A A TV TR

364/262.4; 364/259.7;, 364/DIG. 1; 395/734;

395/735; 395/736; 395/740

[S8] Field of Searchvvmrinreeceenn 395/725, 325,
305/275, 425; 371/15.1, 16.3; 340/825.5,

US005471620A
United States Patent (9 11] Patent Number: 5,471,620
Shimizu et al. (451 Date of Patent: Nov. 28, 1995
[54] DATA PROCESSOR WITH MEANS FOR 4,059,781 9/1990 Rubinstein et al.cccccerueee 395/725
SEPARATELY RECEIVING AND 5,115,506 5/1992 Cohen et al. ...covvcvvvrmmerreennsnens 395/725
PROCESSING DIFFERENT TYPES OF 5,257,383 10/1993 Lambcovmrrrcsiinniicnnreniarans 3957725
5,291,606 3/1994 Okayama et al.cccceeiriranes 395/725
INTERRUPTS 3,313,640 5/1994 Beardsleycccccineiiviiircnncinenen 395/725
(75] Inventors: Toru Shimizu: Shunichi Iwata, both of 5,349,667 9/1994 Kanekocceemeecommciiicciiiiiinnns 395/725
Itami, Japan OTHER PUBLICATIONS
[73] Assignee: Mitsubishi Denki Kabushlkl Kaisha, Single-Chip 16-Bit CMOS Microcomputer, 1939 Mitsub-
Tokyo, Japan ishi Semiconductor Data Book Mitsubishi Electric Corpo-
ration, May 1989, pp. 2-13.

[21] Appl. No.: 257,844 Primary Examiner—Gopal C. Ray

(22] Filed: Jun 10. 1994 Attorney, Agent, or Firm—Lowe, Price, LeBlanc & Becker
: T . [57] ABSTRACT
[30] Foreign Application Priority Data

A data processor which is provided with a flag in a Processor
Jun. 29,1993 [TP] JAPAN o 5158827 §rams Word (PSW) 116 for storing prohibiting/enabling
[51] Int. CLE® .criirniene GOGF 13/24; GO6F 9/46 status for receiving all of the interrupt requests, and i which
[52] U.S. Cl . 395/375; 364/230.2; 364/241.2; theinstruction execution control unit 114 controls so that the

flag becomes in the enabling status when an interrupt request
having a priority level is received and the flag becomes 1n
the prohibiting status when an interrupt request having no
priority level is received. Hence, for interrupt requests

875 51 having priority levels, an interrupt request of high priority
' level can be received immediately without via the interrupt
[56] References Cited prohibiting status. For interrupt requests having priority
levels, it becomes possible to receive an interrupt request of
U.S. PATENT DOCUMENTS higher priority level without via the interrupt prohibiting
1005.025 9/1975 Davis et al 305/795 status. For interrupt requests having no priority level such as
4,023,143 5/1977 Braunsteincoem. 395725 fOT debugger and the like, it becomes unnecessary to per-
4275440 6/1981 Adams, Jr. €t @l wooreerrernennene. 395275 form a multi-interrupt processing.
4,636,944 1/1987 Hodge ...ereiriiiecciicciinincrnenannes 395/723
4,956,842 9/1990 Saidcccccverrimmmmcriiiinann, 371/62 6 Claims, 12 Drawing Sheets
1172 114 PROCESSOR 110 _ 130
INSTRUCTION [WTCROI-125 INTERRUPT CONTROL CIRCUIT
EXEGUTION — [ADD. MICRO- RRUPT LEVEL 138-0
CONTROL UNIT |REg. ROM PRIO%ITY:;JUDGING UNIT 1 38-1
— 132-0~__1] EIO
= HICROSE |-— 126] 132-1- HET]
= QUENCER |12, At | FI2
= 113{[1L~123 115 118 133 138-2
s INSTRUGTION MASKABLE INTERRUPT REQUEST
103 = o EXECUTION UNIT GENERATION DECIDING UNIT
12| |23] 287—_P C OASKELE FACTOR
T = =0 XBP ON- A
= I 20— JUDGING UNIT "
— 2 - 132-14 NM 1
= 7] |22 e LspT 7|l L 13218 WD 1
= — ,;'/
= . (| [FT REQUEST 138
~I5 5 ARG —— | [HOLDING UNIT
BUS I/F UNIT L% — :%'“*l
1417 DB r] 47
ADD. BUS 101 = 32
DATA BUS 102 32

5,471,620

Sheet 1 of 12

Nov. 28, 1995

U.S. Patent

col’sngviva [

101~ Sng "ddv

934 NOILVYWSOANI LdNddILIN]

LE | TINN DNIQ10H ASOWIN
1530034 LdNYYIINT
A GEd 9¢ 7
SQF LINA BNIDANC
[LaM- NOLOV4 IT8YISYI-NON c0 |
y 12
m
ond
0-g¢7 LINN ONIDAN, ALIYOTYHd
_ 13A37 LdNYYILINT 011
91| LINOYIO 10YLNOO LdNJYIINT | 40$53904d
LYY ¥OIdd
9T

U.S. Patent Nov. 28, 1995 Sheet 2 of 12 5,471,620

F1G. 2
PRIOR ART

PSW:116

5,471,620

U.S. Patent Nov. 28, 1995 Sheet 3 of 12
FI1G. 3
PRIOR ART

INTERRUPT CONTROL REG:132

S
H

' L—-INTERRUPT PRIORITY LEVEL
INTERRUPT REQUEST BLT

5,471,620

Sheet 4 of 12

Nov. 28, 1995

"U.S. Patent

5T 20T SNE VIVC

T 01 sng "qav
A4 184 v

D39 NOTLYWIOINT LdndyIINT ———————1 [INn 41 809

LELTLINAONIAI0H >
153n03Y 13 o
- z
Z=| |-|||=
e
=1NE
=] g0l
NOTLVHINTD LINN NOILNDIX] =
NT 378V)SYN 1 NOTL1ONY LISNI =
11 K =
N— Y S e —
g2 | —{-3S049 1IN =
1140TYd HOY 934 1INN T081NOD
NYYIINI LA DOWLA L RN hE
- LINDYIO TOYINOD LdNYYIINT Ge | NOTLONYLSNI
0g1 011 40SS3008d M1l 211

b O 14

U.S. Patent

Nov. 28, 1995 Sheet 5 of 12 5,471,620

F1G. 5

PSW:1160

0 | 11213 1516 20 26

7ERO FIXING 7ERO FIXING -

LSTACK MODE l INTERRUPT MASK OP -LAG
~INTERRUPT ENABLE FLAG

U.S. Patent Nov. 28, 1995 Sheet 6 of 12 5,471,620

-1G. 6

XBP: 120

- .
BREAK POINT ADD.

