United States Patent [

Powers et al.

P O R

[54]

[62]

[51]
[52]

[58]
[56]

DATA MANAGEMENT SYSTEM FOR
BUILDING A DATABASE WITH
MULTI-DIMENSIONAL SEARCH TREE
NODES

Inventors: Frederick A. Powers, Sudbury;
Staniey R. Zanarotti, Cambridge,
both of Mass.

Assignee: Dimensional Insight, Inc.,
Burlington, Mass.

Notice: The portion of the term of this patent
subsequent to Oct. 26, 2010 has been
disclaimed.

Appl. No.: 78,396

Filed: Jun. 17, 1993

| Related U.S. Application Data
Davision of Ser. No. 495,360, Mar. 16, 1990, Pat. No.

5,257,365.
Int, CLO oo, GO6F 17/30
US.ClL e, 395/600; 364/251.6;
364/252.3; 364/282.1; 364/283.2; 364/DIG. 1
Field of Searchccooeoeevviiiiiiiiiiieieenn 395/600
References Cited
U.S. PATENT DOCUMENTS

3,670,310 6/1972 Bhdarwaniet al. ..cooveeueennn.ne. 395/600
4,318,184 3/1982 Millett et al. ceevevenrininnnnnnne. 395/600
4,468,732 8/1984 RaVEr .cviiivmiiiieeeeeieecean, 395/600
4,606,002 8/1986 Waisman et al. coovveneeeniennns 395/600
4,611,298 9/1986 Schuldt ..oveevereeeriiirennnee. 395/600

SUMMARY TREE 28

ANRVA

100

OO OO OOO OO

ANWAN

(S
0

US005442784 A
11] Patent Number: 5,442,784
X
451 Date of Patent: Aug. 15, 1993
4,631,664 12/1986 Bachmancccoccevvveeieeerinnanes 395/600
4,817,036 3/1989 Millett et al. .ccoevvvvveveecnnnnnne. 395/600
4 817,050 3/1989 Komatsu et al. ...ccoeevenernnnnn. 395/600
4.829,427 5/1989 Green .cvieeeiiiieciiciieciienens 395/600
4,939,680 7/1990 Daviset al. .occoeeerrieeiernnnnnnn. 395/600
4,961,139 10/1990 Hong et al. ...l 395/600
5,201,047 4/1993 Makiet al. coovvveeinniainennenns, 395/600
5,201,048 4/1993 Coulter et al. .oovveveeeneennnnnn. 395,/600
5,237,678 8/1993 Kuechler et al.cceeeeee. 385,/600

Primary Examiner—Thomas G. Black
Assistant Examiner—Paul Harrity
Attorney, Agent, or Firm—Gary D. Clapp

[57] ABSTRACT

The subject invention is directed to a database system
for organizing large amounts of data to be accessed by
a digital computer. More particularly, a free form type
database, in the form of a summarized, multikey tree, 15
built from files stored on the computer. After a building
operation, the user obtains specified information by
using the summarized database. Information in the files
is divided into three categories; that is, a dimension field
which comprises data to be organized, a summary field
which comprises a numeric quantity on which calcula-
tions can be performed, and a non-summary field which
comprises other information associated with an mnput
record. The internal nodes of the tree summarize and
organize sets of input records. Methods are provided
for reducing the amount of storage space used by cut-
ting off the tree when the size of sets go below a given
threshold, and sharing parts of the tree so that each
record does not appear n! times in the database.

7 Claims, 9 Drawing Sheets

[

/\

N -
OE
e

N

U.S. Patent

|6

Aug, 15, 1995

18

Sheet 1 of O

5,442,784

INPUT DATA
FILES DICTIONARY
B 242 269
20 KEY VALUE | INFO l
- g | TABLES TABLES |
12 T RN
A S8 SuMMARY DETAIL
| MAIN T TREE TABLE
MEMORY
32 DATABASE
R o SECONDARY STORAGE
>
14 ee
PROCESSOR d |
0 '
38 [SCREEN DISPLAYS ﬁ
AND 34
REPORTS
36
END USER
Frg [/
COUNT ~ ~S0
7
SUMMARY FIELD S 596 > o floz
| UM) SUM OF SQUA
F SQUARES) MINIMUM) MAXINUM
S2 —= SALARY 231500 | 9744710000 18700 72800
94 —o AGE 9 6167] 48

Fig 6

5,442,784

Sheet 2 of 9

Aug. 15, 1995

U.S. Patent

VI d2an31y NY3S ‘X0 4 INIJIIH d IHS
| Hd3500 ‘ a00M "TINIA%R TS 3Y avyd
INY L HOTIAYL | FONYNI 4 | NT o
NHOL “HLIWS [NOILYHISNIWAY NIWJY
1 Ld3q) dI 1d3a .
| AYOWWNS-NON | ASYWWNS—NGN NOISN3WIQ
7 24n31 4 | HIAOUNUW | JWUN 1d3a | dI Ld3da
G~—e 714 LNIWIHYLIA
_ _ _

L+ » ® » . & ® .

