United States Patent [

Matsumoto

[54] MULTIPROCESSOR SYSTEM AND

PROCESS SYNCHRONIZATION METHOD
THEREFOR

Takashi Matsumoto, Tokyo, Japan

International Business Machines
Corporation, Armonk, N.Y.

944,803
Sep. 14, 1992

[75]
[73]

Inventor:

Assignee:

[21]
[22]

Appl. No.:
Filed:

Related U.S. Application Data

Continuation of Ser. No. 603,083, Sep. 25, 1990, aban-
doned.

[30] Foreign Application Priority Data
Oct. 26, 1989 [JP] 1-277334

[S1] Int. CLEeeeeeeeeeieeeceeeeeeceneseenaes GO6F 9/00
[52] US.ClL e 395/650; 364/230;
364/271.2; 364/281.8; 364/DIG. 1;

364/931.46; 364/945.9; 364/949.93; 364/DIG.

2

[58] Field of Search 395/650; 364/949.93,
364/945.9, 931.46, 281.8, 271.2, 230

References Cited
U.S. PATENT DOCUMENTS

4,318,173 3/1982 Freedman et al. 364/200
4,387,427 6/1983 Coxetal. .eereeeemneeeenenenns 364/200
4,590,555 5/1986 Bourrez
4,602,861 9/1987 MaY ...rrrreneitrieecieeeen

FOREIGN PATENT DOCUMENTS

0330836 9/1989 European Pat. Off. .
8900734 1/1989 WIPO .

OTHER PUBLICATIONS

“Stellix: UNIX for a Graphics Supercomputer” Pro-
ceedings of the Summer 1988 USENIX Conference,

[63]

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Japan

[56]

lllllllllllllllllllllllllllll

AR O 0 OO A

US005448732A
[11] Patent Number: 5,448,732
[45] Date of Patent: Sep. 5, 1995

Jun. 20-24, 1988, USENIX Assoc. pp. 321-330, Thomas
J. Teixeira & Robert F. Gurwitz.

IBM Technical Disclosure Bulletin, vol. 32, No. 1, Jun.
1989, pp. 260-262, “Device that Provides for Conien-
tion-Free Barrier Synchronization in 2 Multiproces-
sOr”.

IBM Technical Disclosure Bulletin, vol. 31, No. 11
Apr. 1989, pp. 382-389, “Law-Cast Device for Conten-
tion-Free Barrier Synchronization™.

Proceedings 1989 International Conference Parallel
Processing, Aug. 1989, vol. II titled “Synchronization
Barrier and Related Tools for Shared Memory Paraliel
Programming” by B. D. Lubachevsky, pp. 175-179.
Microprocessing & Microprogramming, Jun. 1987, No.
3, pp. 179-192 titled “SHAMP: An Experimental
Shared Memory Multimicroprocessor System for Per-
formance Evoluation Parallel Algorithms” by D.
Ghasal & L. Patnaik.

Computer Standards & Interfaces 1987, No. 1, pp.
97-105 titled “Integration of Real-Time & Consistency
Constraints in Distributed Databases: The SIGMA Ap-
proach” by P. Minet & S. Sedillot.

IBM Technical Disclosure Bulletin, vol. 30, No. 5, pp.
373-374 titled “Selective Dispatch of Queued Tasks”.

Primary Examiner—Kevin A. Kriess
Assistant Examiner—Dennis M. Butler
Attorney, Agent, or Firm—Lawrence D. Cutter

[57] ABSTRACT

A method and apparatus for synchronizing and schedul-
ing multiple processes in a multiprocessor of processor
resources as supphied from the processes. Through hier-
archical and user controllable grouping of processes,
overhead associated with processor allocation and syn-
chronization is reduced.

9 Claims, 11 Drawing Sheets

SYNCH. INCOMPLETE

ENTRANCE TO SYNCH. WAITING
STATE PWF: 1y PHC:PRCe1,

rﬁi-———-——_ll- “h“-!!-lll_——.--t

SYNCH.
[NCOMPLETE

COUNT UP NO.OF
| SYNCH. WAITING |

PROCESSORS
EMWC 2 SEMWE = | FH\EID

58

SYNCH., 52/\'_
ESTABLISHED
1
e
sqﬁ_
<5
¥ e
COUNT O0OWN ND.OF FLUL
||~ SYNCH. WAITING || FILL
| _ PROCESSORS
AMWC 1 BIMWC = |
hfm._._ﬁTﬁ_._._.J
SYSTEM CALL ETC.}K'ST
FOR PROCESS
SWITCHING

D

RESOURCES INFORMATION
LOAD 2MGC « LOAD #MWC .
LOAD #MGP L OAD 2PQR
LOAD #MPRQ LOAD #MNKR

51

SYNCH.
CHECK STNCH. EET&BLISHED
VARIAGLE

S12

READ PROCESSOR

1S
EITHER OF
PROCESS SWITCHING
ONDITIONS (1)-(5)
FULFILLED?

NOT
FULFILLED

SYNCH.
CHECK INCOMPLETE
FOR SYNCH,
YARIADLE
SYNCH.

ESTABLISHED

COUNT DOWN NO,OF SYNCH, |

WAITING PROCESSORS
| EMAC1SIMNC«1, |

_r/fSE

TERMINATION OF SYNCH.
WATTING STATE PWFi1=0,

U.S. Patent Sep. 5, 1995 Sheet 1 of 11 5,448,732

FIG. 1

MULTIPROCESSOR

CPUT (PUZ CPU3 CPU4
PROCESSOR PROCESSOR PROCESSOR PROCESSOR

g eyl S— __—J

|
|
l
;
| WAITING FOR |

| DISPATCHING |
I —

5,448,732

Sheet 2 of 11

Sep. 5, 1995

U.S. Patent

5,448,732

Sheet 3 of 11

Sep. S, 1995

U.S. Patent

03HS178V1S3 S
v dNOY9 404
t NOI LY ZINOYHONAS!

| d3lyyve |

a
e

L]

U.S. Patent Sep. 5, 1995 Sheet 4 of 11 5,448,732

CPUA4
a
CPU3J CPUA4
SR

CPU?2
(how
CPU2

Chow

U.S. Patent

SYNCH.

