United States Patent [19]
Clay et al.

N 0 T)) O

- US0054593850A
(111 Patent Number: >,459,850
451 Date of Patent: Oct. 17, 1995

[54] FLASH SOLID STATE DRIVE THAT
EMULATES A DISK DRIVE AND STORES
VARIABLE LENGTH AND FIXED LENTH

[75]

[73]

[21]
[22]

[51]
[52]

[58]

[56]

DATA BLOCKS
Inventors: Donald W. Clay, Louisville; Steven A.
Anderson, Lovelan_d, both of Colo.
Assignee: Conner Peripherals, Inc., San Jose,
Calif,
Appl. No.: 19,860
Filed: Feb. 19, 1993
Int. CLE oo, GO6F 12/06; GO6F 12/04
US. Cle e eeesnaes 395/497.02; 371/37.1;
364/260.6; 364/260.7; 364/245.1; 364/DIG. 1;
395/442; 395/500
Field of Search 395/4235; 364/260.6,
364/260.7, 200 MS, 900 MS, 245.1; 371/37.1
References Cited
U.S. PATENT DOCUMENTS
4,593,267 6/1986 Kuroda et al.ooeeemremieereerenens 340/347
4.675,809 6/1987 Omoda et al.ccovvveienienronronnes 3957400
4,947,319 B/1990 BOZMAN .ccorneerreeeenierneenonerensnses 395/700
4,958,315 9/1990 BalCh .oieeeeeeeeerevreerreresenssnsseres 395/425
5,034,914 7/1991 Osterlund ...eeeeveccieermemerrrnesorens 395/425
5,070,474 12/1991 Tuma et al. ceuerieeeevmrrnerenrenaeens 395/500
5,131,089 T7/1992 COIE .veeerreeecennvreeeensrnsasmnsessnsees 395/500
5,166,686 11/1992 SUEIYAMA e.vvnrvverrerreernerresssann. 341/155
5,170,263 12/1992 Hisatake €t al. ..cucveeevrernionrennnes 358/426
5,206,939 4/1993 Yanai et al. .ooveeeeeermercercnrennnns 395/400
5,218,681 6/1993 Tuma et al. .oovoeeeeeerrmrerecnrenanns 395/500
5,237,460 8/1993 Miller €f Al. ..oovvevenreeerecsronsersesonnns 360/8
3,237,675 8/1993 Hannon, JI.mvvrrvnicnenneee 395/425

5,274,772 12/1993 Dunn et al. .covirevvceeermmennreereenes 395/275
5,285,327 2/1994 HEtZIEr ..ccevvveerrecereennerceessnscessannns 360/48
5,291,584 3/1994 Challa et al.ocoeereereenerrneeerens 395/500
5,293,388 3/1994 Monroe et al. ...cooveivvererannenen. 371/37.1
5,293,565 3/1994 Jaquette et al.covvvenereraereenene. 369/32
5,301,304 4/1994 MENON .cooeoererrecrennnneeerenssersanees 395/500
5,335,328 8/1994 Dunn et al. ..coceveevierrmneirccnneran 395/2775
OTHER PUBLICATIONS

“Flash Memory Challenges Disk Drives” by Gary Legg,
EDN, Feb, 18, 1993.

Primary Examiner—Glenn Gossage
Assistant Examiner—Frank J. Asta
Attorney, Agent, or Firm-—Fliesler, Dubb, Meyer & Lovejoy

[57] ABSTRACT

A flash solid state drive, having a flash solid state memory
compatible with ATA/IDE Interface standards to be con-
nected to a host for storing or retrieving sectors of data,
where each sector contains 512 bytes of data, each sector is
addressed by a cylinder, head and sector number CHS. The
host provides, for a read or write operation, the number of
sectors to be stored or retrieved, the CHS for each sector to
be stored or retrieved and the data for the sectors to be
stored. The solid state memory has stored therein a header
for each CHS address that can be 1ssued by the host, the
header having indicia i1dentifying the data block and indi-
cating where the data for the data block is stored in the solid
state memory. The flash solid state device comprises a
translator means for translating the CHS address into a logic
sector number LL.SN for identifying sectors in the flash solid
state drive and a controller for converting sectors received
from the host into variable length sectors to be stored in the
flash solid state memory.

9 Claims, 9 Drawing Sheets

48
5~—+| STATE MACHINES 10]¢ 7

HOST 14

- 13
50 5 BUFFER
52 ___—’lv CONTROL &[]
CATA REGISTER
BUFFER MULTIPLEXOR __ [&—
11 _ 12 —— 59|, 55
"3 bse| 5
57 FIFO| |go
54| [FIFO ECC 2

DETECTOR

16 |
15
] 60

INTERFACE

R READ
SEL 3 SEQ
CONTROL | 64 66

67— Fs
19 L"fiMFHE%%OH" » FLASH
| 1| CONTROLLER
P ot CRC 22 21
GENERATOR TF 4%
CRC 71 ' 4
CHECKER __E'I_HA*M 3 Q 75_\ (e
; 28 I.._DECOMPRESSOR.._ YV vy
24
. 69— i
AT ECGC
“—‘IHEGISTEFIS GENERATOR ;léﬁgﬁv
25 26 o
Tro tin
79
ROM| | RAM T
28 || 29 PROCESSOR[*— —
[30 1455 lﬂj |__I.:I_'I I__.J
30‘*:“"_J . AT

U.S. Patent Oct. 17, 1995 Sheet 1 of 9 5,459,850

' 48
e STATE MACHINES 10
50

52

DATA ‘i
BUF Fff 371 MULTIPLEXOR o

BUFFER 1°

CONTROL &
REGISTER

54
HOST e
9
READ
SEQ
INTERFACE 18 85 01 17

CONTROL

19 FLASH

CONTROLLER
21

70

CRC 71

CRC 22

GENERATOR

CHECKER RAM 31

2 || _ [DECOMPRESSOR
' 24

AT
REGISTERS

- 69

ECC

GENERATOR ML
86

25 26
. i
' 79
ROMI! | RAM MIGRO
28 29
80

PROCESSOR
30

FIG. 1

U.S. Patent Oct. 17, 1995 Sheet 2 of 9 5,459,850
' READ

INPUT CHS (CYCLINDER, HEAD AND
SECTOR) AND SECTOR COUNT
TRANSLATE CHS TO LSN

(LOGICAL SECTOR NUMBER)

SEND STATUS
INVALID CHS

YES
READ HEADER
ATTRIBUTE WORD
READ OFFSET WORD

VES] SEND STATUE
IS BAD "\ SECTOR BAD
SECTOR BIT

ASSERTED

READ SECTOR
LSN

READ SECTOR
TRANSLATION
" TABLE FOR LSN

PFA (PARTIAL
FLASH ADDRESS)

NO “s PEA

VALID
YES

NO

FIG. 2A O

U.S. Patent

Oct. 17, 1995

O

EADER

(E) NO ONLY
SECTOF

YES

YES

COMPRESSION
BIT ASSERTED

NO
WRITE A SECTOR

OF ZEROS INTO
BUFFER

WRITE A SECTOR

OF COMPRESSED
ZEROS INTO BUFFER

Sheet 3 of 9 5,459,850

O

FA (FLASH ADDRESS)
= PFA + APPENDED

SCAN COUNT

SCAN COUNT = 0

ADD 1 TO
SCAN COUNT

U.S. Patent Oct. 17, 1995 Sheet 4 of 9 5,459,850

E

READ SECTOR FROM FLASH
MEMORY INTO BUFFER AND
TO ECC DETECTOR

e
YES
AND RETRY READ
YES
TRY ERROR CORRECTION

OUTE Secon oarx| LAY _ERROR CORRECTION
DIRECTLY TO HOST

ERROR
e .

CORRECTEL
ROUTE SECTOR DATA

- NO
THROUGH DECOMPRESSOR R TO HOST
TO THE HOST - FLAG ERRO
ROUTE SECTOR DATA
TO CRC CHECKER

@» FLAG CRC ERROR TO HOST

YES EOMPRESSIOR
BIT ASSERTEL

NO

FIG. 2C

U.S. Patent Oct. 17, 1995 Sheet 5 of 9 5,459,850

WRITE

INPUT CHS (CYCLINDER, HEAD ANC
SECTOR) AND SECTOR COUNT

TRANSLATE CHS TO LSN
(LOGICAL SECTOR NUMBER)
SEND STATUS |0
INVALID CHS

ROUTE SECTOR| NO
DIRECTLY TO
BUFFER
ROUTE SECTOR| YES _~SEeTOR™S
BACK THROUGH 512 BYTES
DECOMPRESSOR

YES |SECTOR

THROUGH

COMPRESSOFR
TO BUFFER

COMPRESSIO
BIT ASSERTED

ROUTE SECTOF
THROUGH CRC
GENERATOR

TO BUFFER NO CRC BYTE TO
| BUFFER

SET SECTOR - | SET SECTOR

ATTRIBUTE AS ATTRIBUTE AS

UNCOMPRESSED COMPRESSED

A

FIG. 3A

U.S. Patent

Oct. 17, 1995

A

Sheet 6 of 9

READ NEXT SECTOR HEADER AFTEF
LAST SECTOR MARKED AS DIRTY

READ SECTOR

YES
YES
MARK
HEADER
DIRTY

FREE +

DIRTY - SECTOF

SIZE <= FLASH
RESERVE

YES

FA HEADER

IS LSN =
LSN

LSN =

NO

ADD 1 TO
SCAN COUNT
NO

FIG. 3B

READ SECTOR

NO | TRANSLATION

TABLE FOR LSN

PFA (PARTIAL
FLASH ADDRESS)