» ® ® | ® ® ® * . »

asy 12 008%2 HYSSEYNA 00% 6E1Z0 N JYUANY NOLIvYd 122

azgyg | <9Z 00882 |30ATHEWYD 04T Fv0Z0 I NV 1S “d37IMO8E reZ

| Asy LZ 00BTE | 377dYW £T0Z 0468710 g AHYW * SHIM A 0Z¢

d[HS T 00/8T NOJU3d TST Y020 N 1L103s337 | OTZ

NIJ 0% 006Zs | LNOW3IHL 871 LLLTO g | ANUYL ‘HOTAUL SZZ

NIWAY P 00962 1S NIYW 42 0468T0O W ANV ‘S3INDDL | 802

By --—-> NIWAY | 8v 00BZL LS W3 TT PLLTO | W ~ NHOC "HLIWS: | voZ
(14093 = == —— — 1 —
BT - - - - 119434 i - 11v13d | —-
AHYNOILDId NOISNIWIQ [AMUYWWAS [ASYWWAS AMUWKWNS ~NON onmzmzwm*onmzummo AHYWWNS —-NON NOISNIWIQ
VARSTe dl 1d3d 39y | AdYIYS S5S3HAAY 3002417 X3S + GWYN | dI IIADTdW3
) - N OG e J11 4 FIAA0IIWE
9t d7131 4

b |
NOISNIWIQ
d31Y1305SY
JdAL G314

AWNYN
'
Ot
vt
NOISNIWIJ
31V IJ0SSY
ddAl d11314
FWTN
Ct
0}/

5,442,784

U.S. Patent Aug. 15, 1995 Sheet 3 of 9
SUMMARY TREE 28 =
72 § KEY VALUE TABLES 24 70
; 1D SE X Z1PCODE DEPT ID
/\ /\ /\ 1 204] 1 [F 1 [01776 i | ADMIN
2 208 2 M 2 {0189¢C 2 | FIN
3 210 S (02046 3 R&D
DOO OG OOO O®Q) & |21l s/ (oo 3 |22%%8] 2 |Re
. o , S 225 (T \ (
. . = 234 54 ~56 34 S&
I A AN,
L. i
{ o4 k'ﬁé
HO® O©
1)
Figure 3A ~ Figure 3B
!
i T T
658
DETAIL TABLE 30 - - “\
1 5 1 1 2 || 23500 | 20 || 18 TREMONT TAYLOR, JANE
2 | 7 1 2 3 il 31800 | 27 || 2013 MAPLE FUCHS , MARY
3 | 1 2 1 L || 72800 | 48 || 11 ELM ST. SMITH, JOHN
4 2 2 2 1 || 25600 | 2¢ || 77 MAIN ST. JONES, DAVE
S & 2 3 3 || 28800 | 26 | 170 CAMBRIDGE| BOWLER,STAN
& 3 2 3 4 11 18700} 21 |l 131 BEACON LEE,SCOTT
7 4 2 4 3§l 23300 | 21 || 300 VASSAR DALTON, ANDRE
L L [L & 9 L L »
2 & L » $ [- L <
L o i | | R :
EMPLOYEE SEX ZIPCODE DEPT ID SALARY AGE ADDRESS NAME
1D _ N J
DEMENS1ONS 58 SUMMARY 60 NON -SUMMARY
DETAIL {2
Figure 3C
KEY INFO TABLES 26

DEPARTMENT ID

/

DEPARTMENT NAME MANAGER _

1 ADMINSTRAT I ON | SMITH, JOHRN |

2 | FINANCE TAYLOR, JANE

S |RESEARCH & DEVELOPMENT | WOOD,JOSEPH

E SHIPPING _FOX,SEAN |
&b

Figure 3D

U.S. Patent Aug. 15, 1995 Sheet 4 of 9 5,442,784

gﬁ%m 25 82 @ SUMMARY NODE
() ALL ReCORDS) 84 /\ DIMENSION NODE
86 E DETAIL INDEX NODE
EMPLOYEE 1D SEX JIPCODE DEPT 10 7 6
210 4- S 1
A A A N

O

08\, /112
SEXF) (S)SEX=M))74

EMPLOYEE 0K LIPOODE 114 DUEFT D 1“0
X .)

01776 01880/ 104\ 02046 02139)
(SJsex=m (S)(SEX=M SEX=M (S)(SEXM * =+ 76
. ZIPCODE= T ZIPGODE=0890)T ZIPCODE= & ZIPCODE=02139)
. 0iT78) | 02046) y

78
n 106
. 80
_______ 4—- -
. 2 s T T
|~ 30

DETAIL TABLE

Fl1g 4

U.S. Patent Aug. 15, 1995 Sheet 5 of 9 5,442,784

ROOT 72 g5
SUMMARY L (ALL RECORDS! (S) SUMMARY NODE
NOOE_{ s 84 DIMENSION NODE
86| | DETAIL INDEX NODE
EMPLOYEE
i SEX ZIPCODE DEPT 1D
F M 01776 01830\ 02046,
(S YsEX=F) (S8=M) 71pcooe (S) (S (ZIPCODE = 02046)
: 01776) ° - (ZIPCODE

" =01850)

