US005455924 A '

United States Patent [11] Patent Number: 5,455,924
Shenoy et al. 1451 Date of Patent: Oct. 3, 1995
[54] APPARATUS AND METHOD FOR PARTIAL Assistant Examiner—Sheela N. Nadig
| EXECUTION BLOCKING OF Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor & Zaf-
INSTRUCTIONS FOLLOWING A DATA man
CACHE MISS | [57] ~ ABSTRACT
[75] Inventors: Sunil R. Shenoy, Portland; James W. A partially blocking data cache having improved micropro-
Wong, Beaverton, both of Oreg. cessor performance while maintaining data consistency
. |) | _ between external memory and cache memory. The data
[73] Assignee: Intel Corporation, Santa Clara, Calif. cache of the present invention is used in a computer system
| | and is partially blocking in that this cache will block the
[21] Appl. No.: 15,655 execution of any store instructions subsequent to an out-

standing load instruction that missed the cache. The present

[22] Filed: Feb. 9, 1993 invention offers increased microprocessor efficiency by

[S1] INts CLE oo esseee s ssesssaeens GO6F 12/00 aliowing execution of subsequent load instructions while
1521 US. CL .. 395/445: 395/479: 395/180; less than a predetermined number of preceding load instruc-
h 364/DIG. 1 tions are still outstanding. The present invention utilizes a
[58] Field of Search ..., 395/425, 275, ~ counter within the data cache unit to track the number of

395/575: 364/DIG. 1 outstanding load misses. The present invention provides
’ ' increased performance without undue or overly complex

156] References Cited modifications to existing caching systems. The present
invention operates advantageously within a computer sys-
U.S. PATENT DOCUMENTS tem having a relatively large number of registers associated
4.884.197 11/1989 Sachs ef al 395/425 with the microprocessor such that store instructions repre-
5,025,366 6/1991 BAIOT .cooromrrsrersmorrrrnnrs 3957425 SENL @ relatively small number of the instructions executed
5,222,224 6/1993 Flynn et al. .oooovverereennreerenneee. 395/425 DY the microprocessor.
Primary Examiner—David L. Robertson 63 Claims, 5 Drawing Sheets
Start
600

Process New Instruction

Cache No Assume Cacheable Memory
Miss? 610
630 Process Load
| Instruction
Yes Through Cache IS Is
| 695 Yes / the Instruction the

Yes

a Load? CNTR=0?

Are

i Fi tS E)a IltL:nmd' v o0 Stall Until
Outstandin ISt Vuisianding |
L.oads? : Load is Processed Outstanding Load

655 is Executed

635
No

680

s the
Instruction
a Store?

620

Process the
Store Instruction

675

Fili Cache
with Data of First
Outstanding Load

660

Fill Cache

Increment
Counter

640

Decrement

Counter

Put Current

L oad on the Decrement

BCL Queue Counter

50

[¥ i =

665

"US. Patent Oct. 3, 1995 Sheet 1 of 5 5,455,924

Microprocessor

Cache

- Tag 05

i

5 O o I
: _fcache Entry |
; T
E Mi::ro:aroc;gssor =- interface
v | Instruction ' :
i

5

:

i

i EE O N O s s W e e N O E i e T W

External

Processor50 ' .- '
= N

FIG. 1 (Prior Art)

32

5 Instruction 1
Instruction 2

Instruction 1 - ; ~Instruction 3
Instruction 2 . 3 | |

o | 35
Instruction 3 I I - LU

- | t t
Instruction 4 L 2 3 4 5

BLOCK Active

Program
34

FIG. 2

U.S. Patent © Oct. 3,1995 Sheet 2 of 5 5,455,924

Data Data
Processor Storage Cache
Device and Logic
101 - 104 109

L

Bus 100
o Alpha Cursor Signal
Dusp]ay Numeric Control Generation
Device | Input Device Device Device
105 106 107 108
Instruction oata
> DCcuU —1 BCL Storage
50 74 o6 -
| 01 104
100

Signal
Cursor Generation

Device Device
108

U.S. Patent Oct. 3,1995 Sheet 3 of 5 5,455,924

: :
: :
: :
i |
y | Data . :
' | cache Data Cache Control instruction : 100
: . Memory . Queue

: Unit EE Logic £7 :
| 52 — | 56 — :
| ' :
: :
| i
: :
] i
: Instruction E
E Processor : |
: 50 :
i |
: Microprocessor 101
L.)

-_---_-ﬂ-_--_ﬂ_ﬂ----ﬁ-—-_—-—_ﬂ--ﬂ---——ﬁﬂ---ﬂ_--ﬂ-_--

U.S. Patent Oct. 3, 1995 Sheet 4 of 5 5,455,924
| ion Decod o
nstruction Decoder 200
Load . _ Store

Interface
ez Signals

MiSS
Cacheable

56 ' _ Bus Control Unit _ BCL

LDg
> LD+ Oueue

Memory 50

FIG. 5

5,455,924

Sheet 5 of 5

Oct. 3, 1995

U.S. Patent

069
18unoY

JUBWBI08(

G89

3Yoe) 4 579

UoNaNNSU| 8101Q

a4} $S300.1d

089

pajNos8x3 Si
peo buipueising
uN €IS

573
¢0FHIND

oyl
S|

SO A

9 VI

029
;8I0]G ©
uoHaNIISU
gy} S

SAA

ON
G19
;peoye

UOIoNIISU| 8u)
S|

S8 A

019
Alowa s|qesyoen) anssy

UOHONIISU| MON SS820.1d

009
NElS

G99 049
ansnpY 104
18]noY 8] uo peo’
Juswiaine UsLNY INg

099 0%9

peo Buipueisino JBIuN0D

1Sil4 JO BleQq Yim Juswialouy
9ydeQ |jid

GE9

GG9

P8SS820.4 S peon ¢{SPEOT
Buipueising 14 Buipuelsing
nun (eis 99141 oloy]

aly

969

ayoen ybnoiyy
uoijonJjsu

PBOT SS89014

1

APPARATUS AND METHOD FOR PARTIAL
EXECUTION BLOCKING OF
INSTRUCTIONS FOLLOWING A DATA
CACHE MISS

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The present invention relates to the field of memory
accessing technology for the storage and retrieval of data

and/or instructions from a memory unit. Specifically, the

5,455,924

10

present invention relates to the field of memory cache

technology employed to increase the speed and efficiency of
memory accessing.

(2) Prior Art

Among the many elements of a computer system are

found a central processing unit (CPU), memory storage units
(which may be RAM or ROM or other), and interface and
control logic units that couple the CPU to the memory
‘storage units for accessing and processing of data and
instructions. Generally, each time the CPU processes an
instruction it must access a memory storage unit to gain
desired data for processing or to obtain the execution
instruction itself. For whatever reason, the CPU is constantly
interfacing with the memory storage units. Recent develop-
ments in computer technology have offered a variety of
different types of memory storage umts which are adapted

for different functions and have different characteristics.

Specifically, use of a data cache memory unit and associated
logic has become extremely popular because of the versa-
tility and efficiency of data accessing offered by the data
cache memaory.

A data cache is a special purpose memory unit that 1s
designed for special interface with the CPU. The data cache
is typically a small sized specially designed memory unit
designed for high speed access to the CPU of a micropro-
cessor. Typically the data cache is of limited size because of
the constraints of interfacing the cache with the CPU. The
cache memory is designed to specially interface with the

CPU so that the CPU can access the data of the cache at very
high speeds verse the relative long data accessing required
of other, extermal, memory units. Many cache units are
located structurally within the chip containing the micro-
processor unit for high speed accessing. A cache i1s filled
with data that the CPU will probably execute on a routine or
cyclic basis. This data is placed into the cache memory from
the external memory (or generated by the CPU and placed
into the cache memory) typically during the execution steps
of a program. That is, the most recently used data, deter-
mined by monitoring the data flow through the program
execution, is placed into the cache memory. New data is
placed or replaced into the cache and tagged for identifica-
tion while older data (i.e., data not accessed over a given
time period) is slowly “aged out” or removed from the
cache. The memory placed within the cache is also tagged
with a unique identifier that is rclated to the effective
memory address associated with the data of the external
memory unit.

During program execution when the CPU desires to
access (i.e. load or store) data to a particular address within
the external memory unit, a special cache logic unit first
scans the contents of the cache memory unit to determine 1f
the desired address is located within the high speed cache.
If so, the data is accessed via the cache utilizing the tag
identifier and the position of the data within the cache. In this
case external memory access is not required and therefore

15

20

25

30

35

40

45

50

55

60

65

2

the delay associated with external memory access 1is
avoided. Each time data 1s accessed via the cache a signifi-
cant amount of processing time is saved by avoiding the
delay associated with the external memory. Therefore,
memory cache operations or “cache operations’ refer to the
cache procedure and theory discussed above. Cache opera-
tions function on the theory that many computer programs
frequently utilize only a relatively small number of data
addresses on a cyclic basis and those commonly used values
will end up located within the high speed cache memory
providing efficient access.

