangeWord(res.chem[pos].&(chem[pos+1j[1]).tag2);

if (!pre)
strcat(rep.” "): 1130

if (*res=='\0"){
rr=0;
strepy{res.chem|pos]);
strcat(res,tag?);

}

strcat{rep,res);
)
else{
if (pre) 1140
strcat{rep." ");
strcat(rep.chem/[pos]);
b
pre=0:

}

return Ir.

}

void ConvertBrowntagMorphtag{char *tag2.char *tagl){ 1150
if (stremp("vb" tagl)==0){
strepy{tag2,"+V+Inf");
}
else if (stremp(tagl,*vbd"}==0)
strcpy(tag2,"+V+Pret"):
)
else if (stremp(tagl."vbn")==0}
strepy(tag?,"+V+PP");
} |
else if (stremp(tagl.”vbg")==0){ 1160
strepy(tag2,"+V+Ing") |
]
else if (stremp(tagl,"vbz")==0){
strepy(tag?,"+V+IPr3s"):

)
J

11:08 May 25 1994 -40- Page 22 of appendizB.c

5,477,448
107 108

(appendixB.c)
unsigned long trans2 144 str buff{f TRANS L44 trans,
unsigned long pos_dep, 1170
char *{*navigate)(int,
void *,
void *,

unsigned long *,
unsigned long *))}{
unsigned char buff2[100].*buff3;
unsigned long **trace et **trace_let]1, **trace_let2.max_chem_trans.let,epsi,interog2,interog_arr;
unsigned long *chem act].*chem act2,*chem act3. *actif:
unsigned char b1[1000);

unsigned long nb_chem ,num_chem.nb_chem2.dep.i,}.k.fin fin2.fin3,zero,prof profin,prof trace: 1180
unsigned char *] _trans;
UBLOC ubl;

char *word;

ALP_T D13 alph;

CELLT44 |

unsigned char **ligne **lg2.
int trv let:

alph=trans—>alp2;
epsi=ord_alptd13((unsigned char *)"<E>" alph); 1190
tnterog2==ord_alptd13((unsigned char *)"?7??".alph):

nb chem=1;

max_chem _trans=1;

chem_act1=buff1 chem actif:

chem_act2=buff2_chem actif:

actif=chem act2:

chem_act1{0]=0;

deps[0]=0:

fin=NON; 1200

est_actif{0]=1;

prof in|[0]=pos_dep;

prof_out[0]=0;

prof trace=0;

while(fin!=0UI){
actif=chem_act2;
nb_chem?2=0;

for(1=0;1<=(nb_chem—1):1++){
num_chem=chem_act1[i}; 1210

if (max_chem_trans<num chem)
max_chem_trans=num chem;

dep=deps[num_chem];
prot=prof_out{num_chem];
profin=prof_in{num _chem];

word=(*navigate)}(GIVE_ZWORD_POS.NULL.NULL,&profin, NULL);

11:08 May 25 1994 j‘; Page 23 of appendizB.c

5,477,448 ‘
109 110

(appendixB.c)

let=ord_alptd13({unsigned char *)word.alph}; 1220

prof_in[num_chem|=profin;

if (trans—>etats[dep)—>sorte==TERMINALN
strepy({char *)}(chem_str[num_chem][prof]),"\0"}):
est_fini{num_chem]=1:
est_actifflnum_chem}=0;
i=NULL;

)

1230

if {(*navigate)(lS_END_OF_STRING.NULL.NULL.&proﬁn.,NULL))
{
fin=0UT:
if (trans—>etats[dep]—>sorte==TERMINAL){
strepy((char *)(chem_strinum_chem][prof])."\0"):
est_fini[num_chem]=1:

)

else
est_fini{num_chem]=0; e
est_actiffnum_chem]=0;

I=NULL;/ *trans— > etals{dep]—>liste: */

}

else{
|=trans-->etats{dep] ~>hste;

interog_arr= LONG_OUT;
trv_let=NON;

while({l) &&
(1—>cel_gli=let) &&
(1—>cel_gll=epsi){
|=1—>suivant;

}

if (1)
fin=NON;

1250

if {l—>cel_g2!=epsi){
nb_alptd13_ch(bl)—>cel g2,alph}; |
strepy((char *)(chem_strjnum_chem][prof]),(char *)bl); 1269

prof_out[num_chem]++;

}

deps[num_chem}=1->>cel_d;
if (1—>cel_gl'=epsi){
trv_let=0UlI;
1f (pmf_in[num_chem]<=(MAX_LONG_CHEMIN—'2)}{
prof_in[pum_chem]++;
¥3ctif+-+=num_chem;
fin=eNON;
nb_chem2++;

1270

11:08 May 25 1384 _47- Page 24 of appendizB.c

5,477,448
111 112

(appendixB.c)
}

else
est_actif[num_chem]=0:
}

eise{

*actif++=num_chem:
fin=NON;
nb_chem2++; | 1280

)

|=]l—=>suivant:

}

else{
|=trans—>etats{dep]—>liste:

while((l} && (1->cel_gl!=interog2)){

I=]—>suivant:

}
if (1} 1290

Imterog_arr=l—>cel]_d:
fin=NON:
strepy{(char *)(chem_str[num_chem][prof]),word):

prof_out[num_chem]++;

deps[num_chem)=]->cel_d;
1300
if (prof_in{num_chem]<={ MAX_LONG_CHEMIN=-2)){
prof_in{num_chem}+4+:
*actif++=num_chem:
fin=NON:
nb_chem2++;

J

else
est_actiffnum_chem)]=0;
1310

I=]~>suivant:
}
else
est_actifinum_chem]=0:;
}

}

fin2=NON;

while(fin2!=0UT){ 1320
if (interog arr==LONG_OUT){

while(l && (1->cel gll=let) && (I—=>cel gl!=epsi))
|=l~->suivant;

} .

else

11:08 May 25 1994 -4 3~ Page 25 of appendizB.c

5,477,448
113 114

(appendixB.c)

while(l && (I—>cel_gl'=interog2})
|=]—>suivant;
}

if (1){ | 1330
if (trv_let==NON && interog arr==LONG_OUT)}{ |
Interog_arr=1;
l|=trans—>etats[dep]—>liste:

}

else

fin2=0UI;
}

else

{
find=NON; ~ 1340

for(j=0:(j<=(max_chem=1)} && (An3!=0U1};j++){
if ((est_actif[j]==0) && (est_fini[jl==0))
find=0UI; |
}

if (in3==0Ul)
if (max_chem_trans<;))
max_chem _trans=j;

for(k=0k<=(prof—-1) && prof>0;k++) 1350
strepy ((char *)chem str{j—1][k],(char *)chem strinum_chem][k]);
prof_out[j—1]=prof;
prof in[j—1]=profin;
if (1—>cel_g2!=epsi && |->cel_gl!=interog2){
nb_alptd13_ch(chem_str[j—1}[prof out[j—1]],1—>cel_g2,alph);
prof_out{j—1]++;
}
else if (1—>cel gl==interog2){
strcpy({char *)chem_str[j—1][prof out[j—1]],word);
prof_out[j—1]4++; 1360
}

deps|j—1]=l—>cel_d;
if (1->cel_gll=epsi}{
if (prof.in}j—1]<=(MAX_LONG_CHEMIN-2)){
prof in[j—1]++;
est_actiffj—1]=1;
*actif++=j—1;
nb_chem2++;
} 1370

}

else{
est_actif{j—1]=1;
*actif++=3—1;
nb chem2+4-+4;

11:08 May 25 1994 44 - | Page 26 of eppendizB.c

5,477,448
115 116

if(appendixB.c)

}

else

fin2=0UI;

1380

|=]—>sulvant:

)
}

prof trace+-;

if (nb_chem2==0) 1390
fin=0UI:

else
Ain=NON;

chem_act3=chem_actl;

chem actl=chem_act?2:

chem_act2=chem_act3;

actif=chem act2;

nb_ chem=nb _chem2;

}

prof trace——;

1400

nb_ chem=0,
for(i=0:i<={(max_chem_trans);i4++){
if (est_fini{tj==1){
if (i!=nb_chem){
lg2=chem str[nb_chem];
ligne=chem_stri];
while(**ligne!="\0") 1410
strcpy((char *)*1g24-+4 .(char *)*ligne++);
**lg?:’\O’;
)
nb chem+-=1;
est_finifi]|=0;
}
est_actiffi]=0;

}

for

142¢

return{nb_chem);

void nb_alptd13_ch(unsigned char *buff,unsigned long num,ALP_T_DI13 alph)
{ .
Af ((alph—>nb_mot1>0) && (num<=(alph—->nb motli—1))) 1f
nb_auttd13_ch(buff,num.alph—>autl); 1431

A
11:08 May 25 1994 45~ Page 27 of appendizB.c

5,477,448
117 118

if-while(appendixB.c)

else if (num<alph—>nb_mot)
strepy({char *)buff,.{char *)alph—>mot2s[num—alph—>nb_mot1});

else

{ .]
fprintf(stderr."error 5 nb_alptd13_ch 0 out of intervalil\n");
fprintf(stderr."the number of the word asked, i.e %ld for is larger\n" num};
forintf(stderr,"than the number of words in the alphabet, 1.e %1d\n*,alph—>nb_mot});
exit(0);

! | 1440

)

void nb auttd13 ch(unsigned char *buff.unsigned long numi,AUT T D13 ant)
{ unsigned long nb.num.dep,*cardt;
unsigned char *ligne:
unsigned int fin,fin 1j.fin_12.fin_etat,
UBLOC *bloc;
signed int tri.tr2; ‘ 1450

num=numl;
ligne=buff;

bloc=aut-—>>bloc;
cardt=aut->cardt;

dep=0;

nb={;

fin=NON: . '
while(fin!=OUI) while
{ 1461

fin_etat=NON;
trl={~-1};
while(fin_etat!=0UI)

{
fin 1=NON;
if (trl==-1)
{
for()=0;(<=253) && (fin_I'=0U1)j++)
{ | - 1470
if (g 13{bloc[dep+j])==(unsigned char)j)
fin_ |=0U1;
}
}
else
{
for(j=(trl+1):(j<=253) && (fin l=0UI};j++)
{
if (g_13(bloc[dep+)})==(unsigned char)))
fin 1=0U1; 1480
)
)

if (fin_|l==NON)

11:08 May 25 1984 | _4‘%_ Page 28 of appendizB.c

5,477,448
119 120

while(appendixB.c)

fin_etat=0UI;

else

{

tr2=tri:
tri=j—1;
1490
if (nb+cardt[trl+dep]>=num)
fin_etat=0UI;
}

}

if (fin l==0U1I)
{
if {{nb--cardttr]l+dep])==num)
{
fin=0UlI; 1500
dep=d_l13(bloc[dep+trl});
*ligne+-+=(unsigned char)trl;
)

else

{

nb+=cardt|tr2+dep];

dep=d_13{bloc[dep+tr2]):

*ligne++=(unsigned char)tr2;
} } 1510
else

{

if (trit=—1)

{
nb+=cardt{trl+dep];
dep=d_13(bloc{dep+trl]);
*ligne+-+=(unsigned charjtrl;

)

else

{ 1520
fin=0Ult;

}

;

_ 1530
hn=INON; . _
while(fin!=0U1I) while

{ | |
if ((dep>0) && {g_l3(b10c[dep+SORTE_POS_Dl31)==COD_SORTE_D13))
fin=0Ul;
else

{

11:.08 May 25 1994 -47- Page 29 of appendizB.c

5,477,448

121 122
while(appendixB.c)
fin I=NON;
for(j=0;(j<=253) && (fin '=0OUD)j++)
{ 15340
if (g_13(bloc[dep+j])==(unsigned char}j)
ﬁn_l:OU[:

}
dep=d_13(bloc[dep+j—1]}:
*higne++=(unsigned char)(j-1);

}
)

*ligne="\0";
) 1550

void renv_cellt4d4(CELLT44 *pl}{
CELLT44 11.12.1;

I="*pl;
[2=NULL; |
while(l!=NULL) while
{
11=]~>suivant;
|—>suivant=]2; 1560
12=]; |
I=1;
}
*pl=12;

}

11:08 May 25 1994 -48- Page 30 of appendixB.c

123

3,477,448
124

(appendixC.c)

[¥lakes a lagged senlence and the DAG representing the incorrect usage
and oulpuls the senience with markers around the incorrect parts*/

/ *¥the structures and funciion common belween appendizes B and C are lisied

in appendize B*/

[*the difference between appendize B and C is the difference of the function

find_suggs*/

void main(int nb,char **arg){
FILE *f;

AUT D44 wl, w2;
TRANS_L44 trans;

problem *probs:

char buff{10000];

char **word, **pos:
unsigned long i;

unsigned long *wo *wc *po *pc;

init_morpho_cor();

/ *one iniltalizes the double array*/

10

20

word=(char **)malloc(sizeof(char *)*100);

for(i1=0;i<=89;i++)

word[i]={char *)malloc(sizeof{char)*100);

pos=(char **)malloc(sizeof(char *)*100):

for(i=0:i<=99;i-++)

pos{ij=(char *)malloc(sizeof(char)*100); 30

f=fopen{arg({1],"rb");
gete(f);

w | =read_autd44(f);
felose(f);

f=fopen(arg{2]."rb");
gete(f};
w2l=read_autd44(f);
fclose(f);

f=fopen(arg(3],"rb");
gete(t);
trans=read_transl44{f);
fclose(f);

init_look_wrong_pattern(&wo,
&we,
&po.