Sep. S5, 1995

Sheet -5 of 11

F1G.6

INCOMPLETE

ENTRANCE TO SYNCH. WAITING
STATE PWF:1; PWC:PWC+1

S2
SYNCH.
ESTABLISHED
= = — = i
S3 | COUNT UP NO OF SYNCH. WAITING|!
7 PROCESSORS #MWC:=#MWC+1; ||
D e . . et oa—— v m—— m— - o em—— -
| READ PROCESSOR
Sy RESOURCES INFORMATION
LOAD #MGC ; LOAD #MWC
LOAD #MGP LOAD #PGR
LOAD #MPRQ LOAD #MNWR
S6 S5
W ree—— T 1S
COUNT DOWN NO.OF FUL -
| " SYNCH. WAITING || FILLED PRocEégHgﬁzgrEHING
PROCESSORS
| AMWC s =2MWC 11 | CONDITICONS (1)-(5)
L AN FULFILLED?

COUNT UP NO.OF
SYNCH., WATITING

PROCESSORS
EMWC s =#MWC+ 1 ¢

| [SYSTEM CALL ETcC. S7 NOT
FOR PROCESS FULFILLED
- SWITCHING . cyNEH.
| CHECK ™ _INCOMPLETE
SYNCH. FOR SYNCH. _
CHECK SYNCH. ESTABLISHED VARIABLE
N ES%?@E%EHED
JI S8 SYNCH. E}E_ o S
INCOMPLETE COUNT DOWN NO.OF SYNCH.

NAITING PROCESSORS }
EMWC : =#MWC =1 ¢

TERMINATION OF SYNCH.
WNAITING STATE PWF:=0;

5,448,732

U.S. Patent Sep. 5, 1995 1 Sheet 6 of 11 5,448,732

F1G. 7/ -1G. 1Y

START START
SYNCH.
INCOMPLETE SET BSOF

BF=1

CHECK SYNCH.
VARIABLE

SYNCH.

ESTABLLISHED RESET BSOF

I I R SYNCH
I N R SIGNAL

N
RN

SHARED BUS 1

U.S. Patent “Sep. 5, 1995 Sheet 7 of 11

F1G.8

Sl

THECK SYNCR~. SYNCH.INCOMPLETE >

YARIABLE

SYNCH., THIS PART IS MADE ENTRANCE TO SYNCH,
ESTABLISHED A CRITICAL SECTION WAITING STATE
(fFOR PROCESSES -
A GROUP = = — o= = = = -

| COUNT UP NO.OF
— — | SYNCH.WAITING

Sy PROCESSES
READ PROCESSOR 3
RESOURCES INFO
READ PROCESSOR
S5 | RESOURCES INFO.

IS Sy
| EITHER ggl_
/OF PROCESSN\ F3r ep
I SWITCHING |
CONDITIONS S5 IS
| - FUL- | EITHER
| FILLED OF PROCESS
| ? SWITCHING
FUL- CONDITIONS
S6 FULFILLED | FILLED
= —_— —
| COUNT_DOWN NO.OF || NOT
SYNCH, WAITING FULFILLED
|~ PROCESSORS |
—]
= S
SYSTEM CALL FOR >
PROCESS SWITCHING -RECe o e
%ENCH.
SYNCH. -
ESTAB- E;%E‘ COMPLETE
CHECK SYNCHN_LISHED =
VARIABLE 512 LISHED
SYNCH. - >8 | [COUNT DOWN NO.OF |
INCOMPLETE! cio | 1 SYNCH. WAITING |
— L__PROCESSORS __|!
COUNT UP NO.OF S9 ~ T T T =
SYNCH., WAITING '
—PROCESSES | TERMINATION OF

SYNCH, WAITING STATE

5,448,732

U.S. Patent Sep. 5, 1995 Sheet 8 of 11 5,448,732

CHECK SYNCH.
VARIABLE

SYNCH. INCOMPLETE

ES;?QE%%HED ENTRANCE TO SYNCH. WAITING:
| STATE
PWNC e =PWC + 1
SeT FLAG IN SYNCH. CONTROLLER
(SOF:=1; OR BSOF:=1y)

CHECK SYNCH,.

VARIABLE SYNCH.

INCOMPLETE

SYNCH,
| ESTABLISHED

| TERMINATION OF SYNCH. WAITING:
l STATE

RESET FLAG IN SYNCH. CONTROLLER
(SOF:=0;: OR BSOF:=0})

-—]

5,448,732

) g v
dN0Y9 $S3J04d dN0Y¥9 $53304d dN0Y¥9 SS3I0Yd
: G GO
&
=) 43 INCIHIS ¥3SN | 8 ¥ITINAIHIS ¥3ISA | V¥ 4ITNAIHIS ¥IsSN
2 (SY) ¥ITNCIHIS TINYIY
/9

Ol "914

U.S. Patent

5537044
ERYL

WASH

$53304d 43510

U.S. Patent Sep. 5, 1995 Sheet 10 of 11 5,448,732

FI1G. 11

PROCESSES WAITING FOR
ALLOCATION OF PROCESSORS

GROUP A GROUP

e 1
| T CPU1 cpuz CPU3 cpua l
|
ay l
== |_________ = _J
USER SCHEDULER FOR GROUP A
b e e] USER SCHEDULER FOR GROUP B
' INTERRUPTION

I
l
|
I
L e e s e et e e e e o

U.S. Patent

Sep. 5, 1995 Sheet 11 of 11 5,448,732

FI1G. 13

o |
TIMING
CPU 11 CcONTROL | MODE |INT. MASK UM KM
INTERRUPTION PROCESS SOF MNWR FLAG
INT SWITCHING FLAG TVPS1. TVPS? '
OATA CONDITION

oETeRMINATION | ESOE | MAWR FLAG
' [BFFLAC | BF
e

=

| I — X
v GROUP REGISTER
SHARED BUS spwe | INTER-GROUP SYNCH. wmmc
l PROCESSOR DETECTION |
L II—
512
| SL3
54
l

5,448,732

1

MULTIPROCESSOR SYSTEM AND PROCESS
SYNCHRONIZATION METHOD THEREFOR

This is a continuation of application Ser. No.
07/603,083 filed on Sep. 25, 1990 now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention |

The present invention relates to a multiprocessor
system, and in particular relates to a multiprocessor
system which is capable of reducing overhead due to
required synchronization among the processors and to
ineffective scheduling. The overhead 1s reduced as
much as possible to improve system performance and to

- provide effective usage of processor resources.
2. Background of the Problem

The advance of VLSI methods has provided multi-
processor systems with each system having many pro-
cessors. Parallel processing, which enables one to per-

form tasks rapidly through the use of a plurality of

Processors, is also gaining in importance. In such multi-
processor systems, sometimes one processor uses the
result of a process performed by another processor. In

»

