P 0 0 O 0 A

i US005450551A
United States Patent [(111 Patent Number: 5,450,551
Amini et al. 451 Date of Patent: Sep. 12, 1995
[54] SYSTEM DIRECT MEMORY ACCESS (DMA) Attorney, Agent, or Firm—Robert S. Babayi; William N.

SUPPORT LOGIC FOR PCI BASED Hogg

COMPUTER SYSTEM 571 ABSTRACT

[751 Inventors: Nader Amini, Boca Raton; Patrick
M. Bland, Delray Beach; Bechara F.
Boury, Boca Raton; Richard G.

A direct memory access (DMA) support mechanism is
provided for use in a2 computer system which comprises

(1) a central processing unit (CPU) connected to system
Hofmann, Boynton Beach; Terence J. o0y by a first system bus, and a second system bus

Lohman, Boca Raton, alli of Fla. connected to the CPU; (i1) a host bridge connecting the

[73] Assignee: International Business Machines second system bus to a peripheral bus; (1i1) an input/out-
Corporaﬁon, Armonk, N.Y. put (I/ 0) bﬂdge COHneCtiIlg the peripheral bus to a

standard I/0 bus, the standard 1/0 bus having a plural-

[21] Appl. No.: 68,477 ity of standard 1/O devices attached thereto; and (v)

[22] Filed: May 28, 1993 arbitration logic which functions in an arbitration mode

for arbitrating between the plurality of standard 1/0
[51] Imt. CLE ... GOGF 13/364; GOOF 13/28 devices competing for access to the standard 1/0 bus,
[52] US. CL crieiiiincciicnincnne. 395/299; 395/308; and in a grant mode wherein a selected standard 1/0

_ 395/847; 395/8438 device 1s granted access to the standard I/0 bus. The

[58] Field of Search 395/325, 425, 725 DMA support mechanism comprises a direct memory
156] References Cited access (DMA) controller for performing DMA cycles
on behalf of the selected standard I/0 device, and di-

U.S. PATENT DOCUMENTS rect memory access (DMA) support logic for enabling

5,083,259 1/1992 Maresh et al. c.oocoveeeererne... 395/325 the DMA cycles to be performed over the peripheral
5,101,478 3/1992 Fuetal .cvvrrcnenccnerenenans 395/275 bus. The DMA support logic includes sideband signals
5,265,211 11/1993 Aminiet al. ..c.covmvevemnerecenees 395/323 directly connecting the DMA controller with the 1/0
5,276,845 1/1994 Takayama 395/425 bridge, the sideband Signals including information iden-
5,280,623 1/1994 Sodos et al.cauveeenennenne. 395/325

tifying the bus size of the selected 1/0 device for which

3,297,292 3/1994 Morimoto et al. 395/723 the DMA controller is performing the DMA cycles.

Primary Examiner—Jack B. Harvey

Assistant Examiner—David A. Wiley 19 Claims, 12 Drawing Sheets
e mmmm_m—=_——mesmem—_—_—_—_——_——_—_—_——————m e T A eE A e e e e e e e ";
26 c4 T

_ 10
| SELF <
A CPU
LOCAL BUS (34}

SYSTEM

CLOCK
MODULE

CPU CACHE

DUAL BUS
28 MEMORY
CONTROLLER

. .
A ¢ BASE SYSTEM S-BUS

- MEMORY BUS (36} 5> (16} I

__________ - e o — — —r —— —— e e e e e e o e e e) 8 .

- mp—— —— E—
EEEE N iﬁi o YV YV a]
' [PCI HOST oMA | SACP] C |
: BRIDGE CONTROLLER 40 CONTROLLER I
|

A!A A _i
L o o o i v i e o — — ———— — — — —— " " ——————— —— . Wl St . —— — — o~ o — — — —— — —— — —
/ C

PRIMARY ——-- S-BUS DEVICES (14)
PCI BUS (22}

r._._'.-—_ﬁ___———————_-—__'_r——_““ Aablinkiliy
kit T UL B yeamy jeaek SEEeY el eemy e ey iy pppigh et seage geilg gy pegey pebel degel Seblly ekl gy

Sheet 1 of 12 5,450,551

Sep. 12, 1995

U.S. Patent

JI 014 01 HILVNW

| . _ (22)SNg 134
— (v1) SIJIA30 SNE-S —T—1— AdVWIdd

iiiiiiiiiiiiiiiiiiii m IIIIIJ

390148
hmo: Hum

1B

A

MATCH T0 FIG.

(9€) SNG AYOWINW
WILSAS 4SVE

. .
o,
0O
™
Senage

43 TT04LNOID
AYOWIW
Sng vna

JINJONW
AJ0°17
WAISAS

8t -

(vE) SNG IVI0T
NdJ -

e A P Ay P ey i Benll el e ki el RS ey s aly ol ey Ay SR EOWE EEET YN LAEE MEDE Saan Apan ey SNl Slak SN Ealk WESE S S YR SRR e aEm Dae

914

——— s —— —— — o e o}

U.S. Patent Sep. 12, 1995 Sheet 2 of 12 5,450,551

-
oo
9 _ AN . ..
© T /A
L !_ viviv J \/ \J \J ¥ -E
o | N "pcucra | 46~ Power mGHT]!
| CONTROLLER CONTROLLER | :
S L c]__IC ‘ |
e L D et
< | _
z I _
CARD
| MouUsE |64 CONTROL
PORT '
>4 OPTIONAL
| POWER MGMT .
SERIAL 66 SLOT CONTROLLER

POR rs lg

J PARALLEL 68
| > 62
] Rav
60
-" TIME -0OF
J DAY CLOCK
70
J KEYBOARD
PORT

56

FIG. IB

Sheet 3 of 12 5,450,531

Sep. 12, 1995

U.S. Patent

331730 S3I2IA30 S3JIA30
1SJS 0/1 I1Jd
OMVONVLS OYVONVLS AYVANOIIS ve
& N T D .II.
7 |v |0 96

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
J

3377081NOD ¥3T77104INOI ¥3TI08LNOD - 390148 390148
SIIHJYY9 1SS VIJIWId SNE AYYONQI3S
TVIY3S JaNind QYVONVLS

S

e e o e e e e e e o v ——— - — -

(81)
(cc) AUVYWI S
S37A90 c) SNG 13d AdVWIY

I1Jd

Advhled VI 914 01 HILVNW

J 914 01 HILVNW

oo 02 914 OL HOIVW

5,450,551

_
___ “ ”nuunﬂnanunqmmmh.nanbun (dIVU) |k _
| 1+ ONv@301S™3901¥8 .&&mmu # IN9~IDINVE
- (0378VS10) | Norivailayv | #0339 DiNve | mﬁ,m —
| # IN9~390148 03HIVLLY _ _
s ol (g37gvsig) | ~4Id910 —
G _ - — : |
s 8__. “ # D34-390198 TINVE d |
,.nl.» ‘e !
=N m
O N104 “
_ _ _ ~ _
—I . i [#1n017dovd | T0MINOD “
2 | | . _ | NOT1VY1]18V _
w i . . #3701 ~dIvd AINYE |
~ =i mﬁﬁ | #INI0INVE “
- E oS
5 - > T0YINOJ l g |
Z | | zo:ww.u 184V #03470)NVE “
. -)
| | 03A¥3S34/VOTH “
- | | #ININDI/QT0H < |
£ _ | #038Nd0/D3Y8 < “
M ettt — 0JINVE # 4Y3S
. | # AJ0] _
%) ve 9r4 |
-

U.S. Patent Sep. 12, 1995 Sheet 5 of 12 5,450,551

Gy A
= M
NI
#

T10/FROM
PRIMARY

PCI DEVICES
(18)

MATCH TO FIG. 2A
@

._J_._._.__._._.__.E.._i_
> A
S 8
H

T'0/FROM

170
CONTROLLER

(44)

MATCH TO FIG. 2C

FIG. 2B

Sheet 6 of 12 5,450,551

Sep. 12, 1995

U.S. Patent

72 914 .