&pe):

11:07 May 25 1994

40

30

~49 -~ Page 1 of appendiz(C.c

5,477,448
125

while(fgets(buff,1000,stdin) H{
if ((*buffl="\n") && (*buffl=>\0"}){
string_double_array{word.pos,buff):

/ ¥creates an emply lhist of errors messages*/
probs=new_problem_list{);

look_wrong_pattern{word.
pOS.
wl,
w2,
trans,
& probs,
AUXILIARY.
WO,

- We,

po.
pc):

[*print the list of problems encountered™/
print_problem_list(stdout,& probs),
free_problem list{&probs);
}
}

void look wrong pattern{word **sent,
unsigned long len,
AUT D44 wl.
AUT D44 w2,
TRANS_L44 trans,
problem **pprobs,
int tp,
unsigned long *word_open,
unsigned long *word_close,
unsigned long *pos_open,
unsigned long *pos_close){
problem *probs;
unsigned long nb,i,dep,arrj;
char *comm,com1[1000];

- probs=*pprobs;

(*nav_w_pos){INIT_NAVIGATE (void *)sent, NULL, &len,NULL);

nb=bmatch_abstr(wi,

11:07 May 25 1994 -50-

126

(appendixC.c)

60

&0

90

100

Page 2 of appendizC.c

5,477,448
127 ' 128

(appendixC.c)

w2,
1. [*one looks for the longest sequence™/
word_open,
word close. 110
pos_open.
pos_close,
(char * (*)(int.
void *
vord *.
unsigned long *.
unsigned long *))nav_w_pos):

if (nb){
for(i=0:i<=(nb—=1):i++} 120
dep=(word_openli] / 2):
arr=(word_close[i] / 2) + 1;

find suggs(&probs.

trans,

(unsigned long)dep.

(unsigned long)arr,

(unsigned long)(word_openi}).

(char *(*)(int,
void *, 130
void *.
unsigned long *.
unsigned long *})nav_w_pos}:

*pprobs=probs: 140

)

char *nav_w_pos(int tp,
void *argl,
void *arg2,
unsigned long *pl.
unsigned long *p2){
static unsigned long countl;
static unsigned long count2; 150

static word **sent:
static unsigned long len;
extern char *word_stag(word *wptr):

char *buff2=NULL:

if (tp==RESET NAVIGATE){
count I =count2=0:

11:07 May 25 199/ -51- Page 3 of appendizC.c

5,477,448
129 _ 130

(appendixC.c)

160

}
else if (tp==NEXT_NAVIGATE){

if ((countl % 2)==0)4 |
buﬁ?:(‘NORD_SPELLING(sent[countl/‘2]]);

count i 4-;
}
else{)
if (countl/2 < len){ |
buff2=(word_stag(sent[count1/2])):
count -+, -
}
}
count2=counti:
}
else if (tp==PREV_NAVIGATE){
if (count2){
count2——:
if ({count2 % 2)==01
if (count2/2 < len){
buff2=(WORD_SPEL LING{sent{count2/2]}):]ED
} |
}
else{
if (count2/2 <len){
buff2=(word_stag(sent[count2/2])):
}
i
}
}
else if (tp==INIT_NAVIGATE){ .
sent=(word **)argl; X
len = (int) (*pl);
}
else if (tp::GI‘v"E_COUNT_NA*’_’IGATE){
*pl=countl—1;
*p2=count?2;
}
else if (tp==GIVE_POS_NAVIGATE}
*p1=0:
} PA=h 200
else if (tp==GIVE_WORD_POS}{
if ((*pl % 2)::0){
buffz=(WORD _SPELLING{sent{(*p1)/2]));
)
else{
if ((*p1)/2 < len){
buff2=(word_stag(sent{(*p1}/2])):
}
} / 210
else if (tp==IS_ END OF_STRING){
if ({(*pl)/2<len)
A Page 4 ﬂf uppendirC.c

11:07 May 25 1994 -52-

3,477,448
131 - 132

(appendixC.c)
buff2=NULL;
else
buff2z=(char *)1:
}
return buff?2;
|
220
unsigned long bmatch_abstr(AUT D44 al.
AUT_D44 a2,
int tp,
unsigned long *word open,
unsigned long *word_close,
unsigned long *pos_open.
unsigned long *pos_close.
char *(*navigate){int.
void *.
void *. 230
unsigned long *.
unsigned long *)){
unsigned long nb.num.last.countl.count? last count.last_pos:
unsigned long posl,pos2,dep.interogl.interog2.dep?2;
unsigned char *str *str2;
ALP_T_DI3 alphl,alph2;
int fin; |
BLOC_D44 *blocl *bloc2:
nb=0; ” 240
(*navigate)(RESET_NAVIGATE NULL NULL ,NULL.NULL):
blocl=al->bloc;
bloc2=a2~>bloc;
alphl=al—->alp2;
alph2=a2->alp2;
interogl=ord alptd13({unsigned char *}"77?" alphl):
interogl=ord_alptd13({unsigned char *}"???" alph2):
250

dep={};
while(str=(unsigned char *}(*navigate)(NEXT_NAVIGATE NULL . NULL,NULL.NULL)){
num=ord_alptd13(str,alphl);
if {num!=LONG_OUT}){
if (blocl{dep+num].g==num)
dep=Dbloc1[dep+numj.d;
else if (blocl[dep+interogl].g==interogl)
dep=bloc1[dep+interogl].d;
else

fprintf(stderr.”error bmtach_abstr 0: al should have a 7?7 transition at state “Wld\msdep):
exit{0);

}
]

else{
if (blocl{dep+interogl].g==interogl)

11:07 May 25 1994 ~53~ Page 5 of appendizC.c

5,477,448

133 134
(appendixC.c)
dep=Dblocl{dep-+interoglj.d:
 else{
fprintf(stderr,”error bmtach_abstr 0: al should have a 777 transition at state %ld\n".dep);
ex1t(0):
) 270

}

if(bloc1{dep+SORTE_POS_D44}.g==COD_SORTE_D44){
/ *one¢ looks backward™/
dep2=0;:
if (tp==1)/*we look for the longesl match*/{
in=NON;
last=LONG_ OUT:
while(fin!=0UT){
if (blﬂc‘Z[dep2+SORTE_POS_D44].g::CIOD_SOHTE_D44){ 280
(*navigate)((]l\-'E‘_CTOUNT_NAVIGATE.NULL‘.NULL.&count1.&:c.r::unt.?):
(*navigate)(GIVE_POS_NAVIGATE.NU LL.NULL.&posl.&pos2}:
last_count=count?2:
last_pos=pos2;

}

str2=(unsigned char *)(*navigat,e)(PREV_NAVIGATE‘NULL,NULL.NULL.NULL):
if (Istr2)
fin=0Ul;
else{
num=ord _alptd13(str2.alph2).
if (num!=LONG_OUT){
if (bloc2{dep2+num}.g==num)
dep2=bloc2[dep2-+-num].d;
else if (bloc2[dep2-+interog2].g==interog2)
dep2=bloc2{dep2+interog2].d:
else |

fin=0U1:
}

else if {bloc2[dep2+interog2].g==interog?) 300
dep2=bloc2{dep2+interog2}.d:
else

fin=0QUlI;
-}

}
if (last count==LONG_OUT){
fprintf(stderr,"error tmatch 1 inconsistency between the two dags, the backward search failed\

exit(0);

290

) |
(*navigate)(GI&'E_CO[INT“NAVIGATE,N ULL.NULL &countl.&count2); 310

(*navigate)(GIVE_POS_NAVIGATE NULL.NULL.&pos!,&pos2);
word_open{nb]=last_count:

word_close[nb]=countl:

pos_open[nb]=last_pos;

pos_close[nb}=posl;

nb++;

11:07 May 25 1994 . 54 - Page 6 of appendizC.c

5,477,448
135 136

(appendixC.c)
} 320
)
return nb:
}
void find_suggs(problem **pprobs.
TRANS L44 trans.
unsigned long dep. 330
unsigned long arr.
unsigned long dep_pos,
char *(*navigate)(int,
void *.
- void *,
unsigned long *,
unsigned long *)){
unsigned long nb.i;
char *rep:
340

point_out_problem(dep, arr, "Incorrect verb sequence”. o '
“This sequence is either not correctly ordered or a verb is incorrectly inflected

pprobs);
nb=trans2_144_str_buff(trans.
dep_pos,
(char *{*}{int.
void *.
void *, 350

unsigned long *.
unsigned long *))navigate)};

if {nb){
for(i=0:i<=(nb=1):i++){
rep={char *)malloc{1000);

if (build_repl(rep,(char **)chem strlij)}{

suggest_replacement(dep. arr, rep, pprobs); 360

}
}
}

}

int build repl{char *rep.char **chem){
char *ligne,res{100],tag2[100];
int pre=|; |]
int pos; | 370
int rr:

11:07 May 25 1994 Page 7 of appendizC.c |

-55 -

5,477,448
137 138

(appendixC.c)

re=1;

rep=7\0";

for{pos=0:*(chem{pos})!=’\0":pos+=2){

if (*(chempos+1])==1/)}{
for(ligne==&{chem{pos+1]{1]):*ligne!="/"*:)
ligne++;

*ligne+-+="\0";
ConvertBrowntagMorphtag(tag2.ligne):
ChangeWord(res.chem[pos].&(chem{pos+1][1}).tag2):

380

if {lpre)
strcat{rep." "):

if (*res==>\0"}{
rr=0;
strepy(res.chem{pos}):
strcat(res.tag?):

h

strcat(rep.res);

}

else{
if ('pre)
strcat{rep,” ");
strcat(rep.chem|pos]);
b

pre=0;
} 400

390

retuirn rIr:

)

void ConvertBrowntagMorphtag{char *tag?2,char *tagl}{

if (strcmp{"vb" tagl)==0)}
strepy(tag2."+V+Int");

}

else if (stremp(tagl."vbd")==0){
strepy(tag2 ' +V+Pret").