NO Is PFA
VALID

YES

FA (FLASH ADDRESS
= PFA + APPENDED
SCAN COUNT

SCAN COUNT = 0

SEND STATUS
STANDBY

5,459,850

U.S. Patent Oct. 17, 1995 Sheet 7 of 9 5,459,850

WRITE HEADER AT

NEXT AVAILABLE
ADDRESS IN BLOCK

UPDATE TRANSLATION TABLE
WITH NEW PFA FOR SECTOF

YES

FREE -
SECTOR SIZE
<= CLEANUP
RESERV

FOREGROUND
CLEANUP

STOP

POINT FLASH WRITE
WINDOW TO THE
BEGINNING OF THE
DATA AREA AS
INDICATED BY THE
OFFESET IN HEADER

SPAC
NO " AVAILABLE®

OF HEADERS I[N
BLOCK < MAX
HEADERS

CHANNEL SECTOR
THROUGH ECC
GENERATOR TO
FORM ECC DATA

WRITE SECTOR
FROM BUFFER

AND ECC DATA
TO FLASH

ALLOCATE INTO NEXT
AVAILABLE BLOCK

FIG. 3C

" U.S. Patent Oct. 17, 1995 Sheet 8 of 9 5,459,850

INITIALIZATION

SET PFA FOR ALL SECTORS

IN THE TRASLATION TABLE
TO ADDRESS FFFF

- |SET FREE, DIRTY, AND NUMBER
OF SECTORS REGISTERS TO 0

READ BAD BLOCK DATA FROM ROM

YES I LAST - {UPDATE TOTAL FREE

- BLOCK FLASH IN BLOCK,
DON CHIP AND ARRAY

_ YES

NO

HEADER “\\NO
GO TO NEXT BLOCK \LSN'S PFA =
FFFE
™ &
BAD

NO
READ CYCLE COUNT
TABLE FOR BLOCK READ NEXT HEADEF

MAINTAIN MAXIMUM e
CYCLE COUNT 0

FIG. 4A

U.S. Patent Oct. 17, 1995 Sheet 9 of 9 5,459,850

(A

HEADER

HEADER
NO REV # >
TH;?\I%:ET TRANSLATION N9
10, TABLE HEADEF

TABLE = REV #

YES FFFE
YES YES
STORE PFA |
TRANSLATION
TABLE FOR
HEADER LSN

UPDATE TOTAL

DIRTY IN
BLOCK & ARRA

UPDATE TOTAL
DIRTY IN
BLOCK & ARRAY

FIG. 4B

5,459,850

1

FLLASH SOLID STATE DRIVE THAT
EMULATES A DISK DRIVE AND STORES
VARIABLE LENGTH AND FIXED LENTH

DATA BLOCKS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to digital data storage sys-
tems in general and, 1n particular, to storage systems
employing flash solid state memory devices as the storage

media. More particularly still, the invention relates to a flash -

solid state memory system that emulates magnetic disk
drives.

2. Description of the Related Art

Magnetic disk drives have been widely accepted in the
computer industry and are used for storing large amounts of
data. Over the years, magnetic disk drives have decreased in
size while increasing in operational speed and in the amount
of data that can be stored on the magnetic media. Magnetic
disk drives have associated with them a seek latency time
which 1s associated with the time necessary to move the

desired transducer to the desired track or cylinder on the .

magnetic media for the purpose of recovering or writing data
to and from the magnetic media. In addition, there 1s a
rotational latency associated with waiting for the desired
data sector to pass undemneath the transducer once the
transducer 1s located on the desired track. Magnetic disk
drives also have the associated problems of relying on
mechanical hardware for locating the transducer at a specific
location with regards to the magnetic media and for main-
taining the rotational speed of the magnetic media at some
constant value. The mechanical hardware 1s affected by the
normal wear and tear associated with mechanical devices.
Further, magnetic disk drives have employed various track
following servo systems for maintaining the transducer on a
desired track once the transducer reaches that desired track.
Finally, the magnetic disk drive tracks are divided into a
fixed number of sectors where each sector stores a fixed
number of data bytes. As a rule, magnetic disk drive systems
will write a complete sector each time a sector i1s written.

10

15

20

25

30

35

40

Where the data is less than a full sector the data is padded

with zeros to fill up the sector. This is to say that if the sector
length is 512 bytes, whenever a sector is written 512 bytes
of data will be written into that sector. The requirements of
writing a full sector every time a sector 1s written means that
a substantial portion of the magnetic surface may be allo-
cated to contain filler data rather than useful data. Finally, it
can readily be realized that the data would also be recovered
from the magnetic disk drive in sector lengths and, therefore,
a full sector must be read from the disk regardless of the
actual amount of useful data that was recorded in that sector.

With the advent of solid state memories, attempts have
been made to emulate the magnetic disk drives by use of
solid state memories in place of the magnetic media.
Examples of such emulations are found in U.S. Pat. No.
4,642,759 entitled “Bubble Memory Disk Emulation Sys-
tem” and U.S. Pat. No. 5,131,089 entitled “Solid State Disk
Drive Emulation”.

The 1deal system would use a solid state memory that is
nonvolatile such as the above-referenced bubble memory or
the solid state memory with its own power supply to
maintain the stored data even though power is turned off to
the drive. However, each of these solid state memories each
have their own advantages and disadvantages which must be

45

50

33

60

65

2

weighed in selecting which solid state memory should and
could be used in a specific design.

To have a solid state drive emulate a magnetic disk drive,
the solid state storage media must be transparent to the host.
Ideally, the solid state drive would accept the same com-
mands and data formats as the magnetic disk drive such that
no change in programming or system configuration need be
done within the host. A disadvantage associated with most
solid state memories 1s the time necessary to write into the
memory. The slow write speed is a major reason why the
solid state drnives emulating magnetic disk drives have not
been more widely accepted and marketed within the indus-

try.

SUMMARY OF THE INVENTION

Accordingly, it 1s an object of the invention to provide a
flash solid state drive which emulates a magnetic disk drive
and 1s transparent to the host system.

Another object of the invention to have a flash solid state
drive with improved speed for writing and reading data to
and from the fiash memory array.

Another object of the invention is to have the flash solid
state drive include means for compressing data on a sector

basis such that sectors of variable lengths are written into
and read from the flash memory array and where the
compression 1s transparent to the host system.

Still another object of the invention to have a flash solid
state drive which dynamically allocates space in the flash
memory array such that sequential sectors to be written need
not be sequentially located in the flash memory array.

Briefly, the flash solid state drive is 100% hardware and
software compatible with ATA/IDE Interface standards and
supports all mandatory AT-Attachment standard commands.
The flash solid state drive includes means for translating the
cylinder, head and sector address received from the host into
a logical sector number LLSN. A sector translation table is
maintained for providing the physical address in the flash
memory for the header associated with each logical sector
number. The flash memory is comprised of a plurality of
flash memory chips arranged to form a flash memory array
where two tlash chips are paired together to form flash chip
pairs which the drive treats as a single addressable unit. A
bufter 1s provided to receive data from the host and from the
flash memory. Data recetved from the host to be stored in the
flash memory may first be passed through a data compres-
sion unit and stored as compressed data in the buffer. Data
is written from the buffer into the flash memory as data word
where a data word is made up of two bytes of data. The 16
bits of data in a data word are written in parallel into the flash
memory. Further, the received data, if compressed, is also
passed through a cycle redundancy code CRC generator and
the CRC data is appended to the end of the compressed data
stored in the buffer. The stored data and the CRC data, if the
data was compressed, 18 passed through an ECC generator
before being stored in flash memory. The generated ECC
data 1s stored in the flash memory so as to be appended to
the end of the data and CRC data, if any. Data is read from
the flash memory as a data word (2 bytes at a time) and
stored in the memory buffer as single bytes of data. A read
sequencer between the flash memory and the buffer changes
the data words 1n two sequential data bytes for storage in the
buffer. The data from the read sequencer 1s passed through
an ECC detector to ascertain if an error has occurred. If an
error was sensed the drive will try a reread operation at a
slower speed. If the error is not corrected by the rercad

3,459,850

3

operation, then a ECC correction is attempted to recover
from the error. If the error was not corrected, the host 1s
notified. If the data was not compressed, the data is chan-
neled from the buffer directly to the host. If the data was
compressed, the compressed data 1s routed through a decom-
pression unit and the decompressed data is channeled to the

host. The uncompressed data is also routed through a CRC
checker and if an error is detected the drive will notify the
host that the channeled data contained an error. The flash

memory is initialized to store a header for each LSN where
the number of LSNs equal the number of sectors that would
have been used in the magnetic disk drive being emulated.
A new header is written for a sector each time the sector is
written 1into the flash memory and the old header associated
with the same sector 1s marked as dirty or invalid. Each flash
memory chip pair 1s broken down into blocks where a block
is the smallest area that can be erased. Means are provided
for ascertaining the usage of each block to obtain uniform
usage of blocks throughout the memory array. Blocks are
designated as bad if the block has a history of unrecoverable
errors being generated from data read from that block. A bad
block table 1s maintained and updated in a flash ROM
associated with the microprocessor controlling the operation
of the drive.

An advantage of the flash solid state drive is the increase
in read and write speed to and from the flash memory
obtained by the parallel writing and reading of two bytes of
data.

Another advantage of the flash solid state drive is the
increased efficiency obtained by compressing sector data
such that variable sector lengths are stored in the flash
meEmory.

Another advantage is that the flash solid state drive is not
subject to the seek and rotational latencies associated with
magnetic disk drives and are more reliable in that flash solid
state drives do not have any mechanical components that can
wear and fail.