In the event that the desired data is determined to be not
within the data cache, the cache logic unit will indicate that

a “‘cache miss”’ has occurred associated with the access
instruction (i.e., a miss load or a miss store) and the

instruction causing the miss is called the missed instruction.
When a cache miss occurs, the desired data must be accessed
from, or to, the external memory which i1s usually not
associated with the structural location of the cache memory
unit. This accessing to the external memory takes longer
than a cache memory access. During the delay, the many
prior art CPUs may not issue further instructions while the
address in external memory 1s being accessed associated
with the missed instruction due to problems of data incon-
sistency. These further instructions are called subsequent
instructions to the missed instruction.

A prior art cache system is illustrated in the block diagram
of FIG. 1.0. The external memory unit 60 is illustrated
coupled to interface control unit 14 which provides con-
trolled access to the external memory 60. A high speed
limited size cache unit 10 is illustrated coupled to the logic
unit 14. The high speed cache unit is coupled to a micro-
processor instruction processor S0 via a cache control unit
12 which controls accessing to the cache between micro-
processor instructions and determines whether or not data
associated with the microprocessor instructions resides in
cache or not. The microprocessor instruction processor 30,
the logic unit 12 and the high speed cache 10 are all located
within the chip of the microprocessor 5. Because of this
location, and other special characteristics, the cache memory
10 allows high speed, efficient interface to the microproces-
sor. After an instruction generating a cache miss 1s encoun-
tered, the instruction is executed through the external

memory 60. When the desired data is obtained via the logic

unit 14, it is forwarded to the microprocessor unit 50 for

processing. The data is also placed into the cache 10 and

tagged for subsequent use.

Prior Cache Systems

Prior cache systems are either totally microprocessor
blocking or non-blocking. In a totally blocking system, each
time there i1s a miss instruction every subsequent instruction,
either a load or a store instruction, must be suspended until
the miss instruction is completely executed (i.e., until exter-
nal memory 60 is accessed). This 1s done by stalling or

blocking execution of the microprocessor and must be done

to prevent data inconsistencies between the subsequent
instructions and the miss instructions. Therefore, after a load
instruction generating a cache miss load instruction all
subsequent load instructions will be stalled until the cache
miss load instruction is fully executed through external
memory. Obviously, this implementation does provide for
data consistency but at a reduced operational speed due to
the large number of stalis generated for each cache miss
state. This prior art system does not differentiate between the
character of the subsequent operations to determine if they

5,455,924

3

are dependent or independent on the result of the missed
instruction or 1if the subsequent instructions may be allowed
to execute out of order without causing data inconsistencies.
This totally blocking prior art system merely prohibits
execution of any instruction following a miss instruction that
has not completed execution (i.e., while a miss instruction is
currently outstanding). These prior art systems are not
advantageous because processing performance of the micro-
processor 1S degraded due to the continual blocking of
instructions on the occurrence of miss instructions; there-
fore, these systems are not very efficient. What is needed is
a system that offers improved system efficiency while pro-
tecting data consistency and integrity. What is needed is a
system that allows some subsequent instructions to operate
using the cache even though a precedent and outstanding
instruction has not been totally executed. The present inven-
tion offers such capability.

Other prior art cache systems are non-blocking in that
they never block subsequent instructions. From a perfor-
mance standpoint these systems Operate very rapidly and
ethiciently. However, these systems employ extremely com-
plex and advanced circuitry to insure data consistency
during the operation of subsequent instructions since some
instructions will be executed out of order. This complex
circuitry requires high performance and often expensive
components that are not appropriate for all systems and
designs. Moreover, it is very difficult and complex to inte-
grate these data cache units into conventional microproces-
sor designs. What is needed is a system that protects data
consistency, provides for efficient operation but yet does not
require overly complex design or implementation and may
be integrated 1nto conventional microprocessor design with
modest modifications. The present invention offers such
capability.

In view of the above, it is an object of the present
invention to provide a method and apparatus for providing
an efficient system of memory caching by employing a
partially blocking data cache scheme. It is an object of the
present invention to implement the partially blocking data
scheme without overly complex and advanced circuits so
that the partially blocking data scheme can be implemented
into existing caching systems without undue expense or
modification. It is further an object of the present invention
to provide the above advantages in a system that absolutely
Insures data consistency. A further object of the present
invention 1s to provide a very efficient partially blocking
caching system which can be advantageously utilized by a
microprocessor having a relatively large number of registers
with very little loss of performance.

Another object of the present invention is to provide
processing efficiency and data consistency by allowing some
subsequent instructions of a first type to be executed during
the time while a precedent instruction remains outstanding
but yet stalling other subsequent instructions of a second
type during the same period. It is appreciated that other
objects of the present invention not specifically enumerated
herein will become apparent in discussions to foliow.

SUMMARY OF THE INVENTION

The present invention is drawn to a system, apparatus and
method for a partially blocking data cache. As such the
present invention includes a partially blocking cache appa-
ratus for use with a microprocessor, said microprocessor
processing a plurality of instructions each having associated
data, the apparatus comprising: cache memory array for high

10

15

20

25

30

35

40

45

30

55

60

65

4

speed memory accessing with the microprocessor; first
processing means for executing preceding cache miss load
instructions each having an associated data address that is
not accessible by the cache memory array; and stalling
means for temporarily preventing the microprocessor from
executing a subsequent store instruction while one or more
of the preceding cache miss load instructions are pending
before the first processing means, the stalling means also for
allowing the microprocessor to execute a subsequent load
instruction while less than a predetermined number of the
preceding cache miss load instructions are pending before
the first processing means.

The present invention further includes a partially blocking
cache apparatus as described above with storage means for
indicating the number of the preceding cache miss load
instructions that are pending before the first processing
means, the storage means communicatively coupled to the
stalling means and also communicatively coupled to the first
processing means; and miss indicating means for generating
a miss indication associated with each cache miss load
instruction, the miss indicating means coupled to the storage
means and wherein the first processing means comprises
completion means for indicating to the storage means that a
cache miss load instruction is completely processed by the
first processing means and 1s therefore no longer pending
before the first processing means.

The present invention further includes a partially blocking
cache apparatus as described above wherein the storage
means 1s a logical counter having an increment input and a
decrement input and wherein the miss indicating means
increments the logical counter upon each miss indication,
the miss indicating means coupled to the increment input of
the logical counter; and wherein the completion means
decrements the logical counter upon each cache miss load
instruction that 1s completely processed by the first process-
ing means, the completion means coupled to the decrement
input of the logical counter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of a prior art system employing a
prior art data cache system. ‘

FIG. 2 illustrates a program instruction sequence and an
associated timing diagram to illustrate the instruction
sequences of the present invention, including a stalling
period.

FIG. 3A and FIG. 3B illustrates block diagrams of two

-~ overall system embodiments of the present invention data

cache unit.

FIG. 4 1s a general block diagram of the present invention
illustrating the data cache unit, the bus control logic (both
with the microprocessor) and the external memory.

FIG. 5 is a detailed block diagram of the data cache unit
and other components of the present invention.

FIG. 6 is a flow diagram of the major processing functions
of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention may operate within the environ-
ment of a conventional data cache unit of a microprocessor
Or a microprocessor system. It is appreciated that certain
details of such a cache unit that are well known in the art of
microprocessor technology and architecture are not
described in detail as to not unnecessarily obscure the

3,455,924

S

inventive features of the present invention. In the following
detailed description of the present invention numerous spe-
cific details are set forth in order to provide a thorough
understanding of the present invention. However, it will be
obvious to one skilled in the art that the present invention
may be practiced without these specific details. In other
instances well known methods have not been described in
detail as not to unnecessarily obscure the present invention.

The present invention includes an apparatus and method
for a partially blocking data cache in a computer system. In
the present invention, the instruction execution by the
microprocessor is suspended for any store instruction which
may follow a cache missed load instruction but allows
execution of some subsequent load instructions following
the cache missed load instruction. This suspension or “‘stall-

10

15

ing” of the store instruction is performed until the data for -

each missed load instruction has been received from the
external memory unit and no further missed load instruc-
tions are -pending. The store instruction may then be
executed. The purpose of stalling the store instruction when
there are unfinished miss load instructions is to provide

consistency within the memory structure and cache unit of
computer system. For instance, if an unfinished load instruc-
-tion is on the instruction queue, then the desired contents of
the address for the load instruction have not yet been read
from external memory. If a subsequent store instruction 1s
allowed to execute before the missed load instruction com-
pletes then the store instruction may overwrite the desired
~data in the external memory (with the data associated with
the store instruction at that same address location) before the
data has a chance to be read from the external memory for
the load instruction. Furthermore, the present invention
cannot allow a store instruction to write data into the cache
memory while outstanding loads are pending because a
preceding yet incomplete and outstanding load instruction
may overwrite the store data in the cache upon filling the
cache with data from the external memory. Obviously, either
result is undesirable as valid and desired data would be
overwritten and lost causing data inconsistency.