}

else if (stremp(tagl.”vbn')==0}{
strepy(tag2, +V+PP");

)

else if (stremp(tagl,"vbg")==0){
strepy(tagl,"+V+Ing");

)

else if (stremp{tagl."vbz")==0}

strepy(tag? “+V+IPr3s");
} 420

410

}

‘unsigned long trans2 144 str_bufi(TRANS_L44 trans,

A
11:07 May 25 1994 _56- Page 8 of appendiz(C.c

5,477,448
139 140

(appendixC.c)

unsigned long pos_dep.
char *{*navigate)(int,
void *.
void *.
unsigned long *.
unsigned long *}){ 430
unsigned char buff2[100].*buff3:
unsigned long **trace_et.**trace_letl **trace let2.max_chem_trans.let.epsi.interog2.interog arr.
unsigned long *chem actl.*chem _act2 *chem_act3.*acuif:
unsigned char bi{1000}:
unsigned long nb_chem,num_chem.nb_chem?.dep.i.j‘k.ﬁn.ﬁn‘2.ﬁn3.zero.pmf,pmﬁn_.pmf_trace:
unsigned char * 1 trans;
UBLOC ubl;
char *word:
ALP T._DI13 alph:
CELLT44 & 440
unsigned char **ligne **lg2;
int trv_let:

alph=trans—>alp2:
epsi—ord_alptd13({unsigned char *"<E>" alph):
interog2=ord_alptd13({unsigned char *)"777" alph):

nb_chem=1;

max_chem_trans=1:

chem_acti=buffl_chem_actif: 450

chem_act2=buff2_chem_actif;

actif=chem_act2:

chem_act1]0]=0:

deps[0}=0:

fin=NON;

est_actif[0]=1;

prof_in{0]=pos_dep:

prof out{0}=0;

prof trace=0:

while(fin!=0QUI){ 460
actif=chem_act2;
nb_chem2=0;

fﬂl‘(i:ﬂ;i'C — [nb_r;hem_]];i++‘]{
num_chem=chem_actlji]

if (max_chem_trans<num_chem)
max_chem_trans=num_chem;

dep=deps[num_chem)]: 440
prof=prof_out[num_chem):
profin=prof_in[num_chem]|:

word={*navigate)(GIV E WORD_POS.NULL.NULL,&profin, NULL):

let=ord aiptd13{{unsigned char *)word.alph);
prof in[num_chem}=profin;

11:07 May 25 1994 _57- Page 9 of appendizC.c

5,477,448
141 142

(appendixC.c)

if (trans—>etats[dep}—>sorte==TERMINAL){
strepy({char *)}{chem str[num_chem){prof]}.”"\0"):
est_fini{fnum_chem]=1. 480
est_actif[num_chem|=0;
I=NULL;
}

if {({(*navigate)(IS_ END_OF STRING.NULL.NULL.&profin.NULL))

{

fin=0UI; -

if (trans—>etats[dep]—>sorte==TERMINAL){
strepy((char *)(chem_str[num_chemi[prof}}."\0"): 490
est_fini{num_chem|=1:

}

else
est_fini[num_chem)=0;

est_actiffnum_chem]=0:

|=NULL:/ *trans—>etats{dep]— > lhiste: ¥/

}

else{
|=trans—>etats[dep]—>liste: | | 500

interog arr=LONG_OUT:
trv_jet=NON:

while{(l) &&
(I—>cel_gll=let) L&
(1—->cel_gl!=epsi)}{
|=l~>sutvant;

}

if (1){ 510
fin=NON; -

if (1—>cel_g2!=epsi){
nb_alptd13_ch(bl,]—>cel_g2,alph);
strepy({char *)(chem_str[num_chem][prof}),(char *)bl):

prof_out[num_chem)++:

J

deps[num_chem}=1—>cel_d; | 520
if (I~>cel_gl!=epsi}{
trv_let=0OUI;
if (prof in[num_chem]<=(MAX_ LONG_CHEMIN-2}}{
prof_in[num_chem]++:
*actif++4=num_chem;
fin=NON;
nb chem2++:
}
else
est_actiffnum_chem]=0; 530

11:07 May 25 1994 -5B - | Page 10 of appendiz(C.c

5,477,448
143 _ 144

(appendixC.c)
}

else{
*actif++=num chem:

fin=NON:
nb_chem?2+4+-

)

i=]—>suivant:

)

else{
I=trans— >etats[dep]— >liste: 540

while((l) && (I—>cel_gl'=interog2)}{
]=i—>suivant;

)
if (1)4

tnterog_arr=Il—>cel d;

fin=NON:

strepy({char *)(chem_strinum_chem][prof]).word): | | 550
prof_out{num_chem}++:

deps[num_chem]=]->cel_d:

if (prof_in[num_chem|<=(MAX_LONG_CHEMIN-2)){
prof_in[num_chem]j-++
*actif-+--+=num chem:
Ain=NON:
nb_chem?24-+; 360

}

else
est_actiffnum_chem]=0;

l=l->suivant;

}

else
est_actif[num_chem]=0; | 570
}

)

fin2=NON:
while(fin2!=0UT){
if (interog arr==LONG_OUT){
while(l && (I—>cel_gll=let) && (1—>cel gl!=epsi))
|=]—>suivant:

llse{ | 580
while(] && (I—>cel gl!'=interog2))
|=]~>suivant;
}
A
11:07 May 25 199} Page 11 of appendizC.c

-59-

5,477,448
145 146

(appendixC.c)

if (HH
if (trv_let==NON && interog arr==LONG_OUT){
interog_arr=1;
|=trans—>etats{dep]—>liste;

}

else | 590
fin2=0U1I;
}
else
{ .
find=NON:
for(j=0;(j<=(max_chem~-1)) && (fin3!'=0U1);j++)}{
if ((est_actiffjj==0) && (est_fini[j]==0})
fin3=0UlI;
}

if (fin3==01'])
if (max_chem trans<j)
max_chein_trans=):

600

for{k=0:k<=(prof—-1) && prof>0k+-+)
strepy((char *)chem_str{j—1}[k],(char *)chem_str[num_chemi[k]):

prof_out[j— [|=prof:

prof_in{j—I]=profin:

if (1—>cel_g2!=epsi && |—>cel gl!=interog2){
nb_alptd13_ch(chem_str[j—1][prof_out[j—1]].1—>cel_g2.alph): 610
prof_out{j—1]=+:

}

else if (1->cel_gl==interog2){
strepy({char *)chem_str[j—1}[prof outj~1]].word)}:
prof_out]j—]++;

}

deps]j—l]=l~>cel_d:
if {1—>cel_gl!=epsi){
if (prof in[j—1]<=(MAX_LONG CHEMIN-2)} 620
prof infj—1]++;
est_actifj—1]=1:
*actif++=)~1;
nb_chem2++;
}
)
else{
est_actiffj—1}=1;
¥actif++=)—1;
nb_chem24-+; 630

}

else
fin2=0UlI,;

11:07 May 25 1984 Page 12 of appendiz(.c

-60 -

3,477,448
147 148

for(appendixC.c)

l=l—>suivant:

i

} | 640

;

prof_trace-+:

if (nb_chem2==0)
fin=0U1;

else
in=NON:

chem _actd=chem _actl: 650
chem_actl=chem_act2:
chem_act2=chem_act}:
actif=chem act?;
nb_chem=nb_chem?2;
J

prof trace——;

nb chem=0:

for(i=0n<=(max_chem_trans}.i++}{ for
if (est_finifi]==1){ | 661
if {(1!=nb_chemn){
lg2=chem_str{nb_chem]:
ligne=chem _strli];
while(**ligne!="\0")
strepy((char *}*lg2+4 . (char *)}*ligne++):
*Flg2="\0";
}
nb_chem-+=I;
est_fini{i]=0; 670
}

est_actiffi}=0;

)

return(nb_chem);

680

11:07 May 25 1994 Page 13 of appendiz(.c

-60 -

149

5,477,448
150

(appendixD.c)

f####**###***##****##**##l*t¥¥*#¥**********

This programs lest the function that takes a possibly wrong words
and outpuls the correct form by using lwe transducers

This program cen work only with {rans! and edlaf.transit5 in the same directory

MoTpho_cor —cor

corrects

morpho_cor —ana

analyse

morpho_cor —~gene

generalc

R pkokkakk kbt ###****###**##ﬂi**rt*t***f

/ *functions and structures common between appendizc B and appendire D 20
are listed in appendize D*/

TRANS_LTS transl;
TRANS_LTS edlaf;

unsigned long
unsigned long
unsigned char
unsigned long
unsigned long
unsigned char
unsigned char
unsigned char
unsigned char

unsigned char

unsigned char

*buffl chermn_actif:
*buff2_chem_actif;
*est_actif,*est_fini;
*deps:

*tabchar max_chem,;
*prof in *prof_out:
**chem:;

**cheml;
***chem str;

*tabcod;

flitc(FILE *):

void init_tabcod{void};
TRANS_LT5 read_translts(FILE *),

void alloc_transduc2]t13(unsigned long **

unsigned long
unsigned char
unsigned char
unsigned Jong
unsigned long
unsigned char
unsigned char

* ¥

* K
¥ ¥

* ¥

¥ ¥

. 3 3

* %

A

unsigned long),

11:098 May 25 1994

30

40

20

-61- Page ! of appendizD.c

5,477,448

151

#define MAX_CHEMIN 100
#define MAX_LONG_CHEMIN 100

void 1nit_ morpho_cor(void):

unsigned long transduc?2_itH_buff{
unsigned char **.
unsigned char *,
TRANS_LT5.
unsigned long.
unsigned long *,
unsigned long
unsigned char
unsigned char
unsigned long
unsigned char
unsigned char
char.
unsigned char):

x
¥
%
%
*
.

int morpho cor(char ** char **.char *)
int ana_morpho{char ** char *):
int gene_morpho{char *,char *}:

void main(int nb.char **arg){
char buff(1000].,**buff2,* ana;
unsigned long n,i;

buff2=(char **)malloc{sizeof{char *)*10);
for(3=0;1<=01++)
buff2{ij=(char *)malloc(sizeof{char)*1000);

ana={char **)malloc(sizeof{char *)*10);
for(i=0;1<=9:14++)
anafl]=(char *)malloc(sizeof(char)*1000);

init_morpho_cor();

if (stremp(arg(l],"-cor")==0){
while(fgets(buff,999,stdin)){
if ((*buffl=’'\n’) && (*buffl=’\0?)){
n=morpho_cor{buff2.ana.buff);
if (n==0){
fprintf(stdout,"No proposed correction\n");
}
else{
for{i=0:i<=(n—=1)ii++}{

11:00 May 25 199/

152

(appendixD.c)

50

80

S0

100

FPage 2 of appendizD.c

5,477,448

153 154
(appendixD.c)
forintf(stdout."Proposed correction: %s (for %s)\n" buff2(i].anafi]):
}
}
110
)
}
}
else if (stremp(arg[l]."-ana")==0}{

while(fgets(bufl.999.stdin)){
if ((*buff!l=’\n’) && (*buff!="\0’})){
n=ana_morpho(ana.buif):

if (n==0}{

fprintf(stdout."Not in the dictionmary\n")
) 124
else{

for(i=0:1<=(n—1):i+++){
fprintf(stdout."analyse: %s\n".anal]):
)
)

}
}

}
else if (stremp(arg[l],""-gene')==0){ 130

~ while(fgets(buff,999,stdin)){
if ((*buffl=\n’) && (*buffl!'="\0")){

n=gene_morpho(ana[0],buff).

if (n==0){
fprintf(stdout."Not in the dictiomary\n"):
J
else{
fprintf(stdout,"generate: %s\n'".ana[0}):
} } 140
}
)
}
void init_tabcod(veid)
{
int i;

tabcod=(unsigned char *)malloc(sizeof{char)*256); 150

for(i=0:1<=255:1++)
{

t&bCOd[i]::[];
)
tabcod [CI]:I .
tabcod|[C2]=2:
tabcod|[C3]=3;

11:09 May 25 1994 63 Page 3 of appendizD.c

155

unsigned char getc(FILE *f)
{

unsigned char c;

c=getc(f);
switch (tabcodc))
{
case 0. {return(c);break:}
case 2: {
c=fgetc({f):
if (c==C2)
return(C2):
else return(('l);
break:
]

case 3: { c=fgetc(f):
return(C3).break;}
)

}

TRANS_LTS read_translt3(FILE *f)

{
TRANS LTS trans:

UBLOC ubl:
unsigned char c;

5,477,448
156

(appendixD.c)

160

170

180

trans:(TRANS_LTS'}malloc(TAILLE_*TRANSLTS};