SIJIAI0 19d | < 390148

| AMVONOI3S
. | AYVONOI3S
| W0Y 4701 > Ad T9d
3
| 2)INVE
e
<1 901
| |
mwm m 1JVINHIO—=
H_ - (€-0) 1N08yY0&=
O | (E-0) NIgyvO== um.ﬁww«m
. | #NILWIFNd0—3| -133810
- # IN9GYV0 <
|
[

v 914 01 HILVW

#034-2)INVE

1nol-dava

3701 davd

IrIIIIII.IIi' . AN = IEEENE N RN T . 8 - M B AR 9 SR A Al B AR AREER & PWEERE S ST 8 skthe @

oo

Sheet 7 of 12 5,450,551

Sep. 12, 1995

U.S. Patent

MATCH TO FIG. 3B

_I JE 914 01 HILVNW
e PR ot <Nl o Sk S —.
| | (dIV0)
R e e ikttt b INIOd _ - e
[*1 11 ONvE301S7390148 7| T041NO3 #1N9™ 1 INVE
- _ N—) T TR LY — >
V) o #INIT3O0I¥E | g3HIVLILY #0339 1INVE
T 1 #b3y 390198 > | +J3910
i .
- mm 201 IDINVE _por
_ ' lhmzozozzzozo ==
_ “ ONVE301S 390148
r # OINI <t
- # 003y —> (dIvE)
_ _ ® - > INIOd
R I S Wi i
_ ~{ NOI 1
| # EINI < (dIVd) . #3701 -davd NV
| # E03Y &ummm , K _
_ # IN9~0)INVE
“ NOIL1V¥1I8YV . INI"0

»

_ I1Jd # 034" 0)NVE
03AY3S3N/V0TH

_
)
| #ININDI/TTI0H <
_
_

034NdI/0348

8
|
8
-

IWN
dJve

1353y
13d

U.S. Patent Sep. 12, 1995 Sheet 8 of 12 5,450,551

r _______________ 1
78 | '
j Y — REQ4 #
. |
| . i > GNT4 #| TO/FROM
o
< i| |PAcP2_REQ# | PACP? . PRIFARY
_ - |PACP2_GNT# | g pEpn #
: | l |
= l i > GNTO #
o 108
E ! | ;___.._J i...____J
T | : [10 :
= ' L3> ARBGNT #
< o l l
= | ! —3>> PREEMPT#
: | CENTRAL | T0/FROM
| ' | ARBITRATION k&> ARBID (0-3)\ "wp-p
' | CONTROL | ' v
| POINT | BURSTH# DEVICES
s (cACP) |
i L SO # /SI#
| d_ .
--------- === < — CMD#
N !
. e e e e o e e — o~ -
i TO/FROM
: 1/0
| CONTROLLER

MATCH TO FIG. 3C

Sheet 9 of 12 5,450,551

Sep. 12, 1995

U.S. Patent

JE 914 0g
|
|
| 5
" 1n01-8Sd
SIJIAID 13d [<= | - _ ~
| “Xgvanoa3s 2 1 37017854
| 1 AYYONOI3S
| Wod3/01 13d T HINI-2INVE
wm_ . #03Y™SINVE
| 2INVE “
" e e e e e e - e .
<t _ 901
.r _
of | L1IVINHIO—>
Tl (€-0) 1n08yYaé=
s _ - -
S| | #1N01dWIINHO< g3Hov 1Y 3101 "dIva
.1 H#NILIWIFNHO—3A -173¥10
_Iml # IN9GYV0 <
»
[

vE 914 01 HILVNW

—-——'_———___—_—-—-—*-_—“______-_—_mh___d

_ I!Iilihl

Sheet 10 of 12 5,450,551

Sep. 12, 1995

U.S. Patent

MATCH T0 FlG. 38

e e e]
| |
R |
I 1N01785d |
S30IA30 19d Joaideg] |
- _ —

AYVANO O3S | sgvanoozs| 1 779184 m
WOHS /Ol | #LNITOINYE |
|
#0374 2INVE |
| |
_ |
_ |

_
llllllllllllllllllllllll _ "
!
LIV INHITU™2F | voddns | | “

(E-0) LN0GY Y g <=== —
(€—0) NIGYVQO=====y FNI0 1N0L~dovVa |
- vV-OW _
H#1NO0LdWIIFHJQ _ X
O3HIVLILY 37017dova |
#NILdWIFHIa 153810 |
HIN9EYYA _ _
- - e———

Ve 9/4 0L HILVA

U.S. Patent

NO
BRIDGE
PRESENT

Sep. 12, 1995

MC-A BRIDGE
PRESENT
ARB MOODE

PACPZ_REQ #
PACP2_GNT #
BRIDGE_REQ#
BRIDGE_GNT#
ARBID(3)
BR_PREEMPT#
ARBID(Z2)
RESERVED

ARBID(1)
ARBID(0O}

MC-A BRIDGE
PRESENT
GRANT MOOE

PACP2_REQ #
PACP2_GNT #
BRIDGE _REQ#
BRIDGE _GNT#
BSVH
BR_PREEMPT #
BS #8

OMA ACTH#
BSI16#

IC#

FIG. 4B

Sheet 11 of 12

ISA BRIODGE
PRESENT
ARB MOODE

PACPZ_REQ#
PACP2_GNT#
BRIDGE _REQ #
BRIDGE_GNT#
RESERVED
SH_REQUEST
ISA_DACKZ
RESERVED
ISA_DACK]
ISA_DACKO

ISA BRIDGE
PRESENT
GRANT MODE

| PACP2_REQ#

PACP2_GNT#
BRIDGE _REQ #
BRIDGE _GNT #
XMODE |
RESERVED
XMODEQ

DMA ACT#
RESERVED
TC#

5,450,551

Sheet 12 of 12 5,450,531

Sep. 12, 1995

U.S. Patent

S 914

— Orewvedovd] 0 | T
_gIeyvedvd| 0

— aigwvedvd] T | 0
ONVE30IS VWO| X

 oNve3gIS wAa| x| X

Yava vsI/gIgyv v-oWw| x| x

Nova vsisargyv v-oWwl| 1 | o1

NOILINNS 018YV | #IN9~2davVd | # 038~ 2dIvd

H#INI 390148

#034°390148

5,450,551

1

SYSTEM DIRECT MEMORY ACCESS (DMA)
SUPPORT LOGIC FOR PCI BASED COMPUTER
SYSTEM

RELATED APPLICATIONS

Application Ser. No. 08/069,253 filed May 28, 1993
Entitled “ARBITRATION LOGIC FOR MULTI-
PLE BUS COMPUTER SYSTEM RELATED AP-
PLICATIONS” (Further identified as Attorney
Docket BC9-93-011);

Application Ser. No. 08/069,230 filed May 28, 1993
Entitled “ERROR CAPTURE LOGIC FOR PE-
RIPHERAIL BUS IN MULTIPLE BUS COMPUTER
SYSTEM” (Further identified as Attorney Docket
B(C9-93-025);

Application Ser. No. 08/068,882 filed May 28, 1993
Entitled “METHOD AND APPARATUS FOR PRO-
VIDING BACK-TO-BACK DATA TRANSFERS
IN AN INFORMATION HANDLING SYSTEM
HAVING A MULTIPLEXED BUS” (Further identi-
fied as Attorney Docket BC9-93-026):

Application Ser. No. 08/070,134 filed May 28, 1993
Entitled “METHOD AND APPARATUS FOR INI-
TIALIZING MULTIPLE BUS NETWORKS IN AN
INFORMATION HANDLING SYSTEM” (Further
identified as Attorney Docket BC9-93-012);

Application Ser. No. 08/069,234 filed May 28, 1993
Entitled “METHOD AND APPARATUS FOR PRO-
VIDING ACCURATE AND COMPLETE COM-
MUNICATION BETWEEN DIFFERENT BUS AR-
CHITECTURES IN AN INFORMATION HAN-
DLING SYSTEM” (Further identified as Attorney
Docket BC9-93-030); and

Application Ser. No. 08/068,877 filed May 28, 1993
Entitled “BUS-TO-BUS BRIDGE FOR A MULTI-
PLE BUS INFORMATION HANDLING SYSTEM
THAT OPTIMIZES DATA TRANSFERS BE-
TWEEN A SYSTEM BUS AND A PERIPHERAL

BUS” (Further identified as Attorney Docket BC9-93-
031).

BACKGROUND OF THE INVENTION

The present invention relates generally to memory
operations occurring in computer systems, and more
particularly to logic support for direct memory access
(DMA) operations in a computer systems comprising a
plurality of buses interconnected by bus bridges. Com-
puter systems typically include more than one bus, each
bus In the system having devices attached thereto
which communicate locally with each other over the
bus. System-wide communication over different buses is
required, however, if a device attached to one bus needs
to read or write information to or from a device on
another bus. To permit system-wide communication
between devices on different buses, bus-to-bus bridges
(interfaces) are provided to match the communications
protocol of one bus with that of another.

Known bus-to-bus bridges include those disclosed in
the following co-pending patent applications assigned
to the IBM Corporation: Application Ser. No.
07/815,992 entitled “BUS CONTROL LOGIC FOR
COMPUTER SYSTEM HAVING DUAL BUS AR-
CHITECTURE”; U.S. Pat. No. 5,313,627 issued May
17, 1994 entitled “PARITY ERROR DETECTION
AND RECOVERY”; Application Ser. No. 07/816,204
entitled “CACHE SNOOPING AND DATA IN-
VALIDATION TECHNIQUE”: U.S. Pat. No.