10

15

20

this sttuation, acknowledgement of the completion of 25

that process, an important aspect of synchronization, is
required. In order for a plurality of processors to oper-
ate in cooperation with one another, synchronization
among processors is thus seen to be indispensable.
Conventional synchronization techniques are now
described. In a computing system, control of real hard-
ware resources are performed by an operating system
(hereinafter referred to as an “OS”). A user or program-
~ mer describes operations by using the concept of “pro-
cess” which virtualizes a real processor. Real proces-
sors are allocated to processes, one processor to one
process, under control of an OS to perform the opera-
tions. Such allocation is referred to as “process schedul-
ing”’ (hereinafter referred to simply as “scheduling™).
In parallel processing, a plurality of processes which
should operate in cooperation with one another are
created, and parallel processing proceeds, keeping syn-
chronization among the processes. Conventionally, the
following two methods have been employed for syn-
chronization. The first is the performance of synchroni-
zation through an OS, and the second is through the use
of shared memory among processes. For synchroniza-
tion, some kind of shared entity is required which ena-
- bles the exchange of information among processes
which are synchronized with one another. The first
method uses an OS as the entity, and the second uses a
memory. The problems associated with these two meth-
ods are now described. In the case where synchroniza-
tion is achieved through an OS, a process which does
not establish synchronization is removed from the allo-
cated processor and enters a sleeping or idle state, and
the freed processor is allocated to another process. In
such a way, processor resources are effectively used.
The synchronization through an OS however causes an
undesirable overhead. The repetition of entering a
sleeping state and thereafter receiving an allocation
produces a degradation in performance. If the granular-
ity of a program is large enough, the overhead can be
neglected. In most cases it is not however negligible.
In the case that synchronization is achieved using
busy and wait states and a shared memory rather than
using an OS, the above overhead problem can be
avoided. However, another problem can occur. As

30

35

40

435

50

55

65

2

mentioned above, an OS dispatches one process to one
processor at a time. During a single scheduling opera-
tion, the 0S cannot usually assign a plurality of pro-
cesses to a plurality of processors at one time. For exam-
ple, consider a program where a plurality of processes
are created for parallel processing and they operate n
synchronization with one another. Depending on the
scheduling operation, some processes in the group can
be dispatched to processors and the remaining processes
can be in an idle state waiting for dispatching. In this
case, a process can try to establish synchronization with
another process which is not scheduled to any proces-
sor and then an ineffective busy and wait condition can
occur. An example is a case where processes are dis-
patched to processors as shown in FIG. 1, and the pro-
cesses Al, A2 and A3 are in a loop of busy waiting (in
synchronization) for use of the operational result of
process A4. In such a case, while CPU time is being
consumed, programs will not proceed until process A4
gets dispatched to one of the actual processors upon
rescheduling by a time slice operation or the like. In
addition to the scheduling problem, when a “barrier
synchronization’ (that is, when a plurality of processes
each wait for the others at a point) is performed through
a shared memory, exclusive memory accesses for the
synchronization occurs in a concentrated fashion in the
multiprocessor, thus raising the problem of overhead
due to contention of data communication paths and the
Iike.

As indicated from the above, process synchronization
and scheduling are very much correlated. For applica-
tions involving certain kinds of parallel processing pro-
grams, adjustment of scheduling can improve perfor-
mance. In a conventional OS, however all processes are
scheduled based on the same algorithm, so that schedul-
ing cannot be adapted to individual processes.

The following are relevant to the background of the
present invention.

1. “Stellix: UNIX for a Graphics Supercomputer”,
Proceedings of the Summer 1988 USENIX Conference,
Jun. 20-24, 1988, San Francisco, Calif., USENIX Asso-
ciation, pp. 321-330, Thomas J. Teizeira & Robert F.
Gurwitz.

This article appears to disclose that a fault signal 1s
generated by hardware when all the processes are 1n a
wait state during synchronization operation by a special
instruction stream for synchronization. However, that
article does not even suggest that a process itself should
check certain conditions using processor information 1n
a shared memory (as stated later, the information de-
sired includes data on dispatching of processes to pro-
cessors, on grouping of processes and on process syn-
chronization) to issue a rescheduling request and to
provide effective process synchronization.

2. IBM Technical Disclosure Bulletin Vol. 32, No. 1,
Jun. 1989, pp. 260-262, “DEVICE THAT PROVIDES
FOR CONTENTION-FREE BARRIER SYNCHRO-
NIZATION IN A MULTIPROCESSOR”.

3. IBM Technical Disclosure Bulletin Vol. 31, No.
11, April 1989, pp. 382-389, “LOW-COST DEVICE
FOR CONTENTION-FREE BARRIER SYNCHRO-
NIZATION™.

The above articles (2) and (3) disclose hardware con-
figurations for performing barrier synchronization in a
concentrated fashion, but does not even suggest any
design for synchronization waiting.

4. H. S. Stone, “High Performance Computer Archi-
tecture”, Addison-Wesley, Reading, Mass., 1987.

d,448,732

3

This text book provides a tutorial explanation about
barrier synchronization in general.

SUMMARY OF THE INVENTION

To achieve the above object, according to one aspect
of the present invention, synchronization through the
use of a shared memory 1s employed to decrease over-
head. Information about system processor resources is
made available from processes. The mformation pro-
vided includes data on dispatching of processes to pro-
cessors, on grouping of processes and on process syn-
chronization. A process in a loop for synchronization
waiting checks the information about the system pro-
cessor resources in addition to synchronization vari-
ables, and after that, when the resultant check deter-
mines that synchronization cannot be established in a
short time under that situation, the process stops the
busy waiting operation, and returns control to the
scheduler so that the scheduler does rescheduling or
changes the dispatching of processes.

According to another aspect of the present invention,
a dedicated register is prepared for each processor for
barrier synchronization wherein a plurality of processes
are simultaneously waiting, and a dedicated communi-
cation path 1s also provided for exchanging information
among the registers, so that the overhead of barrier
synchronization is reduced.

Further hardware to support checking for processor
resource information is provided to reduce additional
overhead additionally caused by checking. In this case,
initiation of rescheduling is signaled by an interrupt.

Furthermore, the scheduler may be user-customiza-
ble so as to enable suitable rescheduling. In addition, the
scheduler may be configured in a hierarchical manner
sO that customization under the control of an OS is
achieved. In other words, each group of processes oper-
ating in parallel to perform an application is under con-
trol of a user scheduler for that application. In addition,
in order to reduce the overhead of interruption which is
indicative of rescheduling, and in order to enable the
use scheduler to communicate with other processors
asynchronously with reduced overhead, interruption by
processors 1S made hierarchical and interruption of
lower priorities may be made available to the user. In
this configuration, when interruption occurs during the
running of the user application (during user mode oper-
ation), control i1s only transferred to an interruption
program which is set by the user in advance, and need
not be transferred to the OS (kernel mode operation).

