A 0O O 00

US005422992A

United States Patent [19] (11] Patent Number:; 5,422,992
Motoyama et al. [45] Date of Patent: Jun, 6, 1995
[54] METHOD AND SYSTEM TO HANDLE

- [75]

[73]
[21]

[22]

[63]

[51]
[52]
[58]

[56]

STATE VARIABLES IN A DOCUMENT
PROCESSING LANGUAGE

Inventors: Tetsuro Motoyama; Yueh-Lin Chang,

both of San Jose, Calif.

Ricoh Company, Ltd., Tokyo, Japan;
Ricoh Corporation, San Jose, Calif.

146,724
Nov, 2, 1993

Assignees:

Appl. No.:
Filed:

Related U.S. Application Data

Continuation-in-part of Ser. No. 87,571, Jul. 2, 1993,
which 1s a continuation-in-part of Ser. No. 931,808,
Aug. 11, 1992, which is a continuation-in-part of Ser.
No. 876,601, Apr. 30, 1992, Pat. No. 5,319,748, and Ser.
No. 876,251, Apr. 30, 1992, Pat. No. 5,325,484.

Int. CLS ...t ne e GO6F 17/22
US!Cl e 395/144; 395/145
Field of Search 395/144, 145, 147,

364/419.07, 419.1, 419.17, 419.19

References Cited
U.S. PATENT DOCUMENTS

lllllllllllllllllllllll

4,815,029 3/1989 Barker et al. 395/147 X
5,173,853 12/1992 Kelly et al.cuuuu.e..... 364/419.1
5,181,162 1/1993 Smith et al. 364/419.19
5,204,946 4/1993 Shimamuraccccee...... 395/147 X
3,257,186 10/1993 Ukita et al. ..ccooveevenecenanann. 364/419.1
3,307,266 4/1994 Hayashi et al. 364/419.07

OTHER PUBLICATIONS

Adobe, Postscript Language Reference Manual 1985,
pp. 1 to 54.

Ghezzi et al, Programming Language Concepts 1982,
pp- 33 to 59, 120 to 174.

ISO/IEC DIS 10180, Information Processing-Text
Communication-Standard Page Description Language;
Draft International Standard 1991-03, 1991.

Primary Examiner—Heather R. Herndon

Assistant Examiner—Anton Fetting

Attorney, Agent, or Firm—OQOblon, Spivak, McClelland,
Maier & Neustadt

[57] ABSTRACT

A method and apparatus for processing state variables
in a hierarchically structured page description language
such as SPDL. Each structure level of a document
causes the creation of a prologue data structure which is
used to keep track of system parameters. As content
portions (tokensequence elements) of the document are
being processed, a current context of interpretation
(CCI) data structure is created which 1s also used to
store parameters of the system. When only a portion of
a document 1s processed for printing or other presenta-
tion, it 1S not necessary to process the entire document
which is before the desired portion. Both the prologue
data structure and the CCI contain pointers which point
to data structures such as a state variable table which
contains the values of the state variables.

5,321,423 6/1994 Yoshizawa et al.cocoeennnen. 395/145 '
5,323,312 6/1994 Saito et al.coeeerneennenn. 364/419.1 12 Claims, 39 Drawing Sheets
Prdogue’ Deta

Pir to
m Crt dec
202 746
Y | _/ _ Y/ e 756
203 S— II
1 Pt to Cot o
- ’t‘f Gt
o\CO Dcto Stuctwe =] /722 ~
Ficture/Pogeset —— 124 : Il
Stack] 155 Contet
_ / Dicbonary
700 =
—1 7%
Nl
Pir to - 700
Cabx dect /?04
716
Structure 8
710
/ 13
— 712 ll
—
EolﬂextStockhk Dictionury

U.S. Patent June 6, 1995 Sheet 1 of 39 5,422,992

DOCUMENT = PAGESET

\\PAGESET

£FI1G. 74 DOCUMENT = ONE PAGE

ABC PICTURE

PICTURE

LFIrG. 7.5
- 10
Document = Pageset /
Pageset —12 Picture
_ ' 1t
Picture Picture Picture