10

15

20

235

30

35

45

50

35

65

2
5,255,374 issued Oct. 19, 1993 entitled “BUS INTER-

-FACE LOGIC FOR COMPUTER SYSTEM HAV-

ING DUAL BUS ARCHITECTURE?”; entitled “BI-
DIRECTIONAL DATA STORAGE FACILITY
FOR BUS INTERFACE UNIT”; Application Ser.
No. 07/816,693 entitled “BUS INTERFACE FOR
CONTROLLING SPEED OF BUS OPERATION?”:
U.S. Pat. No. 5,265,211 issued Nov. 23, 1993 entitled
“ARBITRATION CONTROL LOGIC FOR COM-
PUTER SYSTEM HAVING DUAL BUS ARCHI-
TECTURE”; and Application Ser. No. 07/816,698
entitled “METHOD AND APPARATUS FOR DE-
TERMINING ADDRESS LOCATION AT BUS TO
BUS INTERFACE”, all filed on Jan. 2, 1992. These
applications describe mechanisms which permit system-
wide communication of devices attached to different
buses 1n the system.

Each bus-to-bus bridge in a multi-bus computer sys-
tem is used to connect two buses in the system. Various
types of buses are available to construct a given com-
puter system. Standard I/0 buses include, for example,
ISA or MICRO CHANNEL® (“MC-A”) buses,
which often are used to connect existing peripheral 1/0
devices to a system built around a more centralized,
high performance bus.

One such high performance bus which is becoming
widely accepted is the PCI (Peripheral Component
Interconnect) bus, which is capable of performing sig-
nificant data transfer in a relatively short period of time
(up to 120 megabytes of data per second). The PCI bus
achieves this high level of performance, in part, because
it may be directly linked to other high speed buses, such
as system buses to which a CPU may be connected, and
thus may provide for rapid transfer of data between
devices attached to the PCI bus and devices attached to
the system bus. In fact, the operation of several high
Integration devices, such as certain graphics package
controllers, require a direct link to a system bus through
a high performance bus such as the PCI bus. In addition,
the PCI bus architecture does not require any “glue
logic” to operate peripheral devices connected to it.
Glue logic for other buses typically consists of miscella-
neous hardware components such as decoders, buffers
or latches that are installed intermediate the peripheral
devices and the bus.

‘The primary PCI bus operates on a synchronous
clock signal of 33 MHz, and the strings of data transmit-
ted over the PCI bus are 32 bits long. A 32-bit data
string on the PCI bus is called a double word
(DWORD), which is divided into 4 bytes each com-
prised of 8 bits of data. The address and data informa-
tion carried by the PCI bus are multiplexed onto one
signal. Multiplexing eliminates the need for separate
address and data lines, which in turn, reduces the
amount of signals required in a PCI bus environment as
opposed to other bus architectures. The number of
signals required in PCI bus architecture is between
45-47 while non-multiplexed buses typically require
twice this number. Accordingly, because the number of
signals are reduced, the number of connection pins
required to support a device linked to the PCI bus is
also reduced by a corresponding number. PCI architec-
ture is thus particularly adapted for highly integrated
desktop computer systems.

A more detailed description of the structure and op-
eration of PCI bus architecture is provided in “Periph-
eral Component Interconnect (PCI) Revision 2.0 Speci-

3

5,450,551

3
fication™, published Apr. 30, 1993; “Preliminary PCI
System Design Guide™ revision 0.6, published Now. 1,
1992, and “Peripheral Component Interconnect (PCI)
Add-in Board/Connector Addendum”, (Draft) pub-
lished 6 Nov. 1992; all by the PCI Special Interest
Group, the contents of which references are incorpo-
rated herein by reference as if they were fully set forth.

Interfacing the PCI bus to standard 1/0 buses in a
computer system is problematic, however, if the com-
munications protocols between the PCI bus and the
standard I/0O bus are different. For example, direct
memory access (DMA) cycles may be handled differ-
ently by devices attached to the PCI bus as compared to
those connected to a standard 1/0 bus. DMA cycles are
operations in which data is transferred between system
memory and input/output units by a DMA controller
without intervention by the CPU. Most devices which
attach directly to the PCI bus are generally high perfor-
mance 32-bit bus master devices which have their own
built-in DMA control logic. Such bus master devices
need not rely on a system-provided DMA controller,
thereby permitting the device to initiate a DMA. trans-
fer by 1tself instead of relying on the system DMA con-
troller to initiate data transfers. A DMA slave device is
typically lower performance, less expensive and re-
quires the assistance of a system DMA controller to
perform a DMA transfer.

Examples of typical DMA slave devices are serial
port, parallel port, and floppy disk devices. In order to
maintain both hardware and software compatibility
with any system which contains a standard 1/0 bus
such an ISA or MC-A bus, it 1s required that these
standard I1/O devices, as well as a standard system
DMA controller, exist in the system. DMA controllers
may be of ISA or PS2 architecture. Although ISA and
PS2 DMA controllers are slightly different, they both
require specific sets of signals in order to control arbi-
tration and data transfers. A DMA controller is re-
quired to maintain compatibility with existing hardware
(1/0 devices), and ISA/PS2 architecture is required to
maintain compatibility with existing software.

DMA controllers have specific functions requiring
arbitration, bus sizing, DMA cycles (e.g. transfer tim-
ings and terminal count), and various modes (e.g. sin-
gle/burst/demand/cascade) of operation. The DMA
controller is typically located on the standard I/0O bus,
which precludes systems from being built without a
standard 1/0 bus. The PCI bus does not provide signals
or support for a system having a DMA controller lo-
cated on the PCI bus.

1/0 devices on a standard I/0 bus are likely to be less
performance-oriented than devices attached to the PCI
bus and more likely to require the assistance of a DMA
controller to perform DMA cycles (e.g., 8, 16 or 32-bit
}/0O devices having no DMA controller built-in). A
DMA controller requires dynamic bus sizing when
managing DMA cycles for different types of slave de-
vices, meaning that it needs to know the size (8-bit,
16-bit, etc.) of the particular slave device on whose
behalf it is managing a DMA cycle. Such dynamic bus
sizing 1s typically supported on standard I/0O buses,
such as the AT®), ISA or MICROCHANNEL ®
buses.

Because the PCI bus was not architected with such
dynamic bus sizing capability, however, the PCI bus
cannot support DMA cycle operations involving DMA
slave devices. DMA slave devices which are attached
to a standard 1/0 bridge which is in turn connected to

S

10

15

20

235

30

35

45

50

35

65

4

a PCIl bus, then, cannot have DMA operations per-
formed on their behalf by a DMA controller over the
PCI bus. Such operations are necessary, however, if the
multi-bus system architecture requires DMA slave de-
vices on the standard I/0 bus to cross over the PCI bus
to access system memory.

It 1s an object of the present invention, then, to pro-
vide a mechanism for supporting DMA cycles for
DMA slave devices on a standard 1/0 bus which is
attached to a high performance bus (such as a PCI bus)
by means of a standard bus bridge, in order to permit a
DMA controller to perform DMA cycles on behalf of
the slave devices over the PCI bus to system memory.
The mechanism is provided by defining a sideband
interface to a standard 1/0 bridge which allows a sys-
tem DMA controller to always exist on the PCI bus. By
utilizing the sideband interface, DMA slave devices on
an optional expansion bus can also be supported. In
addition, the DMA specific sideband signals may be
multiplexed with existing sideband signals.

SUMMARY OF THE INVENTION

The present invention solves the problem of support-
ing DMA cycles on behalf of slave 1/0 devices over the
PCI bus. The mvention defines an extension to the PCI
bus comprising sideband signals which provide the
necessary link between a DMA controller and a stan-
dard DMA-compatible expansion bus. Some of the
sideband signals are multiplexed with arbitration signals
to reduce the pin count necessary to implement DMA
cycle support on the PCI bus.

To manage 1/0 cycles on behalf of an I/0 device
over the PCI bus, the DMA controller must determine
the bus size of the I/0 device for which it is managing
an [/0 cycle (i.e. whether the device is an 8, 16 or 32-bit
device). This information is provided by the muliti-
plexed sideband signals. The sideband signals directly
connect between the DMA controller and an I/0
bridge which supports a DMA-compatible expansion
bus.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A through 1C, taken together, are [FIG. 1] is
a block diagram of an information handling system
constructed according to the principles of the present
invention;

FIGS. 2A through 2C are [FIG. 2 is] a block diagram
of one embodiment of the system arbitration control
point shown 1n the system of FIGS. 1A through 1C
[FIG. 1];

F1GS. 3A through 3D are [FIG. 3 is] a block diagram
of another embodiment of the system arbitration control
point shown in the system of FIGS. 1A through 1C
[FIG. 1];

FIG. 4A 1s a table showing alternate definitions of
inputs into the system arbitration control point during
an arbitration mode which correspond to the embodi-
ments shown in FIGS. 2A through 2C and FIGS. 3A
through 3D; [FIGS. 2 and 3; and]

FI1G. 4B 1s a table showing alternate definitions of
Inputs into the system arbitration control point during a
grant mode which correspond to the embodiments
shown in FIGS. 2A through 2C and FIGS. 3A through
3D; and [FIGS. 2 and 3.]