The present invention advantageously allows efficient
processing of the microprocessor by allowing multiple
cacheable load instructions to be processed after the occur-
rence of a cache miss load instruction. Prior art systems
block the data cache memory 55 and stall the microproces-
sor for any instructions subsequent to a cache miss associ-
ated with a load instruction until all the pending load
instructions are completely processed and the external

memory is accessed. However, the present invention advan-
tageously does not degrade microprocessor performance by

automatically stalling the instruction processor after a load
instruction having a cache miss is encountered. Rather, the
present invention allows processing of load instructions
which follow a cache miss instruction. |

One theory of operation of the present invention is that the
data associated with a cache miss instruction and the data
associated with a subsequent cache load instruction having
data in the cache cannot be from the same data address. That
is, the associated data of these load instructions must have
separate address because one generated a cache miss while
the other did not. Since the data addresses must be different
there can be no data inconsistency by allowing these load
instructions to operate out of order or in parallel. Therefore,
the present invention allows the subsequent cacheable load
instruction to execute while a preceding yet outstanding
cache miss load instruction is still pending. If the subsequent
Joad instruction was directed to the same data address as the
outstanding load instruction then this subsequent instruction

20

25

30

35

40

45

50

55

60

65

6
would also become outstanding (because it would generate
a cache miss) and it would be sent to the BCL 56 for
processing; and according the present invention this subse-
quent instruction would have to wait for the execution of the
preceding outstanding load cache miss instruction by the
BCL 56. Again, no data inconsistency would occur. But, in
view of the reasons stated above, in no case may a store

- instruction be allowed to operate following a preceding and

outstanding load miss.
Therefore, in an effort to increase processing efficiency

-~ and speed, the present invention allows a predetermined

number of load instructions to execute while a preceding
load miss is outstanding. In an effort to maintain data
consistency, the present invention stalls each cacheable store
instruction while any load misses are outstanding. The
present invention achieves the above result by utilizing a
minimum of hardware modifications to existing cache based
computer systems and therefore offers an efficient apparatus
and method for increasing the accessing speed of a computer
system while insuring data consistency therein.

The present invention operates on a theory that some of
the subsequent instructions executed by the microprocessor
during an outstanding miss instruction do not require the
result of the preceding missed instruction and are indepen-
dent of the data associated with the missed instruction; also,
some subsequent instructions may be allowed to operate

‘without interfering with the result of the outstanding instruc-

tion and vise-versa. Therefore, these subsequent instructions
should be allowed to execute completely (using the cache
memory 55) although the missed instruction i1s not yet
completed (due to the delay in accessing the external
memory). Other instructions, if allowed to operate, either
depend on the data related to the missed instructions or have
the possibility of interfering with the result of the missed
instruction or the miss instruction may interfere with the
result of the subsequent instruction when the miss nstruc-
tion is executed. These subsequent instructions must be
suspended from execution until the accessing is complete for
the missed instruction. If not, the cache data will not be
consistent with the external memory. In these cases the
present invention will suspend the microprocessor to halt the
execution of the subsequent instruction in order to prevent
inconsistencies within the data cache and external memory.
The cache logic unit will generate a block signal to the
microprocessor to block the execution of any subsequent
instructions in situations that may cause data inconsisten-
cies. Since the cache logic unit allows some subsequent

instructions to operate and blocks the operation of others, 1t
is referred to as a partially blocking data cache.

For example, FIG. 2 illustrates a timing diagram of a
typical execution sequence of program code associated with
program 30 used with the present invention. Microprocessor
instructions 1, 2, 3, to n are executed by the microprocessor
in sequence in performance of the program 30. The timing
diagram illustrates the time line and each line indicates the
processing period for each instruction. As can be seen, line
32 indicates that instruction 1 is executed first at t1. Instruc-
tion 1 is a cache miss instruction, that is, the data required
for execution of instruction 1 is not found within the data
cache. The line 32 represents the total period required to
access and process the required address associated with the
data of instruction 1, from t1 to t4. For illustration, instruc-
tion 1 is a load instruction of address x0. Instruction 2 is a
load instruction of address x1 and the result of this instruc-
tion is not determinative on the result of instruction 1 nor
will execution of instruction 2 interfere with execution of
instruction 1 or vice-versa. Also, the data required for

5,455,924

7

instruction 2 is located within the data cache. Therefore,
instruction 2 is allowed to execute by the present invention
at t2 to t3 during the time that instruction 1 is executing or
still pending. As seen by line 33, the processing period for
instruction 2 is very short in part due to the rapid accessing
time of the data cache. The present invention advanta-
geously allows instruction 2 to execute during the delay
caused by instruction 1’s external memory access.

Also at t3 of FIG. 2 the microprocessor attempts to
execute instruction 3 which is a store instruction into address
x0, however data cannot be stored within this address in
external memory because the load instruction, instruction 1,
1$ attempting to read data at this location in external memory
and has not yet completed as of t3. If the store operation
(instruction 3) where allowed to operate out of order (i.e.,
before the completion of instruction 1) it would overwrite
the data of address x0) before the data was read by instruction
1. Also, data cannot be stored into the cache memory
corresponding to this location by the store instruction before
the precedent load instruction has completed. This is the
case because the store instruction may store data within a
cache location that becomes overwritten upon the comple-
tion of the precedent load instruction. In either case, the store
instruction must be delayed by the present invention to
maintain data consistency between external memory 60 and
the cache memory 55. Therefore, as line 34 indicates, from
t3 to t4 the execution of instruction 3 is suspended by the
present invention until the desired data is accessed from x0
and instruction 1 is completed at t4. During the period
indicated by line 34 the cache logic unit of the present
Invention is asserting a block signal which is received by the
microprocessor unit to suspend execution of the subsequent
instruction 3 while instruction 1 is executing. From t4 to t5
instruction 3 can then execute and the program 30 continues
to instruction n, etc.

By allowing instruction 2 to operate during the opera-
tional period of instruction 1, the present invention has
increased in processing inefficiency over total blocking
cache systems. The present invention has also maintained
data consistency by blocking execution of the store instruc-
tion until the outstanding load miss instruction 1 is complete.
It should be noted that if another load miss instruction
should be encountered before the outstanding load miss
instruction (instruction 1) is complete, the new load miss
instruction will not be blocked per se. It will be sent to the
bus control logic 56 and placed onto a queue to be executed
in turn after execution of instruction 1. As will be more fully
discussed below, the bus control logic 56 has the capability
to re-execute these instructions placed on its queue 57.

Overall System and Environment of the Present
Invention

The overall environment, or system, in which the pre-
ferred embodiment operates is first described. In general,
digital computer systems used by the preferred embodiment
of the present invention as illustrated in block diagram
format in FIG. 3A, comprise a bus 100 for communicating
information between the elements of the system, a central
processor, 101 coupled with the bus for processing infor-
mation and instructions, a random access memory 102
coupled with the bus 100 for storing information and
instructions for the central processor 101, a read only
memory 103 coupled with the bus 100 for storing static
information and instructions for the processor 101, a data
storage device 104 such as a magnetic disk and disk drive
coupled with the bus 100 for storing program information

10

15

20

23

30

35

40

45

50

55

60

63

3

and instructions, a display device 105 coupled to the bus 100
for displaying information to the computer user, an alpha-
numeric input device 106 including alphanumeric and func-
tion keys coupled to the bus 100 for communicating infor-
mation and command selections to the central processor
101, a cursor control device 107 coupled to the bus for
communicating user input information and command selec-
tions to the central processor 101, and a signal generating
device 108 coupled to the bus 100 for communicating
command selections to the processor 101.

It should be noted that some environments of the present
invention may contain all or merely a portion of the above
components. For example, if the present invention was

implemented within a control device for an advanced pho-
tocopier or a laser printer, the input device would be a
keyboard at the copier control or a signal input for the laser
printer. The display would be the common LCD display of
the photocopier to the user or an LED indicator light. Of
course, RAM and ROM devices are present within even
simple systems. The signal generation device would include
the logic required to detect and indicate copier/printer mal-
functions, etc. It is also appreciated that throughout this
discussion, reference may be made to data in a memory or
the processing of data; it should be understood that the term
“data” means both data that may be processed by an instruc-
tion as well as the instruction itself, i.e., the bytes that
comprise a particular opcode. Therefore, data should not be
construed as merely representing program data but also as
representing program instructions.

Referring still to FIG. 3A, the display device 105 utilized
with the computer system and the present invention may be
a liquid crystal device, cathode ray tube, a simple LED
indicator light, or other display device suitable for creating
graphic images and alphanumeric characters recognizable to
the user. The cursor control device 107 allows the computer
user to dynamically signal the two dimensional movement
of a visible symbol (pointer) on a display screen of the
display device 105. Many implementations of the cursor
control device are known in the art including a trackball,
mouse, joystick or special keys on the alphanumeric input
device 105 capable of signaling movement of a given
direction or manner of displacement. It is to be appreciated
that the cursor means 107 also may be directed and/or
activated via input from the keyboard using special keys and
key sequence commands. Alternatively, the cursor may be
directed and/or activated via input from a number of spe-
cially adapted cursor directing devices, including those
uniquely developed for the disabled. In the discussions
regarding cursor movement and/or activation within the
preferred embodiment, it is to be assumed that the input
cursor directing device or push button may consist any of
those described above and specifically is not limited to the
mouse cursor device. Some systemns encompassing the
present invention may not include a cursor control device.

Referring to FIG. 3A, the data cache memory 55 and
assoclated data cache unit 52 and bus control unit of one
embodiment of the present invention are logically associated
with block 109 and interface to the bus 100 by way of the
bus control logic. The data cache unit 52 interfaces with the
processor 101 via bus 100. The bus control logic 56 inter-
faces with external memory units 102 and 103 via bus 100.
It is appreciated that although FIG. 3A illustrates the data
cache memory and associated data cache unit and bus
control unit as separate from the microprocessor, alternative
embodiments of the present invention integrate these logical
units together with the microprocessor 101. To this extent,

. the diagram illustrated in FIG. 3A should be construed as a

5,455,924

9
functional block diagram and not necessarily a structural
block diagram representing the present invention.