PB 1
VALLD
-LAG

US. Patent Now. 28,1995 Sheet 7 of 12 5,471,620

F1G. 7

INTERRUPT CONTROL REG. :132

.
LINTERRUPT LEVEL
INTERRUPT REQUEST FLAG

U.S. Patent Nov. 28, 1995 Sheet 8 of 12 5,471,620

INTERRUPT INFORMATION REG, : 137

0 111213 1516 31
H LERO FIXING |1} |

INTERRUPT VECTOR ADD.
LEVEL

5,471,620

Sheet 9 of 12

Nov. 28, 1995

U.S. Patent

A

Jd444444

0V444444

AEEEEEE
V444444

00000008
4444444

TYWIDIQYXIH)
Qv d40194A

ﬁ

LdNYYTINT ¥INI
(TAN)
TYNIRYTL 378YXSYA-NON

(160)1dNJdIINI
FA1SNTIX3 4399N81d
(I8d)LdNIYFLINT HViat 3d

d010V4

(1 T3)1 LdNIYILINT FTEVISYA
(0 13)0 LdNAGIINT FTHVNSVA

)

(ILAM)
H0Q HILVYM

1
LdNdd31INI

ONTAAISSY 1D TIVAS
1dAl 1dN4dIINI

LdNddFINI
m_._mqv_wmz..zoz

> DT>
Lt | Lad—"D
-t | (DD O

b

&

ERII
11N
19X
RN
SV 10
DAY |

o1l4

U.S. Patent - Nov. 28, 1995 Sheet 10 of 12 5,471,620

F1G. 10

o ' LOWER SIDE ADD.
SPI VALUE I
INTERRUPT —
INTERRUPT OLD PSW VALUE
SPT VALUE OF NS
INTERRUPT — | .~ INSTRUCTION
PROCESSING | :

- 32BITS —

(4BYTES)

5,471,620

| I

—

O i

D
Q<D L
il
LLICY £
0 =
= XX <(
—i. I

Sheet 11 of 12

el
5339084 (014
e

Nov. 28, 1995

9 ﬁ
1$3ND3Y 1SIND I
013 13

| 1 D14

U.S. Patent

5,471,620

Sheet 12 of 12

Nov. 28, 1995

U.S. Patent

AL L JWVS Z\‘m

|

1S3INDIY IWN
153ND3Y 14d

AN

¢l 'HI4d

5,471,620

1

DATA PROCESSOR WITH MEANS FOR
SEPARATELY RECEIVING AND
PROCESSING DIFFERENT TYPES OF
INTERRUPTS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a data processor, particu-
larly, to a data processor which receives interrupt requests
and executes a corresponding interrupt process.

2. Description of Related Art

FIG. 1 is a block diagram showing a configuration of a
processor and an interrupt control circuit of a conventional
data processor.

In the following, an explanation will be made on the
configuration and operation for performing interrupt pro-
cessings in the conventional data processor.

In FIG. 1, reference numeral 101 designates an address
bus, 102 a data bus, 103 a memory, 110 a processor, and 130
an interrupt control circuit.

In addition, the memory 103, the processor 110 and the

interrupt control circuit 130 are connected with each other
through the address bus 101 and the data bus 102.

In the processor 110, an instruction execution control unit
114, a PSW (Processor Status Word) 116 and the like are
provided. The signal lines in the processor 110 are omitted.

The instruction execution control unit 114 controls
instruction execution and interrupt processing in the proces-
sor 110. Specifically, the instruction execution control unit
114 examines, when an instruction execution or an interrupt
processing is finished, the state of an interrupt request signal
236, to be described later, is checked for the presence or
absence of interrupt requests. When there is an interrupt
request, the instruction execution control unit 114 activates
the interrupt processing.

The PSW 116 is a register showing the status of the
processor 110, in which, as shown in FIG. 2, a processor
interrupt priority level field, an interrupt prohibition flag
field and the like are set.

In the processor interrupt priority level field, the interrupt
priority level possessed by the processor 110 at the present
is set. The instruction execution control unit 114 of the
processor 110 receives an interrupt request having a higher
priority level than the processor interrupt priority level set in
the PSW 116 as the interrupt request signal 236.

The value set in the processor interrupt priority level field
is supplied as a processor interrupt priority level signal 213
to a maskable interrupt request generation deciding circuit

133 of the interrupt control circuit 130, described hereinaf-
ter.

On the other hand, in the interrupt prohibition flag field,
an interrupt prohibition flag is set which prohibits receiving
a maskable interrupt request when “17 1s set, and enables
receiving the maskable interrupt request when “0” is set. The
set value of the interrupt prohibition flag is supplied as an
interrupt prohibition fiag signal 214 to the maskable inter-
rupt request generation deciding unit 133 of the interrupt
control circuit 130.

The interrupt control circuit 130 is provided with an
interrupt level priority judging unit 131, the maskable inter-
rupt request generation deciding unit 133, a non-maskable
factor judging unit 134, an interrupt request holding unit
235, an interrupt information register 137, and the like.

10

15

20

25

30

35

40

45

50

55

60

65

2
The interrupt level priority judging unit 131 judges which
interrupt request among EIQ, EI1 . . . of the maskable
interrupt (EI) 1s generated and which is the highest interrupt
level among requests of the generated maskable interrupts
EIQ, Ell . . ., and selects any maskable interrupt having the

highest interrupt priority level.

Specifically, the interrupt level priority judging unit 131 is
provided with a plurality of interrupt control registers 132
(132-0, 132-1 . ..). To each of the interrupt control registers
132, maskable interrupt request signal 238 (238-0, 238-1 . .
.) showing that there is a request of each of the maskable
interrupts EI0Q, EI1 . . . is supplied. Each of the mterrupt
control register 132-0, 132-1, . . . is a register for holding the
presence or absence of an interrupt request and an interrupt
level for each of the factors of the maskable interrupt EIO,
EIl ... As shownin FIG. 3, an interrupt request bit field and

an interrupt priority level field are set in the interrupt control
register 132.

When there is any interrupt request from among the
maskable interrupts EIO, EI1 . . ., “1” is set in an interrupt
request bit in any one of the interrupt control registers 132-0,
132-1, . . . corresponding to the interrupt factor. In each of
the interrupt control register 132, an intrinsic address is
allocated, thereby it is possible to read/write a value of each
interrupt control register 132 from the outside. Therefore, 1t
is possible to set a priority level corresponding to each
interrupt factor in advance in the interrupt priority level of
each interrupt control register 132.

The maskable interrupt request generation deciding unit
133 receives an interrupt only when the set value of the
interrupt prohibition flag supplied from the processor 110 as
the interrupt prohibition flag signal 214 is *“0” and the
priority level of the maskable interrupt (EI) selected by the
interrupt level priority judging unit 131 is higher than the
processor interrupt priority level supplied as the processor
interrupt priority level signal 213, and outputs the interrupt
request to the non-maskable factor judging unit 134. But
when the set value of the interrupt prohibition flag is *“1”" and
the interrupt priority level selected by the interrupt level
priority judging unit 131 1s lower than the processor inter-
rupt priority level, the interrupt request 1s not outputted from
the maskable interrupt request generation deciding unit 133
to the non-maskable factor judging unit 134.

The non-maskable factor judging unit 134 outputs, when
a non-maskable interrupt (either a watchdog timer interrupt
(WDTI) or a debugger exclusive interrupt (DBI)) is given as
a WDTI request signal 139 or a DBI request signal 141 is
given, the request of the interrupt. That 1s, the non-maskable
interrupts WDTI and DBI always have higher priority than
the maskable interrupt (EI) and are not masked by the
processor interrupt priority level or interrupt prohibition flag
set in the PSW 116. When there 1s no request of the
non-maskable interrupt WDTI or DBI, the non-maskable
factor judging unit 134 outputs intact the interrupt request of
the maskable interrupt (EI) given from the aforesaid
maskable interrupt request generation deciding unit 133.

