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(57} ABSTRACT

A computer system provides handling of positive and
negative overflow. A first arithmetic operation 1s per-
formed on a first n-bit unsigned binary operand and a
second n-bit signed binary operand to produce an n-bit
unsigned binary result. Overflow detection logic cir-
cuitry within the arithmetic logic unit detects positive
overflow or negative overflow resulting from the arith-
metic operation. When there is a positive overflow,
saturation logic replaces the output of the two’s com-
plement adder with a value of 27—1, When there is a
negative overflow, the saturation logic replaces the
output of the two’s complement adder with a value of 0.
In an alternate embodiment, a first arithmetic operation
is performed on a first n-bit signed binary operand and
a second n-bit signed binary operand to produce an n-bit
positive signed binary result. For example the arithme-
tic operation 1is an addition or subtraction performed by
a two’s complement adder. In the alternate embodi-
ment, overflow detection logic circuitry within the
arithmetic logic unit detects positive overtlow or nega-
tive overflow resulting from the arithmetic operation.
When there is a positive overflow, saturation logic re-
places the output of the two’s complement adder with a
value of 27—1 — 1. When there is a negative overflow,
the saturation logic replaces the output of the two’s
complement adder with a value of 0.

27 Claims, 12 Drawing Sheets
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EFFICIENT HARDWARE HANDLING OF
POSITIVE AND NEGATIVE OVERFLOW
RESULTING FROM ARITHMETIC OPERATIONS

BACKGROUND

The present invention concerns a hardware imple-
mentation which handles positive and negative over-
flow resulting from arithmetic operations.

When performing anthmetic operations in a comput-
ing system positive overflow or negative overflow can
occur. For example, when two n-bit integers are added
by an arithmetic logic unit (ALU), n+1 bits of result
are produced: an n-bit sum and a 1 bit carry-out. For
operations using unsigned addition, when the carry-out
is zero, then the sum gives the entire result. However, if
the carry-out 1s 1, then “overflow” has occurred be-
cause representation of the result requires n+1 bits
rather than n bits. For signed numbers, if the two oper-
ands have the same sign and the result has a different
sign, then overflow has occurred. In the prior art, over-
flow has typically been handled by a trap to a software
exception handler.

When overflow is rare, but must be detected, using a
software trap handler is an acceptable practice. How-
ever when frequent overflows occur, the use of soft-
ware traps to handle overflow can have a detrimental
effect on system performance. In this case, rather than
using a software trap, additional in-line software m-

structions may be added to the code after each arithme-
fic instruction. The additional software instructions

check for overflow and, when present, adjusts the result
or re-executes the code with more bits of precision.

In applications where overflow never occurs, then
software trapping can be disabled and there is no re-
quirement for in-line software checking for overflows.
However, when positive and/or negative overflows are
fairly frequent 1t is desirable to have a method of han-
dling these overflows in an efficient manner without
using software traps or additional in-line code.

SUMMARY OF THE INVENTION

In accordance with the preferred embodiment of the
present invention, a computer system is presented
which provides handling of positive and negative over-
flow. Positive overflow occurs when the result is
greater than the largest number that may be represented
by the bits allocated to represent the result. Negative
overflow occurs when the result is less than the smallest
number that may be represented by the bits allocated to
represent the result. A first arithmetic operation is per-
formed on a first n-bit unsigned binary operand and a
second n-bit signed binary operand to produce an n-bit
unsigned binary result. For example the arithmetic op-
eration 1s an addition performed by a two’s complement
adder. In the preferred embodiment, overflow detec-
tion logic circuitry within the arithmetic logic unit
detects positive overflow or negative overflow result-
ing from the arithmetic operation. When there is a posi-
tive overflow, saturation logic replaces the output of
the two’s complement adder with a value of 27—1.
When there is a negative overflow, the saturation logic
replaces the output of the two’s complement adder with
a value of Q.

The overflow detection logic circuitry determines
there 1s positive overflow when a most significant bit of
the first n-bit unsigned binary operand is equal to 1, a
most significant bit of the second n-bit signed binary
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operand is equal to 0 and a most significant bit of the
n-bit unsigned binary result 1s equal to 0. The overflow
detection logic circuitry determines there 1s negative
overflow when the most significant bit of the first n-bit
unsigned binary operand 1s equal to O, the most signifi-
cant bit of the second n-bit signed binary operand 1is
equal to 1 and the most significant bit of the n-bit un-
signed binary result is equal to 1.

In the preferred embodiment of the present invention,
different overflow schemes are implemented for differ-
ent arithmetic operations. For example, a second arith-
metic operation is performed on two n-bit signed binary
operands to produce an n-bit signed binary result. In
this case, the overflow detection logic circuitry within
the anithmetic logic unit also detects positive overflow
or negative overtlow resulting from the arithmetic op-
eration. When there 1s a positive overtlow resulting
from the second arithmetic operation, the saturation
logic assigns a value of 2#2—1—1 to the n-bit signed
binary result. When there is a negative overflow result-
ing from the second arithmetic operation, the saturation
logic assigns a value of —27—1to the n-bit signed binary
result.

The overflow detection logic circuitry determines
there 1s positive overfiow in the second anthmetic oper-
ation when most significant bits for both of the two n-bit
signed binary operands are equal to 0, and a most signifi-
cant bit of the n-bit signed binary result is equal to 1.
The overtlow detection logic circuitry determines there
is negative overflow in the second arithmetic operation
when the most significant bits for both of the two n-bit
signed binary operands are equal to 1, and the most
significant bit of the n-bit signed binary result is equal to
0.

A third arithmetic operation 1s a subtraction opera-
tion using two n-bit unsigned operands. The overtlow
detection logic determines whether an (n-- 1)-bit signed
binary intermediate result is negative. When the (n-+ 1)-
bit signed binary intermediate result is negative, the
saturation logic performs a two’s (or one’s) complement
operation of the (n-1)-bit signed binary intermediate
result to produce a final n-bit unsigned resuit.

In the preferred embodiment, the various handling of
positive and negative overflow may be overnidden so
that the output of the two’s complement adder 1s used
regardless of overflow.

In another embodiment of the present invention, a
first arithmetic operation 1s performed on a first n-bit
signed binary operand and a second n-bit signed binary
operand to produce an n-bit positive signed binary re-
sult. For example the anthmetic operation 1s an addition
or subtraction performed by a two’s complement adder.
In the alternate embodiment, overflow detection logic
circuitry within the arithmetic logic unit detects posi-
tive overflow or negative overflow resulting from the
arithmetic operation. When there is a positive overtlow,
saturation logic replaces the output of the two’s com-
plement adder with a value of 27—1—1. When there is a
negative overflow, the saturation logic replaces the
output of the two’s complement adder with a value of 0.

The overflow detection logic circuitry determines
there is positive overflow when a most significant bit of
the first n-bit signed binary operand is equal to 0, 2 most
significant bit of the second n-bit signed binary operand
is equal to 0 and a most significant bit of the n-bit posi-
tive signed binary result is equal to 1. The overilow
detection logic circuitry determines there 1s negative
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overflow when the most significant bit of the n-bit posi-
tive signed binary result is equal to 1 and one of either
the most significant bit of the first n-bit signed binary
operand or the most significant bit of the second n-bit
signed binary operand is equal to 1.

The teaching of the present invention is also extend-
ible to the case where a pre-shifter shifts an operand
before receipt by the n-bit two’s complement adder. In
this case the overflow detection logic additionally de-
tects positive or negative overflow resulting from the
pre-shifter shifting the first n-bit signed or unsigned
binary operand to the left before receipt by the n-bit
two’s complement adder.

