United States Patent [

Turrietta et al.

[54]

OO O AR

US005452206A
[11] Patent Number:

[45] Date of Patent:

5,452,206
Sep119,1995

METHOD FOR GENERATING

DOCUMENTATION FOR COMPUTER

SOFTWARE
[75]

Inventors: T. Orlando Turrietta, Oakland; Bruce
W. Hamilton; Peter N. Pesic, both of

San Francisco, all of Calif.

[73]
21]
122]

[51]
[52]

Assignee:

Filed:

[58]

Int. C1.6
US. (L.

Field of Search

Pacific Bell, San Francisco, Calif.
Appl. No.: 762,595
Sep. 19, 1991

.................................. GO6F 17/22
................ 364/419.17; 364/419.1;

395/375; 395/700

................ 364/419, 900 MS File,

364/280, 280.4; 395/375, 700, 650; 380/4

[56]

References Cited

U.S. PATENT DOCUMENTS

Attorney, Agent, or Firm—Townsend and Townsend
Khourie and Crew

[57] ABSTRACT

Documentation is automatically generated having a
specified format for a computer program having a
source code consisting of a stream of characters. The
ordering of the stream of characters follows a set of
syntax rules. The set of syntax rules includes a set of
reserved words. The specified format of the documen-
tation and the set of syntax rules define a set of selection
rules for selecting a set of selected character strings.
The set of selected character strings includes at least
one selected reserved word and at least one word affili-
ated with the selected reserved word. The stream of
characters is read and the selected character strings are
searched. Each time one of the selected character
strings is found, at least one related character string
affiliated with the found selected character string is
stored in memory. After all the characters in the source

4,860,203 8/1989 Corrigan et al.cccoeuuvureeee. 364,/300 _
4,989,145 171991 Kyushimacccoceeeeerernnnee 364/419 code are read, the related character strings are re-
5,038,316 8/1991 Hempleman et al. 364/900 trieved. These related character strings provide infor-
5,129,086 7/1992 Coyle, Jr. et al.ccovvvvereeen. 395/650 mation which enables the automatic insertion of appro-
5,157,6% 10/1992 Lemer 395/7(1) pl-iate Character Strings into appropriate Positions in the
5,185,867 2/1993 TtO .eeererrrrcrcrrccrecemrecccnaeennes 395/375

documentation.

Primary Examiner—Gail O. Hayes

Assistant Examiner—Yranizy Poinvil

8 Claims, 12 Drawing Sheets

. 1O

120

Analyze syntax ruies and
documentation requirements to

generate selection rules

/IOO

22

Analyze syntax rules and
ldocumentnﬂcn requirements to

generate association table

|
>0 (50
read a line of code
Retrieve
132 i information from
_ association table
Apply selection
rules to find
character strings
Place information in
appropriate positions
134 in a document
NO !
YES 36
| Store in association —
table
158 L o
| , Last Line in YES
source code? —

U.S. Patent Sep. 19, 1995 Sheet 1 of 12 5,452,206

. O

Angalyze syntax rules and

120

documentation requirements to ,/100
generate selection rules

122

Analyze syntax rules and
documentation requirements to

generate association table

130 | . 50
Retrieve
132 _

information from
association table

Apply selection
rules to find 152

character strings

Place information in
appropriate positions

a 134 - in a document

YES 136
Store in association
table _
IS8 /140

Last line in
source code?

YES

U.S. Patent Sep. 19, 1995 Sheet 2 of 12 5,452,206

210
I 212
220 230 240
[~/
250
Print
l_abel

200/

Fl6. 2.

Sheet 3 of 12 5,452,206

Sep. 19, 1995

U.S. Patent

'wexboad 09738 TIVD € =
‘wexboaxd ssaappe TIV) 7 =
qeaboad weT TIVD T =

\\omm

‘aNng wexboad uTew WYIOHO0UJ
(op0O UOT2ADDTSS) JAI
(8p0O0 UOTIDDTDS) JdI
(9pO0O UOT09TOS) JI
_y 90TOUD ©Y3l 93NDOXH x-
ONT 9D LNdNI

! (9p0OD UOTIODTIS) LdADDY

/(L QRINI¥Nd 99 Ol STAEAYT LDATIAS - € W)
{(LNOTIYWNOANI SSA¥aady dIvada/INdNI - ¢ «) LNI¥d
f (L NOTILYWIOANTI WALI TIVW FILVAdN/IAANI - T)

LNIYdd

LNIYd

(O NMAEINAN ¥ IDATAS dSYdATdW) INIYd
2 (LWALSAS NOILNDIMISIA TIVA HILYI0Odd0D.w) LNIYUd

NIOHd LYD LAOdNI

~x ID WOIJ SOTOUD 3JAdB0DY x-

INTOAg weaboad utew WYIHOUJ

91
Gl
A
£l
¢l
[
Ol

— (N O < W) O~ O

O ~J oy b W

= = O
N PO

N DN R R
N = O (W oo o U s Ww

N N
> (W

BN
o)

U.S. Patent

Sep. 19, 1995 5,452,206

Sheet 4 of 12

PROGRAM address program BEGIN;

LOOP

S

BEGIN;
Accept
INPUT

ACCEPT
ACCEPT
ACCEPT

input from crt screen *-
CRT BEGIN;

(name)
(street and city);
(state and zip);

ACCEPT (address mail code);

INPUT

CRT END;

-* Associate crt input with address_file *-

DEFINE address file =
name =

street and city =
state and zip =
address mail code =
DEFINE address file =

CRT BEGIN;

name;
street and city;
state and zip;

address mail code;
CRT END;

—* Update Address Fille *-
OUTPUT address file BEGIN;

LF

UPDATEL

(name) ;

UPDATE (street and city):;
UPDATE (state and zip);

UPDATEL

(address mall code);

OUTPUT address file END;

(PF KEY)

LOOP END:;

PROGRAM address program END;

60

FIG. 4.