The interrupt request holding unit 235 holds an informa-
tion showing the presence or absence of an interrupt request
given from the non-maskable factor judging unit 134, and
outputs the value to the instruction execution control unit
114 of the processor 110 as the interrupt request signal 236.

The interrupt information register 137 holds a priority
level, vector address, or the like, of the interrupt and sends
interrupt request to the processor 110. An intrinsic address 1s
allocated to the interrupt information register 137, and the
content can be read from the outside of the interrupt control

5,471,620

3

circuit 130, for example, from the processor 110.

In the following, an explanation will be given on the
operation of the interrupt control circuit 130.

The interrupt level priority judging unit 131 selects a
request of the highest priority level from among the
maskable interrupts EIQ, EI1, . . . having interrupt requests
by referring to contents of the interrupt control registers
(132-0, 132-1 . . .), and outputs the vector address and the
interrupt priority level of the selected request to the
maskable interrupt request generation deciding unit 133.

At the maskable interrupt request generation deciding unit
133, the interrupt priority level given from the interrupt level
priority judging unit 131 is compared with the processor
interrupt priority level signal 213 showing the processor
interrupt priority level set, at that time, in the PSW 116 of the
processor 110. When the given interrupt prionty level i1s
higher than the processor interrupt priority level, the
maskable interrupt request generation deciding unit 133
receives the interrupt. When the interrupt is received, the
maskable interrupt request generation deciding unit 133
outputs an interrupt request as well as the vector address and
the interrupt priorty level thereof to the non-maskable factor
judging unit 134.

The non-maskable factor judging unit 134 outputs, when
there 1s a request of a debugger exclusive interrupt (DBI) or
a watchdog timer interrupt (WDTI), the interrupt request as
well as a vector address and an interrupt priority level (=0)
thereof. But when there are both requests, the debugger
exclusive interrupt (DBI) 1s received prlor to the watchdog
timer interrupt (WDTI). When there 1s no request, the
non-maskable factor judging unit 134 outputs intact a value
sent from the maskable interrupt request generation deciding
unit 133 to the interrupt request holding unit 235.

The presence or absence of an interrupt request is tem-
porarily held in the interrupt request holding unit 235, and
the value held in the interrupt request holding unit 235 is
outputted to the processor 110 as the interrupt request signal
236. In addition, the vector address and the interrupt priority
level are inputted from the non-maskable factor judging unit
134 to the interrupt information register 137 and held
therein.

In the following, an explanation will be made on the
operation of the processor 110.

Every time an instruction execution is finished or every
time an interrupt processing is finished, the instruction
execution control unit 114 examines the interrupt request
signal 236 given from the interrupt control circuit 130 to
detect the presence or absence of an interrupt request, and
activates an interrupt processing when there is an interrupt
request.

As per the interrupt processing done by the instruction
execution control unit 114 of the processor 110, all of the
following processings are performed by the hardware con-
trol.

(1) Reading of the interrupt information register

When an inferrupt request is received, the instruction
execution control unit 114 reads a content of the interrupt.
information register 137 by using the address bus 101 and
the data bus 102.

In addition, when the value of the interrupt information
register 137 1s read by the information execution control unit
114, an interrupt request bit of the interrupt control register
132 corresponding to the received interrupt factor is cleared
to be “0” in the interrupt level priority judging unit 131.

(2) Saving of a processor information to a stack

10

15

20

25

30

35

40

45

50

55

60

63

4

The instruction execution control unit 114 saves such
processor informations as a value of the PSW 116 (herein-
after to be called a PSW value) and a value of a program
counter (not shown) (hereinafter to be called a PC value) to
a stack set in the memory 103.

(3) Updating of a PSW value

The instruction execution control unit 114 sets the inter-
rupt prohibition flag of the PSW 116 whose content has been
saved temporarily to the stack by the processing of (2) to
“1”, as well as the substitute of the processor priority level
for the received interrupt priority level.

In addition, since both of the above are given to the
maskable interrupt request generation deciding unit 133 as
the interrupt prohibition flag signal 214 and the processor
interrapt priority level signal 213, respectively, the maskable
interrupt request generation deciding unit 133 decides
whether (o receive or not receive the maskable interrupts
(EI) according to these signals.

(4) Acquisition of a start address of an interrupt handler

A software program performing a processing correspond-
ing to an interrupt factor is an interrupt handler.

The 1nstruction execution control unit 114 acquires a start
address of-the interrupt handler by reading the memory 103
with the vector address as a read address obtained before
from the interrupt information register 137.

(5) Activation of interrupt handler

The 1instruction execution control unit 114 jumps the
processing sequence to the start address of the interrupt
handler obtained by the processing of (4). However, also at
this time, the interrupt request, signal 236 is checked by the
instruction execution control unit 114.

When an interrupt handler 1s executed by the fact that a
return instruction from the interrupt handler is executed at
the previous execution, the instruction execution control unit
114 makes the PSW value, and the PC value which have
been saved 1n the stack in advance return, respectively, to the
PSW 116 and PC (not shown), to return to the state before
the interrupt.

As atorementioned, when an interrupt request 1s received,
the conventional data processor prohibits to receive, by
making the interrupt prohibition flag become “effective”, all
of the other interrupt requests having priority levels. ThlS
interrupt prohibition state continues until the interrupt pro-
hibition flag is cleared by the interrupt handler processed at
that time.

But the interrupt prohibition flag is effective only to the
maskable interrupts EI0, EI1 . . . which are inferrupt requests
having priority levels. That is, the ones which are not
received when the interrupt prohibition flag is set are only
the maskable interrupts EIO, EI1 . . . having priority levels.
Therefore, such interrupt requests as, such as the debugger
exclusive interrupt (DBI), the watchdog timer interrupt
(WDTI), and the like, having no priority level, are received
even when the interrupt prohibition flag of the PSW 116 is
set. In other words, an interrupt request having no priority
level 1s always recetved.

As aforementioned, when an interrupt (maskable inter-
rupt) request having a priority level is received, the conven-
tional data processor is prohibited to receive by making the
interrupt prohibition flag become “effective’” in the interrupt
processing, when all of the other interrupt requests have
priority levels. Therefore, even when an interrupt request
having higher prionty level is generated while an interrupt
processing 1s performed according to a certain interrupt
request, the former interrupt request 1s not received imme-

5,471,620

S

diately after the interrupt processing, but has to wait until the
interrupt prohibition flag is made “ineffective” by the pro-
cessing of the interrupt handler.

The conventional data processor is constructed to receive
an interrupt (non-maskable) request having no priorty level,
and is not constructed to prohibit to receive 1it. Therefore,
when a plurality of interrupt requests having no priority
level is generated at the same fime, after one interrupt
processing is finished, another interrupt processing 1s imme-
diately activated to perform a multi-interrupt processing.

Therefore, a conventional data processor capable of
receiving a plurality of interrupts having no priority level
such as a conventional interrupt for debugger has to perform
interrupt processing with due regard to a multi interrupt
processing, and the control method becomes complicated.

SUMMARY OF THE INVENTION

The present invention has been devised 1n order to solve
these problems, and the object thereof 1s to provide a data
processor capable of receiving an interrupt request of high
priority immediately without passing through an interrupt
prohibition state.