16 N\ N

£FIG.2

~ U.S. Patent June 6, 1995 Sheet 2 of 39 5,422,992

Picture =2 = {proloque)?, (picture_body)?
Pageset :: = (prologue)?, {pageset_body)?
_ Prologue :: = {external_decl+, informative_decls, resource_defs,

resource_decls, doc_prod_instr_decl,
context_declt, dict_gen_decl,
set_up_proc)

picture_body = = fpicture | tokensequence)s
pageset_body :: ={pageset | picture)s

ALL MUST OCCUR IN THE ORDER SHOWN
ONE AND ONLY ONE NUST OCCUR
OPTIONAL (0 or 1 TIME)

OPTIONAL & REPEATABLE (0 or NORE TIMES)

* -a el W

FlG. 2

U.S. Patent June 6, 1995 Sheet 3 of 39 5,422,992

Pageset —0
' Prologue —91
Resource Definition — 92
Tokensequence ——aJ
Dictionary Generator —54
Tokensequence ——39
Dictionary Generator —56

Tokensequence —57
Setup Procedure —58.

Tokensequence —59
PagesetBody ——60

Picture —b1
Proloqgue —52
~ Context Declaration—>03
Dictionary |dentifier —b4
- Dictionary Generator — 69
Tokensequence ——bb
Setup Procedure — b6/
Tokensequence ——68
PictureBody —63
Tokensequence — /0
Picture — /1
PictureBody —/2
Tokensequence — /3
Tokensequence — /4
Picture — 70 '
PictureBody ——/b

Tokensequence — 7/

FIC. &

U.S. Patent June 6, 1995 Sheet 4 of 39 5,422,992

|
a
|
|
|

COMMUNICATION
18— INTERFACE | |

LFIG. 5

U.S. Patent June 6, 1995 Sheet 5 of 39 5,422,992

SPDL Document 150
Structure 122 _
Processor

154 \ 158
Picture/Pageset
Prologue
< Data Structure |
/ 160

CCl
Data Structure
S Content
o

_ 64
B Presented 166
- IMAGE o

LFI1G. 6

uence Content

U.S. Patent June 6, 1995 Sheet 6 of 39 5,422,992

PARSER (200

Pictqre Picture ' Pageset Picture Picture ~ Pogeset
begin 180 end 182 begin begin ~end 188 end
N 184 186 = — 190
Push™ ~ Pop\\ Push /- /PUSh/ - f?,,p — 'ﬁap -
/ yd - -
N\ /o o
202
Pointer to Prologue 206
_ Data Structure
204 — — = 208

Pointer to CCl
Data Structure

Pointer to Prologue 212
Date Structure '

210 - E;i;lte-;uio Ea 214
Data Structure
Picture/Pageset ~ Nul

- Stack

FIG. 7

U.S. Patent June 6, 1995 Sheet 7 of 39 5,422,992

Picture/Pageset o
Proloque Data Structure

221 — Pageset_level _ FIG. 8
222 — Picture_level
223 —1 Pointer to External Declaration <

9724 Pointer to Informative Declaration

2

2

7

2 .

2 .

3 0

231 — Painter to User Dictionary Link - CCl Data Structure
9739 Initial Transformation - | Pointer to Resource
— ' ~ Declaration
‘ 202 \ /

242 -
Pointer to Context
Stack
o 206 |/ 2 —
204 ointer to Prologue - Pointer to Operand
Date Structure 4§ Stack
Pointer to CC 06/ Pointer to State
Data Structure ¥ Vanable Table
719 | | Pointer to Proloque 212 Pointer to Machine
- Data Structure - - State
Y _ 230
- Pointer to CCl 214 Pointer to User _
Data Structure . Dictionary Link
Picture/Pageset Null 22 =

 Stack

U.S. Patent June 6, 1995 Sheet 8 of 39 5,422,992

229 AND/OR 248 300 - FICG.9
z
.
.
“

U.S. Patent - June 6, 1995 . Sheet 9 of 39 5,422,992

o

401

402

T0P STACK

Pageset_level = PS_level
Picture_level = Pic_level?