EMPLOYEE
D

124 pEpy EMPLOYEE DEPT

122

01776 01830\ 02046 3
S § y—120 S

(SEX=M 7 (SEX=M (SEX=M O
. ZIPCODE ¢ ZIPCODE ZIPCODE=02046) 118 °

<01716) =01880) ——

5; ;5 88

Rkl i

DETAIL TABLE

Fig 5

5,442,784

Sheet 6 of 9

Aug. 15, 1995

U.S. Patent

92! M
gL @214n31y \ * N\
9¢] e bei 4% @ Ot
95020 /06810 792410
DL 3ang1y ‘
_ gzl” 3000417
_
|
92 | 12 | L11 | Lt |00882/00181|0000016211] 00SLy| @ ¢ _,f¢m_
2] 92 | sob! B 0081€|00552 [0000099991| 00b15| ¢ 2 |=—2¢l
] 89| o | eoer | 82 |oosaz | ooses|000060%ses |oogsor | | |~—ogl) %
hm__m Q X3S u&f% W NI m%omﬂ_:c% ANS XA NIN SIS Ams INN0D 3MTVA \gz)
10 WNS NOISNINIC
e N/ 08 0541
92 19 AYYTVS 8¢l
SHILNIOG
NOISNIWIC
VL 2angd1y
8 | 12 | 199 | 661 | 0092 _ 00181 | 00001.bbLL | 90152 | 1
l _
HM__m_o 3000d1Z X3S Eﬁm_ﬁ_ VK NIK m%&% NS XYW NIN SIYYADS WNS INNOD
0 WNS 10 WnS
921 SYILNIOG ¥6 IV 26 VIS
NOISNIWIC

2L 300N AYYWWNS 100¥

U.S. Patent Aug. 15, 1995 Sheet 7 of 9 5,442,784

140~ 16~ 18~
| A NPUT DATA
ATA FILE DICTIONARY

AN

142~
:
LD D ST All

KEY VALUE
TABLES *
DATABASE - 22
144 r 24 26
i BILD B KEY VALUE INFO
_ _ TABLES . TABLES

KEY INFO
TABLES

| SUMMARY
TREE

146 ,
BUILD AND SORT -
* DETAIL |
TABLE

148~ |
BUILD

SUMMARY —_— -
TREE

U.S. Patent Aug. 15, 1995 Sheet 8 of 9 5,442,784
50
SELECT ALL
RECORDS
152-.
R [
156 154 178
! NO YES |
% CHOOSE A OF RECORDS « BUILD DETAIL
| : DIMENS 10N THRESHOLD INDEX NODE

! ?

160 162 180

DIVIDE INIO
SUBSETS OF
RECORDS

!

i

i .

L SORT RECORDS
L

t

BY DIMENSION

/164
SELECT SUBSET
|66 |76
. COPY POINTER
PROCESSED YES NI

10 SUMMARY
TREE

ALREADY
?

168~
SUMMORIZE | GENERATE
SUBSET SURMARY NODE

B

|72 204
- YES SUMMORI ZE
SUBSETS
, SUBSETS
{
: |74
! ALL
: DINENS I ONS
[
| ?
[
|

SIMMORIZE
RECORDS

-l ra— I i —— ——— s —— [S) - — P ke L) -

Al el A ——— T Bl ey ey vErey Sesher

= i Bl — — e [L i e —t e i Al Sk L B il

U.S. Patent Aug. 15, 1995 Sheet 9 of 9 5,442,784

182

READ SHMMARY
NODE

184

CHOSE
— DINENS TON
{ FROM INPUT

186+

FOLLOM
DIMENSION

POINTERS

READ DEIRIL
RECORDS

APPROPRIATE
| SUMMARY NODE

198 ' | peo2

SORT, SELECT,
194
ALL
DIMENSIONS)
?
| YES

SUMMORIZE
RECORDS

GENERATE

DISPLAY

F1g [0

5,442,734

1

DATA MANAGEMENT SYSTEM FOR BUILDING A
DATABASE WITH MULTI-DIMENSIONAL
SEARCH TREE NODES

CROSS REFERENCES TO RELATED
APPLICATIONS

The present Patent Application is a Divisional Patent
Application from U.S. patent application Ser. No.
07/495,360 for MULTI-DIMENSIONAL SUM-
MARY DATABASE SYSTEM AND METHOD by
Frederick A Powers and Stanley R. Zanarotti, filed
Mar. 16, 1990 and since allowed as U.S. Pat. No.
5,257,365 with an issue date of Oct. 26, 1993.

U.S. patent application Ser. No. 08/079,248, still
pending, by Frederick A. Powers and Stanley R. Zana-
rott1i for MULTI-DIMENSIONAL SUMMARY
DATABASE SYSTEM AND METHOD by Freder-
iIck A. Powers and Stanley R. Zanarotti, filed on the
same date as the present Patent Application; and,

U.S. patent application Ser. No. 08/079,249, still
pending, by Frederick A. Powers and Stanley R. Zana-
rotti for MULTI-DIMENSIONAL SUMMARY
DATABASE SYSTEM AND METHOD by Freder-
ick A. Powers and Stanley R. Zanarotti, filed on the
same date as the present Patent Application.