And another object thereof is to provide a data processor
having no necessity of performing a multi-interrupt process-
ing for an interrupt request having no priority level such as
an interrupt for debugger.

The data processor related to the invention 1s provided
with a flag which controls prohibiting/enabling for all of the
interrupt requests, and controls so that the flag is in the state
of enabling when an interrupt request having priority level
is received and the flag is in the state of prohibition when an
interrupt request having no priority level is received.

In the data processor related to the invention receives,
after processing an interrupt request having priority level, an
interrupt request of higher priority level is received, how-
ever, all of the interrupt requests are not received at all after
processing an interrupt request having no prority level.

The above and further objects and features of the inven-
tion will more fully be apparent from the following detailed
description with accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing an exemplary con-
figuration of a conventional data processor;

FIG. 2 is a schematic diagram showing a content in a PSW
of a conventional data processor;

FIG. 3 is a schematic diagram showing a content in an
interrupt control register of a conventional data processor;

FIG. 4 is a block diagram showing a configuration of one
embodiment of a data processor of the invention;

FIG. 5is a schematic diagram showing a bit configuration
of a PSW of one embodiment of a data processor of the
invention;

FIG. 6 is a schematic diagram showing a bit configuration
of an instruction break point register (XBP) of one embodi-
ment of a data processor of the invention,;

FIG. 7 is a schematic diagram showing a bit configuration |

of an interrupt control register of one embodiment of a data
processor of the invention;

FIG. 8 is a schematic diagram showing a bit configuration
of an interrupt information register of one embodiment of a
data processor of the invention;

10

15

20

25

30

35

40

45

50

55

60

05

6

FIG. 9 is a table showing a relation between vector
addresses and updated values of a PSW at every interrupt
factor of one embodiment of a data processor of the inven-
tion;

FIG. 10 is a schematic diagram showing a stack format

during saving a processor information at the time of inter-

rupt processing of one embodiment of a data processor of the
invention;

FIG. 11 is a flowchart showing an execution sequence of
one embodiment of a data processor of the invention during
an interrupt processing of an interrupt having low priority
level, where an interrupt having higher priority level is
generated; and

FIG. 12 is a flowchart showing an execution sequence of
a data processor of the invention, in the case where a PC
break interrupt and an NMI terminal interrupt are generated
at the same time.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the following, an explanation will be made 1n detail on
the invention referring Lo the drawings showing the
embodiment.

FIG. 4 is a block diagram showing a data processor,
particularly, a processor and an interrupt control circuit, of
the invention.

In addition, in FIG. 4, the same reference characters as
those in FIG. 1 referred to the explanation of the aforemen-
tioned conventional example show the same or correspond-
ing portions.

In the following, an explanation will be made particularly
on the configuration and operation for performing an inter-
rupt processing of the data processor of the invention.

In FIG. 4, reference numeral 101 designates an address
bus (32 bits), numeral 102 a data bus (32 bits), numeral 103

a memory, numeral 110 a processor, and numeral 130 an
interrupt control circuit.

In addition, the memory 103, the processor 110, and the

interrupt control circuit 130 are connected with each other
by the address bus 101 and the data bus 102.

The processor 110 of the embodiment adopts a so-called
micro-program control method.

The processor 110 comprises a bus interface unit (bus I/F
unit) 111, an instruction fetch unit 112, an instruction
decoding unit 113, an instruction execution control unit 114,
an instruction execution unit 115 and the like.

Further, the instruction execution control unit 114 com-
prises a microsequence 124, a microaddress register 125, a
micro-ROM 126, a microdecoder 127, and the like, and the
instruction execution unit 115 comprises a PSW (Processor
Status Word) 116, a program counter (PC) 119, an instruc-
tion break point register (XBP) 120, a stack pointer (SP)

121, an interrupt stack pointer {(SPI) 122, a comparator 128,
and the like.

The bus I/F unit 111 is a hardware for connecting the
processor 110 with the address bus 101 and the data bus 102,
and controls the input/output of signals to and from the
outside of the processor 110 such as memory access of an
instruction or data.

The instruction fetch unit 112 generates an instruction
fetch request for the bus I/F unit 111, and 1n response to the
generated request, the bus I/F unit 111 takes in an instruction
fetched from the memory 103 to hold it temporarily, and

5,471,620

7

outputs it to the instruction decoding unit 113.

The instruction decoding unit 113 receives the instruction
from the instruction fetch unit 112 and decodes it, and
outputs an information (micro-program address, register
number, and the like) necessary for executing the instruction
to the instruction execution control unit 114.

The instruction execution control unit 114 outputs a
control signal for controlling the instruction execution unit
115 on the basis of the information outputted from the
instruction decoding unit 113 and an interrupt request signal
136 and description will be made hereinafter.

The instruction execution control unit 115 executes the
instruction according to the control signal outputted from the

instruction execration control unit 114. The instruction
execution unit 115 comprises, as aforementioned, the PSW
116, program counter (PC) 119, the instruction break point
register (XBP) 120, the stack pointer (SP) 121, the interrupt
stack pointer (SPI) 122, the comparator 128, and the like.

In the following, an explanation will be made in detail on
the instruction execution unit 115.

The PSW 116 is a register for indicating the status of the
processor 110, and adopts 320 bits configuration in this
embodiment. In addition, the configuration of the PSW is
shown in FIG. §, and each bit has a meaning shown in the
foliowing.

stack mode (SM)
a stack pointer (SPI 121) for an external 1n-
terrupt 1s used
1: a usual stack pointer (SP 121} 1s used
*bit 1 to 11: zero fixing
* bit 12 interrupt enable flag
0. all of the interrupt requests are not received
1: all of the interrupt requests are received
* bit 13 to 15: interrupt mask
| 0. all of the maskable interrupt requests are not
received at all
1. maskable interrupt of interrupt level O 1s re-
ceived |
2: maskable interrupts of interrupt level G to 1
are received
3. maskable interrupts of interrupt Ievel O to 2
are received
4: maskable interrupts of interrupt level 0 to 3
are received
5: maskable interrupts of interrupt level O to 4
are received
6: maskable interrupts of interrupt level 0 to 5
are received
7. maskable interrupts of interrupt level 0 to 6
are received
* bit 16 to 253: zero fixing
* bit 26 to 31: operation flag
various kinds of flags showing operation results
such as overflow flag, zero flag, and the like

* hit O;
0:

The value of the interrupt mask which 1s the bit 13 to of
the PSW 116 is outputted intact as an interrupt mask signal
117 of three bits, and inputted to the maskable interrupt
request generation deciding unit 133 of the interrupt control
circuit 130. The value of the interrupt enable flag which is
bit 12 of the PSW 116 is outputted intact as an interrupt
enable signal 118 of one bit to the microsequencer 124,

The PC 119 1s a register for holding an instruction address
being executed in the instruction execution unit 115, and
adopts a 32-bit configuration in this embodiment. In addi-
tion, a content of the PC 119, that 1s, an instruction address
1S switched to an instruction address to be executed next
when each instruction is finished. |

The instruction break point register (XBP) 120 is a

10

15

20

23

30

35

4{}

45

50

535

60

65

3

register for the debugger, and adopts a 32-bit configuration
in this embodiment. The value set in this instruction break

point register (XBP) 120 and the value of the PC 119 arc
compared with each other by the comparator 128.