C:getﬂ(f}:
if (c!=T TRANS_LT5)

{

150

fprintf(stderr,"error read_translt5 0 : the file is not of format TRANS_LT5\n");

exit{0):

}

#ifndef INV
ubl.str[0]=getc(f);
ubl.str{l]=getc(f);
ubl.str[2]=getc(f):
ubl.str{3]=getc(f);

#else
ubl.str{3)=gete(f);
ubl.str[2i=gete();
ubl.str{l]=getc(f):
ubl.str{0]=getc{f):

FHendif
trans->nb_etat=ubl,]:

f
f

#indef INV
ubl.str[0}=getc(f);

i1:09 May 25 1994

210

~p4 - Page 4 of appendizD.c

5,477,448
157 | 158

(appendixD.c)
ubl.stril]=gete(f);
ubl.str[2]=getc(f):
ubl.str[3}=getc(f);
Helse
ubl.str[3]=getc(f):
ubl.str2}=getc(f):
ubl.str[l}=getc(f):
ubl.str[}}=gete(f): 220
stendif
trans—>tallle=ubl.]:
trans—>transitions=(unsigned char *)malloc(sizeof{char)*trans— >taille):
fread(trans—>transitions.sizeof(char).trans—>taille.f);
return(trans);
}
230

vold alloc_transduc2_lt13(unsigned long **pbuffl chem actif,
unsigned long **pbuff2_chem_actif.
unsigned char **pest_actif,
unsigned char **pest_fini.
unsigned long **pdeps,
unsigned long **ptabchar.
unsigned char **pprof in,
unsigned char **pprof out.
unsigned long max_chem)
! 240
unsigned long 1

*pbuffl_chem_actif=(unsigned long *)malloc(sizeof{long)*max_chem);
*pbuff2_chem_actif=(unsigned long *)malloc(sizeof{long)*max_chem):

*pest_actif=(unsigned char *)calloc{max_chem.sizeof{char)):

*pest_fini=(unsigned char *)calioc(max chem,sizeof{char)):

*pdeps={unsigned long *)malioc(sizeof(long)*max_chem):

*ptabchar={unsigned long *)malloc(sizeof(long)*256):

*pprof_in=(unsigned char *)malloc(sizeof(char)*max_chem);

*pprof out=(unsigned char *)malloc(sizeof(char)*max_chem): 250

vold init_morpho_cor(void){
unsigned char c;
unsigned long ij:
FILE *f: 250

init_tabeod():

f=fopen{"transi®” "rb");
if ()4

11:09 May 25 199/ -65 ~ Page 3 of appendizD.c

5,477,448
159 160

(appendixD.c)

fprintf(stderr."I coudn’t find the file transi in the current directory\n");
ex1t(0);

}

c=getc(f); 270
transl=read_translt3{{);

fclose{f);

{=topen("edlaf.translts"."rb"}):

if (1)
fprintf(stderr."T coudn’t find the file edlaf.transltS in the current directory\n");
ex1t{0):

)

c=getc(f); 280
edlaf=read_translt3{f):
fclose(f):

alloc_transduc? 1t 1.3(
§buffl_chem_actif,
&buff2_chem actif,
&est actif. '
&est fini.
&zdeps,
&tabchar. | 290
&prof in.
&prof out,
MAX_CHEMIN);

chem=(unsigned char **)malloc(sizeof{char *}*MAX CHEMIN):
for(1=0;1<=(MAX_CHEMIN-1};i++) |
chem(i]=(unsigned char *)malloc(sizeof(char)*MAX_LONG_CHEMIN):

chemn_str=(unsigned char ***)malloc(sizeof{char **)*MAX CHEMIN); 300
for(i=0:1<=(MAX_CHEMIN—1);i++)}{ |
chem_str(ij=(unsigned char **)malloc{sizeof{char I*MAX_LONG_CHEMIN);
for(j=0))<=(MAX_LONG_CHEMIN —1);j+-)
} chem str(i]{j]=(unsigned char *)malloc(sizeof{char)*100):

cheml={unsigned char **)malloc(sizeof(char *)*MAX_CHEMIN):
for(1=0;i<=(MAX_CHEMIN-1);i4++)
cheml[i]=(unsigned char *)malloc(sizeof{char)*MAX_LONG_CHEMIN):
310

}

unsigned long transduc? 1t5_buff{
unsigned char **chem,
unsigned char *buff,
TRANS LTS trans,
unsigned long max_chem,

A

11:09 May 25 1994
-66 -

Page 6 of appendizD.c

161

unsigned char *ligne.buff2[100],*buff3;

5,477,448

unsigned long
unsigned long

unsigned char
unsigned char
unsigned long

unsigned char
unsigned char

char tp.
unsigned char

*buffl_chem_actif,
*huff2 chem_actif.

*est_actif.
*est_fini.
*deps,
*prof_in.
*prof_oul.

tracel)

unsigned long **trace_et . **trace letl.**trace_let2. max_chem_trans:
unsigned long *chem_actl *chem _act2 *chem_act3.*actif;

unsigned char *1g2:

162

{appendixD.c)

320

330

unsigned long nb_chem.num_chem.nb_chem2.dep.ij.kfin fin2.fin3.zero,prof.profin.prof trace:

unsigned char * | trans:

UBLOC ubk;

/* Jor(1=0:1< =(maz chem—1}):14+)
{
esl_actiffi/=0:
est_finzf1/=0.
1¥/

nb_ chem=1;
max_chem_trans=1:
chem_actl=buffl chem_actif:
chem_act2=buff2 chemn_actif;
actif=chem act2;
chem_act 1{0]=0;
deps{0]=0;
fin=NON;
ligne=buff,
fin= NON;
est_actiff0]=1;
prof_in[0]=0;
prof_out[0]=0;
prof_trace=0;
while(finl=0OUI)
{
actif=chem act2;
nb_chem2=0;

for(i=0;i<=(nb_chem~1):i++)
{

num_chem=chem _actl[i]:

if {max_chem_trans<num_chem)
max_chem_trans=num_chem:

dep=deps [num__chem] ;
prof=prof_out{num_chemj;

11:09 May 25 1994

6T -

340

350

360

370

Page 7 of appendizD.c

5,477,448
163 164

(appendixD.c)
profin=prof_tn[num_chem};

ligne=&{buff[profin]):
while(*ligne==EPSI TRANSLI13)

{
ligne—+--+;
profin+-+:

}

prof in[num_chem}=profin. 380

if {{(*ligne==7\0’) |} (*ligne==’"\n"})

{
fin=0UL |
if (trans—>transitions[dep]==IS_TERMINAL_LT3}
{
chem[num_chem][prof]=’\0":
est_fini[num_chem]=1:
if (tracel==1)
trace_et[num_chem]|prof trace]=LONG_OUT: 390
J
else

est_finiinum_chem|=0:
est_actif[num_chem]=0:
if (trans— >transitions{dep}==IS_TERMINAL_LT?)
| trans=~&(trans—>transitions{dep+1]):
else
| trans=&(trans— >transitions[dep]):
J

else 400

{
if (trans—>transitions{dep]==IS_TERMINAL _LT5)

| trans=4&(trans—>transitions[dep+1]):

else

| trans=& (trans—>transitions{dep));
if (tp==1)

{

while((*] trans!=FIN_TRANSI_LT3) &&
(*]_trans!="*ligne) &&

(*1_trans!=EPSI_TRANSL13)) 410
{ |
| trans+=5;
}
}
else
{

while({*|_trans!=FIN_TRANSI_LT5) &&
(1 trans{1}!="ligne) &&
(1trans(1]'=EPSI_ TRANGSL13))
{ 420
I trans+=a:
}
}

if (*1 trans!=FIN_TRANSI_LT5)

A
11:09 May 25 1994 -68- Page 8 of appendizD.c

#ifndef INV

F#else

#FHendif

5,477,448

165 166

(appendixD.c)

{
fin=NON;

i ((p==1) && (Ltrans[1]}=EPSL TRANSLI3)) || ((tp==2) && (*ltrans!=EPSLTRANSLLY)
{

if (tp==1)
chem[num_chem][prof]=]_trans{1]:

else
chem|num_chem][prof}="*1_trans;

430

prof_out[num_chem)++:

)

ubl.strj0]
ubl.str[1}
ubl.str(2]
ubl.str(3]

[_trans[2];
|_trans{3]:
] trans[4]:
0:

440

1IN

deps[num_chem]=ubl.l; |
ifl:(’(Etp-::l) L& (*] trans!=EPSI TRANSL13)) || ((tp==2) && (ltrans[1]!=EPSI_TRANSLI3)
. - |
{ o o 45
if (prof in[num_chem]<=(MAX_LONG_CHEMIN=2))
{
prof_in{num_chem]++;
*actif++4=num_chem:;
fin=NON:
nb chem2++;

J

else

est_actiffnum_chemj=0; 460

)

else

{

*actif++=num_chem;
Ain=NON;
nb chem2+-+.

}

|_trans+=9:

)

else
est_actiffnum_chem]=0;

470

fin2=NON;

11:08 May 25 1994

-69- Page 9 of appendizD.c

5,477,448

167 168
(appendixD.c)
while(fin2!=0UI)
{
if{(l’.p:zl_] 180
wIEile{(*l__transi:FlN_TRANS]__LTE;} && (*Ltrans'=*ligne) && (*]_trans!=EPSI_TRANSLI13))
|_trans+=35;
}
}
else
{] M
wl{nle([*]_trans.-':FIN_TRANSI_LTEJ k& (l_trans[l])!=*ligne) && (1 trans[1]!=EPSI TRANSLI3)
} trans4=>5: -
}
)
i (*]_trans==FIN_TRANSI LT5)
fin2=0U[;
else
{
hn3=NON;
for{'(jz(];(j<=(max_chem—-—l)] && (fin3!=0UD3++) 500
if ({est_actifjl==0) && (est_fini[jj==0))
fin3=0F[;
}
if (fin3==0UI)
{ ,
if (max_chem_trans<j)
max_chem_trans=j;
510
for(k=0:k<=(prof-1) && prof>0:k++)
chemlj~1][k]=chem[num_chem][k]:
prof_out[j—1]=prof;
prof_in[j—~1]=profin;
if (tracel::)
{
fo:{*(k:ﬂ;k'c::{prof_trace—-1) && (prof_trace>0)k++)
/¥ trace_elfj—1{[k]=1race_et[num_chem][k]:
trace_letl/j—1f{k]=trace letl{num_chem]fk]; 520
\ trace_let&fj— 1]f{kj=trace_let2[num_chem]fk/: */
)
if {({(tp:zl) && (Ltrans[1]'=EPSI_TRANSLI3)) || ((tp==2) && (*I.trans'=EPSI TRANS
if (tp==1)
- ¢hemlj—1][prof out[j—1]j=i_trans(1];
else
chem{j~1][prof out[j—1]]=*| trans: 530
11:09 May 25 1994 A | P |
_70 - age 10 of appendizD.c

5,477,448

169 170

(appendixD.c)

prof out[j—1]4+:

)

ubl.str[0}=1_trans|2]:
ubl.str{1]=l_trans(3]:
ubl.str{2]=l_trans[4]:
ubl.str{3]=0: i
Felse 4
ubl.str[3]=I_trans|2]

ubl.str{2]=]_trans|3];

ubl.str[1}=I_trans[4]:

#ifndef INV

lmil

ubl.str[0]=0:
#endif
deps[j—1!=ubl.k |
if (({(tp==1) && (*_trans!=EPSI_ TRANOSLI3}) | ({tp==2) && (l_trans{l}!=EPSI_TRANS
{ ,.
if (prof in]j—1j<={MAX_LONG_CHEMIN-2}) 550
{
prof in{j—1]-++:
est_actiffj—1]=1;
*actif4-+=)-1;
nb chem?2++:
}
}
else
{ | 560
est_actif[j—1]=1:
*actif+4+=)—1I:
nb_ chem24++:
}
}
else
fin2=0Ul;
570
| trans+=>5;
}
}
}
prof trace++:
if (nb_chem2==0)
fin=0Ul:
else 580
in=NON;
*ligne++;

chem_act3=chem actl:

11:09 May 25 1994 Page 11 of appendizD.c

~ 71

_ 5,477,448
171 172

(appendixD.c)
chem_acti=chem act2;
chem_actZ?=chem_actd;
actif=chem act2:
nb_chem=nb_chem?2:
h
prof_trace~—; | | 590
nb chem=0:
for(i=0;1<={max_chem_trans}:i++)
{
if (est_finifi]==1)
{
lg2=chem[nb_chem)]:
ligne=chem/i};
while(*lighel="\0")
*lg2++="ligne++: 600
*lg2=2\0":
nb_chem+=1;
est_fini[i]=0;
}
est_actiffi}=0:
}
return{nb_chem}; 510
}
int morpho_cor(char **out.char **ana,char *in){
unsigned long nb_chem.i,nb,nb_chemo;
int fin.result;
char buff3[1000],*higne,prev[1000];
| 620
strcpy(prev.”default");
nb_chem=transduc2_|t5_buff(chem,
(unsigned char *}in,
transi,
MAX_CHEMIN,
buffl_chem actif,
buff2 chem actif,
est_actif,
est_fini, 630
deps,
prof_in,
prof out,
2, [Flp==2%/
0);

11:08 May 25 1994. -T2 Page 12 of appendizD.c

173

if (nb_chem>=1){
nb=0;
nb_chem0=nb_chem;
for(i=0;i<={(nb_chem0-1):i++){
strepy (buff3,chemli)):
ligne=buff3:
fin=0;
while(fin!=1){
while(*lignel="+")
ligne-+:
if (stremp(ligne,"+Corr")==0){
fin=1:
ligne=\0";
}

else{
fin=0(:
ligne--4-:
)
}
if (stremp(buff3, prev)i=0){

strepy{ana[nb].buff3):
strepy(prev,buffd);

nb chem=transduc2_[t5_buff(chem],
(unsigned char *)bufi3.

edlaf,

5,477,448

MAX CHBEMIN,
buffl chem_actif.
buff2 chem_actif.
est_actif,
est_finl..

deps.

prof_In.
prof_out,

0);
strepy(out{nb++4],chem1{0]):

}
}

result=nb:

}

else
result=nb_chem;

return result;

J

int ana_morpho(char **out.char *in){
unsigned long nb_chem.i:
int fin.result;

char buff3{1000],*ligne;

nb chem=transduc2_It5_buff{chem,

11:09 May 25 199}

L, [fp==17/

174

(appendixD.c)

640

650

660

670

680

Page 13 of appendizD.c

175

if (nb_chem>=1){
resuit=nb_chem;

5,477,448

(unsigned char *)in,
ed}af,

MAX CHEMIN,
buff] chem actif.
buft2_chem actif,
est_actif.
est_fim,

deps.

prof_in.

prof out,

2. [Flp==23*
0}):

for(1=0:1<=(result—1}:i++}{

strepy{outfi].chem(i}):
}
}

else
result=nb chem:

return result;

J

int gene_morpho(char *out.char *in}{

unsigned long nb_chem.i:
int fin.result;
char buff3[1000].*ligne:

nb_chem=transduc2_It5 buff(chem,

if (nb_chem>=1){
result=1:
strepy (out.chem{0}):

}

else
result=nb_chem:

return result;

)

11:09 May 25 1994

(unsigned char *}in.
edlaf,
MAX_CHEMIN.,
buffi_chem_actif,
buff2_chem_actif,
est_actif,
est_fini,

deps.

prof _1n,

prof out,

L, [Mp==17%/
D):

- =74-

176

(appendixD.c)

690

Fle

730

40

Page 1§ of appendizD.c

5,477,448

177 . 178
(appendixD.c)
750
A
-~75- Page 15 of appendizD.c

11:09 May 25 1994

5,477,448
179

/* States of parsing a noun phrase */
F#define AWAIT HEAD NOUN 1
#define AWAIT MODIFIERS 2

/* Static vars */

static char **det_expls = NULL: /¥ siores outpul of check_dets(} */

static char linebuff(BUFSIZ]:

static char tdiombuff[BUFSIZ]:

static FILE *mnd: /* mass—noun dictionary */

static FILE *mtnd: /* mass—tile—noun dictionary */
static 1diom **idioms: /* idioms from the idiom dictronary */

/* Forward declerations */

int determiner p(char *pos);
it modifier_p{char *pos):

int conjunct_last p(char *pos):
int conjunct_rest_p(char *pos);
int head noun_p(char *pos):
int title p(char *pos):

int proper_noun_p(char *pos):
int singular_noun_p(char *pos):
int plural_noun_p(char *pos}):

/*- ~ ————e -

180

(appendixE.c)

L

Top—level routine: check_dets{)

/¥ Make suggestions about where o insert deferminers in a senfence.
Add these suggestions lo an exisiing list (which ‘suggs pir’ poinis {o).
Also, as a side effect, set ‘det_expls’ to an array
of ezplanations about wha! we did for each word in the sentence.
This vartable ‘del_ezpls’ will go away nezt time this funciion its called.
'sent’ qives the senlence as a NULL~—lerminated array of wordpir’s. */

vold check_dets{wordptr sent[], problem **probs_ptr)

{
int 1, len. state, noun_conjuncts. mod_conjuncts, add left bracket_p:
int head_i, head_type;
char *expl, *spelling, *pos, *head_spelling:
idiom *id;

len = Sentlength(sent);
if (det_expls != NULL) free_string_array{det expls):
det_expls = new_ string array{len);

state = AWAIT HEAD NOUN:

noun_conjuncts = 0; /* no. of terms in current noun conjunciion */
mod_conjuncts 0;

/* Traverse sentence backwards, so we will hit head nouns first. */
for (i = len—1; 1 >= 0: i—=) {

/* no. of terms in current {mod* noun) conjunction */

30

40

Page 1 of appendizE.c

5,477,448
181 - 182

(appendixE.c)
speliing = WORD SPELLING(sent[1}):
pos = word_stag(sent[i}):
add_left_bracket p = FALSE;
switch(state) {
case AWAIT HEAD NOUN: | 60
if (head_noun_p{pos)) {
if (noun_conjuncts == 0) {
[* This 1s the head noun of the whole NP */
head_type = head_noun_type(sent[i]):
head_spelling = WORD_SPELLING(sentli]):
head t = 1;
mark_np_end(sent[i}):
} else {
det_expls[i] = conjunci_head noun_expl(spelling, head spelling):
} ' 70
state = AWAIT_MODIFIERS; |
} else {
det_expls[i] = non_head_noun_expl{spelling):
;
break;

case AWAIT MODIFIERS:
if (determiner_p{pos)) { | - 80

if (head_type == PROPER_NOUN} { |
/¥ If the head noun was proper, there shouldnt be a determiner */
point_out_extraneous deterrniner{i. head 1. sent, probs ptr):

} else {
expl = already_has det_expl(head_spelling. spelling);
det_explsfhead_i] = expl;

}

det_expls[i] = determiner expl(spelling);
add_left_bracket_ p = TRUE: 90
state = AWAIT HEAD_NOUN; |
noun_conjuncts = Q;
mod conjuncts = 0;
} else if (modifier_p{pos)}) {
det_expisfi] = modifier expl(spelling):
} else {
det_expls{i] = non_head_noun_expl(spelling);

[* Look "ahead” one word lo sec if there's a conjunction w/i the NP */
if (i > 0 && head_noun_p(word_stag(sent[i—1]})) && 100
{(noun_conjuncts == () ?
conjunct_last_p(pos) : conjunct_rest p{pos))) {
[* Continue with next simple NP in big NP ("the trucks and cars™) */
state = AWAIT HEAD NOUN;
noun_conjuncts+-+; |
mod_conjuncts = 0;

10:56 May 25 1994 -77- Page 2 of appendizF. ¢

5,477,448
183 184

. (appendixE.c)
} else if (1 > 0 && modifier_ p(word_stag(sent[i—1])) &&
((mod_conjuncts == (0} 7
conjunct_last_p{pos} : conjunct_rest_p{pos))) {
/* Continue with next mod n simple NP ("the red and blue truck™) */ 110
mod_conjuncts-4-4:
} else {
[/* Hit first word to the left of the NP —— and il's not a det */
if (head_type == SINGULAR_NOUN) {
maybe_point_out_missing determiner(i+1. head_i. sent. probs_ptr):
} else {
expl = non_singuiar noun_expl{head spelling. head_type):
det_expls[head 1] = expl;
)
120
mark_np_start(sent[i+1]):
state = AWAIT HEAD NOUN;
noun_conjuncts = {:
mod _conjuncts = 0
}
h
break:
default: 130
myerror{"check_dets: invalid internal state (%d)'™. state):
break:

} /¥ end ‘swilch(state)' */
if {(add_ left_bracket p) mark_np_start(sent[i]):

} /¥ end ‘for' loop */

if (state == AWAIT_MODIFIERS) { 140
/¥ Unfinished NP */
if (head_type == SINGULAR_NOUN) {
maybe_point_out_mnissing determiner(0, head_i, sent, probs ptr):
] else {
expl = non_ singular_noun_expl(head_spelling, head_type);
det_explsfhead_i] = expl;

}
mark_np_start(sent[0]);
} | | 150
}
N - e e e e e - - _—
|
[dentify relevant paris of speech |
|
'y

i0:56 May 25 1994 -78 - Page 3 of appendizf. c

5,477,448
185

/* Return TRUE iff 'pos’ represenis a delerminer.
‘pos’ s a Brown tag. */ |

int determiner p(char *pos)

{

char *stripped = strip _pos{(pos):

return(prefix_p("at". stripped) ||
prefix_p("dt", stripped) ||
prefix_p(''cd", stripped) !|
prefix_ p("pn%", stripped) |
stremp("ppd". stripped) == 0 ||
prefix_p(“wpd", stripped) |
prefix_p('"npf". stripped) |i
prefix_p("nps%". stripped)):

/¥ Return TRUE iff 'pos’ represents a modifier of a noun.
'‘pos s a Brown tag. */
int modifier_p(char *pos)

{

char *stripped = strip_pos{pos):

return(prefix p("j". stripped) ||
prefix_p("vbg", stripped) |
prefix p{"vbn". stripped) |
prefix_p("n", stripped) ||
prefix_p(“od". stripped) ||
(prefix_p("ql". stripped) && stripped[2] '= *p’} ||
prefix_p(*ap", stripped) ||
prefix_p{"rb", stripped)):

/* Return TRUE iff ‘pos’ represenis a conjunci word (ltke "and")
beiween the last two words of a conjunciion.
'‘pos’ 15 a Brown lag. */

int conjunct_last_p{char *pos)

{

char *stripped = strip_pos(pos);

return(prefix_p("cc", stripped));

J

/* Return TRUE iff ‘pos’ represents a conjuncl word (lke "and”)
belween the two words (except the last two) of a conjunction.
‘pos’ is a Brown tag. */

int conjunct_rest_p{char *pos)

{

char *stripped = strip_pos(pos);

return(prefix_p(“cc", stripped) ||

10:56 May 25 1994 -79~

186

(appendixE.c)

160

170

150

190

Page 4 of appendizE.c

5,477,448
187

prefix_p(",", stripped)):

/* Return TRUE iff ‘pos’ represents a head noun.
‘pos’ 1s ¢ Brown lag. ¥/

int head_noun_p{char *pos)

{

char *stripped = strip_pos(pos):

return(stremp("nn", stripped) == 0 ||
stremp("*nns”, stripped} == 0 |
stremp("np", stripped) == 0 ||
stremp{"nps". stripped) == 0):

/* Return TRUE iff ‘pos’ is part of a litle.
'pos’ s a Brown lag. */ .
int title p{char *pos)

{

return{sufix p("-tl", pos)}.