U.S. Patent

00 ~J oY Ul = W N

el
N = O

-
D

1

*}

l
Ut

DO PP
=W N OW OO O

Sep. 19, 1995 Sheet 5 of 12 5,452,206

PROGRAM item program BEGIN;

LOOP

— %

Accept
INPUT

INPUT

BEGIN;

input from crt screen *-

CRT BEGIN;
ACCEPT (mail item code);
ACCEPT (mail item description);
LOOP BEGIN;

ACCEPT (address mall code);

IF PF KEY LOOP END;

CRT END;

~-* Associate crt input with mail item file *-

DEFINE mail item file =

DEFINE mail item file =

CRT BEGIN;

mail item code = mail item code;

mail item description=mail item description
address mail code = address_maill code

item £ CRT END;

-* Update mail item Flle *-
OUTPUT mail item file BEGIN;

N

UPDATE (mail item code);
UPDATE (mail item description);
UPDATE (address maill code);

OUTPUT mail item file END;
(PF_KEY LOOP) END;
PROGRAM 1tem program END;

260/

FIG. 5.

Sheet 6 of 12 5,452,206

Sep. 19, 1995

U.S. Patent

‘9 "B ‘gNy wexboaxd 309795 WRHHOUJ
‘wexboad TogeT utad TIIVYD
!N OTTJ ssoappe = oT7TF 3utad dwel HENIJLAQ

mmm!i/ !d1z pue ©93e3S = 99IY3l OUTT
X310 pue 19913S = OM3} DUTT
!sWeU = 2UO BUTT

!NIDEg STTJ ssoappe = o117 3utad dwel ANIJHAC
~y OTTJ uTad dwal Y3TM STTF SS2APpe 83TOO0SSY x-
!N ©TT3F SSoIppe LNJNI
! (P00 TTRW SSaIppe) VIMALIMD (dtz pue 93e3s) ILJADOV
! (op0d TTeW Ss2Ippe) VIYALIND (A3T0 pue 39313s) LdJdDOVY
! (8p00 TTeW S$S9IpPeR) VIMNALIYND (sweu) ILJdADIOV
INIDEE STTJF sSsaappe ILNANI
~x JQUTId puPp SPIOOSI BTTI SSIPPE IABTIIDT -
N B !ANF ©TTJ sS2appe ANIJIAC
2P0O0 TTIBW SS2IpPPE = Spod TTeu SSaIppe
/NI9DEE ®TT3F Wwo3T TTew = [T SSIPPe ANIJEC
—x OTTJ SSoIppe YITMm STTF wWaQT TTew 33eTO0SSY x-
/gN® ©TTJF WSIT TTew INJNI
!9p0od WR3T TTew AAM (°pod TTew ssaiappe) ILJIODV
INIDAEG 9TTJ WT TTew LAdNI
~y STTJ WS3T [TeW BSADTIIDIT x-
B IuDZm mﬂﬁulﬁwpﬂlamwe ANT 4dd
!9P0D Wo3T [TRW = S{POod W3]l TTeu
!NIOFE I¥D = OTTI We3lT TTew ANIJIC
~y O©TTJ WO3T TTewW Y3zTtm InduTr IO 9IBTOOSSY x-
!N L¥D LNANI
! (9p0o wWe3T TTeW) IdFDOV
!NIDELI I9D INJNI
—y IO WOXIJ 9POD WSJ3T Ad3IVOY % -
!NTIOHdg wexaboad 308T9S WYYO0Ud

=i
)

O A N M N O~ OO HNMM W O~ OO0 O
ed = o = o= e = e e NN N AN NN NN ANANM

— N WO~ 00

U.S. Patent Sep. 19, 1995 Sheet 7 of 12 5,452,206

1 PROGRAM print label program BEGIN;

2 -* Create temporary file * -

3 INPUT temp print file BEGIN;

4 ACCEPT (line one);

5 ACCEPT (line two);

6 ACCEPT (line three);

7 INPUT temp print file END;

8 -* Associate temp print file with PRT file *-
9 DEFINE temp print file = PRT BEGIN;
10 line one = line one;

11 line two = line two;

12 line three = line three;

13 DEFINE temp print file = PRT END;
14 —-* Print output *-

15 OUTPUT PRT BEGIN;

16 PRINT (line one);

17 PRINT (line two);

18 PRINT (line three);

19 PRINT (NEW PAGE);

20 - OUTPUT PRT END;

21 PROGRAM print label program END;

288’/{

FIG. 7.