YES 43— SET ERROR
T RAC

RETURN 404

- ALLOCATE THE MEMORY
FOR THE PICTURE PAGESET
PROLOGUE DATA STRUCTURE

| PUSH THE POINTER TO THE ALLOCATED PROLOGUE
DATA STRUCTURE INTO THE PICTURE/PAGESET STACK L— 497
| PUSH 'NULL' INTO THE PONTER TO THE CCI DATA | 00
SIRUCTURE OF THE PICTURE/PAGESET STACK
Picture_level = Pic_levef 409
Pageset_level = PS_leve! -

406

£IG. 704

U.S. Patent " June 6, 1995 Sheet 10 of 39 5,422,992

490 LIG. 7085

FIRST
ENTRY OF
PICTURE /PAGESET

STACK ?

INITIALIZED PQINTERS IN
ALLOCATED PROLOGUE DATA
STRUCTURE TO POINT T0
SANE ADDRESSES AS ONE
SIACK ENTRY BELOW,
EXCEPT FOR THE STATE
VARIABLE TABLE POINTER

| SET THE STATE VARIABLE
TABLE POINTER OF THE
ALLOCATED PROLOGUE DATA
STRUCTURE TO POINT TO A
STATE VARIBLE TABLE
HAVING DEFAULT VALUES

428
424

SEI' THE OTHER POINTER OF
THt ALLOCATED PROLOGUE
DATA STRUCTURE TO NULL

POINTER T0 THE
CCI DATA STRUCTURE
IN THE PICTURE /PAGRSET
STACK OF THE ENTRY
BELOW=NULL ?

SET THE POINTER TO THE
STATE VARIABLE IN THE
CURRENT PROLOGUE DATA
SIRUCTURE TO POINT TO
THE SAME ADDRESS AS THE
STAIE VARIABLE TABLE
POINTER OF THE PROLOGUE
DATA STRUCTURE OF THE
LEVEL BELOW

430

SET THE POINTER TO THE
SIATE VARIABLE TABLE OF
THE CURRENT PROLOGUE

DATA STRUCTURE TO POINT
10 THE SAME ADDRESS AS
THE STATE VARIABLE TABLE
OF THE CCI OF THE LEVEL
BELOW

432

COPY THE VALUE OF THE CURRENT TRANSFORMATION TO THE
INITAL TRANSFORMATION ENTRY OF THE AIJ.OCATED PROLOGUE

DATA STRUCTURE
43 '
RETURN

43b

U.S. Patent June 6, 1995 Sheet 11 of 39 5,422,992

Z
Allocate the memory for @ CCl data structure and
‘get the address pointer Pir_CCl
Put Ptr_CCl in the pointer to the CCl data Structure | — g
of the top entry of the Picture/Pageset Stack
| Create a State Variable table and put pointer -
address into CCl data structure _

Copy the value of State Variables from the table

pointed to by the Plcture/ Pageset Prologue Data
Structure _

~ 610

Copy the pointers to Resource Declaration, Content
Declaration, Machine State and User dictionary link
from the Plcture/ Pageset Prologue Data Structure

to the corresponding pointers in the CCl Dato
Structure

bi2

Set up Opemnd Stack according o the structure 614
element superior to the Tokensequence

RETURN)— 616 FIG. 77

June 6, 1995 Sheet 12 of 39 5,422,992

SYSTEM DICTIONARY

- VALUE - _

THE PROCEDURE: POP TWO VALUES FROM THE OPERAND STACK,

CHECK THEIR TYPES, ADD THEM, AND PUSH THE RESULT BACK
INTO THE OPERAND STACK

THE PROCEDURE: POP WO VALUES FROM THE OPERAND STACK,
CHECK THEIR TYPES, MULTIPLY THEM, AND PUSH THE RESULT
BACK INTO RHE OPERAND STACK