}

/* Return TRUFE iff ‘pos’ represents a proper noun.
‘nos’ 1§ @ Brown lag. */
int proper_noun_p{char *pos)

{

char *stripped = strip_pos({pos):

return(strcmp("np", stripped) == 0);

}

/* Return TRUE iff ‘pos’ represents a singular noun.
'pos' 1s a Broun lag. ¥/
int singular_noun_p(char *pos)

{

char *stripped = strip pos(pos);

return(stremp(*nn", stripped) == 0):

)

/* Return TRUE #ff ‘pos’ represenis a plural noun.
‘pos’ ts a Brown lag. */
int plural_noun_p(char *pos)

{

char *stripped = strip_pos(pos);

return(strcmp("ans”, stripped) == 0),

}

10:56 May 25 1994 ~-80-

188

(appendixE.c)

12
i
-

240

| Qe
ot}
=

[e
i
e

Page 5 of appendizE.c

5,477,448
189

/* e

190

(appendixG.c)

Look up a word in Collins English Diclionary

- #include <«<stdio.h>
#include <string.h>
#Finclude <ctype h>
#Finclude <varargs.h> /™ used by report error() */

10

/* - -

Header file for misc.c
Defines muscellaneous ulililres.

#ifndef MISC.
F#define MISC.

Finclude <stdic.h>

#ifndef TRUE
#define TRUE 1
#Fendif

#ifndef FALSE
#F#define FALSE 0
#Zendif

/* Macros to consiruct filenames tn the geheck directory tree.
Ezample of usage: GCHECK SRC FILE("dets.c”)
These macros can only be used by other DEFINEs to define
constant filenames. */

#define GCHECK SRC DIR
#define GCHECK_DATA DIR
#define GCHECK_SRC _FILE(X)
#define GCHECK_DATA FILE(X)

"/projects/gcheck/gc0O4"

GCHECK_SRC_DIR "/" X
GCHECK_DATA_DIR /" X

/* Macros to shorten Tcl declarations */
#define DEF TCL(x) int x (ClientData data, Tcl_Interp *nterp, \
int arge, char *argv{])

"/projects/gcheck/gcl4/data"

30

40

#define TCL_CREATE(x,y) Tcl CreateCommand(interp, x, v, (ClientData) NULL, \
(Tel_CmdDeleteProc *) NULL)

extern int prefix_p(char *prefix, char *string);

extern int suffix_p(char *suffix. char *string):

extern char *mystrdup(char *string};

extern char *mysubstr(char *string. 1nt first, 1nt next);

50

extern
extern

int next_token{char *line, int *first, int *next, char *separators);
int next nonspace token{char *line, int *first, int *next);

A

10:56 May 25 1994 .-Bl-

Page | of appendiz(G.c

5,477,448
191 192

(appendixG.c)

extern char **new string array{int n);

extern void free_string array(char **strings);

extern int string array len{char **strings);

extern vold *mymalloc(size_ t n);

extern void *mycalloc(size_t nelem, size t elsize);

extern void myfree(void *ptr);

extern char *strip pos(char *pos); 60
extern void myerror(): | |
extern int fsprintf():

extern int mystremp(char **sl. char **s2);

extern FILE *myfopen{const char *filename. const char *mode):

#endif
;/* _____ _— e e et o —— — — i — o — —_—— ——— e e —
| 70
Header file for lookup.h |
Look up a word in Collins English Diclionary. |
|
|
¥

#ifndef LOOKUP.
#define LOOKUP_

/* Pari—of-speech tags used in CED */ 80
#define CED ANY 0 /¥ parl—of-speech 1s not specified */

#define CED ADJ] 1 /* adjective ¥/

#define CED_ ADV 2 /¥ adverd ¥/

F#define CED CONJ 3 /7 conjunction */

#define CED.DET 4 /¥ determiner */

#define CED_INT 5 /7 inierjecizon */

#define CED_N 6 /* noun */

#define CED . PRE 7 /¥ prefiz */

#define CED_ PREP 8 /¥ prepostiion */

#define CED.PRO 9 /¥ pronoun ¥/ 90
#define CED_SUF 10 /* suffir */

#define CED_V 1T /% verh ¥/

##define CED_NONE 12 /* part—of—speech s tnvalid */

extern int init_lookup_def(char *errstring); |
extern int lookup_def{char *word, int pos id, char *str,
int len, int linewidth);

Hendif
100
#define MAXDICTFILES 150
#define FIND ENTRY 1
#define FIND POS 2
#define FIND DEF 3
#define FILENAMELEN 256
#define DEFNUMLEN 6

10:56 May 25 1994 BAE Page 2 of appendizG.c

193

4#define EMMANUEL SEP ’+?
#define MATCHING_TITLELEN 100
#define NONMATCHING_TITLELEN 200

/* ‘result’ —— records a definition of o word ¥/

struct result {
char *start; /* beginning of resull siring */
char *end; /* pointer to lermunating null byte of result string */
char *backup: /* poinler that we cannof back up over when erasing */
int width; /* mazr characters allowed per line of resuit ¥/
int ien: /* mar tolal chars allowed in result */
int fulil; /* non—nil IFF the resull string s full */

}:

/¥ pos’ —— a part—of—speech used i CED %/

struct pos {

int 1d; /* integer code from lookup.h */
char *ced name: /* name of this part of speech as used tn CED entries */
char *print_name: /* name of this parl of speech used in printouls *f

}:

typedef struct pos pos:
typedef struct result result:

static char dictdir]] = "/projects/schabes/dicts/ced':
static char dirfile]] = "/projects/schabes/dicts/ced/CONTENTS™:

static char *dictfilessMAXDICTFILES]:
static int numdictfiles = 0:

static char pathname[FILENAMELEN];
static char linebuff{BUFSIZ];

static FILE *dict_fp:

static long int dict_ofiset:

static char *dict word = NULL;
static int total = 0;

static int ananum = [;

static 1t defnum = 1;

static pos ced_pos[] = {
{CED_ADJ, "adj.", "adjective"},
{CED_ADV, "adv.", "adverb"},
{CED_CONJ, "conj.", "conjunction"},
{CED_DET, "determiner.", "determiner"},
ICED_INT, "interj.", "interjection"},
{CED.N, "n.", “noun"},
{CED_PRE, "pretix.", “prefix"}.
{CED_PREP, "prep.", "preposition"}.
{CED_PRO, "pron.", “pronoun"},
{CED_SUF, "suffix.", "suffix"}.
{CED_V. "vb.". "verb"},.
{CED_ANY. NULL. NULL)

}:

/* Forward declarations */

10:56 May 25 199 ' _83-

5.477.448

194

(appendixG.c)

110

120

130

140

150

Page 3 of appendiz(5.c

5,477,448
195 196

(appendixG.c)

void bubble sort(char *words]]. int len); 160
int my stremp(char *sl. char *s2):
int find_definition(char *word, FILE **fp, long int *offset);
int show definition(result *res. char *word, 1Int pos.d,
FILE *fp, long int offset);
int isdefnum(char *line};
char *emmanuel inflection_name(char ¥*analysis):
char *emmanuel root{char *analysis):
int compare_cedtags(int posl. int pos2. int matching);
vold init resuit(result *res, char *str. int width, 1t len):
void write_result{): 170
void terminate_result{result *res):
void write title(result *res. char *word, int pos_id. int matching);
void describe_analysis(result *res, char *word. char *root, char *analysis};
int ced_name to_id(char *str, int 1}
int print_name_to_id(char *print_name):
char *id to print_name(int pos_id);
int write def(result *res, char *text);
int space_in_result p(result *res, int n):

f .t i e e et kil A SRR AWoRl diwl iy mhidet Almml s kil AP S hskie M Wehiey Ay L S SN ek ALY s A - YR S S emmm S Sl Selfed bl . . S el S S Sl S SN S S . e el AL St et S FU SN NFNFUSSL [N NS S | —

/* Initiahize for celling lookup_def{).
We set the globals ‘dictfiles’ and ‘numdicifiles’.
If successful, return TRUE, else return FALSE and pul an error
message tn ‘errstring’. ¥/
int init_lookup_def(char *errstring) 190

{
FILE *fp:

int 1;

fp = fopen(dirfile, "xr"});

if (fp == NULL) {
sprintf(errstring, "init_lookup_def: couldn’t open %s". dirfile);
return FALSE: |

)

numdicthiles = 0: 260

while (fgets{linebuff, BUFSIZ, fp} = NULL) {
if (numdictfiles >= MAXDICTFILES) {
sprintf(errstring, "init_lookup_def: hit max # of dict files (¥d)",
MAXDICTFILES):
return FALSE:

j

/* Copy filename. clipping trailing newline */
dictfiles{numdictfiles++] = mysubstr(linebuff, 0, strlen{linebuff}~1): 210

J

10:56 May 25 1994 -84~ Page { of appendizG.c

_ 5,477,448
197 ' ' 198

(appendixG.c)

/¥ Sort filenames alphabetlically. */
bubble_sort{dictfiles. numdictfiles);

fclose(fp);
return TRUE;

r2
b
=

/¥ Bubblesort from Knuth, vol II, p.107.

Adapled for indices to be 0..n—1 insiead of 1..n ¥/
void bubble_sort(char *wordsf]. int len)
{

int bound. t. j:

char *tmp:

bhound = len:

while (TRUE) { | 230
t = O:

for j = 1. j < bound: j4-+) {
if (my_stremp(wordsj—1], words[j]} > 0) {
/* Swap elements */
tmp = wordsfj—1};
wordsf)—1} = words|j];
words[j] = tmp;

t = .
}
;

if (t == Q) {
break:
} else {
bound = t;
}
}

] 250

/¥ Compare two sirings, ignoring non—alphenumeric characters,
and trrespeclive of case.
Return +1 if 51 1s alphabelically after s2,
0 if they're equal and —1 1if s1 1s alphabelically before s2. ¥/
int my_stremp(char *sl, char *s2)
{
char *pl, *p2:
char cl, c2:

pl = sl;
p2 = s2;

10:56 May 25 199/ | _85- Page 5 of appendizG.c

199

while (*pl != ’\0’ && *p2 = \0?) {
if (Nisalnum(*pl)) {

PREES
} else if (tisalnum(*p2)) {
p2++;
} else { .,
cl = tolower(*pl);
c?2 = tolower(*p2)
if (cl '= c2) {
return{cl > ¢2 7 | : -1}
} else {
pl++;
P2+

)
}

J

if (*pl == *\0’) {
return{ (*p2 == *\0*} ? 0 : —-1):
} else |

}

return{l): /* *p2 must be \0' else ‘while’ wouldn't have lerminated */

)
= —-

Look up a word in the dictionary.

5,477,448

/* Look up ‘werd’ in the dictionary.

‘pos’ 1s CED ANY or the id of the part—of—speech of tnferest.
If successful, return TRUE and put the definilion in ‘sir’,

else refurn FALSE and putl an error message wn ‘sir’.

Stmply not finding the word does NOT count as an error.
'str” s o pre—allocated siring of ‘len’ chars {*len’ should be

al least 100—200 lo hold error messages).