U.S. Patent Sep. 19, 1995 Sheet 8 of 12 5,452,206

RESERVED WORD BRIEEF DESCRIPTION

ACCEPT Accepting a new value from an input device or
retrieve data from an input file.

BEGIN Indicating the beginning of a group of codes.

CALL Transferring control to a subroutine.

CRITERIA Used in conjunction with ACCEPT setting the
criteria for the retrieval of data.

CRT Standard terminal for input and display data.

END Indicating the end of a group of codes.

IF Conditional statement.

INPUT File declaration statement indicating an
input file. '

DEFINE Relating field names in one file to another.

LOOP Indicating a program loop.

QUTPUT File Declaration statement indicating an

output file.

PF KEY A special function key.

PRINT Printing on a line printer.

PROGRAM Indicating the group of codes is a program
segment.

PRT Standard output file for printing on a line
printer.

UPDATE Operation updating the data in a file.

2507

U.S. Patent Sep. 19, 1995 Sheet 9 of 12 5,452,206

O o
¢
N
-

=
o
—

-
-

o

N

N

Ip

p,

Ll

O

O

4 ot

Q.
QN
N
lQ‘D

o gt

02 M

INPUT

U.S. Patent Sep. 19, 1995 Sheet 10 of 12 5,452,206

ANPUT PROCESS

INPUT —e 3 INPUT DATA VALUES FOR . FILE
FILE FOR FILE: CRT

DEFINE _,, 7 DEFINE DATA VALUES FOR FILE
FILE FILE: mail item file REDEFINED

INPUT g 11 INPUT DATA VALUES FOR —p= FILE

FILE FILE: mail item file
DEFINE 15 DEFINE DATA VALUES FOR FILE
o aaliiiten
FILE FILE: address file REDEFINED

INPUT — 19 INPUT DATA VALUES FOR . FILE
FILE FILE: address file

DEFINE __ g <25 DEFINE DATA VALUES FOR . am FILE
FILE FILE: temp print file REDEFINED

U.S. Patent Sep. 19, 1995 Sheet 11 of 12 5,452,206

EIRST COLUMN =ECOND COLUMN IHIRD COLUMN
INPUT 3 CRT

DEFINE 7 mail jitem file
INPUT 11 - mail item file
DEFINE 15 address file
INPUT 19 address file
DEF INE 25 temp print file

soa!

FIG. 11.

FIRST COLUMN SECOND COLUMN
main_program item_program
main_program address.program
main.program select_program
select_program print.label_program

450/
FIG 13

U.S. Patent Sep. 19, 1995 Sheet 12 of 12 5,452,206

address.. -
program
select.
program

/

print_label.
program

FIG 2.

1

METHOD FOR GENERATING DOCUMENTATION
FOR COMPUTER SOFTWARE

FIELD OF THE INVENTION 5

The present invention relates generally to computer
software and, more specifically, to a method for auto-

matically generating documentation for such computer
software.

BACKGROUND OF THE INVENTION

Software documentation serves an important role in
the development, use, maintenance, and upgrade of
software. Most of the commercially developed com-
puter programs are designed and coded by a team of 15
electronic data processing (EDP) professionals includ-
ing system analysts and programmers. The team relies
on a set of internal documentation as a tool for commu-
nication among members of the team during software
development. At the time the software is released, the
software developer typically releases a set of user docu-
mentation for helping the end users to learn and use the
software efficiently. In addition, a team of EDP profes-
sionals, which may or may not be the same as the team
which developed the software, 1s generally assigned to
maintain and upgrade the software after the software is
released. This team relies on the set of internal docu-
mentation written by the previous EDP team to under-
stand the design and coding of the software. This team
also generates its own set of internal documentation to
maintain communication among its members.

Even though the benefits of well written documenta-
tion are well known, there 1s general agreement among
by the EDP community that the amount and extent of
software documentation produced are below the desir- 35
able level. As an example, the lack of well written docu-
mentation is probably the single complaint most often
voiced by the end users.

There are reasons which may account for the lack of
well written documentation. First, documentation only 40
reflects the state of the software at the time the docu-
mentation 1s written. Consequently, the documentation
often becomes out-dated as the software undergoes
revisions. This problem is particularly acute during the
development phase of the software because changes are
made almost daily. As a result, the documentation may
well be almost obsolete by the time 1t 1s wnitten. Second,
most EDP professionals perceive the task of writing
documentation as tedious and boring. They would
rather spend their time working on more interesting
tasks such as software design and development. Third,
most projects have a tight schedule. The first priority of
an EDP team, when faced with a deadline, is to produce
working software. The writing of internal and user
documentation often becomes a secondary concern.

Efforts has been made to automate the process of
generating documentation. Computer programs for
generating documentation have been developed. These
documentation-generating programs have the advan-
tage of reducing the amount of work required in gener-
ating software documentation. However, these pro-
grams still cannot solve the problem that the documen-
tation generated does not keep pace with the changes
and revisions to the software unless information relating
to the changes and revisions are fed to these programs
each time a change is made. This problem 1s further
aggravated by the need to manually enter the informa-
tion 1into these computer programs. Thus, documenta-

10

20

25

30

45

50

33

60

65

5,452,206

2

tion is often not produced because personnel who nor-
mally handle the task of data entry are assigned to other
high priority tasks.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide an
improved method for generating software documenta-
tion.