Accordingly, it is an object of the present invention
to provide a multiprocessor system capable of reducing
overhead due to synchronization among processors,
and to reduce ineffective scheduling.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter which is regarded as the invention
1s particularly pointed out and distinctly claimed in the
concluding portion of the specification. The invention,
however, both as to organization and method of prac-
tice, together with further objects and advantages
thereof, may best be understood by reference to the
following description taken in connection with the ac-
companying drawings in which:

FIG. 1 1s a block diagram illustrating the conven-
tional method for dispatching processes to processors;

FIGS. 2 to 5B are block diagrams illustrating condi-
tions for rescheduling requests used in a preferred em-
bodiment of the invention;

d

10

15

20

25

30

35

45

50

35

65

4

FIG. 6 1s a flow chart describing the above embodi-
ment;

FIG. 7 i1s a flow chart describing the corresponding
part of the conventional method to the flow shown in
FIG. 6;

FIGS. 8 to 10 comprise two flow diagrams and a
block diagram describing modified versions of the
above preferred embodiment of FIG. 6:

FIG. 11 is a block diagram describing a further modi-
fied version of the embodiment of FIG. 10;

FIGS. 12 and 13 are block diagrams illustirating a
detailed configuration of the embodiment shown in
FIG. 6;

FIG. 14 1s a flow chart illustrating the configuration
of FIG. 12.

DETAILED DESCRIPTION OF THE
INVENTION

Section 1. Explanation of principle

Subsection 1.1 Context of the invention

Since one of the objects of the present invention is to
reduce the overhead arising out of synchronization, the
invention employs the busy waiting approach using
shared memory or the like. The use of an OS causes
overhead increase as previously stated. Accordingly,
the following two problems occur as described above:

(1) One or more processes, each ineffectively waiting
for synchronization, are dispatched to processors,
and then waste processor resources.

(2) During barrier synchronization, exclusive mem-
Ory accesses are concentrated, and contention for a
data path causes an overhead.

First, the problem (1) is detailed and the direction to
resolve it 1s shown. Consider a case where a plurality of
processes are together performing a certain operation in
cooperation with one another (parallel processing).
And assume that during this operation, more than one
other process is in a waiting state for synchronization.
And further assume that the first process comes off a
waiting state, and that the other processes are waiting
for the former process output or calculation result. Also
assume that the number of processes is larger than the
number of processors, so that all of the processes cannot
be dispatched to the processors simultanecusly. In this
situation, since synchronization is achieved through a
shared memory, the OS cannot determine whether or
not a process 1S in a waiting state. Therefore, depending
on scheduling, only the processors waiting for synchro-
mzation can be dispatched, and the process which is not
at a synchronization waiting state and should be per-
formed at the highest priority can be in a state waiting
for dispatching. In this case, the processor resources
continue to be wasted until the process not waiting for
synchronization gets dispatched to a processor upon a
change in rescheduling via timer interruption occurring
at a certain interval.

To resolve the wasted resources problem, an event
has to be determined where all the processors are occu-
pied with processes waiting for synchronization. Ac-
cordingly, in a busy waiting loop waiting for synchroni-
zation, not only synchronization variables but also in-
formation related to system processor resources are
checked. Depending on the result of checking, under
some situations the operation is stopped and the control
1s transferred to the OS and rescheduling is performed
to change the dispatching of processes to processors. In
that approach, the number of processes doing ineffec-

5,448,732

S

tive synchronization waiting can be reduced and the
system processor resources are more effectively used. A
method for identifying such situation is detailed in sub-
section 1.2, and a method of rescheduling is provided in
subsection 1.3.

Next, the problem of concentrated exclusive memory
accesses during barrier synchronization is addressed
and an approach to resolve it is put forth. When barrier
synchronization is achieved in a system having N pro-
cessors by using one synchronization variable, exclusive
manipulation to the variable is required at least N times.
Memory operations for that manipulation are serialized,
so that overhead increases as a function of N. In particu-
lar, the overhead problem becomes serious when granu-
larity of processes in barrier synchronization are almost
the same size and all the processes are dispatched to
processors simultaneously, that is, in the situation where
there are no processes awaiting dispatching.

To avoid the kind of overhead described above, a

control variable dedicated to barrier synchronization 1s
provided in a dedicated register (a flag is used in the
present invention) for each processor, and modification
among the registers is achieved through a dedicated
communication path for synchronization information
(signal lines of a broadcast type are also used in the
present invention). Using such facilities, barrier syn-
chronization is achieved without an increase in commu-
nication volume over a data communication path. Of
course, when one Oor more processes are awaiting dis-
patching, an operation according to the problem resolv-
ing approach (1) is performed. A detailed configuration
is described in Section 2.

Subsection 1.2 Conditions for switching processes and
detection method for the conditions

Conditions under which a process waiting for syn-
chronization gives up the dispatching by itself are now
described and information is provided concerning sys-
tem processor resources that are required to check for
these conditions. Thus here is introduced the i1dea of ““a
group of processors”, t0 manage processor resources
effectively. Basically, processes in synchronization with
one another by a shared memory constitute a group. In
other words, processes each belonging to different
groups do not keep busy waiting synchronization with
one another using the shared memory. Processors each
“belong to” groups of the processes running on the
processors. Processors to which one group of processes
are dispatched constitute a group of processors. In FIG.

1, processes Al, A2, A3 and A4 constitute one group of
processes, and according to the dispatching as shown,
CPU1, CPU2 and CPU3 constitute one group, and
CPU4 belongs to another group. When using a UNIX-
like OS (UNIX 1s a trademark of AT&T), a Parent
Process Identifier (PPID) can be used as a group identi-
fier.

Drawings are provided to facilitate understanding the
embodiment, and drawing notations which are referred
to later are now described. Regarding “process A2w”,
the beginning “A” indicates the group name, and the
next “2” indicates its number in the group, and the
following ““w” indicates that the process 1s waiting for
synchronization. For a process not waiting for synchro-
nization, “r” rather than “w” i1s used. Processes sur-
rounded by broken lines at the left sides of the figures
are shown as ones which are waiting to be dispatched.

The following are examples of conditions, upon each
of which, a process waiting for synchronization stops its
operation and requests a process switch:

10

15

20

25

30

35

40

45

0

35

60

65

6

[1] Al of the processors in the group of processes
concerned are waiting for synchronization and one
or more processes are waiting for dispatching. See
FIG. 2(a).

{2] All of the processes in the group of processes
concerned are dispatched to processors and wait-
ing for synchronization at one time; this event oc-
curs due to programming errors (deadlock). See
FIG. 3.

[3] The processor concerned is a member of a group
which consists of processes performing a barrier
synchronization, and one or more members of the
group is waiting for dispatching but not waiting for
synchronization. See FIG. 4(a).