The above referenced U.S. Patent Applications are

assigned to the assignee of the present U.S. Patent Ap-
plication.

REFERENCE PUBLICATIONS “Multi-attribute
Retrieval with Combined Indexes”, November, 1970,
Communications of the ACM, pp 660-665, Vol 13,
Number 11

BACKGROUND OF THE INVENTION

1. Field of the invention

This mvention relates to methods of storing and ac-
cessing data on digital computers, and in particular, to
an 1mproved data base system for organizing large
amounts of data for fast retrieval and processing.

2. Description of the Prior Art

Databases are used to store large amounts of data in
digital computers. To analyze this data, users need to be
able to i1dentity sets of records based on a combination
of attributes and generate summary information, such as
sums, averages, and other statistical functions, for these
sets.

Traditional databases may provide support for identi-
fying some of these sets, but not all of them in an effi-
cient manner. Multidimensional databases can provide
fast access to more sets, for a small number of attributes.
Even so, providing summary information on a set re-
quires accessing all elements of that set, and is a time-
consuming operation for large sets thereby delaying
interactive queries for this information.

The following U.S. Patents disclose typical database
management systems.

U.S. Pat. No. 4,554,631, entitled “Keyword Search

Automatic Limiting Method.”

U.S. Pat. No. 4,606,002, entitled “B-Tree Structured
Data Base Using Spare Array Bit Maps to Store
Inverted Lists.”

U.S. Pat. No. 4,611,272, entitled “Key-Accessed File
Organization.”

U.S. Pat. No. 4,468,728, entitled “Data Structure and
Search Method for a Data Base Management Sys-
tem.”

10

15

20

25

30

33

45

50

55

65

2
OBJECTS OF THE INVENTION

Accordingly, it 1s a primary object of the invention to
have an improved database management system.

It 1s an object of the invention to have a database
management system for providing rapid summary infor-
mation for large sets of records.

SUMMARY OF THE INVENTION

The above objects and advantages are achieved in a
preferred embodiment of the present invention. Ac-
cording to the preferred embodiment, a data base man-
agement system for storing and accessing data provides
fast interactive access to summary information for dif-
ferent sets of input records, where the sets are defined
by specitying values for multiple attributes. The method
mvolves calculating a large portion of this summary
information and building it into a data structure. At
access time, users specify sets by giving values for mul-
tiple attributes, and the data structure 1s searched for the
appropriate summary information for that set. If found,
the summary information is displayed; otherwise, the
sumnmary information 1s calculated from the records
themselves.

The data structure consists of the original data in a
relational detail table, a summary tree structure for
organizing and summarizing the data along several di-
mension fields, and key value tables for encoding di-
mension field values as integers.

Key info tables store information associated with
dimension field values, for convenient reference. The
summary tree i1s a search tree where internal nodes
describe and summarize numeric fields in sets of re-
cords. Nodes deeper 1n the tree describe more specific
sets of records, until the size of the set is smaller than a
given threshold, at which point the individual records
of the set are indexed by a detail index node. The tree
can be represented as a numbered set of tables.

At access time, the user specifies a set of dimension
values. The summary tree 1s walked using these values
to find the appropriate node. If the node is a summary
node, the summary information is displayed. If the node
is a detail index node, the set of records is read from the

detail table, and the summary information is calculated
from this set.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features which are believed to be charac-
teristic of the invention both as to its organization and
method of operation, together with further objects and
advantages will be better understood from the follow-
ing description when considered in connection with the
accompanymng drawings. It is expressly understood,
however, that each of the drawings is given for the
purpose of illustration and description only and is not
intended as a definition of the limits of the present in-
vention.

FIG. 1. shows in block diagram form the systems
architecture for the invention, illustrating the general
process of building and accessing the database.

FIGS. 2A and 2B. show sample data files, suitable as
input to this invention, and the corresponding data dic-
tionary.

FIGS. 3A, 3B, 3C, and 3D. give a high-level view of
the database, showing the major components.

FIGS. 4. and 5 show the structure of the summary
tree, which 1s used to access and organize the data along

5,442,784

3

arbitrary dimension fields. FIG. 5 shows the summary
tree with sharing subtrees.

FIG. 6. shows the contents of a summary node.

FIGS. 7A, 7B, and 7C. show how the sumimary tree
can be represented in a tabular format.

FIG. 8. shows the builder program, which builds the
database.

FIG. 9. shows how the summary tree portion of the
database 1s built.

FIG. 10. shows the diver program, and how 1t ac-
cesses the database to provide summary information to
the user.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The present invention is a method of storing data in
the memory of a data processing system and accessing
the data in a manner that provides fast interactive access
to summary information for different sets of input re-
cords, where the sets are defined by specifying values
for multiple search keys. The method involves calculat-
ing a large portion of this summary information and
building it into a database. When this database 1s ac-
cessed, this summary information is available without
having to calculate it. Although the process of building
the database may be a time-consuming operation, 1t can
be done when the system is off-line. At access time,
when an operator is waiting for an answer, a database
query can be answered quickly.