FI1G. 5 1s a table showing multiplexed arbitration
sideband signals.

H

5,450,551

S

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIGS. 1A-1C, a multi-bus informa-
tion handling system 10 is shown generally at 10, com-
prising, (1) a processor, cache and memory complex 12
connected to S-bus (system bus) devices 14 via an S-bus
16 and (1) primary PCI devices 18 attached to one of
the S-bus devices, a primary PCI host bridge 20, via a
primary PCI bus 22. More detailed descriptions of the
processor, cache and memory complex 12, the S-bus
devices 14, the primary PCI devices 18, and the other
elements shown in FIGS. 1A-1C will be provided here-
inafter.

The processor, cache and memory complex 12 com-
prises a central processing unit (CPU) 24, a self-test
circuit 26, a memory controller 28, a CPU cache 30, and
base system memory 32. The CPU 24 in the preferred
embodiment i1s a 32-bit microprocessor available from
Intel, Inc. under the trade designation 1486 T™M, al-
though it is contemplated that the system 10 may be
mplemented using other types of CPUs, especially
other x86-type microprocessors. The self-test circuit 26
provides a built-in-self-test (BIST) feature for the CPU
24 upon power-up. The self-test circuit also controls
any seli-test features which may be incorporated within
each of the S-bus devices 14.

The CPU 24 i1s connected to the self-test circuit 26
and the memory controller 28 by a CPU local bus 34.
The memory controller 28 is connected to the base
system memory 32 by means of a base system memory
bus 36. The memory controller 28 controls read and
write operations to base system memory 32 over the
base system memory bus 36, which operations are initi-
ated by either the CPU 24 over the CPU local bus 34, or
by an S-bus device 14 over the S-bus 16. Because the
memory controller has the capability to manage opera-
tions on two buses, operations over the base system
memory bus 36 and the CPU local bus 34 may be man-
aged simultaneously. The CPU local bus 34, the base
system memory bus 36, and the S-bus are 32-bit buses,
each of which buses comprises data, address and con-
trol information paths (“D”, “A”, and “C” in FIGS.
1A-1C) as is typical of such buses.

Base system memory 32 provides system-wide stor-
age capability and may comprise either non-interleaved
or mterleaved memory cards. The CPU cache 30 per-
mits short term storage of information contained within
either base system memory 32 or expansion memory
located elsewhere within the system 10. Such expansion
memory could, for example, be located on the peripher-
ally attached I1/0 devices within the system. The CPU
cache 30 mncorporates random access memory (RAM,
not shown) which is used to temporarily stores address
locations of the base system memory 32 which are fre-
quently accessed by the CPU 24. The CPU 24 accesses
information stored in the CPU cache 30 directly,
whereas access to information stored in the base system
memory 32 must be handled by the memory controller
28.

All access to base system memory 32 is controlled by
the memory controller 28 via base system memory bus
36. The memory controller initiates system memory
cycles to the base system memory 32, during which
cycles either the CPU 24 or one of the S-bus devices 14
has access to the base system memory via the memory
controller 28. During a memory cycle, the memory
controlier does not pass information onto the S-bus.

10

15

20

25

30

35

45

50

35

65

6

However, if the memory controller determines that the
operation 1t is managing is an I/0O cycle, the memory
controller propagates the information onto the S-bus for
access thereto by an S-bus device. If the I/0 cycle is
destined for a S-bus device, the appropriate S-bus de-
vice responds with a decode command to the memory
controller. If the I/0 operation is destined for a primary
PCI device 18, the PCI host bridge 20 responds with a
decode command to the memory controller and passes
the 1/0 cycle to the appropriate primary PCI device.

A system clock module 38 provides a single clock
signal for the S-bus devices 14, and a pair of clock sig-
nals for the CPU 24. In the preferred embodiment, the
clock signal provided to the S-bus operates at 33 MHz.
The two signals provided to the CPU 24 operate at 33
MHz and 66 MHz, respectively. The CPU 24 requires
two clock signals because it operates internally at 66
MHz, but communicates over the CPU local bus 34 at
33 MHz.

Communications between the processor, cache and
memory complex 12 and the S-bus devices are managed
by the memory controller 28 over the 32-bit S-bus 16.
Also attached to the S-bus, as shown in the preferred
embodiment of FIGS. 1A-1C, are a direct memory
access (DMA) controller 40, a system arbitration con-
trol point (SACP) 42, an input/output (I/0) controller
44, a PCMCIA controller 46, and a power management
controller 48. An optional power management control-
ler S0 may be attached to the power management con-
troller 48 1n case more sophisticated power manage-
ment control 1s desired. A buffer 52 is provided on the
S-bus 16 intermediate the DMA controller 40 and the
I/0 controller 44. As shown in FIGS. 1A-1C, how-
ever, it 1s contemplated that other S-bus devices 14,
beyond those shown, may be attached to the S-bus 16.

The PCMCIA controller 46 is attached directly to
PCMCIA card slots 54. Peripheral 1/0 devices 56 may
be connected to the PCMCIA card slots 54 by means of
butfers 58. The peripheral I/0 devices 56 are controlled
by the 1/0 controller 44. Attached to the I/0O controller
are a time-of-day clock 60 and a RAM module 62. The
1/0 controller 44 supports a variety of ports, including
a mouse port 64, serial ports 66, a parallel port 68, and
a keyboard port 70.

In addition to supporting S-bus devices 14 on the
S-bus 16, the system 10 also supports a second high
speed, high bandwidth bus, which in the preferred em-
bodiment 1s the primary PCI bus 22. Primary PCI de-
vices 18 in the system 10 communicate with each other
over the primary PCI bus 22. Primary PCI devices
communicate with the CPU, cache and memory com-
plex 12 and with other S-bus devices 14 residing on the
S-bus 16 by means of the PCI host bridge 20, which is
itself an S-bus device residing on the S-bus. The PCI
host bridge 20, then, serves as an interface between the
S-bus 16 and the primary PCI bus 22 and provides an
effective means of ecommunication between these two
buses, and any peripheral devices which may be at-
tached to these buses.

‘The PCI host bridge 20 is a low latency interconnect
mechanism through which the CPU 24 or other S-bus
device 14 may directly access the primary PCI devices
18 or devices attached thereto. The bridge 20 also pro-
vides a high performance path which allows the pri-
mary PCI devices or devices attached thereto quick and
direct access to base system memory 32. In addition, the
host bridge 20 provides all of the hardware required to
provide an interface between the S-bus 16 and the pri-

5,450,531

7

mary PCI bus 22 so that data may be transferred be-
tween these buses.

The primary PCI bus 22 is capable of supporting a
variety of devices which are PCI compatible. As shown
in FIGS. 1A-1C, these devices may include a graphics
controller 72, a serial SCSI (small computer systems
interface) controller 74, a future PCMCIA controller
76, a standard 1/0 bus (e.g., ISA or MICRO CHAN-
NEL ® (“MC-A")) bridge 78 (also referred to herein as
an expansion bridge), and a PCI secondary bridge 80.
The devices shown in FIGS. 1A-1C attached to the
primary PCI bus, however, are only one example of a
system implementing a PCI bus architecture and thus
the disclosed exemplary configuration and is not in-
tended to limit the invention in any way.

The graphics controller 72 is typically provided with
memory capability 1n the form of VRAM 82, which
enables the graphics controller to buffer video frames
therein, and may control any known graphics package
which may be supported by PCI bus architecture. The
SCSI controller 74 serves as an interface between SCSI
devices 84 attached to a SCSI bus 86 and the primary
PCI bus 22, and may control any SCSI device which
may be supported by PCI bus architecture. The future
PCMCIA controller 76 is attached to and controls card
slots 88.

The standard bus bridge 78 serves as an interface
between 1/0 devices 90 attached to a standard (e.g.,
MC-A or ISA) bus 92 and the primary PCI bus 22.
Secondary PCI devices 94 are connected to PCI sec-
ondary bridge 80 via secondary PCI bus 96. Any num-
ber of unidentified secondary PCI devices 94 may then
be connected to the secondary PCI bus 96. The PCI
secondary bridge 80 serves as an interface between the
secondary PCI devices 94 attached to the secondary
PCI bus 96, and the primary PCI bus 22.