It is another object of the present invention to pro-
vide a method for generating software documentation
automatically.

It 1s a further object of the present invention to pro-
vide a method which uses the target software as input
and automatically generates software documentation as
output.

Broadly stated, the method of the present invention
automatically generates documentation having a speci-
fied format for a computer program having a source
code consisting of a stream of characters. The ordering
of the stream of characters follows a set of syntax rules.
The set of syntax rules includes a set of reserved words.
The specified format of the documentation and the set
of syntax rules define a set of selection rules for select-
ing a set of selected character strings. The set of se-
lected character strings includes at least one selected
reserved word and at least one word affiliated with the
selected reserved word. The stream of characters is
read and the selected character strings are searched.
Each time one of the selected character strings is found,
at least one related character string affiliated with the
found selected character string is stored in memory.
After all the characters in the source code are read, the
related character strings are retrieved. These related
character strings provide information which enables the
automatic insertion of appropriate character strings into
appropriate positions in the documentation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart of the automatic documenta-
tion generation method according to the present inven-
tion.

FIG. 2 is a flow chart of an exemplary computer
program according to the present invention.

FIG. 3 is a source listing of a program segment hav-
ing a name of main._program according to the present
invention.

FIG. 4 is a source listing of a program segment hav-
ing 2 name of address_program according to the pres-
ent invention.

FIG. § 1s a source listing of a program segment hav-
ing a name of item__program according to the present
invention.

F1G. 6 1s a source listing of a program segment hav-
ing a name of select_program according to the present
invention. |

FIG. 7 is a source listing of a program segment hav-

ing a name of print__label__program according to the
present invention.

FIG. 8 is a listing of the reserved words of an exem-
plary computer language according to the present in-
vention.

FIG. 9 shows the format of an entry in an exemplary
input-process-output chart according to the present
invention.

FIG. 10 shows an exemplary input-process-output
chart according to the present invention.

5,452,206

3

FI1G. 11 15 an exemplary association table used to
generate the input-process-output chart of FIG. 9 ac-
cording to the present invention.

FIG. 12 shows an exemplary system flow chart ac-
cording to the present invention.

FIG. 13 is an exemplary association table used to
generate the system flow chart of FI1G. 12 according to
the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

It 1s well known in the EDP art that certain standard
types of documentation provide information which is
useful 1n understanding almost any program. Examples
of these types of documentation are the system flow
chart, input-process-output (IPO) chart, data flow dia-
gram, program catalog, program/file table, structure
chart, and data dictionary. The importance of these
documents in the development and maintenance of the
corresponding software has been described in Moderrn
Structured Analysis, by E. Yourdon, Prentice-Hall, 1989.

Prior art methods for generating .software documen-
tation require manual entry of a set of data relating to
the software into a documentation-generating computer
program. These methods use the entered data to gener-
ate the documentation. The method of the present in-
vention uses the source code of the target software as
input, and obtains all the information needed for gener-
ating the documentation from the source code itself. As
a result, the documentation can be generated automati-
cally without manual entry of additional data. The
method of the present invention utilizes the fact that all
software coded in a computer language must precisely
follow a set of syntax rules of the language. By analyz-
ing the source code using the set of syntax rules, it is
possible to obtain the necessary information to generate
the documentation.

As an example, many programming languages use a
reserved word, e.g., “CALL”, to indicate the program
flow from a calling program segment to a called pro-
gram segment. The syntax rules also define the exact
locations in the source code where the names of the
calling program segment and the called program seg-
ment can be found. By scanning the source code for all
occurrences of the reserved word used to indicate pro-
gram calls and locating the calling and the called pro-
gram segments corresponding to each of such occur-
rences, it 15 possible to determine the entire chain of
calling sequences in a computer program. Thus, in
order to generate a document which traces the se-
quence of program calls, it 1s sufficient to rely on the
information generated by such scanning of the source
code, because the source code contains all the informa-
tion relating to the calling sequence.

Different types of information are required for the
generation of different documents. In each case, a set of
selection rules is formulated to select a set of selected
reserved words relating to the document of interest.
The selection rules are formulated based on the require-
ments of the particular document and the set of syntax
rules. In the above example, the selected reserved word
1s “CALL”. Each member of the set of selected re-
served words has one or more affiliated words, such as
variable names, program names, or parameters, which
can also provide information for the generation of the
document. In the above example, the affiliated words
are the names of the calling and the called program
segments. Even though the selected reserved word and

10

15

20

23

30

35

45

50

35

60

65

4

the affiliated words in the above example contain only
alphanumeric characters, in general, the reserved words
and the affiliated words may include symbols in addi-
tion to alphanumeric characters.

The source code is then scanned to locate all the
selected reserved words and their affiliated words. For
each of such words which 1s found in the source code,
a set of related words is stored in memory. This set of
related words may be the same as the words found in
the source code. Alternatively, this set of related words
may be in a form more suitable for the generation of the
desired document. In many cases, the ordering and the
frequency of occurrence of the selected reserved words
and the affiliated words also provide information for
generating the document. Consequently, the entire
source code needs to be scanned and all the relevant
words located before the initiation of the steps for gen-
erating the document.