FIG. 3B illustrates the preferred embodiment of the
present invention which locates the data cache unit 52 and
the bus control logic 56 within microprocessor 101. The bus
control logic 56 1s interfaced with the bus 100 and with the
data cache unit 52. External memory 60 is shown interfaced
with the bus 100. External memory may be composed of

RAM 102 or ROM 103 or both. This memory 60 is “exter-°

nal” in so far as it is external to the microprocessor unit 101.
It is appreciated that also located within microprocessor 101
1§ an instruction processor that executes the instructions of
the program code; this instruction processor is interfaced
with the DCU 52. The other components of FIG. 3B are
analogous to those described with respect to FIG. 3A and
reference 1s called those discussions above.

Overall Design of the _Preferréd Embodiment of the
Present Invention

FIG. 4 illustrates a block diagram of the components of
the preferred embodiment of the present invention. Aside
from the external memory block 60, the elements of the
preferred embodiment of the present invention are located
within the microprocessor block 101 as illustrated by the
dashed line. Block 52 is the Data Cache Unit or DCU which
controls the accessing and processing of the data cache

memory 5§ which is included within the DCU. The DCU 52

interfaces with the instruction processor 50 unit of the
microprocessor via interface lines 68 and 66. The instruction
processor 50 is the logical portion of the microprocessor that
controls the execution of instructions within the micropro-
cessor 101. When a stall or block signal is generated by the
DCU 52, the instruction processor stalls or halts execution
of subsequent instructions while the cache blocking signal
66 is asserted. Within the interface line 66 1s the blocking
signal which will suspend execution of subsequent instruc-
tions upon the block signal asserted. Interface 68 carries an
identification of the currently executed instructions which
are fed to the DCU 32 by the microprocessor instruction
processor 50. The DCU 32 requires this information since it
-will respond differently (i.e., stall or not stall) based on
different instruction types.

The DCU 52 is coupled to internal bus 54 (which is not
the bus 100) and to the Bus Control Logic (BCL or also
called Bus Control Unit) 56 via interface lines 80 and 82.
Control signals and other signals, which will be discussed

more fully below, are transmitted between the BCL 56 and
the DCU 52. When the instruction decoder 200 (of FIG. 5)
is located off of the DCU 52 then the load and store signals

10

15

20

25

30

35

40

45

50

300 and 310 are communicated over internal bus 54. The

external memory 60 (which may be composed of RAM 102
or ROM 103 or both) is coupled to the BCL 356 via external
bus 100 but not directly coupled to the DCU 52. The DCU
52 will determine when a block signal should be generated
to suspend execution of subsequent instructions by the
microprocessor’s instruction processor 0. The DCU 52 will
also determine whether or not a cache miss occurred asso-
ciated with a load instruction. The BCL 56, on the other
hand, re-executes the cache miss load instructions. The BCL
56 will also indicate when an outstanding instruction (cache
miss) has been completely executed. An instruction queue
57 is located within the BCL 56 for holding multiple
pending cache miss instructions.

"~ The DCU 52 is a one kilo byte, direct mapped, write
through cache unit. When the DCU 52 does not have the data

55

60

65

10

within cache memory 55 that a load instruction 1s asking for,
a cache miss occurs and the BCL 56 will be notified to fetch
the data from external memory 60. As the data returns from
external memory 60, the BCL 56 instructs the DCU 52 to
access the obtained data and update or replace 1its data cache
entry within the data cache memory 53. The DCU replace-
ment policy supports up to 16 bytes (quad word or 128 bits)
replacement in a multiple of 4 bytes quantity for load

‘instructions. However, for store instructions, it can support

up to 16 bytes replacement down to a multiple of 1 byte
quantity. In other words, the maximum replacement line size
of the DCU is 16 bytes in quantity. The DCU 352 is
considered a single cycle memory co-processor which
returns data for normal load and store instructions in one
clock if the data is already avatlable in the cache. The DCU
52 is able to handle bit endian as well as little endian
memory accesses.

It is appreciated that the BCL 56 assumes that every load
instruction issued by the instruction decoder 200 is going to
be processed by the DCU 52. However, the BCL 56 does
trap all the necessary information associated with every load
instruction so that the BCL 56 can itself (not the instruction
decoder 200) reissue the load instruction that misses the
DCU (cache) and execute the load instruction. Therefore,
each time a load instruction misses the cache there will one
clock cycle loss of time. It 1s further appreciated that the
DCU 52 generates a blocking signal over line 66 in order to
stall or halt processing of the microprocessor unit 30 instruc-
tion processor when a store instruction follows a pending
load instruction. Most microprocessors are equipped with a
halt signal pin or a stall opcode which allows the micropro-
cessor’s clock to cycle without any instruction processing
performed by the microprocessor instruction processor 50.
That is, for a given time period the instruction processing
capability of the microprocessor 1s temporarily “frozen”
allowing the BCL 56 just enough time to access the external
memory to process the pending load instruction or instruc-
tions, as the case may be. Such methods and apparatus for
stalling a microprocessor are well known in the art of
microprocessor structure and technology and therefore are
not described herein as to not obscure the present invention.
It is noted that the present invention may advantageously
utilize any of the above well known microprocessor stall or
halt methods.

FIG. 5 illustrates the components of the present invention
in more detail. The elements of the Data Cache Unit 52 are
illustrated in detail and an Instruction Decoder 200 is
illustrated coupled to the DCU 52. The Bus Control Logic
(BCL) 56 is also illustrated coupled to the DCU 52 and the
external memory 60. The BCL 56 is also a cache miss
processing unit. The instruction decoder 200 is located
within the microprocessor 101 unit and is responsible for
decoding the instructions executed by the microprocessor
and determines, among other results, that the current instruc-
tion is either a load instruction (via line 300) or a store
instruction (via line 310). Although illustrated as separate
from the Data Cache Unit 52, the instruction decoder could
be implemented within the DCU 52. Further, the DCU 52
could be implemented with a separate and special purpose
(dedicated) instruction decoder for the purpose of indicating
a load or a store instruction. Such implementations would
merely be a matter of design selection and are within the
spirit and scope of the present invention.

The instruction decoder 200 1s coupled to the logic
circuits of the data cache unit 52 via line 300 which indicates
that the present instruction from the microprocessor instruc-
tion processor 50 is a load instruction. Line 310 indicates

5,455,924

11

that the present instruction from the microprocessor instruc-
tion processor 50 is a store instruction. The decode process
of the present invention may be accomplished by instruction
decoder 200 by any number of the well known instruction
~ decode methods available and utilized by microprocessor
technology. Typically each instruction has an associated
unique opcode to identify the instruction and instruction
type. The 1instruction decoder will analyze the opcode to
indicate either a load or a store instruction by asserting lines

300 and 310 respectively. When the current instruction is
decoded, the effective address of the data associated with the
instruction is input over line 212 to a comparator circuit 213.
The comparator circuit of the data cache unit 52 is specially
designed to cycle through each tag 209 of the data cache
memory unit 35 in order to locate an address match between
the effective address of the data 212 and one tag 209 of the
cache memory 55. The comparator circuit 213 compares the
upper bits of the effective address of the data to the tag data
in an effort to locate a match. The effective address 212 is fed
to one input of the comparator 213 while the other input
sequentially scans the tag entries 209 for a match. If a match
1s not found, the present invention generates a miss signal
251 over the output of the compare logic 213. This indicates
that the data address location associated with the present
instruction is not within the cache memory unit 55 and must
be accessed via the external memory 60 by the BCL. The
BCL. 56 must therefore re-execute the load instruction using
external memory 60. This miss signal is fed into one of the
inputs of the logical AND gate 235. The load signal 300 is
also fed into the 235 gate as well as a cacheable signal 252
generated from the bus control unit 56.

Reterring to FIG. S, while the above occurs, the bus
control unit 56 analyzes the effective address of the current
data address and determines if this address is cacheable or
not, that 1s, the BCL 56 determines if the cache memory 55
1s able to have a corresponding location for the memory
block associated with the effective address 212. If the
effective address 1s not cacheable then the present invention
does not block the cache with regard this effective address.
Cacheability does not mean that the cache memory 55
actually contains the effective address location within the
memory 35; rather, cacheability only refers the fact that the
cache memory 55 is able to provide accessing for the
effective address of the data at some point in time. For
instance, some portions of external memory will never have
a corresponding cache memory location and these areas are
not cacheable and as a result there is no need for the present
invention to block the cache 55 with regard to these loca-
tions. In other words, there can be no cache data inconsis-
tency associated with these memory addresses since no
cache functions are performed. When a cacheable effective
address 212 1s present the cacheability signal 252 will be
asserted. Therefore, the AND gate 235 of the present inven-
tion will become asserted and generate a signal at its output
when all three conditions are met: 1) there is a cache miss
assoclated with the present instruction; and 2) the present
instruction 1s a load instruction; and finally 3) the load

instruction has an associated effective address that is cache-
able.