The configuration of the instruction break point register
(XBP) 120 1s shown 1n a schematic diagram of FIG. 6, and
each bit thereof has a meaning shown in the following.

* bit O to 30: break point address

setting the higher 31 bits of value of the PC 119
of a target at breaking an instruction execution
* bit 31: PBI (PC break interrupt) effective flag
(: PBI request 1s ineffective
1. PBI request is effecttve

The comparator 128, as aforementioned, always com-
pares the higher 31 bits of the value of the instruction break
point registe (XBP) 120 and the higher 31 bits of the value
of the PC 119 with each other. When the comparison result
shows coincidence, assuming that a break interrupt request
1s generated, an interrupt request (PC break interrupt=PBI)
1s generated when an instruction being executed at that time.
In other words, an instruction whose address 1s a value held
in the PC 119, 1s finished. Specifically, a PBI request signal
123 which is a signal for requesting the PC break interrupt
(PBI) 1s generated as a coincidence detection signal of the
comparator 128, and is given to the microsequencer 124 of
the instruction execution control unit 114,

The SP 121 is a usual stack pointer, and adopts a 32-bit
configuration in this embodiment. The SP 121 is used when

the stack mode of the PSW 116 is set to “1”.

The SPI 122 is a stack pointer for external interrupt, and
adopts a 32-bit configuration in this embodiment. The SPI
122 is used when the stack mode of the PSW 116 is set to
“07.

The microsequencer 124 executes and controls a micro-
program, and specifically, generates an address of a micro-
instruction to be executed next on the basis of an information
given from the instruction decoding unit 113, a direction
given from a microinstruction read from the micro-ROM
126, and each interrupt request (the aforementioned PBI
request signal 123, and an interrupt enable signal 118, El
request signal 136, DBI request signal which are to be
described later, and the like).

In this embodiment, a debugger exclusive interrupt (DBI)
is generated by the DBI generating circuit 142 and inputted

to the microsequencer 124 directly through the bus I/F unit
111.

The microaddress register 125 is given an address of a
microinstruction to be read from the micro-ROM 126 and to
be executed next, and holds it therein.

The micro-ROM 126 stores the microinstructions and
outputs a microinstruction of an address held in the microad-
dress register 125,

The microdecoder 127 decodes the microinstruction out-
puited from the micro-ROM 126 and the signal given from
the microsequencer 124 so as to generate a control signal
and outputs this to the instruction execution unit 1135.

The interrupt control circuit 130 comprises, as aforemen-
tioned, the interrupt level priority judging unit 131, the
maskable interrupt request generation deciding unit 133, the
non-maskabie factor judging unit 134, the E1 request hold-
ing unit 138§, the interrupt information register, and the like.

The interrupt level priority judging unit 131 comprises a
plurality of interrupt control registers 132 (132-0, 132-1 . .

5,471,620

9

.) to which maskable interrupt request signals 138-0, 138-1
. . . showing the presence of the user’s maskable interrupt
EI0, EI1 . . . are given respectively. The interrupt level
priority judging unit 131 compares the contents of these
interrupt control register 132-0, 132-1 . . ., thereby selects
an interrupt request of highest priority from among the
user’s maskable interrupts E10, EI1EI2 . . . which requested
{0 1nterrupt.

Each of the interrupt control registers 132-0, 132-1 . . .
adopts an eight-bit configuration in this embodiment, and
holds an interrupt request bit and an interrupt level respon-
sive to each interrupt factor. To each of the interrupt control
registers 132-0, 132-1 . . ., address is allocated respectively,
and it becomes possible to read/write a value of each
interrupt control register 132 from the outside, for example,
a processor 110 or the like.

FIG. 7 is a schematic diagram showing a configuration of
each of the interrupt control registers 132-0,132-1.. ., and
each bit has a meaning shown in the following.

* bit O to 3: zero fixing
* bit 4: interrupt request bit
0: there 1s no interrupt request
1: there is interrupt request
* bit 5 to 7: interrupt level
(: maskable interrupt

. to be received when interrupt mask is 1 to

7.

non-maskable interrupt
: to be received when interrupt mask 1s 0 to
7.
to be received when interrupt mask is 2 to 7.
. to be received when interrupt mask 1s 3 to 7.
to be received when interrupt mask is 4 to 7.
to be received when interrupt mask is 5 to 7.
to be received when interrupt mask is 6 to 7.
. to be received when interrupt mask is 7.
. not to be received. same as that there is no

interrupt request.
Here, the smaller the value, the higher the priority of bit 5 to 7.

In non-maskable interrupt, zero-fixing 1n thus field.

AR L

The maskable interrupt request deciding unit 133 com-
pares the interrupt level selected by the interrupt level
priority judging unit 131 with the interrupt mask signal 117,
that is, the interrupt mask value of the PSW 116, outputted
from the processor 110, and when “interrupt Ilevel
value<interrupt mask value”, it receives the interrupt request
and outputs the interrupt request to the non-maskable factor
judging unit 134.

The non-maskable factor judging unit 134 comprises
interrupt control registers 132 (132-139, 132-140) having
the same configuration as the aforementioned interrupt level
priority judging unit 131. To the interrupt control registers
(132-139, 132-140), the WDTI request signal 139 showing
the presence of the watchdog timer interrupt (WDTI) being
a user’s non-maskable interrupt and and an NMI request
signal 140 showing the presence of a user’s non-maskable
terminal interrupt (NMI) of the highest priority are supplied
respectively. When a request of the watchdog timer interrupt
(WDTI) or a request of the user’s non-maskable terminal
interrupt (NMI) is given to the interrupt control register 132
(132-139, 132-140) as the signal 139 or 140, the non-
maskable factor judging unit 134 outputs the interrupt
request. That is, the watchdog timer interrupt (WDTTI), and
user’s non-maskable terminal interrupt (NMI) always has
higher priority than the user’s maskable interrupts EI0Q, EI1
. . ., and are not to be masked by an interrupt mask. But
when there is no request of the user’s non-maskable inter-

10

15

20

25

30

35

40

45

50

35

60

65

10

rupt WDTI or NMI, the non-maskable factor judging unit
134 outputs a value given from the maskable interrupt
request generation deciding unit 133.

The EI request holding unit 135 holds the presence or
absence of the requests of the user’s maskable interrupts
EI0, EI1 . . . and the user’s non-maskable interrupts WDTI,
NMI, and the like. This value held in the EI request holding
unit 135 is outputted to the microsequence 124 of the
processor 110 as the EI request signal 136. That 1s, the EI
request signal 136 is a signal which informs the microse-
quencer 124 that there 1s a request of a user’s interrupt

The interrupt information register 137 adopts a 32-bit
configuration in this embodiment, and holds an interrupt
level, vector address, and the like of an interrupt request
performing interrupt requesting to the processor 110 at
present. An address 0 is allocated to this interrupt informa-
tion register 137, and the content can be read from the

outside, for example, the processor 110 or the like.

FIG. 8 is a schematic diagram showing a configuration of

the interrupt information register 137, and each bit has a
meaning shown in the following.

* bit 0 to 11:
* bit 12 to 15:
* bit 13 to 15:
* bit 16 to 31:

zero fixing

“1” fixing

interrupt level

lower 16 bits of a vector address to
be used by sign-expanding to 32 bits.