In addition, the present invention works particularly
well for computer systems which implement multiple
operations 1n response to a single instruction. In this
case, the first arithmetic operation is one of a plurality
of parallel operations performed simultaneously in an
arithmetic logic unit.

The present invention allows an increase in computer
system performance for computations where positive
overflow or negative overflow are not rare occur-
rences. The hardware implementation of the present
invention facilitates the handling of positive and nega-
tive overflow without use of a software overflow trap
handler or in-line instructions. The present invention
also provides for a simple and effective hardware imple-
mentation which provides for versatility in the handling
of positive and negative overflows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a simplified block diagram of an opera-
tion execution data path within a processor in accor-
dance with the prior art.

FIG. 2 shows a simplified block diagram of an opera-
tion execution data path within a processor in accor-
dance with preferred embodiments of the present inven-
tion.

FIG. 3 shows logic which performs overflow calcu-
lations for a pre-shifter shown in FIG. 2 in accordance
with a preferred embodiment of the present invention.

FI1G. 4 shows logic which performs overflow calcu-
Jations for an arithmetic logic unit (ALU) shown in
FIG. 2 1n accordance with a preferred embodiment of
the present invention.

FIG. 5§ shows logic which implements a saturation
selection logic block shown in FIG. 2 in accordance
with a preferred embodiment of the present invention.

FIG. 6 shows saturation logic which is used to pres-
ent an arithmetic result for the arithmetic logic unit
(ALU) shown in FIG. 2 in accordance with a preferred
embodiment of the present invention.

FI1G. 7 shows a simplified block diagram of the arith-
metic logic unit (ALU) shown in FIG. 2 in accordance
with an alternate preferred embodiment of the present
invention.

FIG. 8 shows implementation of a two’s complement
adder within the ALU shown in FIG. 2 in accordance
with a preferred embodiment of the present invention.

FIG. 9 shows an alternate simplified block diagram of
the arithmetic logic unit (ALU) shown in FIG. 2 in
accordance with an alternate preferred embodiment of
the present invention.

FI1G. 10 shows a simplified block diagram of a pre-
shifter in accordance with a preferred embodiment of
the present invention.

FI1G. 11 shows logic which performs overflow calcu-
lations for an arithmetic logic unit (ALU) shown in
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FIG. 2 mm accordance with another preferred embodi-
ment of the present invention.

FIG. 12 shows logic which implements a saturation
selection logic block shown in FIG. 2 in accordance

with another preferred embodiment of the present in-
vention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 shows a simplified block diagram of an opera-
tion execution data path within a processor in accor-
dance with the prior art. Operands for upcoming opera-
tions and results from accomplished operations are
stored within general registers 25. When operations are
performed, a first operand stored in a first register
within general registers 25 is placed on a first source bus
21. If the operation requires another operand, a second
operand stored in a second register within general regis-
ters 25 1s placed on a second source bus 22.

After performance of the operation, the result is
placed on a result bus 23 and loaded into a register
within general registers 25 or forwarded to other func-
tional units. The operation is performed by arithmetic
logic unit (ALU) 26 or by a shifter 29. A pre-shifter 27
and a complement circuitry 28 may each be used to
modify operands before they are received by ALU 26.
For example, for a subtraction operation, complement
circuitry 28 is used to perform a two’s complement on
one of the operands before it is forwarded to an adder
within ALU 26. For general background about the
architecture of single processor system constructed
similarly to the present invention see, for example,
Ruby B. Lee, Precision Architecture, IEEE Computer,
Volume 2, No. 1, January 1989, pp. 78-91.

FIG. 2 shows how the operation execution data path
within a processor may be modified to allow for hard-
ware handling of positive and negative overflow result-
ing from arithmetic operations performed by ALU 26.
As described below additional circuitry is added to
pre-shifter 27 to generate overflow signals 204 and is
added to ALU 26 to generate overflow signals 205.
Overflow signals 204 and 205 are processed by a satura-
tion selection block 202 to produce saturation selection
signals 206. Alternately, overflow signals 204 may be
received by ALU 26 and used in the generation of over-
flow signals 205. Based on saturation selection signals
206, saturation logic 201 operates on ALU results 207
from ALU 26 to produce overflow corrected results
208.

The operation performed by saturation selection
block 202 and saturation logic 201 is the handling of
overflow by use of saturation arithmetic. In saturation
arithmetic, a result is restricted to “n” number of bits.
When the result cannot be expressed in n bits, then the
result 1s clipped to a value represented by n bits.

In the preferred embodiment of the present invention,
overflow is handled in one of several ways, depending
on selections by the executed instruction and the exact
operation bemng performed.

The first overflow option is for an arithmetic opera-
tion performed on two n-bit signed two’s complement
operands and which produces an n-bit signed two’s
complement result. The largest n-bit signed two’s com-
plement number has a value of 27—11. The smaliest n-bit
signed two’s complement number has a value of —27—1,
In the first overflow option, results which have a value
Jarger than 27—1—1 (positive overflow) are assigned the
value of 27—1—1. Results which have a value less than
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—--2”—: (negative overflow) are assigned the value of
—2n—1

The second overflow option is for an arithmetic oper-
ation performed on one n-bit signed two’s complement
number and one unsigned binary n-bit number and
which produces an n-bit unsigned result. The largest
n-bit signed two’s complement number has a value of
2n—1_1. The smallest n-bit signed two’s complement
number has a value of —27—1, The largest n-bit un-
signed binary number has a value of 27— 1. The smallest
n-bit unsigned binary number has a value of 0. In the
second overflow option, results which have a value
larger than 27—1 (positive overflow) are assigned the
value of 27—1. Results which have a value less than O
(negative overflow) are assigned the value of 0.

The third overtlow option is for an arithmetic opera-
tion performed on two n-bit unsigned binary numbers.
The largest n-bit unsigned binary number has a value of
27— 1. The smallest n-bit unsigned binary number has a
value of 0. In the third overflow option, modular (wrap-
around) arithmetic is implemented. Results which have
a value larger than 27—1 (positive overflow) are
wrapped around and are assigned a value beginning
with O based on the amount of negative overflow. For
example, a result that overflows 27—1 by 1 is assigned
the value of 0, a result that overflows 22—1 by 2 is
assigned the value of 1, a result that overflows 22 —1 by
3 1s assigned the value of 2, and so on. Results which
have a value smaller than 0 (negative overflow) are
wrapped around and are assigned a value beginning
with 27— 1 based on the amount of overflow. For exam-
ple, a result that negative overflows 0 by 1 is assigned
the value of 27— 1, a result that negative overflows 0 by
2 i1s assigned the value of 272—2, a result that negative
overflows 27— 1 by 3 is assigned the value of 27—3, and
so on. As will be understood by those of skill in the art,
the third overflow option also works equally well for
n-bit signed binary numbers.

The fourth overflow option is for subtraction with
two unsigned binary n-bit numbers within the range of
O and 27— The subtraction produces an (n--1)-bit
signed binary number, n bits for the difference and one
bit for the sign. However, the absolute value of the
difference between two unsigned binary n-bit numbers
1S an n-bit unsigned number within the range of 0 and
27—1 1In this case, negative overflow is handled by
taking the absolute value of the result. This means that
if the result is negative, it is replaced with the two’s (or
one’s) complement value. Positive overflow cannot
occur in subtraction with two unsigned numbers.