Another advantage of the flash solid state drive is that the
flash memory is transparent to the host so as not to require
any reprogramming of the host operating system or changes
to physical structure of the host thereby allow the flash solid
state drive to completely emulate the magnetic disk drive
previously used by the host.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with respect to the
particular embodiments thereof and references will be made
to the drawings, in which:

FIG. 1 is a logic diagram of the flash solid state drive;

FIGS. 2A through 2C is a flow chart setting forth the
operation of the flash solid state drive for a read operation;

FIGS. 3A through 3C is a flow chart setting forth the
operation of the flash solid state drive for a write operation;
and

FIGS. 4A and 4B is a flow chart setting forth the operation
of the flash solid state drive to initialize the sector translation
table during the power up sequence.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS SYSTEM ARCHITECTURE

FIG. 1 is a logic diagram showing the components of the
flash solid state drive. The flash solid state drive is 100%
hardware and software compatible with ATA/IDE Interface
standards and will support all mandatory AT-Attachment
standard commands.

10

15

20

25

30

35

40

45

50

35

60

65

4

Flash memory 27 1s comprised of thirty Intel 28F008 flash
chips where the chip data size 1s 8 Mb and 8 bits of data are
simultaneously written into or read from the flash chip. Two
flash chips are paired together and addressed at the same
time such that 16 bits may be written or read simultancously
into or from the flash memory. To accomplish this fiash

controller 21 1s dual ported so as to provide both address and

data to each flash chip of a chip pair by means of lines 73
through 76. The flash solid state drive is controlled by
microprocessor 30 in conjunction with an operating program

stored in ROM 28. Microprocessor 30 is also connected to
RAM 29 to allow the dynamic storing of data necessary for
controlling the operation of the drive. Microprocessor 30 is

conriected to AT registers 23, to interface control circuitry
19, to flash control 21, to data multiplexer 12, to ECC
generator 26, to buffer control and registers 13 and to ECC
detector 15.

For a write operation, data for a sector is received from the
host on bus 9 to interface control 19. If the sector data is to
be compressed, the sector data is transferred via line 64 to
compressor 20 for data compression and through CRC
generator 22 for generating CRC data. Data compressor 20
18 a LEMPAL/ZIV type data compressor. The compressed
sector data, after being compressed, is stored 1n buffer 11.
After the compressed sector data has been stored in buffer 11
the CRC data byte is stored in buffer 11 and made part of the
data associated with the sector being stored.

If the sector data was not to be compressed, then the sector
data would leave interface control 19 on line 65 and pass
directly through selector 18 , FIFO 14 and data multiplexer
12 into buffer 11. State machines 10 contains a write state
machine which controls the sequence of operations during a
write operation. Once the data for the sector, either com-
pressed or uncompressed, has been stored in buffer 11, the
write state machine will then transfer the sector data from
data multiplexer 12 to microprocessor 30. Microprocessor
30 act as a dual port microprocessor where the ports are
connected to data multiplexer 12 by means of buses 57 and
69. When sector data is transferred from buffer 11 to
microprocessor 30 the sector data is also passed through
ECC generator 26 to generate the ECC data. The ECC data
is also provided to microprocessor 30. Microprocessor 30
transfers the sector data and ECC data as data words, where
each data word consists of two bytes of data,to flash con-
troller 21. Microprocessor 30 performs the task of taking
two sequential bytes of sector data from buffer 11 or ECC
data and forming data words for flash controller 21. Flash

controller 21 then writes the data word into the flash memory
27.

During a read operation, the read command is received

- from the host on bus 9 by interface control 19. State machine

10 includes a read state machine which controls the
sequence of operation during the read procedure. The data is
read from flash memory 27 by flash controller 21 as data
word format. Read sequencer 17 receives the data word and
provides sequentially each of the two bytes of data making
up the received data word to speed matching buffer FIFO 16.
Read sequencer 17 also routes the data bytes to ECC
detector 15 for the detection of an error in the read data. The
output of FIFO 16 is routed through multiplexer 12 to buffer
11. When the data for a sector has been stored in buffer 11
and no data error was detected by ECC detector 15, the
sector data 1s then directed from buffer 11 through data
multiplexer 12 and speed matching buffer FIFO 14 to
selector 18. If the sector data was compressed, then the
sector data 1s routed from selector 18 through decompressor
24. The decompressed sector data from decompressor 24 is

5,459,850

S

routed to CRC checker 23 and to interface control 19 for
transmission to the host. If CRC checker 23 detects a CRC
error, a flag 1s raised to the host indicating that an error exists
in the sector data that was transmitted for that sector. If the
read sector data was not compressed, selector 18 will route
the sector data via line 65 to interface control 19 which will
then route the data to the host via bus 9.

State machines 10 also contains a between sector state
machine for updating the task file registers and a byte count
state machine for maintaining of the number of bytes of data
transier during a read or write operation.

AT registers 25 and buffer control registers 13 are used to
control the sequence of operation in conjunction with the
microprocessor performing the operation program as stored
in ROM 28 and the operation of the varies state machines.
Buffer control and registers 13 include a tie breaking state
machine for to resolve conflicts in the data multiplexer 12
for access to buffer 11 and a bufier signal state machine for

controlling the reading and writing of data into and out of
buffer 11.

The function of and description of the AT registers 25 and
buffer registers 13 are as follows:

AT REGISTERS

TASK FILE ERROR REGISTER

This register 1s the error indicating register to the Host. It
has bit significance except at power on or during the
diagnostic command. It 1s a read only register to the Host.

bit 7—Bad Block

bit 6—ECC Data Check

bit 4—ID Not Found

bit 2—Aborted Command

bit 1—Track 0 Not Found

bit 0—Address Mark Not Found

TASK FILE PRECOMP REGISTER

This register is a write only register to the Host. It was
previously used to indicate at what cylinder to begin pre-
compensation. It 1s used for other commands at this point in
time.

TASK FILE COUNT REGISTER
The register 1s used by the Host to indicate how many

sectors are to be transferred on a read or write command.

TASK FILE SECTOR REGISTER

TASK FILE SDH REGISTER

bit 4—Drive address
bit 3—Head bit 8
bit 2—Head bit 4
bit 1-—Head bit 2
bit 0—Head bit 1

TASK FILE CYLINDER LOW REGISTER

This register and the following register contain the cyl-
inder requested by the Host.

5

10

15

20

25

30

35

40

45

50

55

60

65

6
TASK FILE CYLINDER HIGH REGISTER

COMMAND REGISTER

This register 1s used by the Host to communicate the
desired command. When either the Host or the drive write
this register, the drive will become busy. When the drive is
busy, only the drive may write the task file. When the drive
1s not busy, only the Host may write the Task File unless the

drive writes (0D bit 3 to enable the microprocessor access to
the Task File registers.

SECTOR CONFIGURATION REGISTER

This 1s'a 8 bit register used to determine the sector wrap
point for the Host values.

HEAD CONFIGURATION REGISTERS

This 1s a 4 bit register used to determine the head wrap
point for the Host values.

bit 3—Head bit 8
bit 2—Head bit 4
bit 1—Head bit 2
bit 0—Head b1t 1

DIGITAL ADDRESS REGISTER

This register is the same as that read at 3F7 by the Host
with the exception that bit 7 1s a one instead of tristate as it
1s to the interface.

bit 7—Always 1
bit 6—Always 1
bit 5—Head bit 3~
bit 4—Head bit 2~
bit 3—Head bit 1~
bit 2—Head bit 0~
bit 1—Drive 1~
bit 0—Drive 0~

AT CONTROL REGISTER

This register contains status bits for use by the microcode.
It 1s read only.

7—Sector>maximum logical sector

This bit contains the result of a comparison of

the Task File Sector Number register and the Sector
configuration register.

bit 6—Head>maximum logical head

This bit contains the result of a comparison of the Task

File SDH register head value and the Head configuration
register.

bit S—Count equal to O

This bit is 1 when the Task File Count Register is equal
to 0. |

bit 4 —ECC Error

This bit is 1 when an ECC error is detected. The ECC 1s
should be reset by toggling AT Res 1 in the Microprocessor’s
reset register before continuing.

bit 3—Byte count equal to 0

This bit is one when the transfer count register that counts
the number of bytes to be transferred on the interface 1s=0.

bit 2—IOR & IOW equal to 0
This bit is for use in PCMCIA interfaces. It is 1 when both

5,459,850

7

IOR &IOW are active low at the same time.
bit 1—Task file update state 1

This bit and bit 0 contain the status of the task file update
state machine. It 1s triggered by the read or write state
machines and normally should not be able to be seen
changing. It should always be in state 00.

bit 0—Task file update state O

TASK FILE STATUS REGISTER

This register which is a read/write register used to access
the Task File register which provides a summary status of
the drive. All bits are read/write.

bit 7—Busy

bit 6—Ready

bit 5—Write Fanlt

bit 4—Seck Complete
bit 3—Data Request
bit 2—Corrected data
bit 1—Index

bit 0—Error bit

INTERFACE CONTROL REGISTER

bit 7—Host PDIAG QOut

This bit, when set to 1, drives the Host PDIAG signal
active low. It 1s bit settable.

bit 6—LED/Drive Slave Present

This bit, when set to (0, drives the DASP signal low to the
interface.

bit S—Processor Host Interrupt Enable

This bit may be set to 1 to force the Host interrupt to be
enabled. It should be reset to allow the Host to enable or
disable the drive’s interrupt.

bit 4—OK to continue

This bit is used by the processor to allow a multiple sector
read or write to continue. Normally it should be set to 1 at

5

10

15

20

25

30

35

40

imtialization. If sector automation is to be inhibited, this bit

should be set to zero. Then, between sectors, the bit pulse,
CONTINUE R/W OE, bit 3, is pulsed to continue the R/W.

bit 3—Enable microprocessor access to the Task File
Registers.