[4] The number of processors waiting for synchroni-
zation 1n the group of the process concerned is

more than “n”, and one or more processes are

waiting for dispatching (“n” is a value which an OS
Or user can set).

[5] The number of processes waiting for synchroniza-
tion 1in the group of the processes concerned is
more than “n”’, and one or more processes in the
group of the process concerned are waiting for
dispatching. See FIG. 5.

Each of [1], [2] and [3] 1s a condition for improving
the theoretical effectiveness, and each of [4] and [5]is a
condition for doing the same by determining “n’ heuris-
tically, or from experience. Depending on the applica-
tion which is running, “n” is adjusted in order to im-
prove efficiency. With respect to conditions [4] and [5],
instead of the number of processors waiting for syn-
chronization, the ratio of the number of processors in
the group to the number of processors waiting for syn-
chronization in the group is used.

Information about system processor resources, which
are required for checking the above conditions are as
follows:

#MSG (the number of M Group CPU’s): the number
of processors which belong to the group of the
process concerned (the number of processes in the
group of the process concerned, which are dis-
patched to processors).

#MWC (the number of M Group Waiting CPU’s):
the number of processors which belong to the
group of the process concerned and 1s waiting for
synchronization.

_#MGP (the number of M Group Processes): the total

"~ number of processes belonging to the group of the

process concerned.

#PRQ (the number of Processes in Run Queue): the
number of processes waiting to be dispatched.

#MPRQ (the number of M Group Processes in Run
Queue): the number of processes waiting to be
dispatched in the group of the process concerned.

#FMNWR (the number of M Group Not-Waiting
Processes in Run Queue): the number of processes
waiting to be dispatched but not waiting for syn-

chronization in the group of the process con-
cerned.

#TVPS (Threshold Value for Process Switch): the

value “n” mentioned above.

These values should be referenced by a user process
at a low cost and the values stored as variables which
can be accessed both by users and an 0S kernel. With
respect to data integrity and access privilege, it is noted
that only #MWC is set by a user application process.
Other values are set only by an OS scheduler. The

5,448,732

7

scheduler modifies these values at each scheduling time
as needed.

An efficient busy waiting synchronization method is
described with reference to the flowchart of FIG. 6,
which also comprises a step for checking conditions for
switching processes described previously. The specific
method and the like for checking the conditions de-
pends on the number and variety of processes waiting to
be synchronized. In this description, in order to facili-
tate a better understanding, the reader is directed to the
example as shown in FIG. 6. Reference to the details
shown therein are made below.

FIG. 7 shows a conventional loop for waiting. In
FI1G. 6, a synchronization variable is checked at the
beginning of the procedure (S1) in order to incur as
little overhead as possible as compared with the con-
ventional method. The ideal case i1s one in which syn-
chronization is established and the synchronization
variable is set to a value established before checking the
synchronization variable a first time. If synchronization
has completed, a waiting operation is immediately ter-
minated. Only if the first time check indicates that syn-
chronization has not completed, does the processor
enter a synchronization waiting state (S2). In this state,
variables to be affected by the entrance, for example,
FMWC etc., are modified (S3). Information about sys-
tem processor resources is read out (54); determination
i1s made of whether or not the process concerned should
be terminated; and the scheduler 1s requested to resch-
edule processes depending on the above mentioned
conditions (S5). If either of the conditions is fulfilled,
vaniables to be affected are modified (56), and the
scheduler 1s invoked using a system call for transferring

10

15

20

25

30

control of the processor and the like (S7). If neither of

the conditions is fulfilled, synchronization variables are
newly checked (S11). If synchronization is not estab-
lished, operation returns to the read-out siep of proces-
sor resource information and the procedure 1s iterated.
If synchronization is established, the processor con-
cerned completes the synchronization waiting state, and
then affected wvariables (#FMWC etc.,) are modified
(512), and the waiting operation is terminated (S9).
When the process which has transferred control of the
processor is again dispatched to that processor or an-
other processor, the operation joins the flow taken
when neither of the conditions for process switching is
fulfilled (S8, S10).

The blocks surrounded additionally by broken lines
are involved with exclusive and indivisible access to the
shared memory (#MWCQC). In a system having a shared
bus, these accesses are performed with lock operations.
It 1s likewise in the following other figures.

In some hardware configurations, a problem exists in
regard to concentrated access to shared variables. The
problem is raised because variables defining processor
resources shared by processors are accessed in the in-
nermost loop. In a system without hardware units, such
as memory caches which are capable of keeping consis-
tency of content (“snoopy’’ caches), the shared memory
may be frequently accessed at a high cost, and commu-
nication contentions over communication paths may be
raised. This problem also exists in conventional ap-
proaches to this problem in which access to synchroni-
zation variables, which are shared varniables, is similarly
made 1n the most inside 1oop. Accordingly, this is not a
problem caused only by the present invention. In the
following description, it is assumed that the system has

45

50

33

65

8

hardware such as caches capable of keeping consistent
memory content.

As shown in FIG. 8, in a system having “snoopy”
caches, a spin lock is used to suppress the necessity for
ineffective process switching, without increasing over-
head. In particular, in the method shown in FIG. 6, a
plurality of processes can fulfill either of the conditions
of process switching at one time and many process
switching requests can then be concentrated. Accord-
ingly, as shown in FIG. 8, operations requesting process
switching are set as critical sections and controlled
exclusively to prevent such a concentration of requests.
It should be noted that if exclusive access (a bus lock,
etc.) to the shared memory for exclusive control of the
critical section occurs in the most inside loop of the
busy waiting operation, accesses to the shared memory
are concentrated and the overhead becomes large. In
this regard, in the innermost 100p, no critical section is
provided and instead the conditions for process switch-
ing are only checked, and if either of the conditions is
fulfilled, a critical section 1s entered to check the condi-
tions again (spin lock, S4’, S5’). In addition, in the
method shown in FIG. 8, when the scheduler switches
among processes and modifies variables which define
system processor resources, accesses are exclusively
controlled. Details are omitted in FIG. 8 insofar as
portions are analogous to the corresponding portions of
FIG. 7.

A waiting state flag (PWF: Process Waiting state
Flag) and a waiting state counter (PWC: Process Wait-
ing state Counter), as shown in FIG. 6, are prepared for
each process, and using these data the scheduler calcu-
lates the value of #MNWR, and also determines sched-
uling. A detailed description is given below in subsec-
tion 1.3.