The fifth overflow option deals with two signed op-
erands, and produces a positive signed result in the
range of 0 to 2n—1_1. |

The first overtlow option is implemented by examin-
ing the most significant bit (sign bit) of the first operand
(“Ar”), the most significant bit (sign bit) of the second
operand (““By’’) and the most significant bit (sign bit) of
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the result (“C,”). For an addition or subtraction using

the first overtlow option, positive overflow occurs
when the sign bits of the operands are both equal to O

and the sign bit of the result is equal to 1. This may be 0

represented as in Equation 1 below:

6

the operands are both equal to 1 and the sign bit of the

result 1s equal to 0. This may be represented as in Equa-
tion 2 below:

(Apy=Bp=1) AND (C,=0) Equation 2

When there is negative overflow, results are assigned
the value of —27—1,

The second overflow option is also implemented by
examining the most significant bit of the first (unsigned
binary n-bit) operand (“A;,’"), the most significant bit
(sign bit) of the second (n-bit signed two’s complement)
operand (“B,”) and the most significant bit of the (un-
signed binary n-bit) result (““C,’’). For an addition or
subtraction using the second overflow option, positive
overtlow occurs when the sign bit of the second oper-
and and the most significant bit of the result are both
equal to O and the most significant bit of the first oper-

and 1s equal to 1. This may be represented as in Equa-
tion 3 below:

(Bp=C,;=0) AND (A,=1) Equation 3

When there 1s positive overflow, results are assigned the
value of 27—1.

Likewise, for an addition or subtraction using the
second overflow option, negative overflow occurs
when the sign bits of the second operand and the most
significant bit of the result are both equal to 1 and the
most significant bit of the first operand is equal to 0.
'This may be represented as in Equation 4 below:

(B,=C,=1) AND (A,=0) - Equation 4
When there 1s negative overflow, results are assigned
the value of 0.

The third overflow option is implemented by the
operation of a standard two’s complement n-bit adder.
No additional modification to the output is necessary.

The fourth overflow option is implemented by per-
forming the subtraction and when the intermediate
result is negative, performing a two’s (or one’s) comple-
ment on the intermediate result to form the final resuit.
Overtlow for the fourth overflow option may be de-

tected by equation 5 set out below for the case where
A—B=C:

(A,=0 AND B,=1) OR (A,=B, AND C,=1) Equation 5

Other saturation options may be utilized in accor-
dance with embodiments of the present invention. For
example, in a fifth option, the first and the second oper-
ands are signed n-bit numbers in the range of —27—1 to
2rn—1_1. The result is a positive signed n-bit number in
the range of 0 to 2#—1—1, Positive overflow occurs
when both operands are positive and the most signifi- .
cant bit of the result is 1. Negative overflow occurs
when at least one Of the operands 1s negative and the
sign of the result 1s negative or when both operands are
negative. To detect positive overflow, logic is used in
accordance with Equation 6 below:

To detect negative overflow, logic 1s used in accor-

When there is positive overflow, results are assigned the 65 dance with Equation 7 below:

value of 2n—1_1,

Similarly, for an addition using the first overflow
option, negative overflow occurs when the sign bits of

((A,=1OR B,=1) AND (C,=1)) OR (A, =B,=1) Equation 7
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In the fifth overflow option, when there is positive
overflow, the result is saturated to 22—~1—1. When there
is negative overflow, the result is saturated to O.

Although requiring greater complexity, the preferred
embodiment of the present invention also takes into
account overflow resulting from the use of pre-shifter
27. FIGS. 3, 4, 5 and 6 show logic which implements
the preferred embodiment of the present invention. The
logic shows implementation for the arithmetic opera-
tions of add, subtract, shift-and-add, and shift-and-sub-
tract.

FIG. 3 shows logic added to pre-shifter 27 to allow
calculation of an overflow condition. In the preferred
embodiment, pre-shifter 27 can shift a first operand to
the left or to the right zero, one, two, or three bits be-
fore the first operand is forwarded to ALU 26. The
logic in FIG. 3 detects when an overflow has occurred
in shifting bits of the first operand to the left one, two,
or three bits.

The logic 1n pre-shifter 27 which detects shifter posi-
tive signed overflow includes a multiplexor 260, an
inverter 261, a logical NOR gate 262, a logical NOR
gate 263 and a logical NOR gate 264. The high order bit
of the pre-shifter operand is connected to an input 276
of logical NOR gate 264. The second highest order bit
of the pre-shifter operand is connected to an input 270
of inverter 261, to an input 271 of logical NOR gate 262
and to an 1nput 273 of logical NOR gate 263. The third
highest order bit of the pre-shifter operand is connected
to an input 272 of logical NOR gate 262 and to an input
274 of logical NOR gate 263. The fourth highest order
bit of the pre-shifter operand is connected to an input
275 of logical NOR gate 263. A logic one (VDD) signal
1s connected to input 269 of multiplexor 260.

For operations for which the pre-shifter operand is
not shifted or is shifted right, a zero shift select signal on
line 265 is activated so that multiplexor 260 selects the
value on line 269 to be forwarded to logic NOR gate
264. For operations for which the pre-shifter operand is
shifted one bit to the left, a one bit left shift select signal
on line 266 is activated so that multiplexor 260 selects
the value from inverter 261 to be forwarded to logic
NOR gate 264. For operations for which the pre-shifter
operand is shifted two bits to the left, a two bit left shift
select signal on line 267 is activated so that multiplexor
260 selects the value from logic NOR gate 262 to be
forwarded to logic NOR gate 264. For operations for
which the pre-shifter operand is shifted three bits to the
left, a three bit left shift select signal on line 268 is acti-
vated so that multiplexor 260 selects the value from
logic NOR gate 263 to be forwarded to logic NOR gate
264. When a first pre-shifter overflow signal on line 277
18 at logic one, this indicates that a shifter positive
signed overflow has occurred.

The logic in pre-shifter 27 which detects shifter nega-
tive signed overflow includes a multiplexor 280, an
mverter 281, a logical NAND gate 282, a logical
NAND gate 283 and a logical NAND gate 284. The
high order bit of the pre-shifter operand is connected to
an input 296 of logical NAND gate 284. The second
highest order bit of the pre-shifter operand is connected
to an tnput 290 of inverter 281, to an input 291 of logical
NAND gate 282 and to an input 293 of logical NAND
gate 283. The third highest order bit of the pre-shifter
operand is connected to an input 292 of logical NAND
gate 282 and to an input 294 of logical NAND gate 283.
The fourth highest order bit of the pre-shifter operand is
connected to an input 295 of logical NAND gate 283. A
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logic 0 (GND) signal is connected to input 289 of multi-
plexor 280. |

For operations for which the pre-shifter operand is
not shifted or is shifted right, a zero shift select signal on
hine 285 1s activated so that multiplexor 280 selects the
value on line 289 to be forwarded to logic NAND gate
284. For operations for which the pre-shifter operand is
shifted one bit to the left, a one bit left shift select signal
on line 286 is activated so that multiplexor 280 selects
the value from inverter 281 to be forwarded to logic
NAND gate 284. For operations for which the pre-
shifter operand is shifted two bits to the left, a two bit
left shift select signal on line 287 is activated so that
multiplexor 280 selects the value from logic NAND
gate 282 to be forwarded to logic NAND gate 284. For
operations for which the pre-shifter operand is shifted
three bits to the left, a three bit left shift select signal on
line 288 is activated so that multiplexor 280 selects the
value from logic NAND gate 283 to be forwarded to
logic NAND gate 284. When a second pre-shifter over-
flow signal on line 297 is at logic zero, this indicates that
a shifter negative signed overflow has occurred.