Upon the above conditions (cacheable load with cache
miss), the AND gate 235 of the present invention will pulse
to increment the load pending counter 225. The output of the
AND gate 235 1s coupled to the increment input of the load
pending counter 225. The load pending counter 225 keeps
track of the number of the load miss instructions that are
pending before the bus control logic 56 for re-execution but
have not yet completely executed. In other words, the load

3

10

15

20

25

30

35

40

45

S0

55

60

63

12

pending counter records the number of load instructions on
the queue 87. The load pending counter 225 is a two bit
counter and counts 0, 1, 2, and 3; note that the load pending
counter 225 cannot overflow because the maximum allowed
outstanding loads on the BCL queue 57 is three. A special
output 261 of the load pending counter 225 is fed to one of
the mputs of AND gate 230. The output 261 indicates when
the count of the counter 1s of a nonzero value. It should be
appreciated that upon the occurrence of a miss, the BCL 56
receives the load instruction and will re-execute the instruc-
tion using external memory 60. If the BCL 56 already has
outstanding loads to re-execute then the current load cache
muss instruction will be delayed (i.e., placed on an empty

slot of the queue 57).

Assume that a cacheable store instruction is indicated by
instruction decoder 200 via line 310 being asserted; assume
also that this condition exists subsequent to a load cache
miss that is outstanding. The output 265 of AND gate 230
will generate the blocking signal which becomes asserted
upon any subsequent cacheable store instructions which
occur while an outstanding. cache miss load instruction is on
the BCL queue 37 as indicated by the load pending counter
225. The counter output 261 of the present invention is
asserted whenever the load pending counter 225 currently
holds a count that is not equal to zero. This can be imple-
mented through logic by feeding the output bits of the two
bit counter into an OR gate and taking the OR gate output
as signal 261. Thus, whenever one of the bits of the counter
1s nonzero the OR gate will generate an asserted signal. The
line 310 which indicates a store instruction is also fed into
one of the inputs of the AND gate 230. The last input of the
AND gate 230 receives the cacheable signal 252 which
indicates that the associated memory address with the cur-
rent instruction may reside in cache memory 55. If line 252
were asserted the store instruction would be cacheable.

Referring to FIG. 5, AND gate 230 of the present inven-
tion will generate a blocking signal at line 265 whenever a
cacheable store instruction is present and the load pending
counter 225 is nonzero indicating that there are outstanding
load 1nstructions (or a single outstanding load instruction) on
the BCL queue having memory access operations to the
external memory 60 that have not yet returned. The 265
signal 1s fed into the interface 66 (of FIG. 4) and is received
by the instruction processor S0 of the microprocessor 101.
The 2635 signal causes the microprocessor to stall or halt
current execution of the cacheable store instruction until
each outstanding load miss instruction on the BCL queue has
been removed as indicated by the load pending counter 225.
If a cache miss load instruction is encountered and the queue
57 1s not full, then the load instruction is placed onto the
queue S57. Note that queue 57 is initially set to zero on
system start-up.

The BCL 56 processes the outstanding load instructions
stored on the queue 37 in a first come first serve basis (i.e.,
first in first out). Each cache miss load instruction arriving
at the BCL is placed by the present invention on an available
location within the queue 57 and the BCL then re-executes
the load instruction and processes the logic required to
access the external memory 60 via the external bus 100. At
the time the BCL 56 becomes aware of the cache miss load
instruction and places the instruction and associated memory
address on the queue 57, the load pending counter 225 is
updated to indicate an outstanding load. While the first
outstanding load is being processed other load instructions
may be placed on the queue S7. When the required data
returns from the external memory 60 via bus 100, the BCL
56 indicates to the data cache umnit 52 that the data is

5,455,924

13

available for immediate fill into the cache memory 55 at a
location determined by the effective address of the desired
data and tagged as such by tag 209. The BCL 56 indicates
the cache fill condition by asserting signal 253 indicating
that a load muiss instruction has completed and also that the
data associated with that instruction has been fetched from
external memory 60 and is currently avatlable.

When fill signal 253 is indicated, the present invention
updates the data 205 of cache memory 55 by the data
returning from the external memory 60 at the proper tag
location. Also, the fill signal 253 is fed into the decrement
input of load pending counter 225 to decrement the count of
the cache miss load instructions pending. This is so because
when the fill condition 1s entered the currently processed
cache miss load instruction (from the BCL) is finished
processing and is therefore no longer on the queue 57 and
therefore one less outstanding load is present. Therefore, the
present invention increments the two bit load pending
counter 225 each time a cacheable load miss occurs and
decrements the load pending counter 22§ each time a fill
condition 1s indicated by the BCL 356 which represents the

completion of an outstanding load instruction. It is appre-
ciated that other interface signals 271, not necessary for the
understanding of the present invention, are present between
the BCL 56 and the DCU 52. These signals are not explained
in detail as to no unnecessarily obscure the advantageous
aspects of the present invention.

It 1s appreciated that a blocking signal is generated by the
present invention also when a load instruction 1s issued but
there are already the maximum number (3) of outstanding
load miss instructions on the BCL queue 37. It is also
appreciated that a number of embodiments may be
employed to accomplish this task. One embodiment of the
present invention 18 to have the BCL 32 indicate a signal
when the queue 57 is full and have the data cache unit 52
respond to this signal whenever another cache miss load
instruction 1s encountered to block the instruction processor
50. An other embodiment, the preferred embodiment of the
present invention, as illustrated by FIG. § is implemented
with logic on the DCU 52 and utilizes the load pending
counter 225. In more detail, AND gate 220 receives input
from signal 252 to indicate that the current instruction 1is
cacheable. The AND gate 220 also receives an input from
signal 300 to indicate that a load instruction has been
encountered by the instruction decoder 2(0. Further, the last
input to the AND gate 220 is signal 263 originating from the
load pending counter 223. -

Signal 263 indicates when the load pending counter 228
currently holds a count of 3 indicating that the queue 57 is
currently full. This signal may be implemented by checking
both bits of the load pending counter 225 and supplying
them to an AND gate which will assert and output when both
bits are logical “1” which indicates a three in binary. Gate
220 will generate a block signal on line 221 whenever the
counter holds a value of three and a cacheable load instruc-
~ tion is encountered. Signal 221, like signal 268 is fed to the

instruction processor 50 via line 66 and instructs the micro-

processor to stall or halt execution of the current load
instruction. The microprocessor S0 must halt on this condi-
tion because no further load miss instructions can be placed
on the BCL queue 57 until a slot is opened. When the first
outstanding load instruction on the BCL queue 37 1s com-
plete, a cache fill instruction will be generated over line 253
~ from the BCL 56 and the cache memory 585 of the present
invention will be updated with the data from the external
memory 60. The load pending counter 225 will then be
decremented by signal 253 and the blocking signal at 221

10

15

20

25

30

35

40

435

50

55

60

65

14

will no longer be asserted by AND gate 220. At this time, the
stalled load miss instruction will be executed by the present
invention. If the load instruction generates a cache miss then
as described above, the present invention will placed it onto
the queue 57 of the BCL 56 and the load pending counter
225 will be incremented.

It is appreciated that the blocking signals generated at line
221 and line 265 are temporary. Blocking signal at line 265
is deasserted upon the count of the load pending counter 225

reaching zero. Also the blocking signal at line 221 1is
deasserted upon the counter reaching a value of 0, 1, or 2.

As can be seen from the above, a partiaily blocking data
cache system has been described which is implemented with
a two bit load pending counter, a halt signal and relatively
modest external implementation logic. The advantage of this
type of circuitry is that easy modifications of existing data
cache units is possible using the advanced technology
offered by the present invention. The present invention
insures data integrity and consistency by blocking store
instructions, with signal 265, that follow outstanding cache
miss load instructions. Further, the present invention is
efficient in that it allows multiple cacheable load instructions
to execute within the cache memory 33 following a load
instruction having a cache miss.

FIG. § aiso illustrates the Bus Control Logic 56 (BCL)
which is also called the Bus Control Unit. As- shown, the
BCL 56 interfaces with the DCU 52 via miss signal 251, the
cacheable signal 252, the cache fill signal 253 and various
other interface signals 271. Within the BCL 56 is an instruc-
tion queue S7 which stores the outstanding cache miss
instructions (loads) that are still pending execution and
access to the external memory 60. The BCL 56 re-executes
each instruction within the queue 57 1n so far as these
instructions were first attempted to be executed in the DCU
52 but a cache miss was generated by comparator 213. The
BCL 56 executes each instruction in the queue 57 in a first
in first out sequence by accessing the external memory 60 to
retrieve the data associated with the effective address of
these instructions. Once execution is complete by the BCL
56, the fill instruction 1s asserted allowing the data to be put
into the cache memory 55. The counter 235 is then decre-
mented and the queue 57 is updated (i.e., each entry is
moved up in line and a vacant entry is available at the end
of the queue). As shown, the queue 57 18 only three instruc-
tions deep and can hold only three pending cache miss
instructions. Not all locations of the external memory are
cacheable. Those locations not cacheable are stored in a
directory table within the BCL 56. When the eifective
address of an instruction 212 corresponds to a noncacheable
location within the external memory, as indicated by the

‘directory, the cacheable signal 252 1s deasserted. Likewise,

when the effective address of an instruction 212 corresponds
to a cacheable location within the external memory, as
indicated by the directory, the cacheable signal 252 1s
asserted by the BCL 56. -

Operation of the Preferred Embodiment of the
Present Invention

The major functions of the preferred embodiment of the
present invention operate according the flow diagram illus-
trated in the flow diagram of FIG. 6. The present invention
acts to stall the microprocessor’s instruction processor
whenever: (1) a store instruction 1s encountered and there
are still outstanding cacheable load miss instructions on the
BCL gueue 57 which have not yet been fully executed by the
BCL 56; or (2) aload instruction is encountered but there are

5,455,924

15

already three outstanding cacheable load miss instructions
on the BCL queue 57 which have not yet been fully executed
by the BCL 56. An outstanding load instruction on the queue
will not be fully executed until the BCL 56 receives the
required data from the external memory 60 and issues a s
cache fill signal 253. To allow a store instruction to execute
before the data associated with an outstanding load is
retrieved from external memory may cause desired data to
become overwritten before the load instruction is processed
or the load may overwrite desired store data in the cache
memory 33. The status and contents of the BCL queue 57 are
determined by a load pending counter 225 within the DCU
52 that indicates the number of outstanding cacheable load

miss instructions that are located on the queue 57.