‘inewidth’ ts the mazr allowed length of an oulput line. */
int lookup_def(char *word, int pos_id, char *str. int len, int linewidth)

{

int 1, j, n, emm_pos, matching, got_any, thislen;

char *root;
FILE *fp;
long int offset;

extern char **ana:
result res:

extern int ana_morpho(char **. char *):

if (numdictfiles <= 0) {

sprintf(str, "lookup_def: call init_lookup_def() first");

return FALSE:

10:56 May 25 1894

-86-

200

(appendixG.c)

300

310

Page 6 of appendizG.c

3,477,448
201 202

(appendixG.c)

)

/¥ Initialize globals */
“total = 0; /* Number of chars writlen info resull so far ¥/ - 320
ananum = 1; /* Number of next morphological analysis to print */

/* Gel all morphological analyses of the word. */
n = ana_morpho{ana. word);

/* Look up the root form for each analysis of the word m CED. ¥/
for (matching = 1: matching >= 0. matching——} |{
got_any = FALSE:

for (i = 0:1 < n:i++4) { | 330

emm _pos = emmanuel_to_cedtag(anali]):

if (emm_pos == CED_NONE) {
if {matching)
fprintf{stderr, "lookup_def: WARNING: "
"unrecognized tag in analysais: %s = %s\n". word. anali}}):
continue;

}

if (compare_cedtags(pos_id. emm_pos. matching)) { 340
root = emmanuel_root(analfi}}):

/* Make sure thts rool—form/pos pair hasn't already occurred */
for j = 0:) < 1;)++) {
if {strncmp(anali], anafj], strlen{root)+1) == 0 &&
emm pos == emmanuel to_cedtag{analj})) break:
]

if () == i) {
thislen = {len - (MATCHING_TITLELEN + NONMATCHING_TITLELEN))/n: 350

if (!got_any) thislen += matching ?
MATCHING TITLELEN : NONMATCRING TITLELEN;:

init_result(&res, str<4total, linewidth, thislen);
if (!got_any) write_title(&res, word. pos_id. matching):
descnibe_analysis{&res, word, root, anali]});

if (find_definition(root, &fp, &offset) &&
show_definition(&res, root, emm _pos. fp, offset)) {
total += (res.end — res.start); 360
ananum-++; |
got_any = TRUE:
}
}

free{root);

}
J
}

10:50 May 25 199/ -87- Page 7 of appendizG.c

5.477.448 _
203 ' 204

(appendixG.c)

370
str[total] = '\0’; /* To erase title when last definition found was emply */

if (total == 0) sprintf(str, "\"%s\" not in dictionary\n", word);
return TRUE;

}

/* Look up a root form wn lhe dictionary.
If not found, return FALSE: else return TRUE and set
‘fp" and ‘inder’ as a side effect.
‘fp* is the dictionary file in whaich the word was found. 380
‘offset’ is the offsel within the file et which the word was found.
We cache the info from the last lookup to speed up
muliiple consecutive lookups of the same word. *f
int find definition(char *word, FILE **fp. long int ofiset)

{

int filenum. i. len:

/* First check for a cache hit */
if (dict word '= NULL && strempidict_word. word) == 0) {
*fp = dict_fp; 390
*offset = dict offset:
return TRUE:
} else {
/* Clear cached info */
fclose{dict_fp);
dict offset = 0;
free(dict_word):
dict word = NULL;

) 400
/¥ Find which dict file this word should be 1 */
filenum = —1; |
for {i = numdictfiles — 1; i >= 0; i——) {
if (my stremp(word, dictfiles[i]) >= 0) {
filenum = 1;
break;
}
]
if (filenum < 0} { 410
/* Word is before 1st word in dictionary */
return NULL;
} else {
sprintf(pathname, “%s/%s", dictdir. dictfiles[filenum]);
dict_fp = fopen(pathname, "r");
if (dict fp == NULL)
myerror("find_definition: couldn’t read ‘%s'". pathname);
len = strien{word);
dict_offset = (:
420
while (fgets(linebuff, BUFSIZ. dict_fp) '= NULL) {
if {(*linebuff '= ’\t’ && strncmp(linebuff, word, len) == 0 &&
10:56 May 25 1994 A Page 8 of appendizG.c

-R8 -

5,477,448
205 _ 206

(appendixG.c)
*(linebuff+len) == \t’ && isdefnum{linebuff+len)} {
[* Found starl of entry for the word */
*fp = dict_fp;
*oftset = dict_ofiset;
dict_word = mystrdup(word);
return TRUE:
}
430
dict offset = frell{dict fp):
if (dict_offset < 0} return FALSE;
}
return FALSE;
}
}
/* Wrile to 'res’ the defimlions of ‘word’ that maich the POS given ‘pos_id’. 440
The begtnning of the diclionary dfﬁmtzon s qiven by ‘fp’ and ‘offset’.
‘fp’ is the open dicltionary file.
‘offsel’ is the index of where the definition staris in thai file.
Return TRUE iff we found and prinied at least one definition. */
int show definition(result *res, char *word, int pos.d,
FILE *fp, long int offset)
{
int len, mode, i, start, got any., pos;
len = strlen{word): . | 450

mode = FIND ENTRY:
got_any = FALSE;
defnum = 1;

pos = CED_NONE:

if (fseek(fp, offset, SEEK SET) '= 0)
myerror{"show_definition: fseek failed (%1d)", offset):

while (fgets(linebuff, BUFSIZ, fp) '= NULL) {
if (*linebuff '= *\t’ && strncmp(linebuff, word, len) == 0 && 460
*(linebuff+len) == ’\t’ && isdefnum(linebufi+ien}) {
mode = FIND POS:
} else if (mode == FIND_POS && strncmp(linebuff, "\tpos\t", 3} == 0) {
/¥ Got a pari—of—speech hne */
/¥ Ignore stuff before a ;" if present (probably a bug in the dict) ¥/
for (i = 5; linebufffi} != ’\0’ && linebufffi] '= ?;’; 1++);
start = (linebufffi] == *;*) 7 i+1 : 5;
- pos = ced_name to_id{linebufl, start):
mode = FIND DEF;
} else if (mode == FIND DEF &4 strncmp(linebuff. "\tdef\t". 5) == Q) { 470
/¥ Gol a definition line ¥/
if (pos_id == pos && 'res—>full) {
write_def(res, lhnebuff+3);
got_any = TRUL;
)

10:56 May 25 1994 -89 - - Page 9 of appendizG.c

5,477,448
207 208

(appendixG.c)

mode = FIND_ENTRY:
;
}

if {got_any) terminate result(res):
return got_any;

)

480

/¥ Return TRUE iff the qiven string conlains a valid definition number.
A definition number has: optional leading whilespace.
an oplional "H" plus inleger plus dot.
an integer plus dol. end an optional letter plus dot.

The defintlion number must be followed by whilespace or \(0'. */ 490
int isdefnum{char *line)

{

char *start. *p. *qg;

/* Skip leading whitespace */
for (start = line; isspace(*start): start-++);

/¥ Scan for optional H plus mteger plus dot */

if (*start == *H’) {
for (p = start+1: isdigit(*p): p++): 500
if (p == start+1 || *p = *.) return FALSE-
p++;
} else {
p = start.

)

/* Scan integer plus dot */
for {(q = p; isdigit{*q); q++);
if (q ==1p || *q != ’.°) return FALSE;

q++: °10
[* Scan optional letter plus dot. */
if (isalpha(*q) && *(q41) == +.°) q += 2,
return(isspace(*q) |} *q == N0);
}
/* Return the CED tag ID Jor the tag in an analysits generated by
Emmanuel’s program. 520
‘analysis’ is ¢ morphological analysis returned by Emmanuel’s code. */
int emmanuel to_cedtag(char *analysis)
{
char *tag;
/* Make ‘tag’ point to the tag specificalion 1n Emmanuel’s analysis.
This is the first occurrence of EMMANUEL SEP. ¥/ .
for (tag = analysis; *tag != '\0* && *tag '= EMMANUEL_SEP: tag++);
10:56 May 25 1994 A Page 10 of appendizG.c

an

5,477,448
209

if (prefix_p("+Adj", tag) || prefix_p("+AJ". tag) ||
prefix_p{"+Aco". tag) || prefix_p("+Asu", tag)) {

return CED ADJ;

} else if (prefix_p(“+Adv", tag) || prefix_p("+DV", tag)) {
return CED ADV,;

} else if (prefix_p(“+CKI", tag)) {
return CED CONJ:

} else if (prefix_p("+Det". tag)) {
return CED DET;

} else if (prefix_p("+INTJ". tag)) {
return CED INT,; |

} else if (prefix_p(*'+Ns". tag) || prefix_p("+Np", tag)) {
return CED_N:

} else if (prefix_p("+Pre". tag)) {
return CED PREP:

} else if (prefix_p("+Pro". tag)) {
return CED PRO;

} else if (prefix_p("+V", tag)) {
return CED V:

} else {

- return CED NONE;
}

}

/* Return NULL or the name of the inflectton applied in an anelysis
generaied by Emmanuel’s program. ¥/
char *emmanuel inflection_name(char *analysis)

{

char *tag:

/* Make ‘tag’ point ito the lag specificaiion 1n Emmanuel’s analysis.
This ts the firsi occurrence of EMMANUEL SEP. */
for (tag = analysis; *tag != *\0' && *tag '= EMMANUEL_SEP: tag++);

if (prefix_p("+V+IPr3s", tag)) {
return "3rd person singular':

} else 1if (prefix_p(''+V+Pret”, tag)) {
return "Past tense":

} else if (prefix_p("+V+PP". tag)) {
return ""Past participle’;

} else if (prefix_p("+V+Ing", tag)) {
return "Progressive form',

} else if (prefix_p{"+Np”, tag)) {
return "Plural': |

} else if (prefix_p(“+Aco". tag)) {
return "Comparative”.

} else if (prefix_p("+Asu", tag)) {
return "Superlative’’;

} else {
return NULL;

}

10:56 May 25 1994 ~91-

210

(appendixG.c)

530

940

560

a80

Page 1! of appendizG.c

5,477,448

211 212

(appendixG.c)

/¥ Return the root form of an analysis generaled by EFmmanuel’s program.
The rootl form is the part of the analysis up to the first EMMANUEL SEP. */
char *emmanuel root(char *analysis)

{

int len:

for (len = 0; analysis{len] {= ’\0’ && analysis[len] = EMMANUEL_SEP; len++);
return mysubstr{analysis. 0. len):

}

/* Compare two CED lags.
Return TRUE f “maiching’ s TRUE and the lags untfy,
or if 'maiching’ i1s FALSE and the tags do not unify.
The tags unify of one of them 1s CED ANY, or the tags arc equal. */

230

int compare_cedtags(int posl. int pos2. int matching) 600
{ |
int unify:
unify = (posl == CED_ANY || pos2 == CED_ANY }| posl == pos2):
return{{matching && umfy) [| (('matching] && (Tunify))):
}
A - - ——- -
|
Write resulls lo a string. |
| 610
* _ ——— — e
/* Initialize a resull siring. */
void init_result(result *res, char *str, int width. int len)
{
res—>>start = str;
res—>backup = str;
res—>end = sty;
str{0} = *\0’; 620
res—>width = width:
res—>len = len:
res—>full = FALSE:
}
/* Wrile a string to a ‘resull’ siruct —— same args as sprintf().
ezcepl firsl arg is a ‘resull’ struct.
We assume there will be enough space to fit the message 630

(if notl, we (ry to complain afler the fact). */
voird write_resuli({va_ alist)
va_dcl

10:56 May 25 1994 -92- Page 12 of appendizG.c

_ 5,477,448
213 214

(appendixG.c)

va_list args:
resuit *res;
char *fmt;
int len;

va start{args): 640

/* Pull off ‘res’ and *fmt" from arglist */
res = va arglargs. result *),
fmt = va arg(args. char *):

/* Print to siring in ‘res’ */
len = vsprintf(res—>end, fmt. args).

if (Ispace_in_result_p(res. len})
myverror{ "report_error: insufficient space lfor ‘%s'". fmt): 650

(res—>end) += len:
va_end(args);

/* Terminale a result siring. */
void terminate_result(result *res)

{
)

if (*(res—>end} '= ’\0?) *(res—>end) = ’\0’; 660

/* Write to ‘res’ a ltle for all maiching or all non—matching defintlions.