FIG. 4 shows overflow logic within ALU 26 which
performs overflow calculation and which takes into
account the results from the pre-shifter logic shown in
FIG. 3. An adder within ALU 26 receives a first adder
operand from pre-shifter 27 and a second adder operand
from complement circuitry 28.

The logic within ALLU 26 which performs overflow
calculations includes an inverter 211, an inverter 212, an
mverter 213, a logic NOR gate 214, a logic NOR gate
215, a logic NOR gate 216, a logic NAND gate 217, a
logic NAND gate 218, a logic NAND gate 219, a logic
OR gate 220 and a logic AND gate 221. On an input 231
of inverter 211 is placed the inverted value of the high
order bit of the second adder operand. On an input 238
of logic NAND gate 219 is placed the inverted value of
the high order bit of the first adder operand. On an
input 239 of logic NAND gate 219 is placed the in-
verted value of the high order bit of the second adder
operand. On an input 240 of logic NOR gate 216 is
placed the inverted value of the high order bit of the
first adder operand. On an input 241 of logic NOR gate
216 1s placed the inverted value of the high order bit of
the second adder operand.

On an 1mput 223 of logic NOR gate 214 is placed the
inverted value of the carry-out of the high order of the
adder result. On an input 233 of logic NAND gate 217
1s placed the inverted value of the carry-out of the high
order bit of the adder result. On an input 242 of logic
NOR gate 215 is placed the first pre-shifter overflow
signal from line 277. On an input 243 of logic NAND
gate 218 is placed the second pre-shifter overflow signal
from line 297. On an input 234 of logic AND gate 221 is
placed the value of the carry-out from second most
significant bit of the adder result. On an input 235 of
logic AND gate 221 is placed the second pre-shifter
overflow signal from line 297. On an input 236 of logic
OR gate 220 1s placed the first pre-shifter overflow
signal from line 277. On an input 237 of logic OR gate
220 1s placed the value of the carry-out from the second
most significant bit of the adder result.

As illustrated in the logic shown in FIG. 4, the carry-
out from the second most significant bit of the adder
result can be used rather than the carry-out from the
most significant bit of the result to calculate overfiow.
As may be understood by those skilled 1n the art, essen-
tially the carry-out from the second most significant bit
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and the inputs to the most significant bit can be used to
derive the information contained in the carry-out from
the most significant bit. This allows a slight perfor-
mance Increase as it 1s not necessary to wait for caicula-
tion of the carryout from the most significant bit.

The overflow logic within ALU 26 produces four
adder overtlow signals. A first adder overflow signal on
line 251 1s logic one when there is a positive overfilow
which results from an operation on a signed operand
and an unsigned operand. A second adder overflow
signal on line 252 is logic zero when there is a negative
overflow which results from an operation on a signed
operand and an unsigned operand. A third adder over-
flow signal on line 2353 is logic zero when there is a
positive overflow which results from an operation on
two signed operands. A fourth adder overtlow signal on
line 254 1s logic one when there is a negative overflow
which results from an operation on two signed oper-
ands.

FI1G. 5 shows a block logic diagram of saturation
selection logic 202. Saturation selection logic 202 in-
cludes a multiplexor 300, a multiplexor 310, a multi-
plexor 320, a multiplexor 330, an inverter 326 and an
inverter 336. Saturation selection logic 202 receives
first, second, third and fourth adder overflow signals on
lines 251, 252, 253 and 254, respectively as shown. A
logic zero (Ground) signal 1s placed on an input iine 304
of multiplexor 300. A logic one (VDD) signal is placed
on an mnput line 314 of multiplexor 310. A logic zero
(Ground) signal 1s placed on an input line 324 of multi-
plexor 320. A logic one (VDD) signal 1s placed on an
input hine 334 of multiplexor 330.

Multiplexor 300, multiplexor 310, multiplexor 320
and multiplexor 330 are controlied by three selection
signals. When an operation is selected to be an operation
in which a saturation overflow scheme 1s chosen for
two signed operands, a first selection signal on line 301
1s set at logic 1 and multiplexor 300, multiplexor 310,
multiplexor 320 and multiplexor 330 each select their
top 1nput to forward to their output. When an operation
1s selected to be an operation in which a saturation
scheme is chosen for one signed operand and one un-
signed operand, a second selection signal on line 302 1s
set at logic 1 and multiplexor 300, multiplexor 310,
multiplexor 320 and multiplexor 330 each select their
middle input to forward to their output. When an opera-
tion is selected to be an operation in which a no satura-
tion overtlow occurs, a third selection signal on line 303
i$ set at logic 1 and muiltiplexor 300, multiplexor 310,
multiplexor 320 and multiplexor 330 each select their
bottom 1nput to forward to their output.

Saturation selection logic 202 produces a first selec-
tion saturation signal on a line 305, a second selection
saturation signal on a line 315, a third selection satura-
tion signal on a line 325 and a fourth selection saturation
signal on a line 335. When the first selection saturation
signal 1s at logic one, saturation logic 201 is instructed to
force the most significant bit of the result to logic one.
When the second selection saturation signal is at logic
zero, saturation logic 201 1s instructed to force the most
significant bit of the result to logic zero. When the third
selection saturation signal is at logic one, saturation
logic 201 is instructed to force the all but the most sig-
nificant bit of the result to logic one. When the fourth
selection saturation signal i1s at logic zero, saturation
logic 201 1s mnstructed to force all but the most signifi-
cant bit of the result to logic zero.

10

15

20

25

30

35

45

50

335

65

10

FIG. 6 shows a logic block diagram of saturation
logic 201. Saturation logic 201 includes a logic AND
gate 341, logic OR gate 340, logic AND gate 351 and
logic OR gate 350. Logic AND gate 351 and logic OR
gate 350 are duplicated for every bit but the most signif-
icant bit of ALU results 207.

In order to produce the most significant bit of over-
flow corrected results 208 on line 342, saturation logic
201 recetves the most significant bit of AL U results 207
on a line 344, the first seclection saturation signal on line
305 and the second selection saturation signal on line
315.

In order to produce each bit other than the most
significant bit of overtlow corrected results 208, logic
AND gate 351 and logic OR gate 350 are duplicated for
each bit. For each bit other than the most significant bit
of overflow corrected results 208, saturation logic 201
receives the bit of ALU results 207 on a line 354, the
third selection saturation signal on line 325 and the
fourth selection saturation signal on line 335 and pro-
duces the corresponding bit of overflow corrected re-
sults 208 on line 332.

By placing an inverter after or in parallel with the
logic shown in FI1G. 6, a one’s complement operation as
discussed in the fourth overflow option above may be
implemented. As will be clear to those of ordinary skiil
in the art, to implement a two’s complement operation,
for the fourth overflow option, a carry-in of one is also
needed. |

Additional logic needs to be added to implement the
fifth option. FIG. 11 shows overflow logic within ALU
26 tor the fifth option which performs overflow calcula-
tion and which takes into account the results from the
pre-shifter logic shown in FIG. 3. The logic within
ALU 26 which performs overflow calculations for the
fifth option includes an inverter 412, an inverter 413, a
logic NOR gate 416, a logic NAND gate 418, a logic
NAND gate 419, a logic OR gate 420 and a logic
NAND gate 421. On an input 438 of logic NAND gate
419 1s placed the inverted value of the high order bit of
the first adder operand. On an input 439 of logic NAND
gate 419 is placed the inverted value of the high order
bit of the second adder operand. On an input 440 of
logic NOR gate 416 1s placed the inverted value of the
high order bit of the first adder operand. On an input
441 of logic NOR gate 416 1s placed the inverted value
of the high order bit of the second adder operand.