After the entire source code is scanned, the related
words are then retrieved and analyzed. The result of the
analysis provides the necessary information to insert
appropriate words at the appropriate places in the stan-
dard document.

- The method of the present invention is shown n flow
chart 100 in FIG. 1. Flow chart 100 starts at step 110. In
step 120, the syntax rules of the computer language and
the requirements of the desired documentation are ana-
lyzed. A set of selection rules is derived for selecting the
appropriate character strings, such as the selected re-
served words, their affiliated words, and the line num-
bers where these words are located, in the source code
of interest. The character strings may include symbols
and alphanumeric characters. In step 122, the syntax
rules and the requirements of the documentation are
again analyzed to set up an appropriate association ta-
ble. The association table is a table having a plurality of
data cells. Each data cell is used to store data related to
each of the selected character strings found during the
scanning of the source code. The data in the association
table 1s retrieved later to provide information for the
generation of the desired documentation. Although
steps 120 and 122 are listed separately, they may be
carried out simultaneously or in reversed order.

In step 130, a line from the source code 1s read. In step
132, the set of selection rules is applied to the line of
code to determine if there are character strings which
satisfy the selection rules. Step 134 is a branching step.
If there are such character strings in the line of code,
step 136, described below, 1s performed. Otherwise,
step 136 1s skipped and flow chart 100 branches to step
138. Step 136 stores a string of related characters relat-
ing to the selected character strings in the appropriate
data cells of the association table. This string of related
characters could be the same as the selected character
strings found in the line of code. Alternatively, this
string of characters could be other character strings
representative of a -combination of several selected
character strings. Step 138 determines if the line being
processed 1s the last line in the source code. If the line is
not the last line, step 140 branches back to step 130. If
the line 1s the last line, step 140 branches to step 150 to
allow the generation of the documentation. Step 150
retrieves the data stored in the associated table. Step 152
uses the data to generate appropriate character strings
to be placed at the appropriate positions the desired
document.

The method shown in FIG. 1 may be more easily
understood with reference to a simple example. The

5,452,206

5
example is an address label printing computer program
which has its flow chart 200 shown in FIG. 2. The
exemplary computer program prints address labels for
putting on items which are being mailed to various
persons.

Flow chart 200 comprises a main block 210, an ad-
dress block 220, an item block 230, a select block 240,
and a print-label block 250. Main block 210 displays a
menu and allows a user to direct the program flow to
either address biock 220, item block 230, or select block
- 240. Depending on the user’s choice, a block 212
branches to one of the above blocks. Address block 220
allows the user to enter information relating to the
names and addresses of all the persons who are to re-
ceive mailings. In addition, a mail code is entered for
each person to designate the types of mail which should
be sent to that person. Item program 230 allows the user
to enter information relating to the item to be mailed,
including an item code and a mail code. The item code
is used to identify the item so that information relating
to the item can be retrieved by specifying the item code.
The mail code associates the item with the persons who
should receive the item. Selection block 240 allows the
user to enter the item code of an item for selecting the
item for which labels are being printed. Selection block
240 also retrieves the mail code associated with the item
code and the names and addresses of all the persons
having that retrieved mail code. After the information 1s
retrieved, selection block 240 calls print-label block 250,
a subroutine, which prints the address labels using the
names and addresses retrieved by selection block 240.

The address label printing computer program 1s di-
vided into five program segments, one corresponding to
each block in FIG. 2. The source listing for the program
segments are shown in FIGS. 3-7. Listing 280, shown in
FIG. 3 corresponds to main block 210. Listing 282,
shown in FIG. 4, corresponds to address block 220.
Listing 284, shown in FIG. §, corresponds to item block
230. Listing 286, shown in FIG. 6, corresponds to select
block 240, and Listing 288, shown in FIG. 7, corre-
sponds to print label block 250. The programming lan-
guage used for the source code is a simple language
designed for easy understanding of the method of the
present invention. However, the method can be apphed
by a person of ordinary skill in the art to computer
languages of any complexity.

FIG. 8 shows a listing 290 of the reserved words of
the programming language used in the exemplary label
printing program. The reserved words of the language
are listed alphabetically in the first column of the table
and a short description of the corresponding reserved
word is listed in the second column. For convenience in
reading the source code shown in FIGS. 3-7, all the
reserved words in the source code are printed in capital
letters.

The syntax rules of the programming language are
given below. The syntax rules can be divided into two
main categories. The first category includes the rules
which are not related to files. The second category
includes the rules related to files and their associated
operations.

The first category of the syntax rules comprises the
reserved words BEGIN, END, PROGRAM, IF,
PF_KEY, LOOP, CALL, and the comment bracket

—

The reserved words BEGIN and END are used to

designate the beginning and the ending, respectively, of
a group of codes. These reserved words are used in

10

13

20

25

30

335

45

20

535

65

6

combination with other reserved words, as described
below.

The reserved word PROGRAM is used to designate
a program segment. The first line of a program segment
has the syntax of

PROGRAM name. of program BEGIN, and the
last line of a program segment has the syntax of

PROGRAM name._of _program END. Thus, the
reserved words PROGRAM, BEGIN, and END indi-
cate that the lines of codes between the first line and the
last line, described above, belong to a program segment
having a name of name_of_program.