Sel the backup poini to be at the end of the lille —— thus we will

never erase lhe title when backing up to insert an ellipsis. */
void write title(result *res, char *word, int pos_id. int matching)
{

if (matching) {

if (pos.id == CED_ANY) { 670
write result(res, "Definitions of \"%s\"\n", word);

} else {
write result(res, "Definition of \"%s\" in the current context\n". word);

}
} else {

if (total > 0) {
write_result(res, "\nOther definitions");
} else {

write result{res, “Definitions™);
} 680

write result(res, " of \"%s\"\n". word);

)

res—>backup = res—>end;

}

10:56 May 25 1994 | | - -93- Page 13 of appendizG.c

5,477,448
213 216

(appendixG.c)

/¥ Describe to ‘res’ an analysis generated by Emmanuel’s program. */
void describe_analysis(result *res. char *word. char *root. char *analysis) 690

{

int emm _pos:
char *infi:

émm_pos = emmanuel_to_cedtag(analysis):
if (emm _pos == CED_NONE)
myerror(“describe_analysis: can’t describe %s = 4s\n", word. analysis);
infi = emmanue]_inflection_name{analysis):
write_result{res, "\n"):

700
if (infl == NULL || stremp(word. root) == () {
/* Don't mention inflection tf there 1s none, or if the root form
15 the same as the surface form */
write_result(res. "The %s \"%s\"". 1d_to_print_name(emm_pos), word):
} else {
write_result(res. "%s of the %s \"%s\"".
infl, 1d_to_print_name(emm_pos), root):
j
write_result{res, ":\n"); 710
}
/™ Return the id of a part of speech, given its CED name.
The CED name begins at posilion ‘s’ of string ‘sir’
and ends with \0’ or whitespace. */
int ced_name _to_id(char *str. int 1)
i
int j, len;
char *name; | 720
while (isspace(str[i])} i++:
for (j = 0; ced_posj].ced name '= NULL; j++) {
name = ced_pos{j].ced_name:
len = strlen(name);
if (strncmp(name, str4i, len) == 0 &4&
(strli+len] == *\o* || 1sspace(strli+len]})) return ced_posjl.id;
] 730

return CED_NONE;:
}

/* Return the id of a part of speech, given ils prinl name. */
int print_name to id(char *print_name)

i

mt i:

10:56 May 25 199 _da Page 1§ of appendizG.c

5,477,448
217 218

(appendixG.c)

740
for (i = 0: ced_pos|i].print_name '= NULL: i++) {
if (strcmp(ced_pos[i].print_name. print_name) == (}) return ced_pos]i].id;

)

myerror("print_name_to_id: unknown part of speech name (%s)", print_name);

}

/¥ Relurn the prinl name of a parl of speech. quven us d. *f
char *id_to_print_name{int pos_id) T30

{

int 3

for (i = 0: ced_pos[il.print_name != NULL: i++) {
if (ced_pos{i].id == pos_id) return ced_pos[i].print_name:

)

myerror("id_to_print_name: unknown part of speech id (%d)", pos_id);

}

760

/* Append a defintiion to a resull.
We wrap lines al whitespace to avoid going over the marimum width per line.
If we can’t fit the whole definition mio the resull string.
mark the resull as "full” as a side effect.
‘res’ is the ‘resull’ struct lo write to.
‘text’ 15 a string giving the texl of the defintiion. ¥/
int write_def(result *res, char *text)
{ | |
int indent = DEFNUMLEN + 1: | 770
int first, len:
char *startp, *endp;

char num/DEFNUMLEN + 1];

startp = text,;
first = TRUE;

while (TRUE)} {
/* Grab nezt hine of texl {o print */
while (isspace(*startp)) startp++; 780
if (Mirst && *startp == ’\0’) return;
len = strlen(startp);

if (len <= res—>width — indent) {
/* Can fit rest of text on this ltne ¥/
endp = startp + len;
} else {
/* Find whitespace boundary al which to wrap text */
for (endp = startp + res—>width - indent;
~ endp > startp && lisspace{*endp); | 790
endp—-); |
if (endp == startp) endp = startp + res—>width — indent:

| A |
10:56 May 25 1994 | -95- Page 15 of appendiz(.c

5,477,448
219

}

/* Print defnum plus tex! from ‘starip’ lo ‘endp’ if ot will fit. */
1f (space in_result p(res, indent + endp — startp 4+ 1)) {
num[0] = ’\0’;
if (first) sprintf(num, "%d.%d". ananum, defnum-++);
res—>end += sprintf(res—>end. "%s". num);
res—>end += sprintf{res—>end, "%*s", indent — strlen{num), ""):

strncpy(res—>end. startp, endp — startp);

res—>end 4= endp — startp:

if (endp == startp || *(endp—1} = ’\n’) *(res—>end)++ = *\n’:
} else {

break;

}

startp = endp:
first = FALSE:

}

/¥ Couldn’l fit oulput in ‘resull’ string; try to print en ellipsis. */
/* If no reoom for an ellipsis, try to MAKE room */ |
if (! {space_in_result_p(res, 4))} {

/* First iry {o erase previous whole definttion. */

for {endp = res—>end-1:

endp > res—>backup && !(*lendp—1) == ’\n’ && *endp = *)

endp-—);

if (endp == res—>backup) {
[* We just erased the whole resull —— try jusl erasing previous hne ¥/
for (endp = res—>end—1;
endp > res—>backup && !(*(endp—1) == ’\n’):
endp—-);

)

res—>end = endp;

}

/¥ Try to print an ellipsis */
if (space_in_result_p(res, 4}) res—>end 4= sprintf(res—>end, "...\n");

res—>full = TRUE;

/¥ Return TRUE iff there ts room to print ‘n’ chars in the resull siring. */
int space_in_result_p(result *res, int n)

{

int chars used:
/* Leave room for a terminating \G' */

chars used = res—>end — res—>>start;
return(chars used + n < res—>len);

10:56 May 25 1994 A

220

(appendixG.c)

800

810

820

830

540

Page 16 of appendizG.c

5,477,448 .
221 ' - 222

(appendixG'.c)

10:56 May 25 199} -97- Page 17 of appendizG.c

3,477,448
223 224

(appendixF'.c)

<from tagger.c>

/* —_——— — Uy Sy

MazFoward |
Return the probabilily of the path with mazimum probability and
sels the array of part of speech lags

sent 10
is an array of peinters lo words, the last one poiniing to null

tagged
is an array of part of speech tag which s filled on refurn

Forwfif
points 1o the list of siates corresponding lo the uth
input token.

Return MINLOGP if the sentence is nol recognized

el P B E I I AN T S s - - PRl SRR Sl el O

double MaxForward(wordptr SENT]], int LEN)
{

char **w;

int 1,k.n;

postag tagl, tag2. tags;

lexiist tagptr;

Statelist FORW{MAX_INPUT]:
Statelist s.t:

double maxlogp;

30
for(i=0; i< LEN+2; i++) {
FORWi]=NULL; [* resel forward probabiliftes */
)
reset_lexmem(); -
/* Inttialization, Padding to the left */
for{tagptr=FindTags(SENTI0],0):
tagptr '= NULL;
tagptr = tagptr—>next) {
tagl = FindTagNum(starttag); 50
tag2 = tagl;
tagd = tagptr—>pos;

maxlogp = STriProb(tagl, tag2, tagld) + tagptr—>lp;
PushState(&FORW/0], tag2, tag3, maxlogp, NULL);
}

[* Induction */
for(i=1: 1 < LEN; i4++)
for(s=FORW[i~1]: s != NULL: s=s—>next) {
tagl = s—>tagl; 50
tagz = s—>tag?;
reset_lexmemy();
for(tagptr=FindTags(SENTIi],1);

10:56 May 25 1994 -98- Page 1 of appendizF.c

5,477,448
225 _ 226

(appendixF.c)

tagptr != NULL:

tagptr = tagptr—>next) {
tagd = tagptr—>pos;
maxlogp = s—>logp + STriProb(tagl. tag2, tagld) + tagptr—>1p;
SetMaxStateP(&FORWI/il, tag2, tag3, maxlogp. s);

} |
} 60
reset_lexmem();
/* FIRST PAD TO THE RIGHT 7%/
/¥ lastword END ¥/
/¥ o N S
for(s=FORW[i~1]; s '= NULL: s=s—>next) {
tagl = s=—->tagl;

tag2 = s—>tage;

tagd = FindTagNum{endtag): |

maxlogp = s—>logp + STriProb(tagl. tag2. tagd);

SetMaxStateP(&FORW(i]. tag2. tagd. maxlogp. s}). 70
)
1+

/* SECOND PAD TO THE RIGHT */
/* lastword END END ¥/
/* -2 -1 1%
for(s=FORW[i—1]; s != NULL; s=s—>next) {
tagl = s—>tagl,
tag2 = s—>tag2;
tagd = FindTagNum/(endtag).
maxlogp = s—>logp + STriProb(tagl. tag2. tagd): §0
SetMaxStateP{(&FORWIi], tag?2, tagd, maxiogp. s).

n==i; /* lastword/1—2 END/1—1 END/: ¥/

/* Sentence Probability */

s=NULL:

maxlogp = MINLOGP;

for{t=FORW|[n}; t '= NULL; t=t—>next)

if (t—=>logp > maxlogp) { a0
maxlogp = t—>logp.
s = {,

}

/* Fill the tags */
if (maxlogp != MINLOGP)
for(t=s; t = NULL; t=t—>prev){
if ((n < LEN) && (n >= 0)) {
WORD_POS(SENT|n])=t—>tagZ; |
if (n==0) SetFirstWord(SENT[n], t—>tag2); 100
)

n—-=,

}

/* Free the memory used by FORW */

10:56 May 25 199 -99 - Page 2 of appendizF. o

5,477,448
227 228

(appendixF.c)

for(i=0; i< LEN + 2; i++4)
if (FORW[i] != NULL) FreeSt.ateNext(FORW[i]—}next):

/* Free the memory used for lexical infermation */ 110
if (lexgarbage) FreeGceLex(lexgarbage);
lexgarbage = NULL;

return{maxlogp):

/¥ NEW ¥/

void SetFirstWord(wordptr wdptr. postag tag)

- 120
lexlist lex:

char *spelling;

extern char linebuf]]:

spelling = WORD_SPELLING(wdptri;

if ((isupper(spelling{0])) && (stremp(spelling. "I') != 0)} {
lex = bin_findword(spelling):
if ('FindLexAstag{lex, tag)) {
#1ifdef DEBUGS | 130
printf("%s static = %d\n", wdptr—>spelling, wdptr—>spelling static):
stendif
if (WORD SPELLING_STATIC(wdptr)) {
strepy(linebuf, spelling):
linebuf[0] = tolower(spelling[0]):
wdptr—>spelling = mystrdup(linebuf):
wdptr—>spelling static = FALSE;
}
else { |
spelling[0] = tolower(spelling[0]): 140
}
}
)
}

10:56 May 25 1994 -100- Page 3 of appendizF.c

3,477,448

229 230
We claim; determination of number, whether the noun 1s a mass
1. In a grammar checking system, a determiner checking noun, is a singular non-proper noun, is part of an idiom
system for detecting improper referents of a noun phrase in or is a proper noun; and,
an inpul senience regardless_ ?f whether the sentence as 2 means responsive to the identification of a noun phrase for
whole can be parsed, comprising: 5

detecting missing determiners, extraneous determiners,
or lack of agreement in number for the constituents of
said noun phrase.
2. The system of claim 1, and further including means for
10 determining if said head noun is a singular non-proper noun.
3. The system of claim 1, and further including means for
determining if said head noun is a mass noun.
4. The system of claim 1, and further including means for
determining if said noun phrase 1s part of an idiom.
15 5. The system of claim 1, and further including means for
determining if said head noun is a proper noun.

means for determining the parts of speech of the words in
said sentence to provide parts of speech tags including
a trigram part of speech tagger having means for
ascertaining the probability of the part of speech of a
candidate word;

means, responsive to said means for determining the parts
of speech of said sentence for identifying noun phrases,
said noun phrases having constituents making up said
noun phrase, said noun phrase identifying means
including means for traversing said input sentence
backwards, identifying via part of speech tags the

immediately preceding noun, said immediately preced- 6. The system of claim 5, and further including means, 1f
ing noun being a head noun and as such being the right said head nm}n 15 4 proper_ noun, for determuning if said noun
most word of the immediately preceding noun phrase, phrase contains a determiner.

and continuing to work backwards to identify the rest 20 7. The system of claim 6, and further including, if said
of the words in said immediately preceding noun noun phrase contains a determiner, if said determiner agrees
phrase, thus to identify the left boundary of said imme- in number with said head noun.

diately preceding noun phrase so as to identify the start
of a noun phrase and the end thereof, thereby to permit ¥ ok ok k¥

	Front Page
	Drawings
	Specification
	Claims