As shown in FIG. 6, at block 600 the functions of the
present invention begin. The instruction processor 50 pre-
sents the next microprocessor instruction at block 610. The
present invention data cache unit only processes those
instructions having associated cacheable memory addresses
because those instructions with noncacheable data addresses 0
do not create data inconsistencies between external memory
60 and cache memory 55. Therefore, throughout this dis-
cussion it 1s assumed that processed instructions involve
cacheable memory addresses. The instruction decoder 200
decodes the current microprocessor instruction from the
instruction processor 30. The instruction decoded result is
tested at blocks 615 and block 620 to determine the instruc-
tion type. Block 615 of the present invention tests whether
the instruction was a load instruction by examining the
opcode and indicates the result of the test by employing
signal 300 (of FIG. 5). If the instruction is a load instruction
(and assumed cacheable) then the present invention checks
to see if the address of the requested data is found within the
cache memory 83 at Block 630. The selected bits of the
effective address 212 of the data associated with the cache- 15
able load instruction are compared to each of the tags 209 of
the cache memory 85 in order to determine if the data resides
within the data 205 of the cache memory 55. The compari-
son i1s accomplished via comparator 213. If the desired
address 212 1s found (a cache hit) within the cache memory
55 then the data 205 1s read from the cache memory 55 and
the load instruction may execute completely from the cache
memory (and DCU 32) without access to the external
memory and without re-execution by the BCL 56; the cache
hit load instruction is processed through the cache at block
695. In this case, no miss was found and the processing
returns to block 610 to receive another instruction from the
decoder after processing of block 695.

It 1s appreciated that block 695 increases processor speed
and efficiency by allowing cacheable load instructions to 5q
operate via the cache memory 55 while preceding outstand-
ing load instructions which have caused cache misses are
still within the BCL 56. During the delay period while data
18 being accessed from external-memory for these outstand-
ing load instructions the present invention allows the micro- ss
processor 101 to execute certain load instructions through
the cache memory 35 via block 695. For instance, even if
two preceding cache miss instructions were on queue 57,
block 695 1s still allowed to process cache hit load instruc-

tions while the above cache miss instructions remain pend- ¢q
ing in the BCL 56,

If the comparison unit 213 does not indicate that the
desired memory address 212 is present within the cache
memory 35, then a miss condition occurs which is signaled
by the comparison unit 213 over line 251. In this case the 65
address must be retrieved from the external memory 60 and
the load instruction must be re-executed by the BCL 56. The

10

15

25

30

40

45

16

present invention proceeds to block 635 and the load pend-
ing counter 225 is checked or the BCL queue 57 is checked
to see if there are three outstanding cache miss load instruc-
tions already. If there are less than three outstanding load
istructions on the queue then the load pending counter 225
1s incremented at block 640 by asserting the output of AND
gate 235 and the current load instruction (which generated

the most recent cache miss) is placed at the end of the BCL
queue 57 at block 650 so that the BCL 56 may sequentially

process this load instruction (in time) and obtain the required
data from the external memory 60. After the load instruction
18 placed on the queue 57 the present invention returns to
block 610 to process the next instruction from the micro-
processor instruction processor 50 which is decoded by
instruction decoder 200. It should be noted that if no
outstanding load instructions are within the queue 57 upon
the current cache miss load instruction the BCL 56 may
re-execute the load instruction at once. While the BCL 56 is
executing this load instruction, subsequent cache miss load
instructions will be delayed (i.e., placed on the queue) until

the presently processed instruction is completed by the BCL
36.

Referring still to FIG. 6, if there are already three out-
standing load instructions waiting on the BCL queue then no
more load instructions may be placed on the BCL queue.
Block 635 tests if there are already three pending load
instructions, and if so, the present invention goes to block
655. At block 655 the present invention stalls the current
load instruction until the first load instruction on the BCL
queue 18 completely executed and the external memory is
accessed; during this period the cache is blocked and signal
221 is asserted. When the first outstanding instruction is
completely executed, the BCL asserts a cache fill signal 253
at block 660 to indicate to the data cache unit 52 that the data
associated with the first outstanding load instruction may be
placed or replaced within the data cache memory 55. The
cache memory 335 is then updated accordingly and the first
outstanding load instruction is executed. At block 660 the
first outstanding load instruction taken off of the BCL queue
by the present invention and a space on the queue is thereby
made available. The load pending counter 225 is decre-
mented at block 665 by fill signal 253 to indicate that an
outstanding load has been taken off of the BCL queue. The
processing then continues to block 640 where the current
load struction 1s processed. Since it has been determined
that the current load instruction is a cache miss, the load
pending counter 225 is incremented and the current load
instruction 1s the placed into the BCL queue 57 into the last
or third position by block 650. Processing then returns to
process the next instruction at block 610.

At block 615 if the instruction decoded by the instruction
decoder 200 is not a load instruction the processing contin-
ues to block 620 where the present invention checks if a
signal on line 310 indicates that the current instruction is a
store instruction. If the instruction is not a store instruction
and not a load instruction, then the present invention is not
applicable to the situation and the present invention returns
at block 625 to end current processing and the flow enters
again at block 610 to process another microprocessor
instruction. If the current instruction is a store instruction
then processing continues from block 620 to block 670. At
block 670 the present invention checks to see if the load
pending counter 225 1s nonzero. If the counter 225 is zero
then no cacheable loads are outstanding on the BCL queue
57 and the cacheable store instruction may be executed by
block 675; in this case the cache is not blocked. Next, the
processing continues to block 610 for the next instruction.

5,455,924

17

Referring to FIG. 6, if the counter is nonzero at block 670
then at least one outstanding load instruction with a cache
miss is pending. According to the present invention, the
store instruction must not be allowed to execute with the
cache while outstanding load instructions are pending in
order to maintain data consistency. The present invention
cannot allow data to be written into main memory by a store
instruction because such data may overwrite desired data of
a preceding and incomplete load instruction. Furthermore,
the present invention cannot allow a store instruction to
write data into the cache because a preceding yet incomplete
and outstanding load instruction may overwrite the store

data upon execution of the load instruction. Therefore, at

block 680 the DCU issues a command, via signal 221, to
block execution of the current store instruction. At this point
the data cache memory S5 is blocked by the present inven-
tion and the present invention stalls the microprocessor
instruction processor 50, The signal is asserted at line 221
and driven to the microprocessor instruction processor S0
until the load pending counter 225 is decremented to zero.
Upon the completion of each outstanding load instruction at
block 685 a fill code is generated over line 253 so that the

10

15

20

data retrieved from the external memory 60 associated with

the outstanding load can be placed or replaced into the data
cache memory 38.

For each outstanding load that is fully executed by the
BCL 56 and upon the BCL retrieving its associated data
from the external memory 60, the load pending counter 225
is decremented and the instruction 1s removed from the BCL
queue 57; this occurs at block 690 when the fill signal is
asserted. The present invention then cycles to block 670.
Eventually, all of the outstanding loads will have completed
and the load pending counter 225 will be decremented to
zero. At this time, block 670 will indicate that the load
pending counter 225 is zero'and the current store instruction
will no longer be stalled by the present invention and the
blocking pulse at 221 will not be asserted. The micropro-
cessor is therefore no longer stalled and free to execute the
store instruction. Then the store instruction may be pro-
cessed and data may be stored in the cache or in the external
memory 60 at block 675. After the store instruction is
processed the present invention returns to block 610 for the
next instruction from the microprocessor.