For convenience in reading the source listing, the
names of all the program segments in the source listing
have the word “program” attached to the end of the
name. Thus, the names of the five program segments are
main_program, address_program, item_program,
select_program, and print_label_program corre-
sponding to main block 210, address block 220, item
block 230, select block 240, and print-label block 250,
respectively.

The reserved word IF indicates a conditional state-
ment. The syntax is IF (condition) operation.

“Operation” is executed only if “condition” is true.

The reserved word PF_KEY indicates the pressing
of a special function key by the user. The reserved
words LOOP and PF_KEY are used to control the
looping in the program. The syntax rules are:

1.OOP BEGIN, and

IF (PF_KEY) LOOP END. These two statements

indicate the looping of a series of operations be-
tween the statement LOOP BEGIN, and the state-
ment IF PF_KEY LLOOP END. The looping ends
if the designated function key is pressed.

The reserved word CALL indicates the transferring
of program control to a subroutine. The syntax 1s

CALL (program_name),
where program_.name is the name of the subroutine.

Comments of the computer program are placed be-
tween the comment brackets, -* *-. If the programming
team uses a set of rules in writing comments, this set of
rules could aiso be used as a basis for generating docu-
mentation in a manner similar to that of the syntax rules.

The second category of the syntax rules consists of
three parts relating to output files, input files, and define
files. The first part, relating to output files, has the re-
served words OUTPUT and UPDATE. The syntax
rules associated with these reserved words are:

OUTPUT file_name BEGIN,

UPDATE (field_name), and
OQUTPUT file_name END.

The reserved word OUTPUT indicates that the file
having a name of file_name i1s an output file. The re-
served word UPDATE is an operation updating the
data in the designated field of a record in the file. The
name of the field being updated is field_name. If there
1s no record in the file, the UPDATE operation creates
a new record and enter the data in the appropriate field
of the new record.

The second part, relating to input files, has reserved
words INPUT, ACCEPT, and CRITERIA. The syn-

tax rules associated with these reserved words are:
INPUT file_name BEGIN,

ACCEPT (field—name)CRITERIA (criteria), and

OUTPUT file__name END.

The reserved word INPUT is used to indicate that
the file having a name of file_name is an input file. The
reserved word ACCEPT is an operation retrieving data

5,452,206

7

from a field having a name of field_name in a record of
the designated file and accepting a new value from an
input device if there is no record in the file. The re-
served word CRITERIA 1s optionally associated with
ACCEPT for setting the criteria for retrieving data.

The third part, relating to the define files, has a re-
served word DEFINE. The syntax is

DEFINE first__file=second_file BEGIN, fir-

st__file__field__name=second__file_ field__name,
and

DEFINE first_file=second__file END.

The reserve word DEFINE 1s used to define the file
having a name of first_file. The statements sandwiched
inside the DEFINE BEGIN and DEFINE END state-
ments define the field having a name of first__file__fiel-
d—name 1n the file having a name of first__file to be the
same as the field having a name of second__file_fiel-
d_name 1n the file having a name of second__file.

There are two system-created files having the re-
served words CRT and PRT. The reserved word PRT
designates a printer. The reserved word PRINT 1is asso-
ciated with PRT to print a variable on the printer. The
reserved word CRT designates a standard terminal
which can accept input and display messages on a moni-
tor. When the reserved word ACCEPT is used in com-
bination with CRT, it indicates accepting input from the
keyboard of the terminal. When the reserved word
PRINT 1i1s used 1n association with CRT, 1t indicates
displaying a message on the monitor screen of the termi-
nal.

The steps 1n flow chart 100, shown in FIG. 1, are used
to generate an input-process-output (IPO) chart for the
address label printing computer program. An IPO chart
1s a chart showing the detailed input and output activi-
ties of a program segment. Thus, each program segment
has its own PO chart. Preferably, the IPO chart shows
the mput data files, the output data files, the types of
activities relating to the data files, and the line numbers
indicating the locations in the program segment where
the activities occur. FIG. 9 shows the general format of

an IPO chart and FIG. 10 shows an exemplary IPO
chart 380 for the program segment select__program.

3

10

15

20

25

30

35

40

The program segment select_program i1s chosen be-

cause 1ts IPO chart 1s the most complicated of the five
program segments.

IPO chart 300 comprises three blocks, an input block
310, a process block 320, and an output block 340. Input
block 310 comprises a space 312 for printing the status,
1.e., Input, define, or output, of the file being processed.
Process block 320 has a space 326 for printing the name
of the file being processed. Process block 320 also has a
space 324 for printing a short sentence describing the
activity e.g., inputting data, defining data, etc, on the
file. Preferably, this short sentence has a prescribed
format. Process block 320 further has a space 322 for
printing the line number in the program segment where
the activity occurs. Qutput block 340 comprises a space
342 for printing the status of the file after processing.

In step 120, shown 1n FIG. 1, a set of selection rules
1s formulated by analyzing the syntax rules and the
requirements of the IPO chart. The reserved words
INPUT, OUTPUT, and DEFINE are used as selected
reserved words because these words are related to files.
In addition, the corresponding file names and the line
numbers are selected as affiliated words because these
words provide information for the generation of the
IPO chart. The selection rules can be stated as follows:

45

50

55

60

635

8

(a) If the line of source code has the character strings
INPUT and BEGIN, select the character string
between these words, i.e., the file name. In addi-
tion, the line number 1s also selected.