On an mput 434 of logic NAND gate 421 is placed
the value of the carry-out from the next to the most
significant bit (i.e., the carry-in to the most significant
bit) of the adder result. On an input 437 of logic OR gate
420 is placed the value of the carry-out from the next to
the most significant bit (1.e., the carry-in to the most
significant bit) of the adder result.

The overflow logic within ALU 26 for the fifth op-
tion produces two adder overtlow signals. A first adder
overflow signal on line 453 is logic zero when there 1s a
positive overflow which results from an operation on
two signed operands. A second adder overflow signal
on line 454 is logic one when there is a negative over-
flow which results from an operation on two signed
operands.

FIG. 12 shows a block logic diagram of saturation
selection logic 202 for the fifth option. Saturation selec-
tion logic 202 includes a multiplexor S00, a multiplexor
510, a multiplexor 520, a multiplexor 330, an inverter
526 and an inverter 536. Saturation selection logic 202
for the fifth option receives first and second adder over-
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flow signals on lines 453 and 454, respectively as shown.
A logic zero (Ground) signal is placed on an input lines
5303 and 504 of multiplexor 580. A logic zero (Ground)
signal 1s placed on an input lines 513 of multiplexor 510.
A logic one (VDD) signal is placed on an input line 514
of multiplexor 510. A logic zero (Ground) signal is
placed on an input line 524 of multiplexor 520. A logic
one (VDD) signal is placed on an input line 534 of
multiplexor 530.

Multiplexor 500, multiplexor 510, multiplexor 520
and multiplexor 530 are controlled by two selection
signals. When an operation is selected to be an operation
in which a saturation overflow scheme is chosen for
two signed operands in accordance with the fifth op-
tion, a first selection signal on line 501 is set at logic 1
and multiplexor 500, multiplexor 510, multiplexor 520
and multiplexor S30 each select their top input to for-
ward to their output. When an operation 1s selected to
be an operation in which a no saturation overflow oc-
curs, a second selection signal on line 502 is set at logic
1 and multiplexor 500, multiplexor 510, multiplexor 520
and multiplexor 530 each select their bottom input to
forward to their output.

Saturation selection logic 202 for the fifth option
produces a first selection saturation signal on a line 505,
a second selection saturation signal on a line 515, a third
selection saturation signal on a line 525 and a fourth
selection saturation signal on a line 535. When the first
selection saturation signal is at logic one, saturation
logic 201 1s instructed to force the most significant bit of
the result to logic one. When the second selection satu-
ration signal 1s at logic zero, saturation logic 201 is
instructed to force the most significant bit of the result
to logic zero. When the third selection saturation signal
1s at logic one, saturation logic 201 is instructed to force
the all but the most significant bit of the result to logic
one. When the fourth selection saturation signal is at
logic zero, saturation logic 201 1s instructed to force all
but the most significant bit of the result to logic zero.

While the above discussion of the present invention
has discussed operation using a non-partitioned ALU.
The present invention is also very useful when the ALU
1S partitioned to allow parallel data processing. Then
separate overflow hardware may be used for each parti-
tion of the ALU.

For example, FIG. 7 shows ALU 26 divided into two
partitions. A first partition 41 performs operations on
low order bits 42 of a first operand and low order bits 43
of a second operand to produce low order bit resuits 44.
A second partition S1 performs operations on high
order bits 32 of the first operand and high order bits 53

of the second operand to produce high order bit results
54

In response to a control input 49, a selector 50 is used
to allow information on data path 45 to propagate from
first partition 41 to second partition 51 or to intercept
information on data path 45 before it is propagated from
first partition 41 to second partition 51. Particularly, for
arithmetic operations performed on full-word operands,
information is allowed to propagate from first partition
41 through selector 50 to second partition 51. For the
performance of parallel arithmetic operations on half-
word operands, selector S0 prevents information from
propagating from first partition 41 to second partition
S1. Generally, in logic operations, there is no propaga-
tion of information from first partition 41 to second
partition 51.
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For example, in a computer which has a thirty-two
bit wide data path, each full-word operand is 32 bits.
Therefore, when performing operations using 32-bit full
word operands, selector 50 allows information to prop-
agate from first partition 41 through selector 50 to sec-
ond partition 51. When performing two paraliel opera-
tions using 16-bit half word operands, selector 50 pre-
vents information from propagating from first partition
41 through selector 50 to second partition 51. Instead
the value on a line §9 is forwarded to partition 51. When
an “‘add” 1s being performed, a logic O is placed on input
line 59. When a “subtract” is being performed, a logic 1
is placed on input line 59.

In the preferred embodiment of the present invention,
a common arithmetic operation performed by ALU 26,
shown in FIG. 1, is two’s complement addition. As is
understood by those skilled in the art, the use of two’s
complement circuitry 28 to perform a two’s comple-
ment on an operand before performing a two’s comple-
ment addition operation in the ALU implements a two’s
complement subtraction. Also, the use of pre-shifter 27
to pre-shift an operand before performing a two’s com-
plement addition operation in the ALU implements a
shift and add operation.

FIG. 8 shows an implementation of a two’s comple-
ment adder with carry propagate addition within ALU
26 1 accordance with a preferred embodiment of the
present invention. Alternately, ALU 26 includes a two’s
complement adder with carry look-ahead. A half adder
60 receives a single bit Xg of a first operand and a single
bit Yo of a second operand. Half adder 60 produces a
sum bit Zg and a carry bit Cy. A full adder 61 receives
a single bit X of the first operand, a single bit Y; of the
second operand and carry bit Cp. Full adder 61 pro-
duces a sum bit Z; and a carry bit C;. A full adder 65
receives a single bit X;_ j of the first operand, a single bit
Y;_1of the second operand and a carry bit from a previ-
ous adder (1.e., C;—_2, not shown). Full adder 65 pro-
duces a sum bit Z;._.; and a carry bit C;_1. A full adder
66 receives a single bit X; of the first operand and a
single bit Y; of the second operand. Depending on a
value of enable bit 49, full adder 66 also receives,
through selector 50 (or equivalent logic circuitry as will
be understood by persons of ordinary skill in the art),
carry bit C;_1. Full adder 66 produces a sum bit Z;and
a carry bit C;. A full adder 69 receives a single bit X;_;
of the first operand, a single bit Y;_; of the second
operand and a carry bit from a previous adder (not
shown). Full adder 69 produces a sum bit Z;_; and a
carry bit C;_j.

In the embodiment of the adder shown in FIG. 8, “j”
1s the size of the data path and the bit length of full word
operations. Also, “1” 1s equal to “y” divided by 2. For
example, “)” 1s equal to 32 and “i” is equal to 16. As will
be understood in the art, “y”” can be any value, and “1”
can be any value less than “j”.