The DMA controlier 40, the PCI host bridge 20, and
the I/0 controller 44 control the exchange of informa-
tion between base system memory 32 and expansion
memory on the peripheral I/0 devices 56 or on the
standard 1/0 devices 90. The DMA controller 40 also
provides three functions on behalf of the CPU, cache
and memory complex 12. First, the DMA controller 48
utihzes a small computer subsystem control block
(SCB) architecture to configure DMA channels, thus
avoiding the necessity of using programmed 1/0 to
configure the DMA channels. Second, the DMA con-
troller provides a buffering function to optimize trans-
fers between slow memory expansion devices and the
typically faster base system memory 32. Third, the
DMA controller provides an eight channel, 32-bit, di-
rect base system memory access function. When pro-
viding the direct base system memory access function,
the DMA controller 40 may function in either of two
modes. In a first mode of operation, the DMA control-
ler functions in a programmed I/0 mode in which the
DMA controller is functionally a slave to the CPU 24.
In a second mode of operation, the DMA controller
itself functions a master on the S-bus.

The DMA controlier 40 always functions as a third
party bus master. It i1s never a source or destination of
data, but 1t does provide a means for transferring data
between a source entity and a destination entity. Al-
though shown residing on the S-bus in FIGS. 1A-1C,
the DMA controller need not reside on the S-bus. The
DMA controller typically manages data transactions
from memory to an 1/0 device, or from an I/Q device
to memory. The memory may be either base system

10

15

20

235

30

35

45

20

3

60

65

8

memory 32 or peripheral memory on the peripheral 1/0
devices 56 or on the standard I1/0 devices 90.

The standard I/0 devices 90 residing on the standard
(e.g., ISA or MC-A) bus 92 may be 8-bit type devices,
16-bit type devices, or 32-bit type devices. The design of
the PCI host bridge 20 and the system arbitration con-
trol point (SACP) 42 according to the present invention
permits simultaneous arbitration on a system-wide basis
of (1) the CPU 24, (i1) primary PCI devices 18 residing
on the primary PCI bus 22, (iii) standard I/0 devices 90
residing on the standard I/0 bus 92, and (iv) peripheral
I/0 devices 56 controlled by the 1/0 controller 44. The
SACP 42 functions as the primary arbiter for the stan-
dard 1/0 devices 90, the CPU 24, the primary PCI
devices 18, and the peripheral I/0 devices 56.

Block diagrams of implementations of the SACP 42
are shown in FIGS. 2A-2C and 3A-3D. FIGS. 2A-2C
1S a block diagram of an embodiment of the system
arbitration control point used when the system shown
in FIGS. 1A-1C does not include a standard bus bridge
78 attached to the primary PCI bus 22. FIGS. 3A-3D is
a block diagram of a second embodiment of the system
arbitration control point used when the system shown
in FIGS. 1A-1C includes a standard bus bridge 78 at-
tached to the primary PCI bus 22.

Referring first to FIGS. 2A-2C, the SACP 42 imple-
mentation used when no standard bus bridge 78 is pres-
ent comprises a bank arbitration control point (BACP)
100, a PCI arbitration control point (PACP) 102, and a
direct-attached arbitration control point (DACP) 104.
The BACP 100 arbitrates between requests by the
PACP 102 and the DACP 104 for control of the pri-
mary PCI bus 22. The PACP 102 manages primary PCI
bus access requests presented to it by the CPU 24 and
the primary PCI devices 18 (collectively “BANKO
requests”). The DACP 104 handles primary PCI bus
requests presented to it by the I/0O controller 44 on
behalf of the pernipheral 1/0 devices 56 which it con-
trols. As will be explained later with reference to FIGS.
3A-3D, the DACP 104 also manages primary PCI bus
access requests presented by the standard bus bridge 78
on behalf of standard I/O devices 90 attached thereto,
In systems including a standard bus bridge 78 attached
to the primary PCI bus 22.

The primary PCI bus requests presented by the stan-
dard bus bridge 78 and the I/0 controller 44 are collec-
tively referred to herein as “BANK1 requests”. The
BACP 100, in addition to managing primary PCI bus
access requests presented by the PACP 102 and the
DACP 104, is adapted to handle primary PCI bus re-
quests by the PCI secondary bridge 80 on behalf of
secondary PCI devices attached thereto (collectively
“BANK2 requests”). Further expansion to include bank
arbiters other than those shown in FIGS. 2A-2C and
3A-3D (the PACP 102, the DACP 104 and the PCI
secondary bridge 80) is contemplated by the present
invention. If other secondary PCI bridges are included
in the system in a multi-tier structure attached to the
PCI bus 22, these other secondary PCI bridges will
themselves perform arbitration among attached devices
and present a “BANKN” request to the BACP 100.

The hierarchical architecture described above pro-
vides an arbitration scheme for the system 10 wherein
(1) arbitration between the CPU and primary PCI de-
vices 1s managed independently of (i) arbitration be-
tween peripheral I/0 devices controlled by the 1/0
controller and standard 1/0 devices attached to the
standard bus bridge 78 (when present). The PACP 102

1h

3,450,551

9

recerves requests for access to the PCI bus 22 directly
from up to five PCI devices 18 and the CPU 24. The
five PCI devices present their requests to ten request/-
grant lines on the PACP, REQ0# through REQ4# (as
used herein, the symbol “#” 1s used to denote negative
active signals). The PCI devices are granted access to
the primary PCI bus 22 via grant lines GNT0# through
GNT4#. The request lines and grant lines are direct
connections between the primary PCI devices 18 and
the PACP 102.

Although the CPU 24 accesses base system memory
via the memory controller 28, if the CPU requires ac-
cess to the primary PCI bus 22, it must compete with
like requests made by the primary PCI devices 18. Once
the CPU 24 gains control of the S-bus 16, the primary
host bridge will provide a bus master interface between
the primary PCI bus and the S-bus, and will present the
CPU 24 as a PCI master. Although the PCI host bridge
performs no arbitration, it does perform protocol con-
version, buffering, and speed matching between the
S-bus and the PCI bus.

The primary PCI bus access request for the CPU 24
1s presented directly to the PACP 102 on the request
line BREQ which is used as a preempt signal (typical of
1486-type processors) to the PACP. The CPU 24 uses a
hold/hold acknowledge protocol via dedicated lines
HOLD and HLDA between the CPU 24 and the PACP
102. In embodiments of the system wherein the CPU is
not of the 1486 architecture, the PACP-CPU interface is
unknown and thus the PACP must also support a PCI
request/grant handshake (CPUREQ# and
CPUGNT#) in addition to the i486 BREQ/HOLD/H-
LDA. Accordingly, both the CPU and the PCI devices
each have direct connections for arbitration request and
grant signals to and from the PACP 102.

The pending requests between the primary PCI de-
vices 18 and the CPU 24 may be handled by the PACP
102 1n two different manners. One approach is to handle
the requests in a round robin procedure, wherein the
PACP would service the pending requests in sequential
order. A second approach is to manage the requests in
a fixed priority. This second approach is possible if an
arbitration priority is assigned to each of the primary
PCI devices 18 and the CPU 24. Specifically, the CPU
request line BREQ/CPUREQ# and the primary PCI
device request lines REQO#-REQ4# have programma-
ble priority levels. The priority levels may be deter-
mined based on the bandwidths of the PCI devices
involved. For exampie, a PCI device possessing a high
bandwidth and low buffering capability should be as-
signed a higher arbitration priority than devices having
smaller bandwidths and/or higher buffering capability.

Regardless of the approach taken, the PACP 102
arbitrates among the BANKO requests, determines

which of the PCI devices or the CPU should maintain

priority, and presents the selected device to the BACP
on BANKO_REQ# line, along with the requests pres-
ented by the other bank arbiters (BANK1_REQ#,
BANK2_REQ#, etc.). The BACP 104 is programmed
to provide each of the bank arbiters with a selected time
interval in which devices selected by the bank arbiters
are granted access to the primary PCI bus 22. Access {0
the primary PCI bus 22 is granted to the selected device
via grant lines output by the BACP (BANKO0_GNT#,
BANKI1_GNT#, BANK2_GNT#, etc.)

As explained above, the BACP 100 is the highest
level arbiter in the SACP 42. It services arbitration
requests presented to it by the individual bank arbiters

10

15

20

25

30

35

45

50

55

65

10

which manage primary PCI bus access requests on a
system-wide basis. The operation of the first bank arbi-
ter, PACP 102 (BANKDO0), has been described above. A
description of the operation of the second bank arbiter,
DACP 104 (BANK1), follows.