FIG. 1. shows the system architecture of the present
invention. The invention generally comprises a proces-
sor 10, a main memory 12, and secondary storage 14.
The processor 10 is used to run builder 20 and diver 32
programs, using main memory 12 for temporary storage
and intermediate results, and using secondary storage 14
for permanent storage. Input data files 16, described by
a data dictionary 18 is fed into the builder program 20.
The builder program 20 produces a database 22, which
is comprised of key value tables 24, key info tables 26, a
summary tree 28, and a detail table 30. The diver pro-
gram 32, given dimension selections 34 from an end user
36, uses the database 22 to produce screen displays and
reports 38 to the end user 36.

FIG. 2. shows sample input data that can be used as
input to the builder program 20. The input to the
builder 20 is modelled as a set of flat files. Each flat file
50, 52 consists of a number of records 48, each of which
describes a single entity. The records 48 are divided up
into different fields 46, which represent different attn-
butes of the entity. Multiple files are related by using a
common field to perform a standard relational database
join operation to produce a single logical file, with one
record for each entity.

The data dictionary 18 of FIG. 1 is used to describe
the fields in the input files, and assigns a type to each of
the fields. The data dictionary contains three pieces of
information about each field: a field name 40, a field
type 42, and an associated dimension 44. The field name
40 is used to identify the information contained in the
field. The field type 42 identifies the field as either a
dimension, a summary field, or a non-summary field.
The dimension field is a search key along which the
data is organized and summarized. The summary field is
a numeric quantity that provides useful information
when summed and averaged. The non-summary field
contains information that is associated with each input
record, or with a value of the dimension field. The
non-summary field would be a field that is not impor-

10

15

20

25

30

35

45

50

33

65

4

tant enough to be a dimension field, or a field that 1s
directly related to an existing dimension field. The asso-
ciated dimension 44 is used for non-summary fields to
identify the dimension field that the information 1s asso-
ciated with, or “Detail” if the non-summary informa-
tion is unique for each input record.

The example in FIG. 2 illustrates a personnel data-
base, where each record 48 in an employee file 50 repre-
sents an employee of a company. The input files consist
of the employee file 50, which contains data about each
employee, and the department file 52, which contains
information about the different departments. The de-
partment file 52 can be joined to the employee file 50
using the common Dept. Id. field. The data dictionary
18 describes the various fields of the input files, and
identifies the fields as dimension fields, summary fields
and non-summary fields. The Dept Name and Manager
fields are non-summary fields associated with the Dept.
Id dimension field. The Address and Name fields are
non-summary fitelds associated with each input record.
Alternatively, the address and name fields could have
been associated with the Employee Id dimension field,
since the Employee Id field is unique for each record.

FIG. 3 shows the major components of the database.
The database comprises four parts: a summary tree 28,
key value tables 24, a detail table 30, and key info tables
26.

The key value tables 24 provide mappings between
integers 54 and the possible values 56 for the different
dimension fields. For each dimension field in the input,
there is a key value table, with entries for all values of
that dimension field that appear in the input. The key
value tables 24 allow dimension values to be repre-
sented as compact integers in the other parts of the
database; the key value table can be indexed to convert
these integers 54 into the actual dimension values 56. In
the preferred embodiment of the invention, the key
value tables 24 are sorted according to their natural
sorting order, so that sorting the numbers associated
with a key will result in sorting the key. In this example,
the natural sorting order is alphabetical for alphanu-
meric dimension fields.

The detail table 30 is a relational table representing
the input data in a tabular format. For each record in the
input, there is an entry 68 in the table, containing dimen-
sion fields 58, summary data fields 60, and those non-
summary data fields that are not associated with dimen-
sion fields. The dimension fields 58 are represented
numerically as defined by their key value tables 24 to
reduce the storage space needed.

The key info tables 26 are used to store information
for non-summary fields associated with dimension
fields. For each dimension field that has non-summary
information associated with it, there exists a key info
table 64. The key info table 64 is indexed 66 using the
numeric ordering of the key as defined by the appropri-
ate key value table 70. For each value of the dimension
field, there is an entry in the key info table containing
the information associated with that dimension value.

The summary tree 28 is used to summarize and mdex
the detail table 30.

Referring to FIG. 4, a root summary node 72 sum-
marizes the set of all records in the detail table 30, while
lower levels 74, 76 summarize smaller sets, which are
defined by the combination of different dimension val-
ues 78. Leaves 80 of the summary tree 72 are pointers to
the detail table 30. The same detail record may appear
several times 1n the summary tree 72. A node of the tree

5,442,784

S

represents the set of detail records that are descended
from that node. A summary node 82 will summarize the
set of records, while a dimension node 84 will index that
set of records along a certain dimension field, forming
smaller sets. When the set is smaller than a certain
threshold, the dimension nodes are replaced by a single
detail index node 86, which contains pointers 80 to
individual data records, thus reducing the branching of
the summary tree. A detail index node 86 also replaces
dimension nodes when the combination of dimension
values 78 defining the set in the summary node includes
all but one dimension value: the final dimension value
would divide the set into very small subsets, which are
not worth summarizing in the summary tree. This re-
placement should be made higher up in the tree if ances-
tor dimension nodes describe the exact same set as this
detail index node; the intermediate dimension and sum-
mary nodes do not subdivide the set.