Selector 50 1s also shown in FIG. 8. When perform-
ing operations using ““j’-bit full word operands, enable
bit 49 is equal to logic one and allows a carry to propa-
gate through selector S0 to full adder 66. When per-
forming two parallel operations using “i”’-bit half word
operands, enable bit 49 is equal to logic zero and pre-
vents the carry from propagating through selector 50 to
full adder 66. Instead the value on line 59 is forwarded
to full adder 66. When an “add” is being performed, a
logic O 1s placed on input line 59. When a “subtract” is
being performed, a logic 1 is placed on input line 59.
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While FIGS. 7 and 8 discuss implementations of
ALU 26 with two partitions, an ALU designed in ac-
cordance with other preferred embodiments of the pres-
ent invention may variously partition an ALU. For
example, FIG. 9 shows an alternate simplified block
diagram of ALU 26 in accordance with an alternate
preferred embodiment of the present invention. In FIG.
9, ALU 26 1s divided into four partitions. A first parti-
tion 71 pertorms operations on low order bits 72 of a
first operand and low order bits 73 of a second operand
to produce low order bit results 74. A second partition
81 performs operations on bits 82 of the first operand
and bits 83 of the second operand to produce result bits
84. A third partition 91 performs operations on bits 92 of
the first operand and bits 93 of the second operand to
produce result bits 94. A fourth partition 101 performs
operations on high order bits 102 of the first operand
and high order bits 103 of the second operand to pro-
duce high order bit results 104.

In response to a control input 79, a selector 80 1s used
to allow information on data path 75 to propagate from
first partition 71 to second partition 81 or to intercept
information on data path 75 before it is propagated from
first partition 71 to second partition 81. Particularly, for
arithmetic operations performed on full-word operands
or half-word operands, information 1s allowed to propa-
gate from first partition 71 through selector 80 to sec-

ond partition 81. For the performance of parallel arith-

metic operations on quarter-word operands, selector 80
prevents mformation from propagating from first parti-
tion 71 to second partition 81. Instead the value on a line
88 is forwarded to partition 81. When an “add” is being
performed, a logic O is placed on line 88. When a “sub-
tract” is being performed, a logic 1 1s placed on line 88.
Generally, 1n logic operations, there 1s no propagation
of information between partitions.

In response 10 a control input 89, a selector 90 1s used
to allow information on data path 85 to propagate from
second partition 81 to third partition 91 or to intercept
information on data path 85 before it is propagated from
second partition 81 to third partition 91. Particularly,
for arithmetic operations performed on full-word oper-
ands, information 1s allowed to propagate from second
partition 81 through selector 90 to third partition 91.
For the performance of parallel arithmetic operations
on quarter-word operands or half-word operands, selec-
tor 90 prevents information from propagating from
second partition 81 to third partition 91. Instead the
value on a line 98 is forwarded to partition 91. When an
“add” 1s being performed, a logic 0 is placed on line 98.
When a “subtract” i1s being performed, a logic 1 is
placed on line 98.

In response to a control input 99, a selector 100 1s
used to allow information on data path 95 to propagate
from third partition 91 to fourth partition 101 or to
intercept information on data path 95 before it is propa-
gated from third partition 91 to fourth partition 101.
Particularly, for arnithmetic operations performed on
full-word operands and half-word operands, informa-
tion i1s allowed to propagate from third partition 91
through selector 100 to fourth partition 101. For the
performance of parallel arithmetic operations on quar-
ter-word operands, selector 100 prevents information
from propagating from third partition 91 to fourth parti-
tion 101. Instead the value on a line 108 1s forwarded to
partition 101. When an “add” is being performed, a
logic 0 1s placed on line 108. When a “subtract” is being
pertormed, a logic 1 is placed on line 108.
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For example, in 2 computer which has a sixty-four bit
wide data path, each full-word operand is 64 bits.
Therefore, when performing operations using 64-bit full
word operands, selector 80 allows information to prop-

agate from first partition 71 through selector 80 to sec-
ond partition 81, selector 90 allows information to prop-
agate from second partition 81 through selector 90 to
third partition 91, and selector 100 allows information
to propagate trom third partition 91 through selector
100 to fourth partition 101. When performing two paral-
lel operations using 32-bit half word operands, selector
80 allows information to propagate from first partition
71 through selector 80 to second partition 81, selector
90 prevents information from propagating from second
partition 81 through selector 90 to third partition 91,
and selector 100 allows information to propagate from
third partition 91 through selector 100 to fourth parti-
tion 101. When performing four parallel operations
using 16-bit quarter word operands, selector 80 pre-
vents information from propagating from first partition
71 through selector 80 to second partition 81, selector
90 prevents information from propagating from second
partition 81 through selector 90 to third partition 91,
and selector 100 prevents information from propagating
from third partition 91 through selector 100 to fourth
partition 101.

Other groupings could be used for parallel processing
in accordance with preferred embodiments of the pres-
ent invention. For example, in a processing system with
a sixty-four bit wide data path, the control inputs could
be selected so that parallel processing of two sixteen bit
and four eight-bit anithmetic operations are  all per-
formed simultaneously. Additionally any bit combina-
tion which add up to no more than the word size could
be used. For example, parallel processing of seventeen
bit, three bit, sixteen bit, twelve bit, five bit, and eleven
bit arithmetic operations can also be performed simulta-
neously. The principles discussed above also apply to a
carry look-ahead adder.

As will be understood by persons of skill in the art,
principles of the present invention are not confined to
arithmetic operations within computer system ALUs.
For example, partitioning as shown i the ALU may
also be extended to other entities within the computer
system which operate on data. For example, FIG. 10
shows the present invention embodied in pre-shifter 27.
The same embodiment of the present invention may
also be used to impiement shifter 29. Partitioning of
pre-shifter 27 and shifter 29 ailows, for example, for the
implementation of parallel shift-and-add operations and
parallel shift operations

Pre-shifter 27 (or shifter 29) is shown to include a
shift register one-bit slice 160, a shift register one-bit
slice 161, a shift register one-bit slice 165, a shift register
one-bit slice 166 and a shift register one-bit slice 169.

When data is shifted to the left, a datum on input 171,
typically a logic O value, 1s used as mput to shift register
one-bit slice 160. When data is shifted to the night, a
selector 175 in response to a control mput 182 selects
either a datum on input 181 (a logic 0 value or a logic 1
value) or selects the value currently stored by shift
register one-bit slice 169 to be input to shift register
one-bit shce 169.

Wherever the shifter is to be partitioned, additional
selectors are added to the shifter. For example, FI1G. 10
shows the shifter partitioned between shift register one-
bit slice 165 and shift register one-bit slice 166. There a
selector 174 and a selector 173 have been added. For
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shift operations on partitioned operands, when data is
shifted to the left, selector 173, in response to a control
input 185, selects a datum on input 172, typically a logic
0 value, to be used as input to shift register one-bit slice
166. For shift operations on full word operands, when
data 1s shifted to the left, selector 173 selects output
from shift register one-bit slice 165 to be used as input to
shift register one-bit slice 166.

For shift operations on partitioned operands, when
data is shifted to the right, selector 174 in response to a
control input 184 selects either a datum on input 183 (a
logic O value or a logic 1 value) or selects the value
currently stored by shift register one-bit slice 166 to be
input to shift register one-bit slice 165. For shift opera-
tions on full word operands, when data is shifted to the
right, selector 174 selects output from shift register
one-bit slice 166 to be used as input to shift register
one-bit slice 165.

FIG. 10 shows a shifter with only two partitions. As
will be understood from the foregoing discussion of
partitions in an ALU, the shifter can be partitioned in a
variety of ways. For example, a 64-bit shifter may be
partitioned into two, four, eight, sixteen, thirty-two or
sixty-four bit equal size partitions. Additionally, it is not
a requirement of the present invention that partitions
each operate on equal number of bits.