THE PROCEDURE: POP WO VALUES FROM THE OPERAND STACK,

CHECK THEIR TYPES, MULTIPLY THEM, AND PUSH 1HE RESULT
BACK INTO RHE OPERAND STACK

WTH WITH AN INTIAL CAPACITY OF THE INTEGER, AND PUSH
THE CREATED DICTIONARY REFERENCE INTO THE OPERAND STACK

 THE PROCEDURE: POP WO VALUES FROM THE OPERAND STACK,
COMPARE THEN, PUSH TRUE IF THEY ARE EQUAL AND FALSE IF

DICT THE FROCEDURE POP ONE VALUE FRON THE OPERAND STACK,
CHECK THE TYPE TO BE INTEGER, CREATE AN EMPTY DICTIONARY

'THEY ARE NOT EQUAL

U.S. Patent June 6, 1995 Sheet 13 of 39 5,422,992

30

b
CONTENT DICTIONARIES

USSR
8= DICTIONARY

SYSTEM

DICTIONARY

CONTEXT STACK

FIG.73

U.S. Patent June 6, 1995 Sheet 14 of 39 5,422,992
50
5

b
—> 692
298 Pageset_level
Picture_level
Dictionary Identifier

Dictionary Size

chtlonury Pointer ~Dictionary Dat[a Structure
- “ o

Context Dictionary Generator Data Structure _

LFIG. 74

680

——>- 682
Pageset_leve!

and / or

242 Picture_level
Dictionary Identifier

Dictionary Pointer Dictionary Du}a Structure
- o

Cont_ext Stack Link Data Structure
FIG. 75

3
N .
M.., fupuong aInjonig 0jog
<+ ooy i o0t piajuog
Af)
L
Al]
o s
- —~ ~
'\ 81/ 0l %0/
7 90/
_ P
) 91, - $0L
3
=
=

U.S. Patent

- ININIS
- Djog anbojouy

¢0L 930 xjug
0} Jid

P
23] X|U)
-0} 4
.

~7anpnig
0¢C g anbojosy

IN
¥ic

Ay
80¢

90¢

¢0¢

Yoo
J9s8bng /ainjol

V9L OIS

5,422,992

Sheet 16 of 39

June 6, 1995

U.S. Patent

fupuonaig ~anpnig ojog
1X9}U0)) NN AUl JI0IS Ixsjuo)
2y
.
(o
-
— ~
8lL 0iL
80/
90,
el —

¥0L
OE

cmm

aInong
pjoq 8nbojoiq

i S
10s3b 4 /ain}aig
I 0\ >
aInjonaS ojog 100 \ 417
19015
. Xju) 0} Jid 80C
P l [/
¢0¢
2INJonIIS . &9 4214

0jog anbojoid

ey
” Aipuoaig 3IMONJIS DJD(]
m - }X0Ju07) " uj Jo0)S Jxeoy) AN
7% - b1/ “ pjog anbojoid
o
_ 1
5 ol ol /e ETET) Pty
o BlL 0L 80/ — 11— 0} I osabog /ainjoig
5 — N
ﬁ -
-
7 P 4Y
3 05L ———— 00 - 802
= B | [CC 23(] X))
~ 0} Jid
e 2
=
A _ 7 < 7 anpnig 99 DTl
o Ay \[4] - 0¢C mnpg anbojosd _ _
=)

U.S. Patent June 6,1995 Sheet 18 of 39 5,422,992

START }—602

["Aiocate Context Stock Lin Dato Structure and]
get the pointer prt_CL . .

Copy the value of the pointer to the Context |
Stack in the active CCI data structure into

Next of the newly created Context Stack Link
Data Structure

Put ptr_CL into pointer to Context Stack in the 764
active CCl Data Structure

Put - 1 into Pageset_level and Picture_level

in the Context Stack Link Data Structure 766

Put the pointer to the reference Dictionary

into Dictionary Pointer of the Context Stack
Link Data Structure .