This bit 1s used by the processor to enable it to access the
Task File even when the drive is not busy. Normally, this bit
1s not ever used.

bit 2—INDEX.

This bit is routed to the status register to simulate the
index of a drive. For the flash drive it should not be needed.

bit 1—C~/D.

The address bit of the drive. It 1s set to O for drive C or
0 and to 1 for drive 1 or D. This bit is used to route status

and 18 compared to the bit in the SDH register to determine
the addressed drive.

bit 0—Slave Present.

This bit 1s used to indicate that a second drive is present.
It 1s set during a reset sequence when dual drive is detected.
It is used to route status because if the second drive is not
present, the master drive, drive 0, is responsible to return 00
for status. Setting this bit allows the hardware to return this
status.

45

50

35

60

63

3
BIT PULSES REGISTER

This register 1s setup to allow bit operations to be done.
When 1t 18 read, it always returns FFh. To pulse any of these
bits, a zero is written.

bit 7—Set Host IRQ.

This bit sets the Host interrupt which 1s gated by the Host
interrupt enable.

bit 6—Reset Long.

This reset 1s used to reset the Long bit, set by the Host
when it does either a read or write long.

bit 5—Reset Read/Write Mode.

This bit resets both read and write modes and the Data
Request bit.

bit 4—Set Read Mode.

This bit sets read mode. It is the only bit required to kick
off a read operation if all other initialization has been
accomplished.

bit 3—Continue R/W.

This bit is used when the sector automation is disabled,
register 0D bit 4 set to 0. to allow the next sector to begin.

bit 2—Increment Block Release

This 1s the drive side pulse used to increment the Sectors
Available Register. 35 on a read and to decrement it on a
write. |

bit 1—Increment Transfer Release.

This is the Host side pulse used to decrement the Sectors
Available Register. 35 on a read and to increment it on a
write.

bit 0—Set Write Mode.

Used to set Write Mode. This bit is used by the micro-
processor to start any non-autowrite write operation.

INTERFACE BITS REGISTER

This is a collection of bits that are useful for interface
operation.

bit 7—Host IRQ.

This 1s the Host IRQ bit just before it goes to the output
drivers.

bit 6—Host Interrupt Enable.

This is the Host Interrupt Enable bit just before it goes to
the output drivers.

bit 5—Host PDIAG In.

This bit comes from the PDIAG line just on the input side
of the Host mput receivers.

bit 4—Long

This bit is the long bit set by the Host when it does either
a read or write long operation.

bit 3—HIO16

This 1s the HIO16 line just before it goes to the Host
interface.

bit 2—Write Mode

‘The Write mode latch.

bit 1—Read Mode

The Read Mode latch.

bit 0—Drive Slave Present In.

The drive slave present line at the input receiver lines.

ECC 1 GENERATION 4

This register and the following three registers are the
registers where the ECC Generator 1 result is stored. To
produce the correct ECC value, the registers should be
initialized to F0, OF, 00, FF respectively before the data is

3,459,850

9

read by the microprocessor from Port 1 of the Buffer. It is
possible to interrupt the ECC generation by saving away the
current contents of the registers and then restoring them to
continue.

ECC 1 GENERATION 3
ECC 1 GENERATION 2

ECC 1 GENERATION 1

ECC 2 GENERATION 4

This register and the following three registers are the

registers where the ECC Generator 2 result is stored. To

produce the correct ECC value, the registers should be
initialized to F0, OF, 00, FF respectively before the data is
read by the microprocessor from Port 1 of the Buffer. It is
possible to interrupt the ECC generation by saving away the

current contents of the registers and then restoring them to
continue.

ECC 2 GENERATION 3
ECC 2 GENERATION 2
ECC 2 GENERATION 1

ECC DETECTION 4

The ECC Detection automatically loads the polynomial
into this register and the following 3 registers and then
calculates the ECC on the read data. The hardware then

automatically triggers the compare on the ECC bytes read at
the end of the sector.

ECC DETECTION 3
ECC DETECTION 2
ECC DETECTION 1

TRANSFER LENGTH LOW REGISTER

This register and the following one, control the length of
each sector transfer. It is normally set only at power on time.
This register 1s used to measure the length of the sector
transfer.

TRANSFER LENGTH HIGH REGISTER

22—BIT PULSES 2

This register is setup to allow bit operations to be done.
When 1t is read, it always returns FFh. To pulse any of these
bits, a zero is written.

bit 7—Last Transfer.

This bit 1s used to force the AT automation to end the
transfer at the end of the current sector or block.

bit 6—Start Compressor.

This bit provides the capability to start the compressor in
the non-autowrite case. One of its principle other uses will
be to start the compressor to rewrite a sector that has

expanded back to the buffer as a non-compressed sector.

5

10

15

20

25

30

35

40

45

50

33

60

65

10
AT DATA 1 REGISTER

bit 7—Disable compression

This bit disables the compression circuitry when set.
When compression is disabled, a sectors are transierred as
512 byte sectors.

bit 6—PIO Mode

When this bit 1s set, Host data transfers are done in PIO
mode. This bit enables the 1016 circuitry when set.

bit 5—EISA DMA Mode

'This bit enables EISA DMA Mode. It controls how the
Host Interface to drive handshaking 1s done on read and
write DMA commands. When this bit is set DMA transfers
are accomplished with Host DMA Request and Host DMA
Acknowledge remaining active for. the entire transfer
although the Host will drop Host DMA Acknowledge when
it does a refresh cycle.

bit 4—ISA DMA Mode

This bit enables ISA DM AMode. It controls how the Host

Interface to drive handshaking is done on read and write
DMA commands. When this bit is set DMAtransfers are
accomplished with Host DMARequest and Host DMA

Acknowledge toggling on every word transfer.
bit 3—Multiple Mode

This bit is set when the Host 1ssues a Set Multiple
Command, C6h. It enables multiple operations in the ASIC
hardware.

bit 2—Host DMA Enable

This bit 1s only used by the microprocessor when con-
nected to a Compaq computer that requires this signal to
initiate a DMA read/write transfer. |

bit 1-—Disable Autowrites

When set this bit, autowrites are disabled. Disabling
autowrites requires that the microprocessor set Write Mode,
by clearing register QE, bit 4.

bit 0—Disable CRC

When set this bit disables the CRC check. It also disables
writing the CRC bit.

CRC REGISTER

This register contains the CRC byte. It 1s valid at the end
of a sector until the start of the next sector.

BLOCK SIZE REGISTER

This register contains the number of sectors 1n a block on
a read/write multiple. It 1s set by the microprocessor when
the Host issues a C6h, Set Multiple Command. It is used by
the AT ASIC circuitry to control the number of sectors to be
transferred under a single DRQ.

ECC LENGTH REGISTER

This register controls the length of the transfer of the ECC
bytes during a long read or write command. It is usually only
set during reset, but may also be modified by the Host, Set
ECC Length. This register is used by the AT circuitry of the
ASIC.

BYTE COUNT LOW REGISTER

This register and the following register are the actual
transfer length registers. They are loaded by the AT circuitry
of the ASIC with either the contents of Transfer Length
Register or the ECC Length Register dependent upon if the
data or the ECC bytes are being transferred.

3,459,850

11
BYTE COUNT HIGH REGISTER

BLOCK COUNT REGISTER

This register is used in read or write operations and 18
loaded with either 1 if the operation is to be a normal read
or write command, the block size register for a read or write
multiple command where the remaining sectors to be trans-
ferred is greater than the block size, or the Task File Count
for a read or write multiple operation where the number of
sectors remaining to be transferred 1s less than the block
size.

READ WRITE STATES REGISTER

This register contains the current state of both the read and
write state machines that are used to control any read or
write operation to or from the host. The upper nibble
contains the write states and the lower nibble contains the
read states.

bit 7—Wa
bit 6—WDb
bit S—Wc
bit 4—Wd
bit 3—Rw
bit 2—Rx
bit 1—Ry
bit 0—Rz

SECTORS AVAILABLE REGISTER

This register maintains a count of the number of sectors
available to the Host on a read operation and the number of
sectors available to the drive on a write operation. It may be
loaded by the microprocessor. It 1s reset on an autowrite
uniess they are disabled.

SEGMENT SIZE REGISTER

This register contains the current size of the buffer seg-
ment. It is set by the microprocessor. It is used by the AT
circuitry in the ASIC to determine if there i1s any addition
room in the segment to place data.

BETWEEN SECTOR DELAY REGISTER

This register is used to control the amount of delay, in 400
ns increments, between sectors on multiple block read and
write operations.

BUFFER REGISTERS

START POINTER LOW BYTE 1

This and the next register makes up the start pointer to the
ram buffer for the first port of the microprocessor. It is reset
to 00000 on the assertion of sector reset buffer 1. This
reglsters upper address bits 12-15 are bounded by the buffer
size register so that the start pointer will only contain valid
addresses for the buffer size selected. This register is loaded
into the microprocessor #1 address registers when the
address pointer equals the microprocessor wrap pointer.

5

10

15

20

25

30

35

40

45

50

55

60

65

12
START POINTER HIGH BYTE 1

WRAP POINTER LOW BYTE 1

This and the next register makes up the wrap pointer to the
ram buffer for the first port of the microprocessor. It 1s reset
to 00000 on the assertion of sector reset buffer 1. This
reg1stcrs upper address bits 12—-15 are bounded by the buffer
size register so that the wrap pointer will only contain valid
addresses for the buffer size selected. This register is loaded
with the address that the programmer wants to cause a wrap
condition on.