It can be seen from the above that some instructions are
suspended from execution by a blocking signal generated at
lines 265 and 221 and other instructions are merely delayed
from execution by being placed onto the BCL queue 37.
Load instructions whose data is found in the cache may
generally execute during the period of an outstanding load
instruction that generated a cache miss. Load instructions
whose data is not found in the cache are placed onto the BCL
queue 57 for eventual sequential execution by the BCL 56.
Store instructions following an outstanding load instruction
in the BCL that generated a cache miss will be suspended
from execution until all outstanding load instructions have
been processed. Lastly, if the BCL queue 57 1s filled then a
subsequent load instruction will be blocked (suspended). As
can be seen, the-present invention data cache unit advanta-
geously processes successive loads even though a previous
load miss was encountered. |

It is appreciated that the present invention operates advan-
tageously within the 80960CF microprocessor avatlable
from Intel Corporation of Santa Clara, Calif. and will
operate equally advantageously with any microprocessor
and data cache unit having similar characteristics. The
present invention operates advantageously within the above
microprocessor because of the large number of registers

235

30

35

40

45

50

35

60

65

18

contained within this microprocessor. As a result of the large
number of registers, relatively few memory stores are
required as a percentage of the overall instructions executed
because registers can be used for temporary storage. Since
multiple load misses can be accepted without a blocking

signal issuance, the most frequent occurrence of a micro-
processor stall 1s when a store instruction follows an out-
standing load instruction that missed the cache. Therefore,
since the memory store instructions are executed relatively
infrequently, the overall microprocessor performance 1s not
degraded as a result of the stall signal. Furthermore, pro-
cessing efficiency is improved using the present invention by
allowing execution of multiple load instructions atter the
occurrence of a load instruction cache miss.

The preferred embodiment of the present invention, a
partially blocking data cache memory and data cache unit
implemented with relatively modest hardware modifications
over existing cache designs that blocks subsequent store
instructions if there are outstanding load misses while allow-
ing successive loads through the cache even though a
pervious load miss was encountered is thus described. While
the present invention has been described in one particular
embodiment, it should be appreciated that the present inven-
tion should not be construed as limited by such embodiment,
but rather construed according to the below claims.

What is claimed is:

1. A cache memory apparatus for use with a micropro-
cessor that processes a plurality of instructions having
associated data, said apparatus comprising:

cache memory means for providing high speed memory
cache operations with said microprocessor;

miss indicating means for generating a miss indication
associated with each instruction of said plurality of
instructions having an associated data address which is
not accessible by said cache memory means, said each
instruction called a cache miss instruction; and

selecting means for temporarily blocking said micropro-

cessor from processing a first instruction type of said

plurality of instructions that follows said miss indica-

tion from said miss indicating means, said selecting

means also for allowing processing of a second instruc-

tion type of said plurality of instructions that follows

said miss indication from said miss indicating means,

said selecting means communicatively coupled to said
miss indicating means.

2. A cache memory apparatus as described in claim 1

wherein said first instruction type is a store instruction type.

3. A cache memory apparatus as described in claim 2

wherein said second instruction type i1s a load instruction

type.
4. A cache memory apparatus as described in claim 1

- further comprising:

extemnal memory means for storage and retrieval of infor-
- mation compatible with said cache memory means; and

cache miss processing means for processing each cache
miss instruction by accessing said external memory
means.

5. A cache memory apparatus as described in claim 4
further comprising means for signaling whether said cache
miss processing means is required to process any cache miss
instruction.

6. A cache memory apparatus as described in claim 5
wherein said means for signaling comprises counting means
for incrementing on each of said miss indication generated
by said miss indication means and said counting means for
decrementing upon execution completion of each of said

5,455,924

19

cache miss instruction processed by said cache miss pro-
cessing means. |

7. A cache memory apparatus as described in claim 4
wherein said selecting means temporarily blocks said micro-
processor from executing said first instruction type while
said cache miss processing means is required to process any
cache miss instruction

8. A cache memory apparatus as described in claim 1
further comprising:

external memory means for storage and retrieval of infor-

mation compatible with said cache memory means; and

cache miss processing means for processing said each
cache miss instruction by accessing said external
memory means, said cache miss processing means
further comprising a queue for storing pending cache
miss instructions.

9. A cache memory apparatus as described in claim §
wherein said first instruction type is a load instruction and
wherein said selecting means blocks said microprocessor
from processing said load instruction if said queue is full and
wherein said second instruction type is also a load instruc-
tion and said selecting means does not block said micro-
processor from processing said load instruction if said queue
is not full.

10. A cache memory apparatus as described in claim 6
wherein said cache memory means comprises a data cache
memory array of approximately 1k bytes and wherein said
counting means is a two bit counter.

11. A cache apparatus for use with a microprocessor, said
microprocessor processing a plurality of instructions each
having associated data, said apparatus comprising:

cache memory means for high speed data storage and
retrieval for said microprocessor;

first processing means for executing cache miss instruc-
tions each having an associated data address that is not
accessible by said cache memory means; and

stalling means for temporarily preventing said micropro-
cessor from executing a first instruction type while one
or more of said cache miss instructions are pending
betore said first processing means, said stalling means
also for allowing said microprocessor to execute a
second instruction type while one or more of said cache
miss instructions are pending before said first process-
ing means.

12. A cache apparatus as described in claim 11 further
comprising storage means for indicating if any of said cache
miss 1nstructions are pending before said first processing
means, said storage means communicatively coupled to said
stalling means and also communicatively coupled to said
first processing means.

13. A cache apparatus as described in claim 11 wherein
said first instruction type is a store instruction.

14. A cache apparatus as described in claim 11 wherein
said second instruction type is a load instruction.

15. A cache apparatus as described in claim 11 wherein
said first instruction type is a store instruction and wherein
said second instruction type is a load instruction.

16. A cache apparatus as described in claim 13 wherein
said stalling means temporarily prevents said microproces-
sor from executing said store instruction until said storage
means 1ndicates that no cache miss instructions are pending
before said first processing means.

17. A cache apparatus as described in claim 15 wherein
said stalling means temporarily prevents said microproces-
sor from executing said store instruction until said storage
means indicates that no cache miss load instructions are

5

10

15

20

25

30

35

40

45

50

33

60

65

20

pending before said first processing means.

18. A cache apparatus as described in claim 15 wherein
said stalling means temporarily prevents said microproces-
sor from executing said load instruction until said storage
means indicates that less than a maximum number of cache
miss load instructions are pending before said first process-
Ing means.

19. A cache apparatus as described in claim 12 wherein
said first processing means comprises completion means for
indicating to said storage means that a cache miss instruction
is completely processed by said first processing means and

is therefore no longer pending before said first processing
means.

20. A cache apparatus as described in claim 12 further
comprising: |

miss indicating means for generating a miss indication

associated with each microprocessor instruction having
an associated data address which is not accessible by
said cache memory means, said miss indicating means
coupled to said storage means.

21. A cache apparatus as described in claim 19 further
comprising:

miss indicating means for generating a miss indication

associated with each microprocessor instruction having
an associated data address which is not accessible by
sald cache memory means, said miss indicating means
coupled to said storage means.

22. A cache apparatus as described in claim 18 wherein
said maximum number of cache miss load instructions is
three.

23. A cache apparatus as described in claim 12 wherein
said storage means is a logical counter having an increment
input and a decrement input.

24. A cache apparatus as described in claim 21 wherein:

said cache memory means is a logical memory array;

said storage means is a logical counter having an incre-
ment input and a decrement input;

saild miss indicating means increments said logical
counter upon each miss indication, said miss indicating
means coupled to said increment input of said logical
counter; and

wherein said completion means decrements said logical
counter upon each cache miss instruction that is com-
pletely processed by said first processing means, said
completion means coupled to said decrement input of
saild logical counter. |
23. A cache apparatus for use with a microprocessor, said
microprocessor processing a plurality of instructions each
having associated data, said apparatus comprising:

cache memory army for providing high speed memory
cache operations with said microprocessor;

first processing means for executing preceding cache miss
load instructions each having an associated data
address that 18 not accessible by said cache memory
array; and

stalling means for temporarily preventing said micropro-
cessor from executing a subsequent store instruction
while one or more of said preceding cache miss load
instructions are pending before said first processing
means, said stalling means also for allowing said
MICroprocessor to execute a subsequent load instruc-
tion while less than a predetermined number of said
preceding cache miss load instructions are pending
before said first processing means.

26. A cache apparatus as described in claim 25 further

comprising: |

5,455,924

21

storage means for indicating if any of said preceding
cache miss load instructions are pending before said
first processing means, said storage means communi-
catively coupled to said stalling means and also com-
municatively coupled to said first processing means;

and
miss indicating means for generating a miss indication
associated with each cache miss load instruction, said
miss indicating means coupled to said storage means.
27. A cache apparatus as described in claim 26 wherein
said first processing means comprises completion means for
indicating to said storage means that a cache miss load

instruction is completely processed by said first processing
means and is therefore no longer pending before said first
processing means.

28. A cache apparatus as described in claim 27 wherein:

said storage means is a logical. counter having an incre-
ment input and a decrement input;

said miss indicating means increments said logical
counter upon each miss indication, said miss indicating
means coupled to said increment 1nput of said logical
counter; and

said completion means decrements said logical counter
upon each cache miss load instruction that is com-
pletely processed by said first processing means, said
completion means coupled to said decrement input of

said logical counter.
29. A cache apparatus for use with a microprocessor, said
microprocessor processing a plurality of instructions each

having associated data, said apparatus comprising:

cache memory array for high speed memory operations
with said microprocessor;

bus control logic executing cache miss instructions each

~ having an associated data address that is not accessible
by said cache memory array, said bus control logic
further comprising a queue for containing any of said
cache miss instructions that are pending before said bus
control logic; and

gating logic asserting a stall signal to temporarily prevent
said microprocessor from executing a first instruction
type while one or more of said cache miss instructions
are pending before said bus control logic, said gating
logic deasserting said stall signal to allow said micro-
processor to execute a second instruction type while
one or more of said cache miss instructions are pending
before said bus control logic.