The summary tree 28 of FIG. 1 consists of three types
of nodes: summary nodes 82, dimension nodes 84, and
detail index nodes 86. Summary nodes 82 contain sum-
mary information, while dimension nodes 84 and detail
index nodes 86 simply provide structure to the tree.

As shown in FIG. 6, a summary node contains sum-
mary mformation for the set of records it represents.
The summary node contains a count of records in the
set 90, and summary information for each summary
field 92, 94. This summary information would be the
sum 96, the sum of squares 98, the minimum 100 and the
maximum 102 of the set of values for the summary field.

The summary tree 28, as shown in FIG. 4, is struc-
tured so that the first level of the summary tree is a
summary node 72, followed by alternating levels of
dimension nodes and summary nodes until a detail index
node 1s reached. If a summary node 104 represents
fewer than a given threshold number of detail records,
or if the summary node represents a set of records that
differ in only one dimension field, the child of a sum-
mary node is a detail index node 106. Otherwise, the
children of a summary node 108 are dimension nodes
110, one for each dimension field that has not yet been
specified in the set 112 that the summary node repre-
sents. These dimension nodes 110 represent the same set
as the summary node, causing detail records to be dupli-
cated among these dimension nodes 110. The children
of a dimension node 114 are summary nodes 76, one for
each value of the given dimension in the set represented
by the dimension node 114. These summary nodes 76
represent fewer detail records than the dimension node
114.

When a summary node 108 has dimension nodes 110
as children, each dimension node represents the same
set of detail records. Each detail record in the set is a
descendent of all the dimension nodes 110, creating
duplication in the tree. If the tree summarizes n dimen-
sions, the first level of dimension nodes 116 will cause
detail records to appear n times. The second level will
cause detail records to appear n(n— 1) times. If the tree
were fully developed, the dimension branching would
cause each record to appear in the tree n! times. The
detail index nodes reduce this number by cutting off the
dimension nodes at a certain level.

FIG. 5 1llustrates another technigue for eliminating
redundancy. Subtrees of the summary tree are shared
where possibie. In the summary tree, a summary node
representing the same set of records appears in several
places of the tree, depending on the order of dimensions
used to access it. For instance, the summary node 120

>

10

15

20

23

30

35

45

50

55

65

6

representing the set of records with dimension field
SEX having value M and dimension field ZIPCODE
having value 02046 is in a different part of the tree than
the summary node representing records with dimension
field ZIPCODE having value 02046 and dimension
field SEX having value M. The corresponding subtree
88 could be shared among different parts of the tree 122,
124, reducing the duplication.

In the preferred embodiment of the invention, the
summary tree 1s represented using tables. This provides
a compact representation of the tree, and provides lo-
cality of reference for accessing brother summary nodes
under the same dimension node.

FI1G. 7 shows the correspondence between the logi-
cal structure of the summary tree and a tabular repre-
sentation of the tree. The root summary node 72 can be
represented as a table with a single row. The row con-
tains a count 90 of records in the database, summary
information for the summary fields 92, 94, and dimen-
sion pomnters 126 to tables representing the child dimen-
ston nodes.

A dimension node 128 and its child summary nodes
136 can be represented using a two-dimensional table.
Each row represents a summary node; each row con-
tains the dimension value 138 which identifies the sum-
mary node, the count 90 of records in the set, the sum-
mary information for the summary fields, and dimen-
sion pointers 126 to tables representing child dimension
nodes or detail index nodes.

A flow chart for the builder program 20 is shown in
FIG. 8. The builder program makes several passes on
the mput, generating the different parts of the summmary
tree database. Step 140 analyzes the input file 16 to
determine the types, sizes and value ranges for the input
fields. Step 142 creates the key value tables 24 by read-
ing the input, and maintaining tables for each dimension
field in main memory 12 of unique dimension values.
These tables are sorted, and written out as key value
tables 24. Step 144 creates the key info tables 22, by
reading the input file 16, and storing the non-summary
field values into the appropriate key info table. Step 146
creates the detail table 30 by reading each input record,
translating the dimension values into their correspond-
ing numeric indexes using the key value tables 24, and
storing the dimension values, the summary fields, and
the appropriate non-summary fields into the detail table
30.

The detail table 30 1s sorted to provide some locality
of reference, so that similar entries are located in the
same area of secondary storage. In the preferred em-
bodiment of the invention, this is a multiple-key sort on
all dimension fields, where the dimension fields are
ordered by the number of unique values they have; the
dimension field with the least number of unique values
is the primary key, while the dimension field with the
most number of values is the least significant key. This
means that detail records near each other in the detail
tables share the most number of possible dimension
values. When reading in from secondary storage all
records that maich a certain combination of dimension
values, these related records can be read at one time
without performing too many expensive disk seeks.