WRAP POINTER HIGH BYTE 1

ADDRESS POINTER LOW BYTE 1

This and the next register makes up the address pointer to
the ram buffer for the first port of the microprocessor. This
pointer is incremented to the next address upon each access
to the ram. It is reset to 00000h on the assertion of sector
reset buffer 1. This registers upper address bits 12-15 are
bounded by the buffer size register so that the address
pointer will only contain valid addresses for the buffer size
selected. The microprocessor #1 start and wrap pointers can
be used to select a wrap point inside the ram buffer. When
the address pointer equals the wrap pointer the Start pointer
1s loaded for the next ram access.

ADDRESS POINTER HIGH BYTE 1

BUFFER CONTROL 1

This register contains the controls and status of port 1 of
the microprocessor.

bit 7—U1PROG~(R)

Progress bit. Bit7=0 then the data in the data register is not
valid yet. Bit7=1 Data is valid in the data register.

bit 2—ECC ENABLE

This bit when set will cause the data being read from this
port to be clocked into the ecc generator. If the bit is clear
data will not be clocked into the ecc generator.

bit 1—U1STRT (W/R)

Port activation bit. Bit 1=0. Any read or writes to the data’
register will cause no action to be taken. Bit 1=1. If bit 0=0
and the data register is written data will be transferred to the
ram. If bit 0=1 then an immediate fetch of the first byte will
be performed and there after a new byte will be fetched upon
reading the data register.

bit —UIDIRW~/R (W/R)

The direction of the port. Bit 0=0 a write 1s performed to
the ram. Bit 0=1 a read is performed.

- DATA REGISTER

This 1s the data register for first microprocessor port. If
microprocessor port #1 is active see register 47 then a read
of this register will pass data read from the ram and start off
another fetch operation to the ram. A write to this register
will place the written data into the ram.

3,459,850

13
START POINTER LOW BYTE 2

This and the next register makes up the start pointer to the
rarn buffer for the first port of the microprocessor. It is reset
to 00000 on the assertion of sector reset buffer 1. This
registers upper address bits 12-135 are bounded by the buffer
size register so that the start pointer will only contain valid
addresses for the buffer size selected. This register is loaded
into the microprocessor

address pointer equals the microprocessor wrap pointer.

START POINTER HIGH BYTE 2

WRAP POINTER LOW BYTE 2

This and the next register makes up the wrap pointer to the
ram buffer for the first port of the microprocessor. It is reset
to 00000 on the assertion of sector reset buffer 1. This
registers upper address bits 12—-15 are bounded by the buffer
size register so that the wrap pointer will only contain valid
addresses for the buffer size selected. This register is loaded
with the address that the programmer wants to cause a wrap
condition on. .

WRAP POINTER HIGH BYTE 2

ADDRESS POINTER LOW BYTE 2

This and the next register makes up the address pointer to
the ram bufier for the first port of the microprocessor. This
pointer is incremented to the next address upon each access
to the ram. It 18 reset to 00000 on the assertion of sector reset
buffer 1. This registers upper address bits 12—15 are bounded
by the buffer size register so that the address pointer will
only contain valid addresses for the buffer size selected. The
microprocessor #1 start and wrap pointers can be used to
select a wrap point 1nside the ram buffer. When the address
pointer equals the wrap pointer the Start pointer is loaded for
the next ram access.

ADDRESS POINTER HIGH BYTE 2

BUFFER CONTROL 2

This register contains the controls and status of port 2 of
the microprocessor.

bit 7—U1PROG~(R)

Progress bit. Bit7=0 then the data in data register is not
valid yet. Bit 7=1 Data is valid in data register.

bit 2—ECC ENABLE

This bit when set will cause the data being read from this
port to be clocked into the ecc generator. If the bit 1s clear
data will not be clocked into the ecc generator.

bit 1—U1STRT (W/R)

Port activation bit. Bit 1=0. Any read or writes to the data
register will cause no action to be taken. Bit 1=1. If bit 0=0
and the data register is written data will be transferred to the
ram. If bit 0=1 then an immediate fetch of the first byte will
be performed and there after a new byte will be fetched upon
reading the data register.

bit 0—UIDIRW~/R (W/R)

The direction of the port. Bit 0=0 a write is performed to
the ram. Bit (=1 a read 1s performed. |

1 address registers when the

10

15

20

25

30

35

40

45

30

55

60

65

14
DATA REGISTER 2

This 1s the data register for second microprocessor port. If
microprocessor port #2 is active then a read of this register
will pass data read from the ram and start off another fetch
operation to the ram. A write to this register will place the
written data into the ram.

INTERFACE START POINTER LOW WORD

This and the next register makes up the start pointer to the
ram buller for the interface port. It 1s reset to 00000 on the
assertion of sector reset buffer 1. This registers upper
address bits 12-13 are bounded by the buffer size register so
that the start pointer will only contain valid addresses for the
butfer size selected. This register will be loaded into the
interface address pointer upon a successful compare of the
interface address pointer with the interface wrap pointer.

INTERFACE START POINTER HIGH WORD

INTERFACE WRAP POINTER LOW WORD

This and the next register makes up the wrap pointer to the
ram buffer for the interface. It is reset to 00000 on the -
assertion of sector reset buifer 1. This registers upper
address bits 12-15 are bounded by the buffer size register so
that the wrap pointer will only contain valid addresses for
the buffer size selected. This register is loaded with the

address that the programmer wants to cause a wrap condi-
tion on.

INTERFACE WRAP POINTER HIGH WORD

INTERFACE ADDRESS POINTER LOW WORD

This and the next register makes up the address pointer to
the ram butfer for the interface. This pointer 1s incremented
to the next address upon each access to the ram. It is reset
to 00000 on the assertion of sector reset buffer 1 or upon
receiving an autowrite pulse. This registers upper address
bits 1215 are bounded by the buffer size register so that the
address pointer will only contain valid addresses for the
buffer size selected. The interface start and wrap pointers
can be used to select a wrap point inside the ram buffer.
When the address pointer equals the wrap pointer the Start
pointer is loaded for the next ram access. This loading of the
address pointer to 00000 by receiving an autowriie can be
disabled by setting bit2 of the interface buffer control
register.

INTERFACE ADDRESS POINTER HIGH WORD

INTERFACE BUFFER CONTROL

This register contains the controls and status of the
interface buffer port.

Bit 7—IFPROG~(R)

Interface access to ram. Bit 7=0 when an access to the
buffer ram is 1in progress. Bit 7=1 when interface port is idle.

Bit 6—FIFO FULL (R)

Bit 6=0 When there is room in the sector count FIFO for
releases. Bit 6=1 When the sector count FIFO is full and can
not accept any more entries.

Bit 5—FIFO EMPTY (R)

Bit 5=1 when the sector count FIFO is empty. Bit 5=0
when there 1s data in the sector count

5,459,850

15
FIFO

Bit 4—RESET FIFO

Bit 4=1 then the sector count FIFO is held in reset. Bitd=0
the sector count FIFO 1s free to be loaded.

Bit 2—AUTOWRITE~(W/R)

Autowrite load of start pointer. Bit2=0 will cause the start

pointer to be loaded into the address pointer if an autowrite
is received Bit2= 1 will inhibit the load of the start pointer
into the address pointer on autowrites.

Bit 1—IFACT (R)

Interface port active. Bit 1=0 the interface port is not
active. Bit 1=1 means the interface port is active.

Bit 0—IFDIRW~/R (R)

Interface direction. Bit 0=0 the data is flowing from the
interface to the buffer. Bit 0= 1 the data is flowing from the
buffer to the interface. This bit is only valid if Bit 1=1.

SECTOR COUNT LOW

This and the next register forms the sector count register
port. The nine bits contain the number of bytes in the sector
that 1s being released. This register is a port to a 16 wordx10
-bit FIFO. Sixteen sector counts can be stored up at a time.
Bit 6 of register 56 returns the status of whether this FIFO
is tull. Both bytes must be written to load the 10-bit word in
the FIFO. Bit 2 of the sector count high register is used to
tell whether the sector that corresponds to this count is
compressed or uncompressed. You set the bit to 1 for
compressed data. Bits 11-15 are ignored but should be
written as zero. The FIFO is reset and count purged if sector
reset buffer 1 is asserted or if the interface deasserts its
read __mode.

SECTOR COUNTER HIGH

READ SEQ START POINTER LOW WORD

This and the next register makes up the start pointer to the
ram buffer for the read sequencer port. It is reset to 00000 on
the assertion of sector reset buffer 1. This registers upper
address bits 12-135 are bounded by the buffer size register so
that the start pointer will only contain valid addresses for the
buffer size selected. This register is loaded into the read
sequencer address pointer Upon a successful compare of the
read sequencer address pointer to the read sequencer wrap
pointer.

READ SEQ START POINTER HIGH WORD

READ SEQ WRAP POINTER LOW WORD

This and the next register makes up the wrap pointer to the
ram buffer for the read sequencer. It is reset to 00000 on the
assertion of sector reset buffer 1. This registers upper
address bits 12-15 are bounded by the buffer size register so
that the wrap pointer will only contain valid addresses for
the buffer size selected. This register is loaded with the
address that the programmer wants to cause a wrap condi-
tion on.