FIG. 9 is a table showing a relation between a vector

address and an updated value of the PSW 116 at every
interrupt factor.

The interrupt requests to be received by the data processor
of the invention are roughly classified to three kinds of
interrupts; debugger exclusive interrupt, user's non-
maskable interrupt, user’s maskable interrupt.

The debugger exclusive interrupt is further classified to
two kinds of factors; a PC break interrupt (PBI) and a
debugger exclusive interrupt {DBI).

The PC break interrupt (PBI) is an interrupt performed in
the case where a value set in the instruction break point
register (XBP) 120 in advance by a program and a value of
the PC 119, that is an address of an instruction being
executed at the time point, are coincided with each other.
Specifically, when the comparator 128 detects that a value of
the PC 119 (PC value) and a value of the instruction break
point register (XBP) 120 are coincided with each other, the
comparator 128 generates the PBI request signal 123 and
gives it to the microsequencer 124, thereby the microse-
quencer 124 starts interrupt-processing.

The debugger exclusive interrupt (DBI) i1s an interrupt
used when debugging of the data processor of the invention
is performed. The DBI request signal 141 which requests the
debugger exclusive interrupt (DBI) can be generated from
the DBI generating circuit 142, and by the fact that the DBI
request signal 141 is given directly to the microsequencer
124 from the bus I/F unit 111, the microsequencer 124
begins interrupt-processing.

“FFFFFFF4 (hexadecimal)” is set as a vector address of
the PC break interrupt (PBI), and *“80000000 (hexadeci-
mal)” is set as a vector address of the debugger exclusive
interrupt (DBI).

The updated values of both the PC break interrupt (PBI)
and the debugger exclusive interrupt (DBI) are “0” all 1n the

stack mode (SM), the interrupt enable flag, and the interrupt
mask.

5,471,620

11

The user’s non-maskable interrupt 1s further classified to
two kinds of factors; the non-maskable terminal interrupt

(NMI) and the watchdog timer interrupt (WDTI).

The non-maskable terminal interrupt (NMI) is an interrupt
of the highest priority among user’s interrupts, which cannot
be masked even by an interrupt mask of the PSW 116. The
NMI request signal 140 which requests the user’s non-
maskable terminal (NMI) i1s inputted to the non-maskable
factor judging unit 134 from a dedicated terminal (not
shown).

The watchdog timer interrupt (WD'T]) 1s an interrupt from
a watchdog timer (not shown), and the WDTI request signal
139 which requests the watchdog timer interrupt (WDTT) is
inputted to the non-maskable factor judging unit 134.

“FFFFFFAS8 (hexadecimal)” is set as a vector address of
the non-maskabie terminal interrupt (NMI) and “FFFFFFA4
(hexadecimal)” 1s set as a vector address of the watchdog
timer interrupt (WDTI),

Both of the updated values of the PSW 116, the non-
- maskable terminal interrupt (NMI) and watchdog timer
interrupt (WDTI) are “07, “17 , and “0” sequentially in the
order of the stack mode (SM), and interrupt enable flag,
interrupt mask.

The user’s maskable interrupt is further classified to
maskable interrupts 0, 1, 2. ..

These user’s maskable interrupts can be set optionally on
a program by a user, and the requests thereot are given to
each interrupt control register 132 (132-0, 132-1 ...) of the
interrupt level priority judging unit 131 as tile maskable
interrupt request signal 138 (138-0, 138-1 . . .).

As vector addresses of user’s maskable interrupts,
“FFFFFFAO (hexadecimal)”, and “FFFFFFBC (hexadeci-
mal)” are set in the order of EI0, EIl1 . . .

The updated values of the PSW 116 of each user’s
maskable interrupt are “0”, and “1” in the order of stack
mode (SM) and interrupt enable flag, and the interrupt mask
18 each interrupt level.

FIG. 10 is a schematic diagram showing a stack format of
the case where processor information, that is, a value of the
PSW 116 (PSW value) and an address (next instruction PC
value) of a next instruction being a value of the PC 119, are
saved 1n the stack at the time of interrupt processing.

The stack 1s set as an area of 32-bit (four bytes) width in
the memory 103, and saves a PC value of the next instruction

to an address of —4 from the value of SPI 122 (SPI value)

before interrupt processing, and the PSW value to an address
of —4 from the SPI value. Accordingly, the SPI value after
interrupt processing becomes a value obtained by subtract-
ing eight from the SPI value before interrupt processing.

In the following, an explanation will be made on the
operation of the interrupt control circuit 130.

The interrupt level priority judging unit 131 refers to a
content of the interrupt request flag of each interrupt control
register 132 (132-0, 132-1 ...) so as to select a request of
the highest priority from among the user’s maskable inter-
rupts EI0, EI1 . . . which have interrupt requests, and sends
the vector address and interrupt level of the selected inter-
rupt to the interrupt request generation deciding unit 133.

The priority level in case of no interrupt request 18 7 (no

request).

The maskable interrupt request generation deciding unit
133 compares the interrupt level sent from the interrupt level
priority judging unit 131 with a value of an interrupt mask
given as the inferrupt mask signal 117 from the PSW 116 of
the processor 110. When the interrupt level is smaller than

10

15

20

25

30

35

40

45

50

35

60

65

12

the value of the interrupt mask, the interrupt is received, and
the interrupt request 1s outputted to the non-maskable factor
judging unit 134 and also the vector address and the interrupt
level of the interrupt factor are outputted.

The non-maskable factor judging unit 134, when there is
a request of a non-maskable terminal interrupt (NMI) being
a user’s non-maskable interrupt or a watchdog timer inter-
rupt (WDTI), outputs the interrupt request, as well as
outputs the vector address and the interrupt level to the
interrupt information register 137. But when there are both
requests at the same time, the watchdog timer interrupt
(WDTI) 1s received prior to the non-maskable terminal
interrupt (NMI). When there is neither of the requests, the

non-maskable factor judging unit 134 outputs a value sent
from the maskable interrupt request generation deciding unit
133 intact to the El request holding unit 135 and the interrupt
information register 137.

The presence or absence of the interrupt request from the
non-maskable factor judging unit 134 is temporarily held in
the EI request holding unit 135 and the value held in the El
request holding unit 135 is outputied to the microsequencer
124 of the processor 110 as the EI request signal 136. The
vector address and the interrupt level are outputted from the
non-maskable factor judging unit 154 to the interrupt infor-
mation register 137 and held there.

In the following, an explanation will be made on the
operation at the side of the processor 110.

At the instruction execution control unit 114, every time
an instruction execution 1s finished or every time an instruc-
tion processing is finished, the microsequencer 124 checks
the states of the El request signal 136, the PBI request signal
123, the DBI request signal 141. When the value of the
interrupt enable flag of the PSW 116 is “0”, the microse-
quencer 124 does not receive all of the interrupt requests
regardiess of presence or absence of the interrupt requests.
But when the value of the interrupt enabie flag of the PSW
1s ‘1", the microsequencer 124 receives interrupt requests, if
any, and generates a corresponding micro-program address
for interrupt processing to activate an interrupt processing.

In addition, the priority of the case where a plurality of
interrupt requests are generated at the same time is “PBI
>DBI >EI”, that 1s, the PC break interrupt>the debugger
exclusive interrupt>the user’s interrupt.