162

768

- 616

FIG. 77

Sheet 19 of 39 5,422,992

June 6, 1995

Aipuonaig _ 3.MIN)S D0
pajuoy) N ~JUl RIS X80
Vi-—
.
AYA "I eq_moaﬁ
pjog anbojos
s e 100 anbojoid
01 TS .
15 — . _ g
_ — 195abDd /a1n}aid
0L I IN~_
Tl) \\ \ “aimonag 000 199 \ ¥z
fouonag 0L
Jus)u0) _cE AT/
S ¥oDIS
o> BN
Uy 0} J _
= . WA [
_ 9¢/—L
i e . A
- aIMNIS &L O1d

omm pjog anbojosd

U.S. Patent June 6,1995 Sheet 20 of 39 5,422,992

START

Get the Context Link Stack Data Structure pointer by
the pointer to Context Stack in the active CC! Data

/83 Structure
Copy the value in the Next of Context Link Dato
790 Structure into the pointer to Context Stack in the

active CCl Date Structure

Pageset_level =-1
Y
Picture_level =-1

192

Pointed
dictionary referenced
« Dy any other
objects

796

Erase the dictionary
and relegse the memory
trase the Context Stack Link Data Structure
798 — and relegse the memory

FIC. 79
' o (rEwy

U.S. Patent

June 6, 1995

Sheet 21 of 39 5,422,992

Prologue Dato

Structure

| e

220

to

- Cnix decl

—
206 75
208 = - ars
212 244 - Ptr to Cnix L
- - Stack nten
Null{ CC! Data Structure Il
Picture/Pageset
ack 126 oo
Dictionary
100 128
130
Null
Ptr to - ' _
102
Cnix dec] 104
Prologue Data ~ ——“=7¢ Il
Structure
710 |
/ 718
o
— 112 ll
]
—F 714
' Null Context
Context Stack fink Dictionary

 FIC.20

Data Structure

U.S. Patent June 6, 1995 Sheet 22 of 39 5,422,992

%?2 /o 800 - /8 v
Key Value
@ [T
I
Next ' 808 ll
User Dictionary Link User \
Structure Dictionary 010

LIG. 27

U.S. Patelit June 6, 1995 Sheet 23 of 39 5,422,992

START

Process using the
dictionary pointed by
pointer to User
Dictionary Link vie
User Dictionary Link
Structure

822

820

First
wiite to the User
Dictionary ?

| Y
Allocate User Dictionary Link 894
and get the pointer pir_Link

C0py the value of the pointer to User Dictionary
Link in active CC! Data Structure to Next Entry
of User Dictionary Link Structure

Put ptr_Link into pointer to User Dictionary Link '

in active CCl Data Structure 898
| Allocate User Dictionary and . 830

get the address pointer ptr_udict -

Put ptr_udict into Dictionary
Pointer of User Dictionary Link
Structure -

826

832

Wnte the Key—value pair

into the newly created
dictionary

834 FIG. 22

U.S. Patent June 6, 1995 Sheet 24 of 39 5,422,992

- User Dictionary

a | &
Q. | <

d

i HHHH

LFI1G.253

aInjonug
Aiouonaig yur] D}Q anbojoig

433 n\ Aibuopaig Josp
174

5,422,992

I
I
I . 2 498
% _ N — H _ YDIS
m P . Sm, d NN jasabog /ainjaig
00L
_ Gl
JInN
m .
i A
= 907
3
A Sy | 707
1£¢ 0} iid _

. VS T 9l.d
\\ . _
022

U.S. Patent

~ o ampnig
- 0jog anbojoiy

5,422,992

Aiouonaig Ut 20 Josfy
Jas) N Jupuoyaig Jsasy) 0) o
& _ J
% TA; _cmom&\eso_ﬁ_
m (C6 "N]
= P ~~ 121/
0¥6 006 _
- ANPNAS 0j0(1) AL
2l J3S
m 707 .:3 h _M__ 80¢
") 80¢
=
hey
¢0¢
Qrac O75.4