(b) If the line of source code has the character strings
OUTPUT and BEGIN, select the character string
between these words, 1.e., the file name. In addi-
tion, the line number is also selected.

e) If the line of source code has the character strings
DEFINE and BEGIN, select the character string
between the character string DEFINE and the
equal sign, 1.e., the file name being defined. In addi-
tion, the line number 1s also selected.

In step 122, shown in FIG. 1, an association table is
generated. The association table has data cells for stor-
ing mformation obtained using the selection rules de-
rived above. An exemplary association table 382 used to
generate an IPO chart having a format shown in FIG. ¢
i1s shown 1n FIG. 11. In association table 382 of FIG. 11,
columns 1-3 store information relating to spaces 3 12,
322, and 326, respectively, of FIG. 9. The information
relating to spaces 324 and 342 of FIG. 9 could be gener-
ated based on the information in columns 1-3, as ex-
plained below. The rules for placing the selected char-
acter strings in the appropriate data cells of the associa-
tion table are stated below:

(a) The first column is used to store one of the three
selected reserved words: INPUT, OUTPUT, and
DEFINE.

(b) The second column 1s used to store the line num-
ber associated with each of the selected reserved
words in the first column.

(¢) The third column is used to store the selected file
name associated with each of the selected reserved
words 1n the first column.

Each hine 1n program segment select_program is
analyzed using steps 130 to 138 in flow chart 100 until
all the lines are processed. The selected character
strings found 1n the scanning are placed in the appropri-
ate data cells. Association table 382, shown in FIG. 11,
1s an association table for select_program after all the
lines in the source listing of program segment select__.
program are processed. The information in association
table 382 1s used to generated IPO chart 380, shown in
FI1G. 10, as described below.

As was describe above, IPO chart 300, shown in FI1G.
9, has a space 312 inside input block 310 to indicate the
status of the input file. In this example, space 312 com-
prises two words. The first word is the word stored
under the first column of association table 382, shown in
FIG. 11, and the second word is the word “FILE”.

Space 322 inside process block 320 is for printing the
line number. The line number can be obtained from the
second column of association table 382, shown in FIG.
11.

Space 324 inside process block 320 contains a short
sentence describing -the process. In this program, there
are only three operations, i.e., input, update, and define.
Thus, only three sentences are required to describe all
the processes 1n program segment select_program. The
sentences are “INPUT DATA VALUES FOR FILE:
7, “UPDATE DATA VALUES FOR FILE: 7, and
“DEFINE DATA VALUES FOR FILE: ” corre-
sponding to the words “INPUT”, “OUTPUT”, and
“DEFINE”, respectively, stored in the first column of
association table 382, shown in FIG. 11.

Space 326 mside process block 320 contains the name
of the file being processed. This information is stored in

5,452,206

9

the third column of association tabie 382, shown in FIG.
11. Space 342 in output block 340 contains the status of
the file after processing. The information for printing
this space can be obtained from the first column of
association table 382, shown in FIG. 11. The words
printed on this space are “FILE”, “FILE REDE-
FINED”, and “UPDATED FILE”, corresponding to
the words “INPUT”, “DEFINE”, and “OUTPUT”,
respectively, stored in the first column of the associa-
tion table.

The retrieval of information from the association
table, described above, is an exemplary operation of
step 150, shown in FIG. 1. The printing of the appropri-
ate character strings in the appropriate places in IPO
chart 380, shown in FIG. 10, is an exemplary operation
of step 152, shown in FIG. 1.

The steps in flow chart 100, shown in FIG. 1, can also
be used to generate a system flow chart. A system flow
chart is a comprehensive, multi-level drawing showing
a sequence of program calls from the main program to
the various subroutines. This drawing exhibits the entire
structure of the program. An exemplary system flow

chart 400 for the address label printing program is
shown 1mn FI1G. 12.

At step 120, shown in FIG. 1, a set of selection rules
is derived. The selected reserved word is CALL and
the affiliated words are the names of the calling and the
called program segments. The selection rules can be
stated as follows: (a) If the line of source code has the
character string “CALL”, the name of the called pro-
gram segment is the character string following the re-
served word CALL. (b) The name of the calling pro-
gram segment can be obtained from the character string
between PROGRAM and BEGIN.

At step 122, shown 1n FIG. 1, an association table is
set up. FIG. 13 shows an exemplary association table
450. The table comprises two columns. The first column
stores the name of the calling program segment and the

second column stores the name of the called program
segment.

Steps 130-138, shown in FIG. 1, scan the source
listings of all of the program segments, shown in FIGS.
3-7, and store the selected character strings in the ap-
propriate places in association table 450 of FIG. 13.
Steps 150 and 152 generate the system flow chart based
on the association table, as explained below.

The first step 1n the generation of a system flow chart
1s to determine the starting point of the chart. This can
be done by comparing each name in the first column
with the names in the second column. If the name in the
first column does not appear in the second column, this
name 1s the name of a program segment which is the
starting program segment of the system flow chart.
Applying this comparison method to association table
450, shown 1n FIG. 13, it can be determined that the
program segment main_program 1s the starting pro-
gram segment of the address label printing program.