The interrupt processing is processed all by the hardware
control by a procedure shown 1in the following.

(1) Reading of the interrupt information register

The content of the interrupt information register 137 is
read out by the microsequencer 124 only when the received
interrupt request 18 any of the user’s interrupts NMI, WDTI
and EIQ, EI1 . . .

When the interrupt request 1s received, the microse-
quencer 124 reads the content of the interrupt information

register 137, that is, the vector address and the interrupt
level, by using the address bus 101 and the data bus 102.

When the content of the interrupt information register 137
is read by the microsequencer 124, the interrupt control
circuit 130 clears to “0” the interrupt request bit of each
interrupt control register 132-0, 132-1 . . . corresponding to
the received interrupt factor.

(2) Saving of a processor information to the stack

The information execution control unit 114 saves a pro-
cessor information, that is, a value of the PSW 116 (PSW
value) and a value of the PC 119 (PC value) to the memory
103 according to the stack format shown in FIG. 10.

(3) Updating of a PSW value

5,471,620

13

The instruction execution control unit 114 sets the inter-
rupt prohibition flag and the priority mask of the PSW 116
after the content thereof 1s temporarily saved to a stack or the
like by the processing of (2).

Since both of them are given to the maskable interrupt
request generation deciding unit 133 as the interrupt prohi-
bition flag signal 214 and the processor interrupt priority
level signal 213 respectively, the maskable interrupt request
generation deciding unit 133 decides whether or not to

receive the interrupt requests after that according to these
signals.

In case of EI: When the received interrupt request is any
of the user’s interrupts NMI, WDTI, EI0, EI1 . . . , the
microsequencer 124 sets the interrupt enable flag of the PSW
116 to “1” and substitutes the interrupt mask for an interrupt
level obtained from the interrupt information register 137.

In case of PBI, and DBI: When the received interrupt
request 18 either the PC break interrupt (PBI) or the debugger
exclusive interrupt, the microsequencer 124 makes the inter-

rupt enable flag of the PSW 116 be “0” and the interrupt
mask “0”.

(4) Acquisition of a start address of an interrupt handler

In case of EI: When the received interrupt request 1s any
of the user’s interrupts NMI, WDTI, EIO, EI1 . . . , the
microsequencer 124 makes a vector address obtained from
the interrupt information register 137 be sign-expanded to

32 bits and reads the memory 103 with it being as the
address.

In case of PBI: When the received interrupt request is the
PC break interrupt (PBI), the microsequencer 124 reads an
address “FFFFFFFEF4 (hexadecimal)” of the memory 103.

In case of DBI: When the received interrupt request 1s the
debugger exclusive interrupt (DBI), the microsequencer 124

reads an address “80000000 (hexadecimal)” of the memory
103.

(S) Activating of interrupt handler

The microsequencer 124 jumps the processing sequence
to the start address of the interrupt handler obtained by the
processing of (4). However, also at this time, checking of an
interrupt receiving, that 1s, checking of the interrupt request

signal 236 is performed by the instruction execution control
unit 114.

The software program performing a processing corre-
sponding to an interrupt factor is an interrupt handler. At the
time of executing the interrupt handler, by the fact that a
REIT instruction being a return instruction from the inter-
rupt handler is executed at the last, the microsequencer 124
returns the PSW value and the PC value saved before 1n a
stack to the PSW 116 and the PC 119 respectively, thereby

returns to a state before interruption.

In such a way, the data processor of the invention prepares
a user’s interrupt having an interrupt level and two kinds of
interrupts for debugging having no interrupt level, and is
provided with flags for prohibiting all of the interrupt
requests. And by the fact that the data processor of the
invention controls so that it is in the “‘interrupt enabling
state” when a user’s interrupt request having interrupt level
is received and it is in the “interrupt prohibition state” when
a request of an interrupt for debugger having no interrupt
level is received, thereby, for the interrupt requests having
the interrupt level, a request of an interrupt of high priorty,
can be received in high speed and for an interrupt for
debugger having no interrupt level can be controlled so that
it is not processed with the other interrupt request in a
multi-interrupt processing.

10

15

20

25

30

35

40

45

50

55

60

65

14

Next, explanation will be given on an execution sequence,
for interrupt requests having interrupt levels, of the case
where an interrupt of higher priority 1s generated while an
interrupt of lower priority i1s being processed. Here, as an
example, an explanation will be given on the case where an
interrupt request of EIQ (interrupt level=0) of the user’s
maskable interrupts is generated while EI1 (interrupt level=
1) of the user’s maskable interrupt is being interrupt-pro-
cessed, referring to a flowchart of FIG. 11.

(1) Generation of the request of the user’s maskable
interrupt El

It is assumed that the user’s maskable interrupt El1 of
interrupt level=1 is generated while an instruction B 1s being
executed at the time of executing instructions A, B, C
sequentially.

Values of the PSW 116 (PSW value) when the execution
of the instruction B is finished are as follows.

stack mode: 1
interrupt enable flag: 1
interrupt level: 7

(2) Execution of interrupt processing of the user’s
maskable interrupt EI1 |

After the instruction B is finished, the interrupt processing
for the user’s maskable interrupt EI1 is executed.

And it is assumed that, during processing of the user’s
maskable interrupt ElIl, a request of the user’s maskable
interrupt EI0 (interrupt level=0) 1s generated.

The content of the stack to be formed 1s as follows.

old PSW value: PSW value at the time of the

execution of the instruction B is
finished
PC value of the in-
struction C
New PSW values are as follows.

next instruction PC value:

stack mode: 0
interrupt enable flag: 1
iterrupt level: 1

(3) Execution of interrupt processing of the user’s
maskable interrupt EI(

After the interrupt processing of the user’s maskable
interrupt EI1 is finished, the interrupt processing of the
user’s maskable interrupt EIO is executed.

A stack to be formed further on the stack of EIl is as
follows:

old PSW value: PSW value immediately after
the EIl interrupt processing
PC value of a start
instruction of the in-

terrupt handler for

EIl

next istruction PC value:

New PSW value are as follows:

stack mode: 0
interrupt enable flag: 1

interrupt level: O

(4) Execution of the interrupt handler for the user’s
maskable interrupt EI0

When the interrupt processing of the user’s maskable

5,471,620

15

interrupt EIO0 is finished, the interrupt handler for the user’s
maskable interrupt EIQ 15 executed.

(5) Execution of the interrupt handler for the user’s
maskable interrupt EIl

When the interrupt handler for the user’s maskable inter-
rupt EI0Q is finished, the interrupt handler for the user’s
maskable interrupt EIl 1s executed.

(6) Execution of the instruction C

When the execution of the interrupt handler for the user’s
maskable interrupt EI1 is finished, the instruction C is
executed.

In such a way, for the interrupt request having the
interrupt level, the data processor of the invention proceeds,
when an interrupt request of higher priority is generated
while an interrupt processing of lower priority is being
performed, to the interrupt processing of higher priority
immediately after the interrupt processing of lower priority
1s finished.

Next, an explanation will be given on the execution
sequence of the case where an interrupt for debugging
having no interrupt level 1s generated together with the other

interrupt request at the same time, referring to the flowchart
of FIG. 12.