U.S. Patent

Sheet 27 of 39

June 6, 1995

U.S. Patent

5,422,992

a1n}anJlg
fuuonaig Y Djog anbojosg
138 N Aipuonaiq sas(y
PN _
7€ —— 21 Jesy)
— 0} Iid P
Py pra _ 006 i 19s3bDy /ainjoid
0v6
Jib W
00 .
0£6 m 2nInlS Djog |97 AV
826" |—— 707
(6 976 .
. . 900
(] Jas()
._ | ¢0¢
0} I \ _ |
0+C h
8¢ . .
¥ ac " DLd
Py
0¢¢

June 6, 1995 Sheet 28 of 39 5,422,992

U.S. Patent

Aipuoaig R T}
138 N Kipuonaig Jes(
v VN
—
e L—
e
el — 006
0v6 026 /
o f—— "
8 ——
Al e
Ty
\\
022

2NN
DIpq anbojo.d

2(Jasf)
0} Jid

20 Jos|)
0 id|
_ I"N

121/

1901
19s3D0d /aInjaig

AY/
I

80¢
90¢

A

adrc 14

Sheet 29 of 39 5,422,992

June 6, 1995

U.S. Patent

Aipuoioig i AININI)S
Jas() N Aipuonaiq Jasq DJo anbojoid
vi6 4 —— +1XN
A4
— _ q 1)
Sm\\ _ ~— 13N 2 i
R e
-
806" [.
— —
AL 9C6 ccm
- anpnas 0jog 199
2 J3s)
96 _N— 0} Jid
55— .
e
P I Q] Jes()
b6 ~ oy nd|
CES _ e&\
o/
~ -
0¢¢

NN
Y

A
80¢

90¢

¢0¢

13015
josabog /anjaig

US. Patent ~ June6,1995 Sheet 30 of 39

5,422,992

S
THE NEXT
STRUCTURE

1004 W2

ELEMENT A S THE
TOKENSEQUENCE N_~" IMMEDIATELY SUPERIOR
OR A PICTURE STRUCTURE ELEMENT

WITHIN A
PICTURE
- ?

FINISHED ?

‘ IMMEDIATELY SUPERIOR
CALL STRUCTURE ELEMENT
ERROR END ROUTINE (F1G.26A)
008

CALL CC DELETION
ROUTINE (FIG.27A)

LFI16G.25

US. Patent ~ June6,1995 Sheet 31 of 39 5,422,992

START

2 | 1020

WERE
STATE VARUBLES IS THE
NODIFIED 2 IMMEDIATELY SUPERIOR -

- STRUCTURE ELEMENT
A StTUP
PROCEDURE ?

COPY THE POINTER T0
STATE VARUBLE TABLE
IN CCI DATA STRUCTURE
T0 PROLOGUE DATA

STRUCTURE

1030

CBTHE N
IMMEDIATELY. SUPERIOR
STRUCTURE ELEMENT
A RESOURCE
_ SPEC ?

WAS THE
USER DICTIONARY
MODIFIED 7

1052

1 COPY THE POINTER TO
USER DICTIONARY LINK

N CCl DATA STRUCTURE
10 PROLOGUE DATA
SIRUCTURE

GET THE NECESSARY
INFORMATION FROM

OPERAND STACK

FIG.264

US. Patent Junes, 1995 Sheet320f30 5,422,992

1034

' 5
CONTEXT DICTIONARY
DEFINED ?

N RETURN

1Y 1036

GET THE NECESSARY
- INFORMATION FROM
OPERAND STACK

RETURN)