Once the starting program segment of a system flow
chart 1s located, the system flow chart is generated by
following the chain of calling sequences from the start-
ing point to the last program segment in the chain. The
last program segment in any chain is a program segment
having 1ts name only in the second column of associa-
tion table 450 in FIG. 13. All the chains have to be
traced. Thus, the address label printing program has
three chains starting from main_program, and the pro-
gram segments item_ program, address__program, and
print__label__program are the termination points of the

3

10

15

20

25

30

35

45

50

55

60

65

10

chains. System flow chart 400 is generated by tracing
the chains using association table 450.

Various modifications to the invention; in addition to
those shown and described herein, will be apparent to
those skilled in the art from the foregoing description
and accompanying drawings. Such modifications are
intended to fall within the scope of the appended claims.

What 1s claimed is:

1. A method for operating a computer to automati-
cally generate documentation having a specified format
for a computer program having a source code, said
source code having a stream of characters, the ordering
of said stream of characters following a set of syntax
rules, said set of syntax rules including a set of reserved
words, said specified format and said set of syntax rules
defining a set of selection rules for selecting a set of
selected character strings, said set of selected character
strings including at least one selected reserved word
and at least one word affiliated with said selected re-
served word and distinct from said selected reserved
word, said method comprising the steps of:

reading, using said computer, said stream of charac-

ters from said source code;

searching, using said computer, for said selected re-

served word in said stream of characters;

storing, using said computer, in a first column of an

association table, a first related character string
affiliated with said selected reserved word found in
said stream of characters:

storing, using said computer, in a second column of

sald association table, a second related character
string affiliated with said selected reserved word
found in said stream of characters;

retrieving, using said computer, from said association

table said first and second related character strings
stored 1n said storing steps; and

inserting, using said computer, a string of characters

in response to said retrieved related character
strings at a predetermined position in said docu-
mentation.

2. A method for operating a computer to automati-
cally generate an input-process-output chart of a prede-
termined format for a computer program having a
source code, said source code having a stream of char-
acters, the ordering of said stream of character strings
following a set of syntax rules, said set of syntax rules
including a set of reserved words, said predetermined
format and said set of syntax rules defining a set of
selection rules for selecting a set of selected character
strings, said set of selected character strings including at
least one selected reserved word relating to files ac-
cessed by said computer program, said method compris-
ing the steps of:

reading, using said computer, said stream of charac-

ters from said source code;

searching, using said computer, for a reserved word

relating to said files and belonging to said set of
selected character strings, in said stream of charac-
ters;

storing, using said computer, in a first column of an

association table, said reserved word found in said
stream of characters:

storing, using said computer, in a second column of

said association table, a filename affiliated with said
reserved word found in said stream of characters;
retrieving, using said computer, from said association
table said reserved word found in said character

5,452,206

11

stream and said filename affiliated with said re-

served word 1n said storing step; and
inserting, using said computer, a string of characters

in response to said retrieved reserved word and
said retrieved filename at a predetermined position
in said input-process-output chart.
3. The method according to claim 1 wherein said set
_of selected character strings comprises character strings
indicating file names, line numbers, and the reserved
words related to file definition and operation.

4. The method according to claim 3 wherein said
related character strings comprise character strings
indicating file names, line numbers, and the reserved
words related to file definition and operation.

5. A method for operating a computer to automati-
cally generate a system flow chart of a specified format
for a computer program having a source code, said
source code having a stream of character strings, the
ordering of said stream of character strings following a
set of syntax rules, said set of syntax rules including a set
of reserved words, said specified format and said set of
syntax rules defining a set of selection rules for selecting
a set of selected character strings, said set of selected
character strings including at least one selected re-
served word relating to program calls said method com-
prising the steps of:

reading, using said computer, said stream of charac-

ters from said source code;

searching, using said computer, for a selected re-

served word relating to program calls in said
stream of characters;

storing, using said computer, in a first column of an

association table, a name of a calling program asso-
ciated with said selected reserved word found in
said stream of characters;

storing, using said computer, in a second column of

said assoclation table, a name of a called program

10

15

20

23

30

35

40

45

50

53

60

65

12

associated with said selected reserved word found
in said stream of characters;

retrieving, using said computer, from said association

table said name of said calling program and said
name of said called program; and

inserting, using said computer, a string of characters

in response to said retrieved name of said calling
program and said retrieved name of said called
program, at a predetermined position in said system
flow chart.

6. The method according to claim 1 wherein said set
of selected character strings comprises the names of
program segments and a selected reserved word relat-
ing to said program calls.)

7. The method of claim 6 wherein said related charac-
ter strings comprise the names of the calling and the
called program segments.

8. A method for automatically generating software
documentation from a source code comprising the steps
of:

reading said source code;

storing, using said computer, in data cells of an associ-

ation table, a set of documentation data, said docu-

mentation data including a set of character strings

wherein said character strings follow a set of syn-

tax rules and wherein said step of storing includes

the substeps of:

storing in a first column of said association table a
reserved word included as part of said syntax
rules; and

storing in a second column of said association table
a selected file name associated with said selected
reserve word; and

retrieving sald documentation data stored in said

storing step to create software documentation.
* * ¥ * %

	Front Page
	Drawings
	Specification
	Claims