While the above embodiment describes the pre-
shifter 27 and shifter 29 implemented as a shift register
consisting of a series of one bit slices, alternative pre-
ferred embodiments are pre-shifters and shifters imple-
mented with multiplexors. Typically, pre-shifter 27 is
implemented by a one level of multiplexors, since it can
usually shift by at most a small number of bits, for exam-
ple, O, 1, 2, 3 or 4 bits. Shifter 29 is typically imple-
mented by three levels of multiplexors, where each
level of multiplexor is a four-to-one multiplexor. For
example, 1n a 64-bit shifter 29, the first level of multi-
plexors will shift either 0, 16, 32 or 48 bits. The second
level of multiplexors can shift either O, 4, 8 or 12 bits.
The third level of multiplexors can shift 0, 1, 2 or 3 bits.
This gives a shift of any number of bits from 0 to 63. In
such a shifter built up of 3 stages of multiplexors, one-bit
slices can still be identified. However the blocking of
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one or more of the three multiplexer stages, as will be
understood by those of ordinary skill in the art.

The foregoing discussion discloses and describes
merely exemplary methods and embodiments of the
present invention. As will be understood by those famil-
1ar with the art, the invention may be embodied in other
specific forms without departing from the spirit or es-
sential characteristics thereof. Accordingly, the disclo-
sure of the present invention is intended to be illustra-
tive, but not limiting, of the scope of the invention,
which is set forth in the following claims.

We claim:

1. A computing system comprising:

first arithmetic operation means for performing a first

arithmetic operation on a first n-bit unsigned binary
operand and a second n-bit signed binary operand
to produce an n-bit unsigned binary result;

first positive overflow means, coupled to the first

arithmetic operation means, for assigning a value of
27—1 to the n-bit unsigned binary result when
there is a positive overflow; and,

first negative overflow means, coupled to the first

arithmetic operation means, for assigning a value of
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0 to the n-bit unsigned binary result when there is a
negative overtlow.
2. A computing system as in claim 1 wherein:
the first positive overflow means includes means for
assigning a value of 27—1 to the n-bit unsigned
binary result when a most significant bit of the first
n-bit unsigned binary operand is equal to 1, a most
significant bit of the second n-bit signed binary
operand is equal to 0 and a most significant bit of
the n-bit unsigned binary result is equal to 0; and,

the first negative overflow means includes means for
assigning a value of O to the n-bit unsigned binary
result when the most significant bit of the first n-bit
unsigned binary operand is equal to 0, the most
significant bit of the second n-bit signed binary
operand is equal to 1 and the most significant bit of
the n-bit unsigned binary result is equal to 1.

3. A computing system as in claim 1 additionally
comprising:

second arithmetic operation means for performing a

second arithmetic operation on two n-bit signed
binary operands {0 produce an n-bit signed binary
result;
second positive overflow means, coupled to the sec-
ond arithmetic operation means, for assigning a
value of 2#—1_—1 to the n-bit signed binary result
when there is a positive overflow resulting from
the second arithmetic operation; and,
second negative overflow means, coupled to the sec-
ond arithmetic operation means, for assigning a
value of —27—1 to the n-bit signed binary result
when there is a negative overflow resulting from
the second arithmetic operation.
4. A computing system as in claim 3 wherein the
computer system implements multiple operations in
response to a single instruction so that the second arith-
metic operation is one of a plurality of parallel opera-
tions performed simultaneously in an arithmetic logic
unit.
S. A computing system as in claim 3 wherein:
the first positive overflow means includes means for
assigning a value of 27—1 to the n-bit unsigned
binary result when a most significant bit of the first
n-bit unsigned binary operand is equal to 1, a most
significant bit of the second n-bit signed binary
operand 1s equal to 0 and a most significant bit of
the n-bit unsigned binary result is equal to 0;

the first negative overflow means includes means for
assigning a value of O to the n-bit unsigned binary
result when the most significant bit of the first n-bit
unsigned binary operand is equal to 0, the most
significant bit of the second n-bit signed binary
operand is equal to 1 and the most significant bit of
the n-bit unsigned binary result is equal to 1.

the second positive overflow means includes means
for assigning a value of 27—1—1 to the n-bit signed
binary result when most significant bits for both of
the two n-bit signed binary operands are equal to 0,
and a most significant bit of the n-bit signed binary
result 1s equal to 1; and,

the second negative overflow means includes means

for assigning a value of —27—1to the n-bit signed
binary result when the most significant bits for both
of the two n-bit signed binary operands are equal to
1, and the most significant bit of the n-bit signed
binary result 1s equal to O.

6. A computing system as in claim 3 additionally
comprising:
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third arithmetic operation means for performing a
subtraction operation on two n-bit unsigned oper-
ands to produce an (n-+ 1)-bit signed binary inter-
mediate result;

third negative overflow means, coupled to the third
arithmetic operation means, for providing an n-bit
unsigned binary final result by performing a com-
plement operation on the (n+ 1)-bit signed binary
intermediate result when the (n+ 1)-bit signed bi-
nary intermediate result is negative.

7. A computing system as in claim 6 wherein the
computer system implements multiple operations in
response to a single instruction so that the third arithme-
tic operation is one of a plurality of parallel operations
performed sumultaneously in an anthmetic logic unat.

8. A computing system as in claam 3 wherein the
second arithmetic operation means comprises an n-bit
two’s complement adder and wherein the computing
system additionally comprises:

selecting means for, in response to a selection, for
over-riding operation of the first positive overflow
means, the first negative overflow means, the sec-
ond positive overflow means and the second nega-
tive overflow means so that the output of the n-bit
two’s complement adder is used as an n-bit binary
result.

9. A computing system as in claim 8 wherein the
computer system implements multiple operations in
response to a single instruction so that the first arithme-
tic operation 1s one of a plurality of parallel operations
performed simultaneously in an arithmetic logic unit.

10. A computing system as in claim 1 wherein the first
arithmetic operation means comprises an operation
performed by n-bit two’s compiement adder.

11. A computing system as in claim 10 wherein: the
first positive overtlow means includes

overflow detection logic, the overflow detection
logic generating a first positive overflow signal
when a most significant bit of the first n-bit un-
signed binary operand is equal to 1, a most signifi-
cant bit of the second n-bit signed binary operand i1s
equal to 0 and a most significant bit of the n-bit
unsigned binary result 1s equal to O, and

saturation logic, coupled to the overflow detection
logic and an output of the n-bit two’s complement
adder, the saturation logic, in response to the first
positive overflow signal and in response 10 a first
selection indicating the first arithmetic operation is
being performed, replacing output of the n-bit
two’s complement adder with a value of 27 —1.

12. A computing system as in claim 11 wherein the
first negative positive overflow means also includes

the overflow detection logic, the overflow detection
logic generating a first negative overflow signal
when the most significant bit of the first n-bit un-
signed binary operand is equal to 0, the most signif-
icant bit of the second n-bit signed binary operand
is equal to ! and the most significant bit of the n-bit
unsigned binary result is equal to 1, and

the saturation logic which, in response to the first
negative overflow signal and in response to a first
selection indicating the first arithmetic operation 1s
being performed, replacing output of the n-bit
two’s complement adder with O.

13. A computing system as in claim 12 additionally

comprising:

a pre-shifter, coupled to an input of the n-bit two’s
complement adder, the pre-shifter in response to a
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selection, shifting an n-bit binary operand before
receipt by the n-bit two’s complement adder;

wherein the overflow detection logic additionally
detects positive overflow resulting from the pre-
shifter shifting the n-bit binary operand to the left
before receipt by the n-bit two’s complement ad-
der.