For a program having a relatively fine granularity,
the new method causes a larger overhead than conven-
tional methods. For example, when a group of pro-
cesses frequently requires synchronization and the pro-
cesses are dispatched to processors at one time, syn-
chronization is established immediately after entrance
to a waiting state, so that the loop of synchronization
waiting is performed only one or two items. Processing
cost for one loop of the synchronization waiting in the
new method 1s, apparent from FIGS. 7 and 8, higher
than the conventional method. Therefore in the case of
one or two loops performed, the overhead required for
operations beginning with synchronization establish-
ment (any process can modify a synchronization vari-
able) and ending with detection of the establishment
and termination of the waiting procedure, is not negligi-
ble. To resolve this problem, a hardware mechanism is
provided which detects outside a processor whether or
not the processor is in a synchronization waiting state.
As a result, a hardware mechanism can determine
whether or not processes in a synchronization waiting
state should be switched and inform the processor of
fulfillment of either of the conditions by providing an
interrupt. The processor then performs synchronization
waiting as shown in FI1G. 9. Accordingly, even in the
above mentioned severe case, the overhead of the new
method can be comparable to conventional methods.
Subsection 1.3 Improved Rescheduling

FI1GS. 2, 4 and S show examples of the progression of
rescheduling states after the fulfillment of conditions
[1], [2] and [3] respectively (as defined and identified
above via bracketed numbers). When a plurality of
processes are waiting to be dispatched, it 1s important in

5,448,732

9

terms of efficiency to correctly select which processes
are dispatched to processors. Further in FIG. 3, a dead-
lock occurs in regard to group A, so that rescheduling
halts the performance of all the processes in group A.
How the scheduler performs the rescheduling operation
is now described. In addition, when more processes
than processors perform parallel processing together,
rescheduling inevitably occurs, and when the granular-
ity is fine it occurs frequently. Accordingly, it is very
desirable to suppress as much as possible overhead
which is due to rescheduling and to make parallel pro-
cessing more applicable. A hierarchically driven sched-
uler which provides such reduced overhead is de-
scribed below.

The above mentioned values of waiting state flag
(PWF) and waiting state counter (PWC) are data used
by the scheduler to calculate #MNWR and to assist the
scheduler in performing rescheduling. The initial values
of both are “0”, and PWF indicates by “1” that the
process concerned is in a waiting state, and PWC 1ndi-
cates the frequency with which the process enters a
synchronization waiting state. Using PWF and PWC, a
process detects whether or not it 1s in the same synchro-
nization state as other processes. With this result, even
if condition [2] is not fulfilled, a deadlock can sometimes
be detected. For example, when all the processes 1 a
group are in a synchronization watting state and all the
processes keep the same synchronization waiting state
after all the processes are dispatched once to a proces-
sor, a deadlock is indicated. The operation should be
then terminated. Further, a scheduling method can be
employed which assigns a priority t0 one or more pro-
cesses not waiting for synchronization. For barrier syn-
chronization, PWCB (Process Waiting Counter for
Barrier) is provided carefully. PWCB, unlike PWC,
indicates how frequently the process performs waiting
operations. That is, PWCB is modified immediately
before checking synchronization variables at the begin-
ning of FIG. 6. When all the processes in a group keep
barrier synchronization, all of the synchronization val-
ues of PWCG match one another, so that processes to
be scheduled next can be determined. It should be noted
that, as shown in FIG. 4(c) and (d), a process waiting to
be dispatched and also waiting to be synchronized, gets
out of synchronization while waiting for establishment
of synchronization. Accordingly, it 1s necessary to mod-
ify #MNWR upon establishment of synchronization.

In addition to the above, for some applications, infor-
mation about the combinations of processes which are
synchronized with one another frequently can be ob-
tained in advance. Scheduling depending on mforma-
tion particular to each application provides better re-
sults.

Next, hierarchization of the scheduler is described.

Scheduling is usually performed by the kernel of the
OS. Hence, in order for a user process to get reschedu-
ling started, a system call is required to the kernel. The
scheduler in the OS cannot however generally perform
adaptive scheduling for each application. In addition,
the kernel of the OS and user processes share much
data, so that procedures for communication become
complicated and overhead also increases. Furthermore,
a system call itself causes a heavy overhead, so that it 1s
difficult to switch among processes frequently.

To resolve these problems, a scheduler 1s hierarch-
ized. A part of the scheduler for allocating real proces-
sors 1S conventionally referred to as a “kernel sched-
uler”, and user schedulers are provided under the con-

10

15

20

235

30

33

45

50

55

65

10

trol of that kernel scheduler (see FIG. 10). A user
scheduler is provided for each group of processes
which execute an application in cooperation with one
another, and its scheduling method is determined by a
user in accordance with the operation. The kernel
scheduler controls all of the real processors, and it as-
signs one or more real processors for each process
group. Each user scheduler performs scheduling among
processors assigned to it. In addition, the user schedul-
ers do not operate in the kernel (kernel mode) but on the
user side (user mode). Accordingly, the user schedulers
do not need system calls for process switching and they
do not cause any overhead. This improves efficiency.

When one of the switching conditions is fulfilled,
control is transferred to a corresponding user scheduler,
which in turn selects one or more processes to be dis-
patched in accordance with a scheduling algorithm
suited for the corresponding process group, and after
that the control is transferred to the processes. In that
way, processes are switched in the group without over-
head for a system call. FIG. 11 shows an example where
the group A performs process switching using a user
scheduler based on condition [3].

The kernel scheduler receives from each process
group the number of processors which it requests, and
performs scheduling in such a manner that the request
from each group is satisfied as much as possible. The
kernel scheduler is initiated upon timer interruption for
time sharing or upon a system call during mput/output
operation of a peripheral device or upon a request or
return of processor resource from a user scheduler.
When scheduling by the kernel scheduler causes one or
more free processors to be required, the processors of
the lowest priority group are taken (preempted).

In a configuration where the determination of condi-
tions for process switching in regard to synchronization
is implemented in hardware and a processor is informed
of fulfillment of conditions by interruption, user sched-
ulers are designed to be initiated by the interruption. In
a conventional processor which discriminates during
operation between the kernel side and the user side,
control is transferred to the kernel after the interrup-
tion. Use of such conventional processors requires that
the control be returned to a user with overhead sup-
pressed as much as possible during that interruption. In
this regard, processors having a hierarchical mterrup-
tion function, which is described below, allow interrup-
tion without overhead on the user side. That 1s, proces-
sors are provided with interruptions of different prior-
ties, and some interruption of lower priorities are as-
signed to interruption of the user mode. Upon such
interruption, control is transferred in the user mode to a
routine designed by the user. The remaining types of
external interruption are to the kernel mode as i1s con-
ventional. Further interruption in the user mode 1s de-
signed by modifying an interruption mask (switching
between enabled and disabled states of each interrup-
tion) as the user chooses. When such an interruption in
the user mode occurs for synchronization and asyn-
chronous communication among processors in a group,
control is never transferred to the kernel and overhead
is this decreased. For interruptions from the synchroni-
zation mechanism, control is designed to be directly
transterred to the user scheduler.