Step 148 creates the summary tree 28 itself. This is a
recursive process that creates the tree in a top-down
manner and summarizes the sets in a bottom-up manner.
F1G. 9 illustrates this step in more detail. Step 150 se-
lects all records in the detail table 30. Block 152 repre-
sents the recursive process of summarizing a set of re-

5,442,784

7

cords and producing summary information; it i1s used
recursively at Step 168. Step 154 checks if the number
of records is smaller than the given threshold, or no
dimension fields are left to summarize on; if so, Step 178
builds a detail index node, using the record numbers of
the current set of records. Step 180 reads in the set of
records from the detail table, and calculates summary
information from this set.

If the number of records is larger than the threshold
and dimension fields remain, for each remaining dimen-
sion field 156 the records are sorted along that dimen-
sion field 160, and the records are divided into subsets
according to different values of that dimension field
162. For each subset, the current summary tree built so
far is examined in Decision Step 166 to see if the same
subset has been built using a different order of dimen-
sion fields. If so, a pointer to the appropriate subtree 1s
placed into this part of the tree in Step 176 to accom-
plish the sharing described in FIG. S. If the subset has
not yet been processed, Step 168 1s a recursive call to
the current procedure to summarize this subset, and
build a subtree and a summary node in Step 170. This
process continues for all subsets of records 1n Decision
Step 172. The summary information of these subsets are
combined in Step 204 to generate summary information
for the current set of records. Sum values are added
together, and minimums and maximums combined to
create the contents of a summary node. This summary
node is returned from the recursive procedure 152 to be
placed in the proper place in the summary tree.

FIG. 10 illustrates the logic of the Diver program 32
and how it uses the database 22 to present summary
information to the End user 36 given a set of dimension
selections 34. The dimension selections 34 specifies
dimension values for a set of dimension fields, selecting
a set of detail records. At Step 182, the root summary
node 72 of the summary tree 28 1s read into main mem-
ory 12. Step 184 chooses a dimension from the dimen-
sion selections. Step 186 follows the appropriate dimen-

>

10

15

20

25

30

35

sion pointer to its target node. If this node is a detail 40

index node 188, then this detail index node contains a
superset of the desired set. Step 200 reads the detail
records from the detail table 30, which are then sorted
202 according to their dimension values of the dimen-

sion selections 34. The subset of records that match the 45

dimension selections 34 are selected and summarized to
produce the desired summary information.

If the target node of Step 186 i1s a not a detail index
node, it 1s a dimension node. Step 190 finds a child
summary node of this dimension node that has the di-
mension value that matches the dimension selection. If
no summeary node exists 192, no records match 198 the
dimension selections, and the appropriate display is
generated 196. If the summary node exists and more
dimension selections remain, Steps 184 through 192 are
repeated until all dimension selections have been used.
When all dimension selections have been used, the sum-
mary node contains the summary information for the
desired input set. The appropriate display 196 1s gener-
ated to present this summary information and other
derived information, such as averages and standard
dewviations, to the user.

While the mvention has been shown and described
with reference to the preferred embodiment thereof, it
will be understood by those skilled in the art that the
above and other changes in form and detail may be
made therein without departing from the spirit and
scope of the invention.

50

35

65

8
We claim:
1. A data management system for building a database,
comprising:

an input record memory for storing a plurality of
input records, each input record including a plural-
ity of data fields containing field values;

a database structure memory for storing database
structures, the database structures including
a detail table,

a summary tree,

a detail index, and

a summary table;

a record input controller for entering the plurality of
mnput records into the mput record memory;

a processor connected from the record input control-
ler and to the input record memory and to the
database structure memory for performing opera-
tions on the input records and on the database
structures; and

a builder control connected to the processor for con-
trolling operations of the processor for building the
database structures, including
an input record analyzer control connected from

the input record memory for directing the pro-
cessor for reading and analyzing the data fields
of the input records;

a detail table control for directing the processor for
constructing the detail table, including
generating a database record corresponding to

each input record, assigning a record pointer
for each of the database records, each database
record being addressable by the assigned re-
cord pointer and including dimension fields
containing dimension values and summary
fields containing numeric information, and
writing the database records into the detaii table,
a summary tree control for directing the processor
for constructing the summary table, including
reading the database records and selecting sum-
mary sets of the plurality of database records
wherein each summary set includes a plurality
of database records having a common combi-
nation of dimension values for the associated
dimension fields,

generating sumnmary nodes of the summary table,
the summary nodes for storing summary infor-
mation of the summary fields of the database
records of the summary sets of the database
records, and

generating summary information from the nu-
meric imnformation contained in the summary
fields of the database records and writing the
summary information into the summary nodes,

constructing the detail index, including

reading the database records and selecting index
sets of the plurality of database records
wherein each index set includes a plurality of
database records having a common combina-
tion of dimension values for the associated
dimension fields, and

storing the record pointers assigned to the data-
base records of the index sets in detail index
nodes of the detail index; and,

constructing the summary tree, including
generating a summary tree, and

writing the plurality of summary nodes and the
plurality of detail index nodes based on combina-

5,442,784

9

tions of dimension values into the summary tree
and arranged in a hierarchical fashion.
2. The system of claim 1, further comprising:
a dicttonary memory for storing a data dictionary
containing an entry for each type of field in the
input records, each data dictionary entry contain-
ing mnformation identifying the corresponding type
of field in the mnput records as a dimension field or
a summary field; and wherein the input record
analyzer control directs the processor for analyz-
ing each mput record field, including
reading each field of each input record,
reading the corresponding entry of the data dictio-
nary, and

determining when an input record field is a dimen-
sion field and when an input record field is a
summary field.