14. A computing system as in claim 1 wherein the
computer system implements multiple operations in
response to a single instruction so that the first arithme-
tic operation is one of a plurality of parallel operations
performed simultaneously in an arithmetic logic unit.

15. A method within a computer implemented by
hardware logic components, the method comprising the
following steps:

(a) performing, within an arithmetic logic unit, a first
arithmetic operation on a first n-bit unsigned binary
operand and a second n-bit signed binary operand
to produce an n-bit unsigned binary result;

(b) checking to determine whether there is a positive
overflow in the n-bit unsigned binary result;

(c) when the check is step (b) determines there is a
positive overflow, assigning a value of 27—1 to the
n-bit unsigned binary result;

(d) checking to determine whether there is a negative
overflow in the n-bit unsigned binary result; and,

(e) when the check is step (d) determines there is a
negative overflow, assigning a value of 0 to the
n-bit unsigned binary result.

16. A method as in claim 15 wherein:

step (b) includes determining there is a positive over-
flow when a most significant bit of the first n-bit
unsigned binary operand is equal to 1, a most signif-
icant bit of the second n-bit signed binary operand
is equal to 0 and a most significant bit of the n-bit
unsigned binary result is equal to 0; and,

step (d) includes determining there is a negative over-
flow when the most significant bit of the first n-bit
unsigned binary operand is equal to O, the most
significant bit of the second n-bit signed binary
operand is equal to 1 and the most significant bit of
the n-bit unsigned binary result 1s equal to 1.

17. A method as in claim 15 additionally comprising

the steps of:

(f) performing, within the arithmetic logic unit, a
second arithmetic operation on two n-bit signed
binary operands to produce an n-bit signed binary
result;

(g) checking to determine whether there is a positive
overflow in the n-bit signed binary result;

(h) when the check is step (g) determines there 1s a
positive overflow, assigning a value of 27—1—1 to
the n-bit signed binary result;

(1) checking to determine whether there is 2 negative
overflow in the n-bit signed binary result; and,

(3) when the check is step (1) determines there 1s a
negative overflow, assigning a value of —27—1to
the n-bit signed binary result.

18. A method as in claim 17 additionally comprising

the step of:

(k) in parallel to step (f) performing an additional
arithmetic operation so that the second anthmetic
operation is one of a plurality of parallel operations
performed simultaneously in an anthmetic logic
unit.

19. A method as in claim 17 wherein:

step (b) includes determining there 1s a positive over-
flow when a most significant bit of the first n-bit
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unsigned binary operand is equal to 1, 2 most signif-
icant bit of the second n-bit signed binary operand
1s equal to O and a most significant bit of the n-bit
unsigned binary result is equal to O;

step (d) includes determining there is a negative over-
flow when the most significant bit of the first n-bit
unsigned binary operand is equal to 0, the most
significant bit of the second n-bit signed binary
operand 1s equal to 1 and the most significant bit of
the n-bit unsigned binary result is equal to 1.

step (g) includes determining there is a positive over-
flow when most significant bits for both of the two
n-bit signed binary operands are equal to 0, and a
most significant bit of the n-bit signed binary result
1s equal to 1; and,

step (1) includes determining there is a negative over-
flow when the most significant bits for both of the
two n-bit signed binary operands are equal to 1, and
the most significant bit of the n-bit signed binary
result 1s equal to O.

20. A method as in claim 17 additionally comprising,

the steps of:

(k) performing, within the arithmetic logic unit, a
subtraction operation on two n-bit unsigned oper-
ands to produce an (n+ 1)-bit signed binary inter-
mediate result;

(1) checking to determine whether the (n+ 1)-bit
signed binary intermediate result 1s negative; and,

(m) when the check in step (1) determines the (n-1)-
bit signed binary intermediate result is negative,
performing a complement operation on the (n+4-1)-
bit signed binary intermediate result to produce an
n-bit unsigned binary final result.

21. A method as in claim 20 additionally comprising

the step of:

(n) in parallel to step (k) performing an additional
arithmetic operation so that the subtraction opera-
tion i1s one of a plurality of parallel operations per-
formed simultaneously in an arithmetic logic unit.

22. A method as in claim 17, additionally comprising

the steps of:

(f) performing, within the arithmetic logic unit, a
third arithmetic operation on two n-bit binary op-
erands using an n-bit two’s complement adder to
produce an n-bit binary result wherein no overflow
operation i1s performed on the n-bit binary result.

23. A method as in claim 15 wherein in step (a) the

first arithmetic operation is an operation performed by
an n-bit two’s complement adder.

24. A method as in claim 23 additionally comprising 50

the step of:
(f) shifting an n-bit binary operand before perfor-
mance of step (2);
wherein step (b) includes checking to determine
whether positive overflow results from the perfor-
mance of step (f).
25. A method as in claim 15 additionally comprising
the step of:
(f) in parallel to step (a) performing an additional

arithmetic operation so that the first arithmetic 60

operation is one of a plurality of parallel operations
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performed simultaneously in an arithmetic logic
unit.

26. A computing system comprising:

arithmetic operation means for performing a first
arithmetic operation on a first n-bit signed binary
operand and a second n-bit signed binary operand
to produce an n-bit positive signed binary resulit;

positive overflow means, coupled to the arithmetic
operation means, for assigning a value of 27—1—1
to the n-bit positive signed binary result when a
most significant bit of the first n-bit signed binary
operand 1s equal to 0, a most significant bit of the
second n-bit signed binary operand is equal to 0 and
a most significant bit of the n-bit positive signed
binary result is equal to 1; and,

negative overflow means, coupled to the arithmetic
operation means, for assigning a value of 0 to the
n-bit positive signed binary result when the most
significant bit of the n-bit positive signed binary
result 1s equal to 1 and one of either the most signif-
1cant bit of the first n-bit signed binary operand or
the most significant bit of the second n-bit signed
binary operand is equal to 1 and for assigning a
value of O to the n-bit positive signed binary result
when the most significant bit of both the most
significant bit of the first n-bit signed binary oper-
and and the most significant bit of the second n-bit
signed binary operand are equal to 1.

27. A method within a computer implemented by
hardware logic components, the method comprising the
following steps:

(a) performing, within an arithmetic logic unit, a first
arithmetic operation on a first n-bit signed binary
operand and a second n-bit signed binary operand
to produce an n-bit positive signed binary result;

(b) determining whether a most significant bit of the
first n-bit signed binary operand is equal to 0, a
most significant bit of the second n-bit signed bi-
nary operand 1s equal to 0 and a most significant bit
of the n-bit positive signed binary result is equal to
1 indicating there is a positive overflow in the n-bit
positive signed binary result;

(c) when the check i$ step (b) indicates there is a
positive overflow, assigning a value of 27—1-1 to
the n-bit positive signed binary result;

(d) determining there is a negative overflow in the
n-bit positive signed binary result when the most
significant bit of the n-bit positive signed binary
result 1s equal to 1 and one of either the most signif-
icant bit of the first n-bit signed binary operand or
the most significant bit of the second n-bit signed
binary operand is equal to 1 and determining there
1s a negative overflow when both the most signifi-
cant bit of the first n-bit signed binary operand and
the most significant bit of the second n-bit signed
binary operand-are equal to 1; and,

(e) when the check is step (d) determines there is a
negative overflow, assigning a value of O to the

n-bit positive signed binary result.
*x * * x *
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