The DACP 104 1s responsible for arbitrating between
peripheral 1/0 devices 56 controlled by the I/0 con-
troller 44 (in embodiments of the system wherein no
standard bus bridge 78 is used) or between peripheral
I/0 devices 56 and standard I/0 devices 90 attached to
the standard bus bridge 78 when one is included in the
system. The peripheral 1/0 devices 56 and the periph-
eral 1/0 devices 90 may be compatible with either MI-
CROCHANNEL ® (MC-A) or ISA architecture. As
shown 1n FIGS. 2A-2C and 3A-3D, the control signals
to which the DACP 104 responds correspond to MC-A
architecture, although the DACP may be implemented
to respond to ISA-type control signals.

With continued reference to FIGS. 2A-2C (no stan-
dard bus bridge 78 present), the DACP 104 receives
primary PCI bus access requests from the 1/0O control-
ler 44 on behalf of the peripheral I/0 devices 56 at a
portion of the DACP designated direct-attached MC-A
device support 106. These requests are made over the
DPREEMPTIN# line. The direct-attached MC-A de-
vice support portion 106 of the DACP 104 alternates
between arbitration and grant cycles in performing
arbitration between peripheral 1/0 devices 56 compet-
ing for access to the primary PCI bus 22. The status of
the DARBGNT# line indicates whether the direct-
attached MC-A device support portion 106 is in an
arbitration or a grant cycle. Bus access requests are
managed over the DPREEMPTOUT# line. The
DPREEMPTOUT# output and DPREEMPTIN#
input conform to MC-A protocol. The other signal lines
in and out of the direct-attached MC-A device support
portion 106 will be described in the context of FIGS.
3A-3D. The BRIDGE_REQ#, BRIDGE_ _GNT#,
and BRIDGE_SIDEBAND signal lines to and from
the DACP 104 in FIGS. 2A-2C are disabled because no
standard bus bridge 78 is present. |

In FIGS. 3A-3D, however, the system 10 includes a
standard bus (expansion) bridge 78 connected to the
primary PCI bus 22. In this embodiment, the DACP 104
arbitrates between peripheral 1/0 devices 56 controlled
by the I/0 controller 44 and standard 1/0 devices 90
attached to the standard I/0 bus 92 supported by the
standard bus bridge 78, each of which devices compete
for access to the primary PCI bus 22. As explained
above, the pernipheral 1/0 devices 56 and the standard
1/0 devices 90 are either MC-A or ISA-compatible.

Five request/grant pairs REQO#/GNTO0# through
REQ4#/GNT4# are still used by primary PCI devices
18 to request and be granted access to the PCI bus 22.
However, these request/grant lines are directed into a
secondary PCI arbitration control point, PACP2 108,
and not the PACP 102. The PACP2 108 is located
physically within the standard bus bridge 78, and is
cascaded into the PACP 102. PACP2 108 arbitrates
between the attached primary PCI devices 18 and pres-
ents a single bus access request PACP2_REQ# to the
primary PACP 102. Arbitration priorities are handled
in a similar manner to that in which they are managed in
the PACP 102. The PACP then arbitrates between the
CPU 24 (the bus access request of which is presented on
the BREQ/CPUREQ# line) and the highest priority
PClI device (the bus access request of which is presented
on the PACP2__REQ# line). The primary PCI devices

5,450,551

11
have their request for PCI bus access granted over the
PACP2_GNT# line.

Because arbitration among PCI devices is handled
outside the SACP 42 in the embodiment of FIGS.
3A-3D, the functions of the request/grant lines in and
out of the SACP are redefined for the system of FIGS.
3A-3D. FIG. 4 is a table showing alternate definitions
of pin connections into the SACP 42 corresponding to
the embodiments shown in FIGS. 2A-2C and 3A-3D.
The five pairs of request/grant lines REQO# and
GNTO0# through REQ4# and GNT4#, which are used
by the primary PCI devices to request and be granted
access to the PCI bus 22 in the system not having a
standard bus bridge 78 attached to the primary PCI bus
(FIGS. 2A-2C), are redefined when the system does
include a standard bus bridge 78 (FIGS. 3A-3D). Be-
cause PACP2 108 handles the primary PCI device bus
access requests outside the SACP 42 and presents a
single request to the PACP 102, REQ4# is redefined as
the single request PACP2_REQ#. Similarly, GNT4#
1s redefined as a single grant line from the PACP to the
PACP2 as PACP2_GNT#. REQO0#/GNT0# through
REQ3#/GNT3# lines into and out of the PACP 102
are disabled.

With eight input/output lines (REQO#/GNTO#
through REQ3#/GNT3#) disabled in the system of
FIGS. 3A—3D, eight new pin connections are available
as mputs to the SACP 42, having been freed up by the
addition of PACP2. These input/output lines are re-
quired for the system of FIGS. 3A-3D to permit arbi-
tration of standard I/0 devices 90 concurrently with
peripheral I/0 devices 56. As shown in FIGS. 3A-3D,
a central arbitration control point CACP 110, physi-
cally located on the MC-A bridge 78, manages the arbi-
tration of MC-A devices 90. (In the case of ISA devices,
arbitration of such devices would be handled by an
ISA-compatible arbitration device, via ISA_DREQ#
and ISA_DACK# lines, because the ISA protocol
supports direct requests and acknowledges to and from
the devices attached to the ISA-compatible arbitration
device.)

A MC-A device requests arbitration by activating the
PREEMPT# signal into the CACP 110. The CACP
alternates between arbitration and grant cycles which
are indicated by the state of the ARBGNT# line. When
the PREEMPT# signal is activated, the CACP enters
the arbitration state during which the MC-A devices
drive their arbitration identification outputs (ARBID(0-
3)). After 300 nanoseconds, the arbitration identification
of the highest priority MC-A device remains on the
ARBID(9-3) lines. This single request is presented on
the BRIDGE _REQ# signal line to the DACP 104.
The DACP, if having determined that the request pres-
ented by the CACP has priority over a request pres-
ented by the I/0 controller 4 on behalf of the periph-
eral 1/0 devices 56, will activate the BRIDGE_GNT#
signal line. (As shown in FIG. 4, the REQ3#/GNT3#
lines are redefined as the BRIDGE_REQ# and BRID-
GE_GNT# signal lines, disabled in the system corre-
sponding to FIGS. 2A-2C, into and out of the DACP
104). If an expansion bridge 78 is included within the
system, the BRIDGE_REQ# signal is used as a request
on behalf of an expansion bus master or a DMA slave
during the arbitration cycle, as a BURST# signal dur-
ing DMA grant cycles, and as an indication of the end
of transfer during cascade/bus master operation. The
BRIDGE_GNT# signal indicates to the MC-A de-
vices 90 when the DACP 104 grants access to the PCI

10

15

20

25

30

35

45

50

33

65

12

bus 22. The ARBGNT# line enters the grant state and
the highest priority MC-A device determines that it has
been selected and that its bus access request has been
granted. Operation of the CACP 110 is explained more
fully in co-pending applications Ser. No. 07/777,777
filed Oct. 15, 1991 and entitled “Controlling Bus Allo-
cation Using Arbitration Hold” and Ser. No.
07/816,116 filed Jan. 2, 1992 for “Arbitration Control
Logic for Computer System having Dual Bus Architec-
ture”, the texts of which are incorporated herein by
reference.

The six remaining inputs into the SACP 42,
REQO#/GNTO# through REQ2#/GNT2#, are rede-
fined as the six BRIDGE_SIDEBAND signals (dis-
abled in the system corresponding to FIGS. 2A-2C).
BRIDGE_SIDEBAND signals are not defined in the.
PCI architectural specification but are required to sup-
port arbitration as well as DMA peripherals on the PCI
bus, such as the standard 1/0 devices 90 attached to the
standard bus bridge 78, to provide an effective PCI-ISA
or PCI-MC-A interface. The BRIDGE_SIDEBAND
lines directly connect the standard bus bridge 78 with
the SACP 42. With reference to FIG. 4, these
BRIDGE_SIDEBAND signals have different defini-
tions, depending on whether the standard bus bridge 78
1s MC-A or ISA-compatible. When the bridge is not
granted, the six sidebands include the identification
information (ARBID(0) through ARBID(3) in MC-A:
ISA_DACK@) through ISA_DACK(2) in ISA)
which identifies the 1/0 device presenting the PCI bus
access request.

With reference to the MC-A implementation of the
present invention, -using the ARBID(0) through AR-
BID(3), the BRIDGE_SIDEBAND signal lines are
used to convey identification information to the SACP
42 relating to the primary PCI devices 18 and the MC-A
devices 90 requesting access to the PCI bus 22. The
status of these four lines indicates to the PACP 102
which primary PCI device 18 won the initial arbitration
process managed by the PACP2 108, and further indi-
cates to the DACP 104 which MC-A device 9 won the
initial arbitration process managed by the CACP 110.
By providing information identifying the primary PCI
devices presenting bus access requests to the PACP2
and identifying the MC-A devices presenting bus access
requests to the to the CACP 110, the PACP and the
DACP may more fairly arbitrate between, respectively,
(1) the primary PCI devices and the CPU and (ii) the
I/0 devices supported by the expansion bridge and the
direct-attached peripheral I/0 devices.