10

15

20

23

30

39

40

45

50

55

60

65

16
READ SEQ WRAP POINTER HIGH WORD

READ SEQ ADDRESS POINTER LOW WORD

This and the next register makes up the address pointer to
the ram buffer for the read sequencer port. This pointer is
incremented to the next address upon each access to the ram.
It 1s reset to 00000 on the assertion of sector reset buffer 1.
This registers upper address bits 12-15 are bounded by the
buffer size register so that the address pointer will only

contain valid addresses for the buffer size selected. The read

sequencers start and wrap pointers can be used to select a
wrap point inside the ram buffer. When the address pointer

equals the wrap pointer the Start pointer is loaded for the
next ram access.

READ SEQ ADDRESS POINTER HIGH WORD

READ SEQ CONTROL

Bit 7—RSPROG~(R)

Read sequencers ram access. Bit 7=0 the read sequencer
is accessing the ram. Bit 7=1 the read sequencer is idle.

Bit 1 —RSACT~(R)

Read sequencer active. Bitl=0 means there is data in the
read sequencer FIFO. Bit 1=1 means there is no data in the
read sequencer FIFO.

Bit 0—RSDIRW~/R (R)

Read sequencer active. Bit 0 will always equal 0. Since
the Read sequencer only writes to the buffer ram.

BUFFER CONTROL REGISTER

~ Bit 7—ADDRESS HIGH~/BCS1 (W/R)

Address or buffer chip select. Bit7=0 the address high will
be sent to the buffer ram. Bit 7=1 then BCS1 will be sent to
the buffer ram in place of the high address.

BUFFER SIZE REGISTER

This register selects the size ram buffer the chip will
access.

01—8K BUFFER

03—16K BUFFER
07—32K BUFFER
OF—64K BUFFER

BUFFER COUNT REGISTER

This register contains the number of clock periods minus
1 that will be used to access the buffer ram. Only bits 0-3
are used.

SYSTEM OPERATION

The flash solid state drive operates under an operating
system stored in ROM 28. The flash solid state drive
performs various procedures under the joint control of the
operating system and the various state machines.

FIGS. 2A, 2B and 2C set forth the operation of the flash
solid state drive for a read operation, The host sends to the
flash solid state drive the read command, the sector count
(the number of sectors to be read) and the cylinder, head and
sector numbers CHS address. Upon receiving the CHS
address, the flash solid state drive will translate that CHS
address into a logical sector number (LSN). Each sector that
would have existed on the magnetic disk drive will have an

5,459,850

17

associated LSN in the flash solid state drive. Therefore for
the emulation of any magnetic disk drive, the flash solid
state drive will have a maximum number of LSNs.

A test is performed which adds the received sector count
to the generated LSN and compares that summation to the
maximum LSN for the flash solid state drive. If the resulting
summation 1s greater than the maximum LSN or if the
generated LSN was equal to zero, then the CHS address sent
by the host was in error. Under this condition the flash solid
state drive will send status of invalid CHS to the host.

Each LSN has a header stored in the flash memory which
1dentifies and describes the sector to the drive. When the
drive is first manufactured,a sector header for each LSN is
written in the flash array. A header for each LSN will always
exists in the flash array and it is possible for more than one
header for a given LLSN to exist in the flash array however
only one such header will be mark clean and the remaining
duplicate headers will be marked dirty or invalid. During

operation, the drive will store the location of the header of
the last LSN read.

If the CHS sent by the host was valid, the drive will read
the next header in the flash array after the sector header
who’s location in the flash memory was stored during the
last read operation. The stored sector header location allows
the drive to calculate the flash array address for the next
header. Effectively, if the LSN stored in the next header is
the LSN for the LLSN to be read then the drive has avoided

the time necessary to seek a flash memory address for the
LSN.,

‘Therefore a test 1s done to compare the LSN generated for
this read operation against the LSN read from the next sector
header aiter the last stored sector header during the last read
operation.-If there is no match, the drive will go 1o a sector
translation table and read a partial flash address PFA for the
LSN. The sector translation tables has stored for each LSN
a PFA. The low three order bits of the complete flash address
FA are not included within the PFA thereby reducing the
width of the sector translation table by one byte. In the
preferred embodiment the largest PFA stored in the sector
translation table 1s address FFFE. The PFA for the LSN is
checked to determine if the PEA has a value of FFFF which
would indicate an error condition. If an error condition is
sensed, status is sent to the host indicating that the CHS
address was not found. |

If the PFA is valid, the drive will add the value of a scan
count multiplied by the header size to the PFA to form the
FA. A scan count register 18 maintained within the drive for
generating the complete offset for the FA. At this time, the
scan count register will be made to be equal to zero. The
scan count is then determined by the dnive and if the scan
count has a value of O to 7, the drive will read the header
located at the FA and determine 1t the LSN being sought is
equal to the LSN stored in the sector header. If the LSN
being sought 1s different than the LSN stored in the header,
1 1s added to the scan count and the process 1s repeated. This
loop will be repeated until either the scan count reaches a
count of 8 which will cause the drive to send status of CHS
not found to the host or a match has been obtained between
the LSN being sought and the LSN stored in the header
being read at the flash address. When either the condition
that the LSN being sought was equal to the LSN stored in the

next sector header after the last header stored from the

previous read operation or the LLSN in the header of the
sector addressed in the flash memory, the drive will read the
header. The header includes an attribute word and an ofiset
word. The attribute word contains a bit that is set if the host

10

15

20

25

30

35

40

45

50

33

60

65

18

has indicated that the sector was bad. If the bad sector bit is
asserted, the drive will send status to the host indicating that
the sector 1s marked bad. The offset word indicates the
location of the data stored for that sector. If the attribute
word indicates zero bytes of data, the drive will determine
from the attribute word if the attribute word’s compression
bit 1s asserted. The compression bit indicates whether or not
the sector data was compressed during the writing operation
for storing that sector. If the compression bit was asseried,
the drive will write a sector of compressed zero bytes into
the buffer. If the compression bit was not asserted, the drive
will write a sector, 512 bytes, of zeroes into the buffer. Since
no data was stored within the flash memory, the drive

generates the proper bytes of data to be stored into the buffer.

Where the attribute word indicates that data is stored after
the header, the drive will read as data words from the flash
memory the sector data, the CRC data,if any, and the ECC
data. The offset word indicates the address at which the data
is stored. As previously described, the flash memory is so
arranged as to have the flash chips paired together such that
16 bits or two bytes of data may be read from the flash
memory at a time. The offset provides the address at which
the data starts in both of the flash chips. Data is stored on the
flash chips starting at the address indicated by the offset and
subsequent data words are read by incrementing the flash
address for the first data word until all the data words are
read for the sector. The data words are converted into two
sequential bytes of data by the read sequencer 17 and each
byte of sector data is read through multiplexer 12 into buffer
11. The bytes are routed through the ECC detector 15 and if
an error is detected, the drive will slow down the access time
to allow more settling time for the flash memory and retry
reading the sector. If the retry was not successful, error
correction techniques are then attempted to correct the error.

If the error was not corrected, a flag 1s set indicating the error
for the host.

If there was no error or if an error 1s corrected, then the
drive will again determine whether the compression bit in
the header was asserted. If the compression bit was not
asserted, the bufler will contain 512 bytes of data and 4 bytes
of ECC data. The drive will then route the uncompressed
sector data through the data multiplexer 12, FIFO 14,
selector 18 and interface control 19 to the host. If the
compression data bit was asserted, the buffer will contain
either the compressed data for the sector or a compressed
sector of zeros, a CRC byte and 8 bytes of ECC data. The
drive will route the compressed data from buffer 11 through
data multiplexer 12, FIFO 14 and selector 18 to decompres-
sor 24. Decompressor 24 decompresses the data and pro-
vides 512 bytes of data to interface control 19 to be
transferred to the host. The output of the decompressor 24 is
also sent through the CRC checker 23 which will determine
if the decompressed data contains an error. If an error is
detected by the CRC checker, a flag CRC error is posted to
the host to indicate that the sector data just received by the
host contains an error. The use of the CRC checker allows
the drive to identify an error most likely occurring during
either the compression or decompression of the sector data.

FIGS. 3A-3C describe the flash solid state drive operation
for a write operation. The host 1ssues a write instruction, the
CHS address and a sector count of the number of sectors to
be written. Again, the drive will translate the CHS address
into a LSN. The LSN 1is then tested to see if the LSN 1s a
valid LSN and, if not, sends an ID not found status to the
host. The drive contains a register which has a bit assigned
to it for indicating whether the data is to be compressed
during a write instruction or has been compressed for a read

5,459,850

19

instruction. The host processor can set this bit for a write
operation and the drive sets the bit during a read operation.
If the compression bit is not asserted, the 512 bytes are
routed through interface control 19, selector 18, FIFO 14
and data multiplexer 12 into buffer 11. No CRC data is
generated for this sector since it was not passed through
compressor 20. |

Whenever a sector is written into the flash memory, a new
header 1s written for that sector. Therefore the compression
bit in the attribute word of the sector header is set to indicate
the sector data is uncompressed. If the compression bit is
asserted, the incoming sector data is routed through interface
control 19 to compressor 20 and CRC generator 22. Com-
pressor 20 is a LEMPEL/ZIV data compressor. The com-
pressor operates on 512 byte sectors and achieves an average
compression ratio of approximately 1.6 to 1. The uncom-
pressed data i1s passed through CRC generator 22 to form
one byte of CRC data which is appended to the compressed
data bytes from compressor 20. After compression is com-
pleted by compressor 20, a test is made as to the number
bytes generated by the compression operation. In some
circumstances 1t 1s possible for the number of compressed
data bytes to be greater than the 512 bytes of original data.
If the number of compressed bytes is equal to or less than

512 bytes, the drive will route the compressed data and the

appended CRC byte through selector 18, FIFO 14, data
multiplexer 12 into buffer 11. Buffer 11 is segmented and has
allocated areas for storing data received for storage in the
flash memory or for storing data to be sent to the host and
for storing background data.