U.S. Patent June 6, 1995 Sheet 33 of 39 5,422,992

' 1100

GET THE CONTEXT STACK LINK DATA
STRUCTURE POINTED TO BY THE
| CCl DATA STRUCTURE

ARE THE

PICTURE_LEVEL

AND PAGESET_LEVEL
= 19

GET THE CONTENT DICTIONARY
POINTED 0 BY THE CONTEXT
STACK LINK DATA STRUCTURE

N

GET THE "NEXT" POINTER OF
THE CONTEXT STACK LINK
DATA STRUCTURE

1 DELETE THE CONTEXT STACK
LINK DATA STRUCTURE

1112 <

— _"THE CONTENT
DELETE THE CONTENT | N_~DICTIONARY IN THE LINK

DICTIONARY OF A DICTIONARY
GENERAIOR
Q |

1110

Y 1114

| GET THE NEXT CONTEXT
STACK LINK DATA STRUCTURE

LFIG. 274

U.S. Patent June 6, 1995 Sheet 34 of 39 5,422,992

1120

| DELETE THE OPERAND STACK
FROM MEMORY

1122

. 1124
DELETE THE STATE VARIABLE N
TABLE FROM MEMORY

DELETE ANY USER DICTIONARIES
AND USER DICTIONARY LINK
DATA STRUCTURES OF THE
CURRENT CCI DATA STRUCTURE

1S
THE MOST

1128

Y.
DELETE THE MACHINE STATE
FROM NEMORY
DELETE. THE CURRENT CCl
DATA STRUCTURE

1130

1132

PUT NULL INTO THE POINTER
T0 CCl DATA STRUCTURE OF THE

TOP ENTRY OF THE PICTURE/
PAGESET STACK

RETURN

FIG.275

U.S. Patent June 6, 1995 Sheet 35 of 39 5,422,992

220
POINTER 10
209 STATE VARWBLE | 229
. TABLE
PO!
PRoNJggUgODATA PROLOGUE DATA
STRUCTURE 219 STRUCTURE
POINTER TO CC 214 450
- PCTURE / NULL)
PAGESET STACK
453

DEFAULT
STAIE VARIABLE
TABLE

FICG. 284

U.S. Patent June 6, 1995 Sheet 36 of 39 5,422,992

POINTER TO
STATE VARIABLE
TABLE

PROLOGUE DATA
* STRUCTURE 430

212 ' ' 451

PICTURE / -"3
PAGESET STACK -
POINTER 10
STATE VARMBLE ~
TABLE
DEFAULT
STATE VARIABLE
TABLE
450
CCl DATA
STRUCTURE
46
463

STATE VARIABLE

- U.S. Patent June 6, 1995 Sheet 37 of 39 5,422,992

)
POINTER TO
- 'STATE VARIABLE 229
TABLE
PROLOGUE DATA
STRUCTURE 40
212 451 .
X
1
PCTIRE / W
PAGESET STACK '
‘| POINTER T
STATE VARWBLE 248
TABLE
DEFAULT
STATE VARWABLE
 TABLE

- CCl DATA

SRUCTIRE. 1~
152
FIG.28C 463

STATE VARWBLE

U.S. Patent June 6, 1995 Sheet 38 of 39 5,422,992

220

POINTER TO
STATE VARIABLE 229

202 TARLE

'PROLOGUE DATA
STRUCTURE , 430

212 451.
214 40 452
PICTURE / 453
PAGESET STACK

POINTER T0
STATE VARWBLE | 248
TABLE

DEFAULT
STAIE VARIABLE
TABLE

CCl DATA 0

STRUCTURE 46t
' 462
FIG.28D

TABLE -

U.S. Patent June 6, 1995 Sheet 39 of 39 5,422,992

POINTER TO

209 STATE VARIABLE
TABLE

PROLOGUE DATA
STRUCTURE il

NULL 453 Y
PICTURE / . ' 3
PAGESET STACK .