Section 2. Detailed Configuration

Next, the detailed configuration of the synchroniza-
tion mechanism is described. In this configuration, to

5,448,732

11

reduce the overhead of a busy waiting operation, deter-
mination of conditions for process switching is prefera-
bly implemented in hardware. The scheduler is de-
signed as hierarchized according to the description 1n
subsection 1.3, and preferably implemented in software.
In the following, the hardware for the synchronization
mechanism and an operation of busy waiting used in
that mechanism are mainly described.

FIG. 12 shows the whole configuration, in which a
shared bus 1 1s used as a data communication path. For
processors CPU1, CPU2, ..., CPUn, synchronization
controllers SC1, SC2, . . ., SCn are provided respec-
tively. The synchronization controllers are connected
to synchronization bus 2 (signal lines of broadcasting
type) which consists of the same number of signal lines
as the processors. Each processor and its corresponding
synchronization controller 1s connected via a data line
for read/write operations of registers and flags in the
controller and via an interruption line (for the above
mentioned interruption in the user mode) from the con-
troller to the processor.

FIG. 13 shows the configuration of synchronization
controller SCI1. It should be noted that other synchroni-
zation controllers have the same configuration. In this
figure, individual lines of synchromnization bus 2 are
assigned to system controllers SC1, SC2, . . ., SCn
respectively, and each of the system controllers pro-
vides output signals (binary value of “0” or “1”’) on only
its corresponding signal line. The signal generated cor-
responds to a synchronization output flag (SOF) 1n the
corresponding controller -or a barrier synchronization
output flag (BSOF). When SOF (or BSOF) is reset, a
“0” signal is provided on the line. In the 1mtial state,
SOF and BSOF are reset, and SOF (BSOF) is set before
the relevant processor enters a synchronization loop
using shared memory 4, and it 1s reset after the proces-
sor passes through the loop (see FIG. 9). Accordingly,
the signal line 1n the synchronization bus corresponding
to each process waiting for synchronization is set to
“1”. In addition, in the synchronization controller, a
group register 3 is provided, which is set to “1” by the
corresponding scheduler at the location corresponding
to the processors belonging to the group of the corre-
sponding processor. Therefore, the synchronization
controller determines whether or not each of the pro-
cessors belonging to its group 1s in a synchronization
waiting state.

The synchronization controller has two operation
modes. Mode 1 corresponds to the above mentioned
problem (1), and mode 2 to problem (1) in barrier syn-
chronization and the above mentioned problem (2)
(condition [3]). While each controller assumes only one
mode at a time, different modes are assumed for differ-
ent groups. Switching of the modes is performed using
a register (MODE) in each controller.

Registers and flags common in a group can be written
simultaneously through a shared bus. That is, the sched-
uler can output, on the shared bus, a command with a
designated group. This command modifies registers in
the controllers in the designated group. Likewise, the
scheduler can modify registers in any processor other
than one connected to the scheduler.

As shown 1in FIG. 13, registers or the like which can
be set in such a manner by the scheduler include Group
Register 3, MODE, UM, KM, PRQ flag, TVPSI,
TVPS2, MPRQ flag, MVWR flag and PCOUNT.
Among those flags, UM and KM are interruption masks
for the user scheduler and the kernel scheduler respec-

>

10

15

20

25

30

35

45

12

tively. When etther of them is set, interruption of the
processor is prohibited. Of course, the kernel scheduler
can modify all the registers and flags. PRQ flag,
TVPS1, TVPS2, MPRQ flag and MNWR flag are for
storing information about processor resources. PRQ
flag, MPRQ flag and MNWR f{lag correspond to
#PQR, #MPRQ and #MNWR respectively (in subsec-
tion 1.2). When the count is “0”, then the flag is reset,
and when the count is other than “0”, then the flag is
set. TVPS1 (or TVPS2) is a register for setting a value
to be compared to the value of #FMWC for conditions
[1], [2], [4] and [5] (as described above). For example, in
order to check conditions [1] or [2], hl is set by #MGC.
PCOUNT is a counter for counting occurrences of
preemption processes in a group by the kernel. The
counter is counted up when the kernel scheduler pre-
empts, and 1t 1s counted down when the user scheduler
operates for the preemption. Accordingly, the control-
ler can keep enough information about the occurrence
of preempting and prevents erroneous operation.

First, operation 1n mode 1 is described. As mentioned
above, the controller has registers or the like for storing
information about processor resources, and the sched-
uler sets values for the registers or the like. For #MWC,
the synchronization controller monitors the synchromni-
zation bus and keeps informed. The above mentioned
conditions [1} to [5] about the system status are checked
by the hardware mechanism, and upon the fulfillment of
either of the conditions an interruption signal is supplied
to the processor, and rescheduling by the OS is re-
quested.

Next, operation in mode 2 1s described. In addition to
the above mentioned registers and flags, a read only
barrier synchronization establishment flag (BF) is pro-
vided in the synchronization controller. It should be
noted that the scheduler can perform a read/write oper-
ation without side effect. The BF flag is set to ““0” when
the MNWR flag is rest to “0”’, PCOUNT is “0’’, and all
the processors in the group of the process concerned are
waiting for synchronization. After the processor reads
“1”’ as the flag bit, the controller performs the following
operations and automatically resets the flag. First, the
controller sets its synchronization line and BSOF to
“0”, and when the MPRQ flag is not “0, then the
MNWR flag in the controller is set to “0”. After that,
the BF flag is reset. The program uses the BF flag for
waiting. Although in mode 1, BSOF is set and the syn-

.-chronization line is “1” in mode 2. Like the automatic

50

n)

65

resetting of BSOF, the BF flag is automatically set upon
the first reading immediately after the establishment of
synchronization. Accordingly, there is no need to set
the BF in the busy waiting operation. Likewise, the
count-up of PWCB can be automated. The waiting
operation 1s accordingly shown in the flow chart of
FI1G. 14. To prevent erroneous operations during cre-
ation or deletion of processes by the scheduler, the
following control scheme is implemented. For example,
when processes are created to participate in barrier
synchronization, the MNWR flag in the controller is set
to “1” to prohibit interruption, and after all the pro-
cesses are created, a correct MNWR flag 1s set and an
interruption is allowed. Further, the synchronization
controller checks for condition [3] and generates inter-
ruption to the processor to switch processes when the
condition 1s fulfilled. It should be noted that when
PCOUNT is other than “0”’, the same control scheme 1s
implemented as when the #MNWR flag 1s not “0”, and
an erroneous operation is prohibited.