- It the compression results in greater than 512 bytes of
compressed data, the drive will re-route the compressed data
from buffer 11 through data multiplexer 12, FIFO 14 and
selector 18 to decompressor 24 such that the data is decom-
pressed back to its original 5§12 bytes and stored in RAM 31.
The sector data 1s then routed as uncompressed data from
RAM 31 through selector 18, FIFO 14, data multiplexer 12
into buffer 11.

If the compression results in an unsuccessful compression
, the compression bit in the attribute word is set to indicate
uncompressed If the compression resulted in a successful
compression, the compressum bit in the attnbute word is set
to indicate compression.

Since a new sector header is written for each writing of a
sector and a sector header always exists within the flash
memory for each logical sector number, the active or old
sector header in the flash memory must be marked as invalid
or dirty. In a similar fashion to the read operation, the last
header associated with the sector marked dirty from the last
write operation has been saved by the drive. The drive uses
that header address as a pointer to the address for the next
sector header 1n the flash array following the sector that was
marked dirty during the last write operation. The drive reads
the sector header and determines if the LSN in that header
equals the LSN associated with the CHS address issued by
the host. If the LSNs are the same, the drive will mark that
header as dirty or invalid. A header is marked dirty or invalid
by making the L.SN stored in the header equal to 0000 which
is an illegal LSN. If the LSN being sought is not equal to the
LSN stored in the header, the drive reads the sector trans-
lation table to obtain a PFA for the LLSN.in a similar fashion
as was done for the read operation. Again, the PFA is tested
as to whether it is valid or not and, if it is valid, the scan
count 1s appendéd to the PFA to form the complete FA.
Again, the scan count is set to zero and the drive then goes
through the same loop of three steps, that is testing if the
scan count 18 equal to 8, comparing the LSN being sought

10

15

20

25

30

35

40

45

50

55

60

65

20

against the LSN in the header at the flash address and,
finally, to add 1 to the scan count. If a match of the LSNs is
found, the header at that FA 1s marked dirty.

If the PFA was invalid or the scan count reached a count
of 8 indicating that the FA was invalid, the drive will ignore
this situation and proceed with the write operation. This
condition can be ignored because if the same LSN was
1ssued during a read instruction, the read instruction would
find the same invalid addresses and would return an ID not
found status to the host. Further, since the write operation
generates a new header which will update the sector trans-
lation table, there is no adverse affect by not ﬁnchng the
previous header for the LSN.

At this time either the old header has been marked invalid
or the old header has not been found, the drive will next
make a calculation of the amount of space available on the
flash array for storing data. The drive maintains a register
indicating the amount of free sectors and the amount of dirty
sectors. The drive adds the number of free sectors to the
number of dirty sectors and subtracts the number of sectors
to be written during this write operation. The results is
compared against a flash reserve set by the drive which is the
number of sectors that have been reserved by the drive
which are not available for writing data into. If the result is
greater than the flash reserve, then standby status is sent to
the host, indicating that the write operation cannot be
performed.

I the result 1s equal to or less than the flash reserve, the
drive performs the next test by subtracting the sector size
from the number of free sectors and comparing the results
with the cleanup reserve. The clean-up reserve is an amount
of sectors that are predetermined by the drive as necessary
to perform clean-up operations. If the result is greater than
the clean-up reserve, the drive goes into a foreground
clean-up operation. Each of the flash chips contains one
megabyte of data and the block area that can be erased is 64
kilobytes of data. Therefore each block of data may contain
a plurality of sectors stored within the block. The drive then
reviews each block on each chip pair within the flash
memory to determine if any block contains only dirty
sectors. It such a block 1s found, that block is erased making
that block available as free space.

~ In some situations the drive will find that a large propor-
tion of a block is dirty and a small portion of the block has
stored sector data. The drive will then go into a mode where
it will read those sectors into the buffer and then restore
those sectors into the clean-up reserve area, thereby allowing
the block to then be erased and provide more free space in
the array. The reading and writing during a clean-up opera-
tion follows the same procedure as the reading and writing
of read/write command from the host.

The drive will next check the block to which it last read
a header during the write operation to determine whether
that block has space available for writing the present sector.
If space is not available, the drive will move to the next
block on the chip and determine if space is available on that
block. Once a block is found with space available for writing
the sector, a test is performed to determine if addition of this
header would surpass the maximum number of headers
allowed for a block. If the maximum number of headers
would be surpassed, the drive will move on to the next block
until a block 1s found that has both space available and room
for another header. '

Once an available block has been located, the header for
the new sector is written at the next available address in the
block. At this time the drive will write the flash address less

5,459,850

21

the three low order bits into the sector translation table as the
PFA for the LSN.

The drive will then check the attribute word for the new
header to determine whether there 1s any data to be actually
stored for the sector. If no data i1s to be written, the write
operation 1S completed. If there 1s data to be written, the
drive will point the write circuitry on the proper flash chip
pair to the address to begin writing the sector data. As
previously discussed in the read operation, data is written
with the first data word being written at the offset flash
addresses and all subsequent data words written at incre-
mented addresses until all the data words have been written
into the flash memory. Again data 1s written in a form of data
words where data words contains two bytes of data. Effec-
tively, all even bytes of data are stored in one flash chip and

all odd bytes of data for the sector are stored in the other

tlash chip. During an erase operation of a block, a block in
both of the fiash chips will be erased.

The drive is now ready for the actual writing of data into
the flash memory. The sector data stored in buffer 11 1s first
routed through multiplexer 12 to microprocessor 30 and to
ECC generator 26. ECC generator generates 4 bytes of ECC
data which is appended to the end of the sector data to be
stored. Microprocessor 30 receives the byte by byte data
from bufier 11 and provides data words to flash controller 21
such that flash controller 21 may write 16 bits in parallel into
the flash memory. Microprocessor 30 will provide data
words until all the data words for the sector data, the CRC
data,if any, and the ECC data have been read into the flash
memory. |

During a write operation the sectors associated with a
write command are attempted to be written sequentially into
the fiash array. However, this 1s not a requirement as the
flash solid state drive maintains the location of each sector’s
location within the drive. Further, during a foreground
operation, sectors may be moved from their original posi-
tions to other positions within the memory thereby destroy-
ing the sequentiality of location from which the sectors were
originally written in the flash memory. However, the loca-
tion of each sector 1s updated in the sector transiation table
whenever a sector i1s writfen, either in response to a write
command from the host or during a foreground clean-up
operation.

When power is brought up to the fiash solid state drive,
the sector translation table must be recreated from the header
information stored in the flash memory. ROM 28 is com-
posed of flash chips and, therefore, is capable of being
written into. A table of bad blocks is stored in ROM 28.
Seldom does a block within the flash array go bad and,
therefore, the time necessary to write this data into ROM 28
is not prohibitive. A block 1s deemed bad if two or more
unrecoverable errors have been detected during a read
operation from two or more unique locations in that block.

FIGS. 4A and 4B show the procedure enacted by the flash
solid state drive to reconstruct the sector translation table
during the power-up sequence. First, the PFA for each LSN
is set to the illegal address of FFFE. Next, the registers
containing the number of free sectors,dirty sectors and total

number of sectors are reset to zero. Finally, the bad block
data is read from ROM 28 and stored in RAM 29,

A test is done to establish if the 1ast block in the fiash array
has been processed. If the last block has been processed, the
initiation procedure is done. If the last block has not been
processed, the drive will go to the next block in the flash
array. In the beginning, the drive will go to the first block in
the first chip pair and sequentially go through the blocks on

10

15

20

25

30

35

40

45

50

35

60

65

22

a given chip pair and then through all chip pairs until all
blocks on all chip pairs have been processed. When arriving
at a block the block table is checked to determine if the block
is bad. If the block 1s bad, the block is not processed and the
drive will go to the next block. Arriving at a good block the
drive will read from the block the cycle count for that block.

Each block has stored within a designated area in the
block a cycle count indicating the number of times the block
has been erased. The cycle count is read and noted by the
drive for that block of memory. The cycle count for the block
being processed is compared with the maximum cycle count
presently stored in the maximum cycle counter register. If
the cycle count for this block 1s greater than the maximum
cycle count in the register, the cycle count for this block is
stored and becomes the maximum cycle count. The maxi-
mum and individual cycle counts are used by the drive in
determining the wear profile of the flash memory. Since flash
chips have a lifetime defined by the number of times the
blocks on the chip are erased, it is desirable to attempt to
maintain the cycle count across the flash memory as evenly
as possible such that the flash chips in the flash memory age
at the same rate. The drive can use the knowledge of the
maximum cycle count and the cycle count for a given block
in determining whether or not that block should be erased
during a clean-up process as described for the write opera-
tion. By not erasing the block, the block will remain in its
present erase age until other portions of the flash memory
obtain approximately the same age.

Once arriving at a block the process will read the next
header in the block. The header first read will be the first
header in each block as that block 1s processed. The header
LSN is read and that LSN’s location is read from the sector
translation table to determine if that LSN’s PFA is equal to
the invalid address of FFEF. A header 1s maintained by the
drive at the end of the space allocated for header data to be
written into the flash memory. This last header for has a LSN
equal to FFFE. Therefore, after the header 1s read, the header
L.SN 1s checked for the value of FFFF and, if the condition
1s met, the drive knows that all headers have been processed.
It the header LSN is not equal to FFEFF then the drive will
go on and process the header in that block.