Identification information relating to the peripheral
1/0 devices 56 presenting PCI bus access requests via
the I/0 controller 44 is carried by the DARBIN(0-3)
inputs to and DARBOUT(0-3) outputs from the direct-
attached MC-A device support portion 106. Separate
DARBIN and DARBOUT lines are required because,
unlike the CACP 110, the direct-attached MC-A device
support portion 106 1s not provided with open collector
bidirectional arbitration identification lines. Otherwise,
arbitration performed by the direct-attached MC-A
device support portion 106 is managed as it is in the
CACP 110. In this manner, the DACP 104 determines if
the request presented by the CACP 110 has priority
over the request presented by the I/0 controller 44, and
presents a BANK1 _REQ# to the BACP.

All of the peripheral I/0 devices 56 and the standard
I/0 devices 90 are assigned an arbitration priority. The
DACP 104 1s provided with a comparator which com-

LY

5,450,551

13

pares these arbitration priorities in determining which
device should be granted access to the PCI bus 22.
Similarly, the PACP 102 determines if the request pres-
ented by the PACP2 108 has priority over a CPU 24
request, and presents a BANKO_REQ# to the BACP
100. The BACP 1s programmed to provide each bank
arbiter with a predetermined time period during which
the appropriate bank arbiter assumes control of the PCI
bus 22 on behalf of the devices for which it arbitrates.
The individual bank arbiters subdivide the time allo-
cated to them to their associated bank devices. If no
bank requests are active, the BACP parks on the PACP
102 since this is where the CPU 24 resides. Arbitration
information is needed from both the CACP 110 and the
PACP2 108. This information is provided to the main
arbiter via arbitration sideband signals. FIG. 5 is a table
showing one manner in which these signals may be
multiplexed.

Each of the bank arbiters has associated therewith
idle and timeout signals which are output to the BACP
100. With respect to the idle signals (PACP_IDLE for
the PACP 102, DACP_IDLE for the DACP 104, and
PSB_IDLE for the PCI secondary bridge 80), each
bank arbiter has a programmable grant timer and an idle
timer. The grant timer defines the maximum time period
that will be given to a bank when other banks are re-
questing access to the PCI bus, and defines how long
the BANKO_GNT# through BANKN_GNT# sig-
nals will be driven active. The idle timer defines the
maximum time period that a device may be inactive on
the PCI bus before losing access to the bus. For exam-
ple, 1f a device, having been granted access to the pri-
mary PCI bus, completes its data transfer over the bus
before its time on the bus has expired, the idle timer will
monitor PCI bus activity, and if no activity is detected
during a predetermined number of clock cycles, access
to the PCI bus 1s withdrawn and given to another re-
questing device. The timeout signals (PACP_TOUT
for the PACP 102, DACP_TOUT for the DACP 104,
and PSB__TOUT f{or the PCI secondary bridge 80) are
activated when a device, having had its access to the
primary PCI bus withdrawn, fails to relinquish the bus
within a predetermined time period.

The BURST# input to the CACP 110 provides the
means for a MC-A, already in control of the standard
I/0 bus and capable of bursting information over the
bus, to indicate that it is ready to perform a burst opera-
tion (more than one transfer of data over the standard
I/0 bus). The CACP 110 responds to this request by
maintaining control of the standard I/0 bus in a grant
mode for the bursting I/0 device until all of the multi-
ple transfers of data have been completed over the stan-
dard 1/0 bus. Upon completion of the burst transfer
over the standard 1/0 bus, the I/0 device deactivates
the BURST# request line, and the CACP determines
that the I/0 device is off the bus and begins .the next
arbitration cycle. In non-burst transfer situations, the
CACP 110 determines that the 1/0 device is off the bus
when an end-of-transfer is indicated on the S0/S1#,
BURST# and CMD# inputs to the CACP. (The direct-
attached MC-A device support portion 106 determines
that a peripheral 1/0 device has completed a data trans-
fer via the DCHNLACT input.)

The BRIDGE_SIDEBAND signals, in addition to

10

13

20

235

30

35

45

50

35

permitting the above-described hierarchical system of 65

arbitration, are also monitored by the DMA controller
and used to provide support for DMA cycles over the
PCI bus 22, to and from standard I/0 devices 90 and

14

system memory 32. o support DMA cycles over the
PCI bus 22, three categories of signals are required: bus
cycle control signals, arbitration control signals, and
DMA control signals. Bus cycle control signals are
detined 1n the PCI Revision 2.0 Specification. Arbitra-
tion control signals are summarized in FIG. 4A dis-
cussed above. DMA control signals are summarized in
F1G. 4B and are discussed below. In order to provide
this DMA support, some of the BRIDGE_SIDE-
BAND signals are multiplexed to have different func-
tions during SACP arbitration and grant modes of oper-
ation. Multiplexing the DMA control signals with the
arbitration control signals reduces the pin count neces-
sary to implement DMA cycle support on the PCI bus
22.

Once the DACP 104 indicates via the BRID-
GE_GNT# line that an 1I/0 device 90 has been
granted access to the PCI bus, the CACP 110 on the
1/0 bridge 78 passes this identification of grant status
(by changing the state of its ARBGNT# line) to the
170 device 90. The 1/0 device may then begin an I/0
read or write cycle. If the 1/O device is capable of
acting as a bus master on the standard 1/0 bus 92, the
DMA controller 40 is not required to facilitate the read
or write operation. However, if the 1/0 device acts as a
slave on the I/0 bus 92, the DMA controller 40 man-
ages the 1/0 cycle on behalf of the I/0O device.

To manage 1/0 cycles on behalf of an 1/0 device, the
DMA controller 40 must determine the bus size of the
1/0 device for which it is managing an 1/0 cycle (i.e.
whether the device is an 8, 16 or 32-bit device). This
dynamic bus sizing is required on behalf of the DMA
controller 40 to prevent data from being lost between
the DMA controller and the I/0 device 90 at the 1/0
bridge 78. For example, if the DMA controller initiates
a 32-bit write operation to an 8-bit DMA slave, the
32-bit wrte operation must be converted to four 8-bit
write cycles. If the 1/0 bridge 78 buffers the 32 bits of
information and subsequently performs the conversion
cycles, and the I/0 device indicates that it cannot ac-
cept any more data, there 1s no way to either continue
writing to the 1/0 device or return the data to the
DMA controller or system memory. The DMA con-
troller in this situation has no way of knowing that the
data has not been written to the I/0 device. Thus, to
prevent data from being lost at the I/0 bridge 78, the
DMA controller 40 needs to detect bus size dynami-
cally in order to permit it and not the I/0O bridge 78 to
perform conversion cycles. By detecting the bus size of
the 170 device for which it is performing an 1/0 cycle,
the DMA controller 40 can buffer any data which can-
not be accepted by the 170 device and can subsequently
run another write cycle to the device if necessary.

The PCI bus 22, however, does not directly provide
this bus sizing information between the I/0 bridge 78
and the DMA controller 40. This information is instead
provided by the multiplexed BRIDGE_SIDEBAND
signals. As shown in FIG. 4B, several but not all of the
BRIDGE__SIDEBAND signals are multiplexed. (In
the MC-A context, GNTO0# and GNTI# in the arbitra-
tion mode are redefined in the grant mode as, respec-
tively, TC# and DMAACT#.) TC# is a signal driven
active by the DMA controller and read by the 1/0
bridge 78 after the last byte of data of a particular 1I/0O
cycle is transferred into or out of the bridge.
DMAACT# indicates whether the DMA controller is
active or not, and is used by the bridge to determine
whether a DMA slave or a bus master has been granted.

1

5,450,551

15

It DMAACT# is not active, the grant must have
been to a bus master device on the 1/0 bus 92 and thus,
as described above, the CACP 110 determines that the
bus master device is off the bus when and end-of-trans-
ter is indicated on the S0/S1#, BURST# and CMD#
inputs to the CACP. An active DMAACT#, however,

indicates to the I/0 bridge 78 that the DMA controller -

40 1s actively facilitating a transfer to or from memory
on behalf of the I/O device 98 (an I/0 cycle and not a
memory cycle), and thus the bridge need not perform
any conversion cycles. In this case, the DMA controller
performs the conversion cycles after determining from
the multiplexed BRIDGE_SIDEBAND signals the
type of 1/0 device (i.e. 8, 16 or 32-bit) on whose behalf
it 1s performing the conversion cycles, as explained
below.