(1) Generation of the PBI request and the NMI request at
the same time

It is assumed that the PBI (PC break interrupt) request and
the NMI (non-maskable terminal interrupt) request are gen-
erated at the same time while the instruction B 1s being
executed at the time of executing the instructions A, B, C
scquentially. |

The PSW values when the execution of the instruction B
is finished are as follows:

stack mode: 1
interrupt enable flag: 1
interrupt level: 7

(2) Execution of the PBI interrupt processing

After the instruction B is finished, the PC break interrupt
(PBI) processing (PBI interrupt processing) is executed.

The stack to be formed 1s as follows:

old PSW value: PSW value when the instruc-
ton B is finished

PC value of the in-

struction C

New PSW values are as follows:

return-destination PC value:

stack mode:
interrupt enable flag:
interrupt level:

= OO

Since the interrupt enable flag becomes “0”, an interrupt

request 1s not to be received after an interrupt processing is
finished. -

(3) Execution of the PBI interrupt handler

The interrupt handler (PBI interrupt handler) for PC break

interrupt (PBI) is executed after the processing of the PC
break interrupt (PBI) 1s finished.

When the PBI interrupt handler 1s finished, the processing
returns {o the state where the instruction B is finished.

(4) Execution of the NMI interrupt processing
When the PBI interrupt handler 1s finished, the non-

10

15

20

235

30

35

40

45

50

33

60

65

16

maskable terminal interrupt (NMI) processing (NMI 1inter-
rupt processing) is executed.

The stack to be formed is as follows:

old PSW value: PSW value when the execution
of the mstruction B 15 fimshed
return-destination PC value: PC value of the 1n-
struction C
New PSW value are as follows:

stack mode: O
interrupt enable flag: 1
interrupt level: O

(5) Execution of the NMI interrupt handler

The interrupt handler for NMI interrupt, 1s executed when
the NMI interrupt processing 1s finished.

(6) Execution of the instruction C

When the NMI handler is finished, the instruction C 1is
executed.

In such a way, for an interrupt request having no interrupt
level, in the data processor of the invention, the other
interrupt processing 1s not to be activated when the interrupt
processing of the former is finished.

In addition, the target of the PC break interrupt (PBI) of
the embodiment 1s an instruction being executed, however,
the next instruction can be made a target by making the PC
store an address of the next instruction.

As described aforementioned, according to the data pro-
cessor of the invention, as for a request of an interrupt
having priority level, since an interrupt enable flag i1s set to
the “enabling” state at the time of the interrupt processing,
in the case where an interrupt request of higher priority has
been generated at that time, 1t becomes possible to receive
the interrupt request immediately after the interrupt process-
ing. And as for a request of an interrupt having no priority
level such as for debugger, etc., since an interrupt enable flag
is set to the “prohibition” state at the time of the interrupt
processing, the other interrupt request 1s not to be received
after the interrupt processing. In other words, since interrupt
requests are not received, a complicated control 1s not
necessary.

As this invention may be embodied in several forms
without departing from the spirit of essential characteristics
thereof, the present embodiment 1s theretore illustrative and
not restrictive, since the scope of the invention is defined by
the appended claims rather than by the description preceding
them, and all changes that fall within the metes and bounds
of the claims, or equivalence of such metes and bounds
thereof are therefore intended to be embraced by the claims.

What is claimed 1s:

1. A data processor, comprising:

first interrupt requesting means for informing a first
interrupt request which 1s generated on the basis of a
first interrupt factor and requests activation of a f{irst
interrupt processing;

second 1nterrupt requesting means for informing a second
interrupt request which 1s generated on the basis of a
second 1interrupt factor and requests activation of a
second 1nterrupt processing;

third interrupt requesting means for informing a third
interrupt request which 1s generated on the basis of a
third interrupt factor and requests activation of a third
interrupt processing;

instruction executing means for executing said first, sec-

5,471,620

17

ond and third interrupt processings;

controlling means for receiving said first, second and third
interrupt requests, and for activating execution of said
interrupt processing corresponding to respective
received interrupt request done by said instruction
executing means; and

storing means for storing two statuses; either the enabling
status where said controlling means receives an inter-
rupt request or the prohibiting status where said con-
trolling means does not receive an interrupt request;

wherein said controlling means

when said storing means stores the prohibiting status,
does not activate any of said first, second and third
interrupt processings,

when said storing means stores the enabling status, and
said first interrupt request 1s generated, makes said
storing means stor¢ the prohibiting status and acti-
vates said first interrupt processing regardless of the
presence or absence of the generation of said second
interrupt request and said third interrupt request,

when said storing means stores the enabling status, and
said first, interrupt request is not generated and said
second interrupt request is generated, makes said
storing means store the prohibiting status and acti-
vates said second interrupt processing regardless of
the presence or absence of the generation of said
third interrupt request, and

when said storing means stores the enabling status, and
both said first interrupt request and said second
interrupt request are not generated, and said third
interrupt request is generated, makes said storing
means hold the enabling status and activates said
third interrupt processing.

2. A data processor as set forth in claim 1, wherein
said controlling means comprises:

a micro-program memory which stores microinstruc-
tions for controlling changing of the stored content
of said storing means and for executing said first,
second and third interrupt processings; and

a microsequencer for specifying addresses for reading
out from said micro-program memory microinstruc-
tions corresponding to the presence or absence of
interrupt request from said first, second and third
interrupt requesting means and to the stored content
of said storing means.

3. A data processor as set forth in claim 1, wherein

said instruction executing means comprises instruction
address specifying means for specifying an address of
an optional instruction in an instruction string to be
executed, and instruction address holding means for
holding an address of the instruction being executed,

10

15

20

25

30

35

40

45

50

18

and

said first interrupt requesting means compares the address
specified by said instruction address specifying means
and the address held by said instruction address holding
means with each other, and informs said first interrupt
request when the compared result shows coincidence.
4. A data processor as set forth in claim 1, wherein

said instruction executing means comprises instruction
address specifying means for specifying an address of
an optional instruction in an instruction siring to be
executed, and instruction address holding means for
holding an address of an instruction next to the instruc-
tion being executed, and

said first interrupt requesting means compares the address
specified by said instruction address specifying means
and the address held by said instruction address holding
means with each other, and informs said first interrupt
request when the compared result shows coincidence.
S. A data processor as set forth in claim 1, wherein

said 1nstruction executing means comprises mask level
storing means for storing a mask level for restraining
said third interrupt request, and

said third interrupt requesting means comprises:

a plurality of fourth interrupt requesting means for
respectively informing fourth interrupt requests gen-
crated on the basis of a plurality of fourth interrupt
factors to which priority levels are given respectively
and which requests fourth nterrupt processings
being different from each other to activate;

a plurality of priority level holding means for holding
the respective priority levels corresponding to said
plurality of fourth interrupt factors;

priority judging means for, when said fourth interrupt
requests are generated, judging the highest priority
level among them; and

third interrupt request deciding means for detecting the
case where the priority level judged by said prionty
judging means is higher than the mask level stored in
said mask level storing means, and informing as said
third interrupt request the fourth interrupt request
corresponding to the detected priority level.

6. A data processor as set forth in claim 3, wherein

said controlling means
makes said mask level storing means store a mask level
of the highest level when said first or second inter-
rupt processings are activated, and makes said mask
level storing means store the priority level by said
priority judging means when said third interrupt
processing 1s activated.

0 ok ®k ok K

	Front Page
	Drawings
	Specification
	Claims