30. A cache apparatus as described in claim 29 further
comprising a logical counter for indicating the number of
said cache miss instructions that are pending before said bus
control logic, said logical counter communicatively coupled
to said gating logic and also communicatively coupled to
said bus control logic. "

31. A cache apparatus as described in claim 29 wherein
said first instruction type is a store instruction.

32. A cache apparatus as described in claim 31 wherein
said second instruction type is a load instruction.

33. A cache apparatus as described in claim 32 wherein
said gating logic temporarily prevents said microprocessor
from executing said store instruction until said logical
counter indicates that no cache miss instructions are pending
before said bus control logic.

34. A cache apparatus as described in claim 32 wherein
said gating logic temporarily prevents said microprocessor
from executing said load instruction until said logical
counter indicates that less than a maximum number of cache
miss load instructions are pending before said bus control
logic. | |

5

10

15

20

25

30

335

40

45

50

33

60

65

22

35. A cache apparatus as described in claim 32 wherein
sald bus control logic asserts a digital fill signal indicating to
said logical counter that a cache miss instruction is com-
pletely processed by said bus control logic and is therefore
no longer pending.

- 36. A cache apparatus as described in claim 35 further
comprising:

comparator logic asserting a miss signal associated with

ecach microprocessor instruction having an assoctated
data address which is not accessible by said cache

memory array, said comparator logic coupled to said
logic counter.

37. A cache apparatus as described in claim 32 wherein
said logical counter includes an increment input and a
decrement input.

38. A cache apparatus as described in claim 36 wherein:

said logical counter includes an increment input and a
decrement input; |

said miss signal of said comparator logic increments said
logical counter upon each miss indication, said miss
signal commumnicatively coupled to said increment
input of said logical counter; and

said digital fill signal of said bus control logic decrements
said logical counter upon completion of each pending
cache miss instruction, said digital fill signal commu-
nicatively coupled to decrement input of said logical
counter. |
39. A method for partial execution blocking a micropro-
cessor by a cache unit, said microprocessor for processing a
plurality of instructions each having associated data, said
method comprising the steps of:
providing a cache memory array for providing high speed
memory cache operations with said microprocessor;
performing a first execution step by executing cache miss
instructions each having an associated data address that
18 not accessible by said cache memory array;

temporarily preventing said microprocessor from execut-
ing ‘a first instruction type while one or more of said
cache miss instructions are pending before said first
execution step; and

allowing said microprocessor to execute a second instruc-
tion type while less than a predetermined number of
said cache miss instructions am pending before said
first execution step.

40. A method as described in claim 39 further comprising
the step of indicating a number of said cache miss instruc-
tions that are pending before said first execution step.

41. A method as described in claim 40 wherein said first
instruction type is a store instruction.

42. A method as described in claim 41 wherein said
second instruction type is a load instruction.

43. A method as described in claim 42 wherein said step
of temporarily preventing said microprocessor from execut-
ing said store instruction operates until said step of indicat-
ing indicates that no cache miss load instructions are pend-
ing before said first execution step.

44. A method as described in claim 42 wherein said step
of allowing said microprocessor to execute a second instruc-
tion type operates until said step of indicating indicates that
a maximum number of cache miss load instructions are
pending before said first execution step.

45. A method as described in claim 40 further comprising
the step of asserting a signal each time a cache miss
instruction is completely processed by said first execution
step so that said step of indicating may update said number
of said cache miss instructions that are pending before said
first execution step.

3,455,924

23

46. A method as described in claim 40 further comprising
the step of:

generating a miss indication signal associated with each
microprocessor instruction having an associated data
address which is not accessible by said cache memory
array so that said step of indicating may update said
number of said cache miss instructions that are pending
before said first execution step.

47. A method as described in claim 46 further comprising
the step of:

generating a miss indication signal associated with each
microprocessor instruction having an associated data
address which is not accessible by said cache memory
array so that said step of indicating may update said
number of said cache miss instructions that are pending
betore said first execution step.

48. A method as described in claim 47 wherein said step

of indicating is implemented via a logical counter.
49. A computer system comprising:

a) a bus for providing a common communication path-
way, a processor for executing a plurality of instruc-
tions each having associated data, said processor
coupled to said bus; memory storage unit for storage
and retrieval of said data, said memory storage unit
coupled to said bus; a display for display of said data;
a data 1nput device for inputting data to said computer
system; and

b) a cache unit for interfacing cache memory with said
processor, said cache unit comprising:
a cache memory array for providing high speed
memory cache operations with said processor;
bus control logic for executing cache miss instructions
each having an associated data address that is not
accessible by said cache memory array, said bus
control logic coupled to said bus; and
stalling circuitry for temporarily preventing said pro-
cessor from executing a first instruction type while
one or more of said cache miss instructions are
pending before said bus control logic, said stalling
circuitry also for allowing said processor to execute
a second instruction type while one or more of said
cache miss instructions are pending before said bus
control logic.
50. A computer system including a cache unit as described

in claim 49 further comprising a storage device for indicat-
ing 1f any of said cache miss instructions are pending before
said bus control logic, said storage device communicatively
coupled to said stalling circuitry and also communicatively
coupled to said bus control logic.

S1. A computer system including a cache unit as described
in claim 49 wherein said first instruction type is a store
instruction.

52. A computer system including a cache unit as described
in claim 49 wherein said second instruction type is a load
instruction.

53. A computer system including a cache unit as described
in claim 49 wherein said first instruction type is a store
instruction and wherein said second instruction type is a load
instruction.

54. A computer system including a cache unit as described
in claim 51 wherein said stalling circuitry temporarily
prevents satd processor from executing said store instruction
until said storage device indicates that no cache miss instruc-
tions are pending before said bus control logic.

5

10

15

20

25

30

35

4()

45

50

55

60

65

24

55. A computer system including a cache unit as described
In claim 353 wherein said stalling circuitry temporarily
prevents said processor from executing said store instruction
until said storage device indicates that no cache miss load
instructions are pending before said bus control logic.

56. A computer system including a cache unit as described
in claam 53 wherein said stalling circuitry temporarily
prevents said processor from executing said load instruction
until said storage device indicates that less than a maximum
number of cache miss load instructions are pending before
said bus control logic.

S7. A computer system including a cache unit as described
in claim 50 wherein said bus control logic comprises
completion circuitry for indicating to said storage device
that a cache miss instruction is completely processed by said
bus control logic and is therefore no longer pending before
said bus control logic.

58. A computer system including a cache unit as described
in claim 350 further comprising:

miss indicating circuitry for generating a miss indication
associated with each instruction having an associated
data address which is not accessible by said cache
memory array, said miss indicating circuitry coupled to
said storage device.

39. A computer system including a cache unit as described

in claim 57 further comprising:
miss indicating circuitry for generating a miss indication
associated with each instruction having an associated
data address which is not accessible by said cache
memory army, said miss indicating circuitry coupled to
said storage device.
60. A computer system including a cache unit as described

in claim 56 wherein said maximum number of cache miss
load instructions is three.

61. A computer system including a cache unit as described
in claim 50 wherein said storage device is a logical counter
having an increment input and a decrement input.

62. A computer system including a cache unit as described
in claim 59 wherein:

said storage device is a logical counter having an incre-
ment input and a decrement input;

said miss indicating circuitry includes circuitry to incre-
ment said logical counter upon each miss indication,
said miss 1ndicating circuitry coupled to said increment
input of said logical counter; and

said completion circuitry includes circuitry to decrement
sald logical counter upon each cache miss instruction
that 1s completely processed by said bus control logic,
said completion circuitry coupled to said decrement
‘input of said logical counter.

63. A cache logic apparatus for interfacing a processor and

a cache memory array of said cache logic apparatus, said
processor sequentially processing a plurality of instructions
each having associated data, said apparatus comprising:

a cache memory array for providing high speed memory
cache operations with said microprocessor, said cache
memory army communicatively coupled with said
MIiCroprocessor;

first processing logic for sequentially executing preceding
cache miss load instructions each having an associated
data address that is not accessible by said cache
memory array; and

stalling circuitry for temporarily preventing said proces-

5,455,924

25

sor from executing a subsequent store instruction while
one or more of said preceding cache miss load instruc-
tions are pending before said first processing logic but
not yet completely processed by said first processing

logic, said stalling circuitry also for allowing other of 5

10

15

20

23

30

35

40

43

50

55

60

65

26

said plurality of instructions to execute, said other of
said plurality of instructions being other than store
instructions.

UNITED STATES PATENT AND TRADEMARK OFFICE -
CERTIFICATE OF CORRECTION

PATENT NO. ; 5.455,924
DATED : October 3, 1995
INVENTOR(S) : Shenoy et al.

It is certified that error appears in the above-identified patent and that said Letters
Patent is hereby corrected as shown below: -

Tn the following locations, delete "army” and substitute
——array--:
column 20, line 51
column 24, line 32
column 24, line 61

Tn column 22, at line 43, delete "am" and substitute --are—-—.

Signed and Sealed this

Fourteenth Day of January, 1997

Anest: QM u’#\

BRUCE LEHMAN

Attesting Officer Commissioner of Patents and Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