DMAACT# 1s held low until all reads and writes
have been completed. The I/O device indicates the
length of the transfer by driving BURST# which is the
reflected back to the DMA using the BRIDGE_REQ
signal. (Although the 1/0 bridge may again reenter the
arbitration state when the last 1/0 read/write occurs,
the SACP 42 must remain in the grant state until deacti-
vation of the DMAACT# line indicates that the DMA.
has completed transferring the data over the PCI bus.)

ARBID(1) and ARBID(2) in the arbitration mode are
redefined in the grant mode as, respectively, BS16# and
BSS#. Each of these signals is read by the DMA con-
troller 40. By activating BSS#, the CACP 110 indicates
to the DMA controller that the 1I/0 device granted
ownership of the PCI bus 1s an 8-bit device. Similarly by
activating BS16#, the CACP 110 indicates that the 1/0
device granted ownership of the PCI bus is an 16-bit
device. When both BS16# and BSS# are inactive, a
32-bit device is indicated. ARBID(3) in the arbitration
mode 1s redefined in the grant mode as BSV#. BSV# is
driven active by the I/0 bridge 78 to indicate to the
DMA controller the times at which the BS16# and
BS8# signals are valid. These three signals, BS16#,
BSS# and BSV# are required for the DMA controller
to identify the I/0 device on whose behalf it is perform-
g an I/0 cycle as either an 8, 16, or 32-bit device, and
are used to guarantee that TC# will be driven active
with correct timings with relation to the bridge cycle.

With respect to ISA implementations of the standard
1/0 bridge 78 and 1/0 bus 92, GNTO0# and GNT1# in
the arbitration mode are also redefined in the grant
mode as, respectively, TC# and DMAACT#. How-
ever, there 1s no need for the bus sizing signals BSV#,
BSS# AND BS16#, since the ISA bus provides for
dedicated bandwidths for I/0 devices attached thereto.
Four of the eight channels which the ISA bus supports
are dedicated for 8-bit devices and three are reserved
tor 16-bit devices. Hence, the DMA controller 40
knows the type of device on each of the channels and
BRIDGE_SIDEBAND signals corresponding to these
lIimes are therefore not used in the ISA context.

Accordingly, the preferred embodiment of DMA
cycle logic for a multiple bus computer system includ-
ing a high performance bus such as a PCI bus has been
described. With the foregoing description in mind,
however, it i1s understood that this description is made
only by way of example, that the invention is not limited
to the particular embodiments described herein, and
that various rearrangements, modifications, and substi-
tutions may be implemented without departing from the
true spirit of the invention as hereinafter claimed.

We claim:

10

15

20

235

30

35

45

50

29

60

65

16

1. An information processing system, comprising:

a central processing unit (CPU);

a first system bus which connects said CPU to system
memory so that said CPU can read data from, and
write data to, said system memory;

a second system bus connected to said CPU;

a host bridge connecting said second system bus to a
peripheral bus having at least one peripheral de-
vice, including an active input/output (I/0)
bridge, attached thereto;

said active 1/0 bridge connecting said peripheral bus
to a standard I/0 bus, said standard 1/0 bus having
a plurality of standard I/0 devices attached
thereto; |

arbitration logic located within said active I/0 bridge
which functions in an arbitration mode for arbitrat-
ing between said plurality of standard 1/0 devices
competing for access to said standard I/0 bus, and
in a grant mode wherein a selected standard 1/0
device 1s granted access to said standard I/0 bus;

a direct memory access (DMA) controller for per-
forming DMA cycles over said peripheral bus for
said selected standard I/0 device wherein data is
transferred between said system memory and said
selected 1/0 device without intervention by said
CPU; and

direct memory access (DMA) support logic residing
on said second system bus for enabling said DMA.
cycles to be performed over said peripheral bus,
wherein said DMA support logic includes side-
band signals directly connecting said DMA sup-
port logic to said active 1/0 bridge independently
of said host bridge, said sideband signals including
(1) a DMA active line which is driven high by said
DMA controller and read by said active 1/O
bridge to determine if said DMA controller is ac-
tive, and (i) a transfer complete line which is
driven high by said DMA controller add read by
said active 1/0 bridge to determine if data transfer
into or out of said active I/0 bridge has been com-
pleted.

2. The system of claim 1, wherein said sideband sig-
nals further include information identifying the bus size
of said selected 1/0 device for which said DMA con-
troller is performing said DMA cycles.

3. The system of claim 1, wherein said peripheral bus
conforms to Peripheral Component Interconnect (PCI)
architecture.

4. The system of claim 3, wherein said DMA control-
ler resides on said peripheral bus.

S. The system of claim 3, wherein said DMA control-
ler resides on said second system bus.

6. The system of claim 3, wherein said peripheral bus
and said second system bus have data widths of at least
32 bits.

7. The system of claim 2, wherein said standard 1/0
bus conforms to MICROCHANNEL ®) architecture.

8. The system of claim 3, wherein said standard I/0
bus conforms to ISA architecture.

9. The system of claim 3, wherein said computer
system further comprises (1) an I/0O controller residing
on said second system bus and connecting said second
system bus to a peripheral 1/0 bus; and (ii) a plurality of
peripheral 1/0 devices attached to said peripheral 1/0
bus; and wherein said DMA controller also performs
DMA cycles for said peripheral 1/0 devices wherein
data 1s transferred between said system memory and

5,450,551

17

said peripheral 1/0O devices without intervention by
said CPU.

10. The system of claim 3, wherein said sideband
signals are multiplexed to define a first function when
said arbitration logic is in said arbitration mode and to
perform a second function when said arbitration logic is
in said grant mode.

11. A direct memory access (DMA) support mecha-
nmism for use in a computer system which comprises (i)
a central processing unit (CPU) connected to system
memory by a first system bus; (ii) a second system bus
connected to said CPU; (i11) a host bridge connecting
said second system bus to a peripheral bus having at
least one peripheral device, including an active 1/0
bridge, attached thereto; (iv) said active input/output
(I/0) bridge connecting said peripheral bus to a stan-
dard 1/0 bus, said standard I/0 bus having a plurality
of standard 1/0 devices attached thereto; and (v) arbi-
tration logic located within said active 1/0 bridge
which functions in an arbitration mode for arbitrating
between said plurality of standard 1/0 devices compet-
ing for access to said standard I/0 bus, and in a grant
mode wherein a selected standard I/0 device is granted
access to said standard I/O bus; said DMA support
mechanism comprising:

‘a direct memory access (DMA) controller for per-
forming DMA cycles over said peripheral bus for
said selected standard 1/0 device wherein data is
transterred between said system memory and said
selected I/0 device without intervention by said
CPU; and

direct memory access (DMA) support logic residing
on said second system bus for enabling said DMA
cycles to be performed over said peripheral bus,
said DMA support logic including sideband signals
directly connecting said DMA support logic with
the 1/0O bridge independently of said host bridge,
said sideband signals including (i) a DMA active
line which is driven high by said DMA controller
and read by said 1/0 bridge to determine if said

10

15

20

25

30

35

40

45

50

55

60

63

18

DMA controller is active, and (ii) a transfer com-
plete Iine which is driven high by said DMA con-
troller and read by said I/0 bridge to determine if
data transfer into or out of said 1/0 bridge has been
completed.

12. The system of claim 11, wherein said peripheral
bus conforms to Peripheral Component Interconnect
(PCI) architecture.

13. The system of claim 12, wherein said DMA con-
troller resides on said peripheral bus.

14. The system of claim 12, wherein said DMA con-
troller resides on said second system bus.

15. The system of claim 12, wherein said peripheral
bus and said second system bus have data widths of at
least 32 bits.

16. The system of claim 11, wherein said standard
1/0 bus conforms to MICROCHANNEL ®) architec-
ture, and wherein said sideband signals further include
information identifying the bus size of said selected 1/0
device for which said DMA controller is performing
said DMA cycles.

17. The system of claim 12, wherein said standard
1/0 bus conforms to ISA architecture.

18. The system of claim 12, wherein said computer
system further comprises (i) an I/0 controller residing
on said second system bus and connecting said second
system bus to a peripheral 1I/0 bus; and (ii) a plurality of
peripheral I/0 devices attached to said peripheral 1/0
bus; and wherein said DMA controller also performs
DMA cycles for said peripheral I/0 devices wherein
data 1s transferred between said system memory and
said peripheral 1I/0 devices without intervention by
said CPU.

19. The system of claim 11, wherein said sideband
signals are multiplexed to define a first function when
said arbitration logic is in said arbitration mode and to
perform a second function when said arbitration logic is

in said grant mode.
% £ S *® ¥ X

	Front Page
	Drawings
	Specification
	Claims