Next, the header for the sector is checked to see if the
sector 1s dirty, that is, does the sector contain valid data. The
sector 1s noted to be dirty by having a LSN equal to 0000.
If the sector is dirty, the dirty block register and dirty array
register are updated and the drive will read the next header.
It the header is not dirty, the drive will read the logical sector
number in the header and then reference that LSN 1in the
sector translation table to determine if the PFA associated
with that LSN is FFFF. If the PFA is not FFFF, the drive
knows that it had processed the same LLSN prior to process-
ing this header.

The header attribute word has a field which indicates the
revision number which is generated by the drive whenever
a LSN 1s written such that the highest revision number
represent the LSN having the most recent and therefore valid
data for that LSN. The drive will read the header for the PFA
in the sector translation table for the LSN. The drive then
compares the revision number in the retrieved or old header
for that LSN with the revision number for the presently
being processed LLSN. If the presently processed header’s
revision number 1s greater than the old header’s revision
number, the old header’s is marked dirty by making a old
header’s LLSN equal to 0000. The dnive will then update the
dirty block register and dirty array register. Next, the drive
will modify the sector translation table to refiect the PEA of
the header presently being processed for the LSN stored the

5,459,850

23

header presently being processed. The drive will then go on
to process the next header.

If the header revision number for the presently processed
sector 1s less than the revision number in the old header, then
the presently processed header’s LSN is marked dirty by

aking the LSN equal to 0000. In practice this occasion
should not arise because low revision sectors should have
been marked dirty when the latest revision was written. This

process 1s done to make sure that the PFA associated with a
LSN contains the most recent data that was stored in the
flash memory for that LLSN. Once again the total dirty block

register and array register are updated and the drive then
proceeds to the next header for processing.

When the last header has been processed in that block, the
drive will update the total amount of free flash in the block,
chip and array registers. When the last block has been
processed, the sector translation table has been rebuilt and
the total amount of free flash for each block, chip and the
memory 1s stored in a free flash block registers, free flash
chip registers and a free flash memory register. At the end of
the initialization the drive will therefore have reconstructed
the sector translation table and will know the free flash
avatlable for processing on each chip, for each block on each
chip and for the total memory.

The foregoing description of the system architecture and
the system operation would allow a drive designer, skilled in
the art, to construct the fiash solid state drive and to write an
operating system for operating that constructed flash solid
state drive in the manner as heretofore set forth above. It is
understood that the designer of the operating system may
wish to vary the steps in the procedure as set forth in the
discussion of the operation of the system. Further, the
designer may wish to design the system architecture to take
advantages of the specification which the designer is setting
for his own flash solid state drive. Such variations that could
be to include would be where the operating system stored in
ROM performs the procedures that are carried out by the
state machines or where additional state machines carry out

other portions of the operating system that where stored in
ROM.

From the foregoing discussion a flash solid state drive has
been described which emulates a magnetic disk drive. Spe-
cifically, the drive described emulates a 40 megabyte mag-
netic disk drive. The flash memory array will store 30
megabytes of compressed data which is equivalent to
approximately 45 megabytes of uncompressed data. The
flash drive described employs various length.\ sectors for
enhancing data storage, the simultaneous reading and writ-
ing of two bytes of information into and out of the flash
emory to increase the speed of the flash solid state drive
and the dynamic storage of sectors in the flash array in

accordance with availability of within the flash memory.

The flash solid state drive is transparent to the host and
can be used directly in place of a magnetic disk drive having
the same storage capacity, or less. Further, the flash array
- may be altered in size to contain more or less flash chips,
thereby increasing or decreasing the capacity of long term
memory within the flash solid state drive. The described
flash solid state drive is plug compatible with the magnetic
disk drive which it emulates and does not require any
reprogramming of the host system employing the flash solid
state drive. o

While the invention has been particularly shown and
described with references to the preferred embodiments
thereof, it will be understood by those skilled in the art that
changes in form and detail may be made therein without

10

15

20

25

30

35

40

45

30

35

60

65

24

departing from the spirit and scope of the invention. Given
the above disclosure of general concepts and specific
embodiments, the scope of the protection sought is defined
by the following claims.

What is claimed 1is;:

1. A solid state drive having a solid state memory con-
nected to a host for receiving and sending fixed length data
blocks to and from the host, said solid state drive compris-
ing:

control means for converting said fixed length data blocks
received from the host into a variable length data

blocks to be stored in said solid state memory as data
blocks of nonuniform length where said control means
COMmprises:

compression means for compressing said fixed length data

blocks received from the host to form a compressed
data block of nonuniform length; and

storing means for storing said compressed data in said
solid state memory as data blocks of nonuniform length
and for retrieving data blocks of nonuniform length
from said solid state memory.
2. The solid state drive of claim 1 wherein said control
Means CoOmprises:

decompression means for decompressing a said com-
pressed data block read from said solid state memory to
recover said received data block as received from the
host. |
3. The solid state drive of claim 1 wherein said control
means further comprises:

selection means for controlling whether said fixed length
data blocks received from the host is to be stored as a
fixed length data block or as a variable length data
block in said solid state memory; and

marking means for generating indicia to be stored with
said data block indicating whether that said data block
was stored as a fixed length or variable length data
block. |
4. The solid state drive of claim 1 wherein said solid state
memory further comprises:

translation means for translating said drive address into a
block number for identifying a data block within said
solid state drive.

5. A flash solid state drive, having a flash solid state
memory compatible with ATA/IDE Interface standards to be
connected to a host for storing or retrieving sectors of data,
where each sector contains 512 bytes of data, each sector is
addressed by a cylinder, head and sector number CHS and
said host provides for a read operation the number of sectors
to be retrieved, the CHS for each sector to be retrieved and
for a write operation the number of sectors to be stored, the
CHS for each sector to be stored and the data for the sectors
to be stored, said solid state memory having stored therein
a header for each CHS address that can be issued by said
host said header having indicia identifying the data block
and indicating where the data for said data block is stored in
said solid state memory, said flash solid state device com-
prising: |

translation means for translating said CHS address into a
logic sector number LLSN for identifying sectors in said
flash solid state drive; and

control means for converting said fixed length sectors
received from the host into variable length sectors to be
stored 1n said flash solid state memory as sectors of
nonuniform length.
6. The flash solid state drive of claim 5 wherein said
control means further comprises:

5,459,850

25

compression means for compressing said fixed length
sector received from the host to form a compressed
sector of a non defined length;

storage means for storing said compressed sector being
stored in said flash solid state memory as compressed
sectors of nonuniform length and for retrieving com-
pressed data sectors of nonuniform length from said
flash solid state memory; and

decompression means for decompressing a said com-
pressed sector read from said flash solid state memory
to recover said received sector from said compressed
sector.
7. The flash solid state drive of claim § wherein said
control means further comprises:

selection means for controlling whether said fixed length
sector received from the host is to be stored as a fixed
length sector or as a variable length sector in said flash
solid state memory; and

marking means for generating indicia to be stored with
each said sector indicating whether said sector was
stored as a fixed length or variable length sector.

8. The solid state drive of claim § further comprising:

ECC generating means for generating ECC data for each

10

15

20

26

fixed and variable length sector prior to said sector
being stored in said flash solid state memory, said ECC
data being stored with said sector generating said ECC
data in said flash solid state memory;

ECC detection means for determining if a sector read
from said flash solid state memory was in error; and

error correcting means for correcting the error detected by

said ECC detection.
9. The flash solid state drive of claim 6 further compris-
ing:

size detector for generating a first signal if the number of
bytes of compressed data for a sector after compression
by said compressor means 1s greater than 512 bytes of
data;

second control means in response to said first signal for
routing said compressed sector giving rise to said first
signal through said decompression means to recover
the uncompressed sector such that said uncompressed
sector will be stored as a fixed length sector in said flash
solid state memory.

S A T

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENTNO. : 5,459,850 Page 1 of 2
DATED . October 17, 1995

INVENTOR(S) : Donald w. Clay et al.

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby

corrected as shown below:

On title page, item [54],

In the Title, "LENTH" should be - -LENGTH- - .

Column 1, line 3, "LENTH" should be --LENGTH--.

Column 4, line 2, before "where" insert --51--; line 37, "act"
should be --acts--; line >4, change "as" to --in--.

Column 5, line 15, "varies" should be --various--; 1line 17,
delete "for".

Column 6, line 45, before "7r insert --bit--: line 59, after
"BECC" (second occurrence) delete "ig",

Column 8, lines 25 and 29, "35m should be --40--.
Column 10, line 22, "DMAtransfers" should be --DMA transfers- -;
line 23, "DMARequest" should be --DMA Request- -.

Column 11, line 45, "addition" should be --additional--; line
63, "registers" should be --register’s--.

Column 12, lines 9 and 25, "registers" should be --register’s-.
line 64, delete "see register 47".
Column 13, lines 6, 20 and 35, "registers" should be
--register’s--.
Column 14, lines 12, 25 and 39, "registers" should be
--register’s--; line 67, after "count" insert --FIFO--..
Column 15, line 1, delete "FIFO"; line 31, change "56" to
--24--; lines 48 and 62, "registers" should be --register’s--;
line 52, "Upon" should be - -upon- -.

PATENTNO. : 5,459,850

DATED - October 17,
INVENTOR(S) :

It is certified that error appears in the above-indentified
corrected as shown below:

Attest:

Altesting Officer

patent and that said Letters Patent is hereby

Signed and Sealed this

Commissioner of Patenss and Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