3. The system of claim 1 further comprising:

a key value table memory for storing a key value
table,
the key value table containing an entry correspond-

ing to each dimension field value and each entry
containing an integer associated with the corre-
sponding dimension field value, and wherein
the builder control further directs the processor for
replacing each dimension value in a dimension field
of each input record with the associated integer
value in the corresponding dimension field of the
corresponding database record, including
reading each dimension value of each dimension
field of each input record,
reading the associated integer from the corre-
sponding entry of the key value table, and
writing the associated integer into the correspond-
ing dimension field of the corresponding data-
base record.

4. The system of claim 3 wherein the system further
cCOmprises:

a dictionary memory for storing a data dictionary
containing an entry for each type of field in the
input records,
each data dictionary entry identifying an input

record field as a summary field or as a non-sum-
mary field and containing information associat-
ing each non-summary field with the dimension
fields; and

a key info memory for storing a key info table, and
wherein

the builder control further includes a key info table
control for directing
the operations of the processor for
constructing a key info table, and
writing the non-summary field values into the key

info table, wherein each non-summary field
value i1s identified by the integer value of an
associated dimension field.

5. The system of claim 1 wherein the summary tree
further comprises a search tree for accessing the plural-
ity of summary nodes and the plurality of detail index
nodes based on combinations of dimension values, the
search tree comprising:

a plurality of dimension nodes for identifying sets of

records according to combinations of dimension
values,

the summary nodes, and
the detail index nodes, wherein

10

15

20

25

30

335

45

30

35

60

65

10

the dimension nodes, the summary nodes and the
detail index nodes are arranged in a hierarchical
fashion, and wherein
each index set includes a plurality of sets of detail
records defined by first combinations of dimen-
sion values,
each summary set includes a plurality of sets of the
detail records defined by second combinations of
dimension values,
the summary nodes are divided into
a first plurality of summary nodes for storing the
summarizing records for sets that are summary
sets but not index sets, and
a second plurality of summary nodes for storing
the summarizing records for sets that are both
summary sets and index sets and
each summary node of the second plurality of
summary nodes contains a pointer to a detail
index node,
each summary node of the first plurality of sum-
mary nodes contains a pointer to a dimension
node, there being a dimension node for each
dimension field that is not specified in combina-
tion of dimension

values for said each summary node and the dimension
node being associated with the dimension field, and
wherein
each dimension node stores a pointer to a child

summary node, there being a child summary
node for each dimension value contained in a
summary set of records summarized by a parent
summary node of the dimension node, each di-
mension value for dimension field being associ-
ated with each dimension node, and the child
summary node summarizing the subset of the
summary set of records containing each dimen-
sion value.

6. The system of claim 5 wherein the summary tree

control further comprises:

a dimension feld selection control for directing the
processor for selecting a dimension field,
the dimension field selection control being respon-

sive to a recursive selection control for selecting
successive dimension fields;

a sorting control responsive to the dimension field
selection control for directing the processor for
sorting the records of the detail table according to
the selected dimension field;

a dimension field value selection control responsive
to the sorting control for directing the processor
for selecting each set of records formed by having
a common dimension field value for the selected
dimension field;

a size control responsive to the dimension field value
selection control for directing the processor for
determiming when a set of records of the sets of

records formed by having a common dimension
field value for the selected dimension field contains

a number of records exceeding a given threshold
value;

a detail index generation control responsive to the
size control for directing the processor for generat-
ing a detail index node containing record serial
numbers of each set of records formed by having a
common dimension field value for the selected
dimension field and containing a number of records
less than the threshold value and calculating the
summary information for each of the sets of re-

5,442,784

11 12
cords formed by having a common dimension field tains a number of records greater than the thresh-
value for the selected dimension field and contain- old,and o
ing a number of records less than the threshold a summary writeé contr ol for directing the processor
value: for storing the summary information in a summary
’ 5 node.

the recursive selection control, wherein
the recursive selection control is responsive to the
detail index generation contro! for directing the
dimension field selection control for directing
the processor for selecting a next dimension field ;,

7. The system of claim 1 wherein said summary infor-
mation in each summary node comprises:
statistical information including a count of the num-
ber of records associated with a summary set of
records, and for each summary field, a sum of the

when the size of the set exceeds the threshold; values, a sum of the squares of the values, a mini-
a sumimary control responsive to the size control for mum value, and a maximum value of the values
directing the processor for gathering and combin- stored in the summary fields of the plurality of
ing summary information from each set to generate database records.
summary information for records when a set con- 15 ¥ ox ¥ % X
20
25
30
35
40
43
50
33
60

65

	Front Page
	Drawings
	Specification
	Claims