5,448,732

13
The registers in controllers SC1, SC2, ..., and SCn
are modified as required each time processes are
switched, and SOF, BSOF, BF, MNWR flags and the
like of each controller for the processor which is about
to change processes, are kept behind before that >
change, and when the previous process is dispatched
again in the future, the kept values are used to set the
flags again.
As described above, in accordance with this inven-
tion, when processes executed in synchronization with 10
one another on a multiprocessor system are dispatched
to real processors simultaneously, an overhead 1s very
small, and further even when all of the processes cannot
be dispatched simultaneously due to the limited number
of processors and scheduling methods, the processor 1°
resources are used efficiently.
While the invention has been described in detail
herein in accord with certain preferred embodiments
thereof, many modifications and changes therein may
be effected by those skilled in the art. Accordingly, it is 20
intended by the appended claims to cover all such modi-
fications and changes as fall within the true spirit and
scope of the invention.
What is claimed is:
1. In a process synchronization method for a multi-
processor system having a plurality of processors and a
shared memory, wherein processes being performed by
said processors check for synchronization completion
information stored in said shared memory while said
processes remain in a synchronization waiting state, said
processes end said synchronization waiting state when
said synchronization completion information indicates
establishment of said synchronization and said processes
continue said synchronization waiting state when said ;<
completion information indicates incompletion of said
synchronization, an improvement characterized in that
said processes further perform the following steps while
said processes remain in said synchronization waiting
state: 40
accessing processor resource information stored in
said shared memory to determine whether or not
predetermined conditions which are useful for de-
termining establishment of synchronization are
fulfilled; 45

continuing said synchronization waiting state when
any of said predetermined conditions are deter-
mined to be fulfilled; and,

requesting, from a rescheduler, rescheduling of pro-

cesses to be performed on said processors when j5q
none of said predetermined conditions 1s deter-
mined to be fulfilled.

2. In a multiprocessor system wherein synchroniza-
tion among processes executed on a plurality of proces-
sors 1s performed through checking by each of said 55
processes for synchronization completion information
stored in a shared memory, an improvement compris-
ing:

information requesting means for each of said proces-

sors for accessing from said shared memory, pro- 60
cessor resource information usable to determine
whether or not predetermined conditions useful for
determining establishment of synchronization are
fuifilled, while a process executed on said proces-
sor remains in a synchronization waiting state and 65
for sending a rescheduling request when no prede-

termined condition about the establishment of said
synchronization is fulfilled; and

25

30

14

scheduling means responsive to said rescheduling
request for performing rescheduling of processes.
3. In a multiprocessor system wherein synchroniza-
tion among processes executed on a plurality of proces-
sors performed through checking by each of said pro-
cesses for synchronization completion information
stored 1n a shared memory, an improvement compris-
ing:
separate memory means for each of said processors
for receiving and storing information related to
process synchronization;
information requesting means, for each of said pro-
cessors, for accessing, while a process executed on
said processor remains in a synchronization waiting
state, said information from said separate memory
means, and for sending a rescheduling request
when predetermined conditions for determining
the establishment of said synchronization are ful-
filled; and,
scheduling means responsive to said rescheduling
request for performing rescheduling of processes.
4. A multiprocessor system in accordance with claim
2 or claim 3, further characterized in that said informa-
tion includes information about assignment of one or
more of said other processes t0 one or more of said
processors, information about grouping of said pro-
cesses, or information about one or more of said pro-
cesses waiting for synchronization.
5. A multiprocessor system in accordance with claim
3, further characterized in that said scheduling means is
provided for applications separately from an operating
system, whereby no control is transferred to said oper-
ating system upon said rescheduling request.
6. A multiprocessor system in accordance with claim
5, further characterized in that said information request-
ing means sends an external interruption signal of a low
priority level to a corresponding processor, said sched-
uling means corresponding to said processor performs
rescheduling in response to said external interruption
signal of said low priority level and control 1s trans-
ferred to said operating system upon an external inter-
ruption signal of a high priority level from another
PIoOCessor.
7. A multiprocessor system in accordance with claim
2, claim 3, claim 5 or claim 6, further characterized in
that said processors each have private caches and access
the content of said shared memory through said private
caches. |
8. In a multiprocessor system wherein synchroniza-
tion is performed among processes executed on a plural-
ity of processors, an improvement comprising:
first memory means for each of said processors for
receiving first information signals related to pro-
cess synchronization stored in a shared memory
and for storing the same;
second memory means for each of said processors for
storing designation of other processors to be bar-
rier synchronized with said processor;
signal receiving means for each of said processors for
receiving second information signals related to
synchronization waiting from each of said other
ProCEessors; |
requesting means for at least one of said processors
for determining, while a process executed on said
at least one processor remains in a2 synchronization
waiting state, based on said information stored in
said first and second memory means, as an output
signal from said signal receiving means, whether or

5,448,732

15

not any other processor to be synchronized with
said at least one processor is out of a synchroniza-
tion waiting state and is waiting for dispatching,
whereby barrier synchronization 1s not established, 5
and for sending a rescheduling request when bar-
rier synchronization is determined not to be estab-
lished;

a synchronization signal bus for interconnecting said 10

signal receiving means of said processors; and,
means responsive to said requesting means for per-
forming rescheduling.

9. In a multiprocessor system wherein synchroniza- 15
tion among processes, each executed on a plurality of
processors, 1s performed through checking by each of
said processes for synchronization information stored in
a shared memory, an improvement comprising: 20

first memory means for each of said processors for

receiving first information signals related to pro-
cess synchronization stored in a shared memory
and for storing the same; 25

30

35

45

50

35

65

16

second memory means for each of said processors for
storing designation of other processors to be bar-
rier synchronized with said processor;

signal recetving means for each of said processors for
receiving second information signals related to
synchronization waiting from each of said other
ProCessors;

requesting means for at least one said processor for
determining, while a process being executed on
said at least one processor remains in a synchroni-
zation waiting state, based on information stored in
sald first and second memory means and based on
an output signal from said signal receiving means,
whether or not any other processor to be synchro-
nized with said at least one processor is out of a
synchronization waiting state and i1s waiting for
dispatching, whereby barrier synchronization is
not established, and for sending a rescheduling
request when barrier synchronization is deter-
mined not to be established;

a synchronization signal bus for interconnecting said
signal receiving means for said processors, and,

means responsive to said requesting means for per-

forming rescheduling.
*¥ X % ¥ 2

	Front Page
	Drawings
	Specification
	Claims