i -

461
462 DEFAULT
STATE VARIABLE
463 TABLE

STATE VARIABLE
TABLE

3,422,992

1

METHOD AND SYSTEM TO HANDLE STATE

VARIABLES IN A DOCUMENT PROCESSING
LANGUAGE

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation-in-part of U.S. pa-

tent application Ser. No. 08/087,571, filed on Jul. 2,

1993, and entitled “Method and System to Handle Con-
text of Interpretation in a Document Processing Lan-
guage which is a continuation-in-part of U.S. patent
application Ser. No. 07/931,808, filed on Aug. 11, 1992
- and entitled “A Method And System to Handle Dictio-
nary Generation and Context Declaration in a Docu-
ment Processing Language” which is a continuation-in-
part of U.S. patent applications Ser. Nos. 07/876,601,
now U.S. Pat. No. 5,319,748, and 07/876,251, now U.S.
Pat. No. 5,325,484, both filed on Apr. 30, 1992 and
entitled “Method and Apparatus to Manage Picture and
Pageset for Document Processing” and ‘“Method and
System to Handle Inclusion of External Files into a
Document Processing Language,” respectively, each of
which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to the computer con-
trol printing, displaying, or other presentation of docu-
ments which may have text, graphical components,
and/or images. This invention is more particularly re-
lated to a method and system for processing the begin-
ning and ending of pictures or pagesets in a document
data stream, keeping track of the status of the presenta-
tion device referred to as the state of the virtual ma-
chine using a set of dictionaries, defined later, a context
stack defining the search order of the dictionaries, a
state vanable table, a set of resources, and an operand
stack.

2. Discussion of the Background

The development of laser printers in the early 1970s
provided an opportunity for high quality, low cost
printing of documents, which contained not only char-
acter text but also general graphical material. The pri-
mary method of controlling commands by the com-
puter to the printer employed the so called “escape
sequence” commands, similar to the type of commands
used in the DIABLO® command sequence. These
types of commands were distinguished from typical
character data by preceding each command with a
special byte, generally an escape character (ASCII 27).
This methodology works acceptably with daisy wheel
or dot matrix printers but is not well suited for printing
documents that might have changing requirements. For
example, as needs change and as technology improves,
an upgrade of the presentation device is necessary. This
-type of upgrade in the past would have required re-
moval of the program controller of conventional pre-
sentation devices. At a minimum, a new PROM con-
taining instructions for the printer would be required.

10

15

20

25

30

35

45

30

55

This is not a commercially acceptable way of handling

temporary changes, as a new PROM would be installed
for a few print jobs, and would then have to be replaced
with the original PROM or another new PROM. This
method of upgrade is wasteful and results in many fail-
ures of the presentation device controller.

- As aresponse to the limitations inherent in the escape
sequence commands, different types of “page descrip-

65

2

tion language” (PDL) were developed generally to
control laser printers or other types of page printers.
Backward compatibility of these laser printers was pro-
vided by way of an ability to accept escape sequence
commands. Two current examples of page description
language are the PostScript ®) system from Adobe Sys-
tems Incorporated and InterPress® from Xerox ®
Corporation. Several other proprietary PDLs are also
known.

Some of the prior art page description languages
provided various improvements to the standard escape
sequences known previously, such as by providing tools
and syntax for manipulation of objects, or by providing
for the use of operand stacks or the like. Moreover, they
are stack-oriented programming languages. These lan-
guages also allowed, in some cases, for dynamic
changes in the printer’s state, such as the ability to add
fonts or graphical images to the resources that might be
available to the printer. Some of these features are docu-
mented in such generally available reference works as
Adobe System Incorporated’s “PostScript Language
Reference Manual” and the “PostScript Language Pro-
gram Design,” both by Addison-Wesley Publishing
Company (1985 and 1988, respectively). Other PDLs
are also described in various technical and reference
books such as “InterPress, The Source Book” by Har-
rington et al. (Simon and Schuster, Inc.,1988)

A standardized page description language has been
proposed and is being developed as an international
standard by the International Organization for Stan-
dardization (“ISO’). The proposal, to which one of the
present inventors is a contributor, is currently in draft
form before a section of the ISO. The draft is known as
ISO/IEC DIS 10180, labeled “Information Processing
Text-Communication Standard Page Description Lan-
guage” and 1s available through the American National
Standards Institute(“ANSI”) in New York.

Many of the prior art types of page description lan-
guages suffer from various flaws. For example, one
shortcoming of the PostScript ®) language is that a page
description for a particular document can contain a new
definition such as a resource definition (i.e. an additional
font) or a new dictionary definition that can be used
anywhere in the document. In other words, no structure
1s enforced in PostScript ® and therefore, the entire
content of the document must be processed to deter-
mine whether a particular printer has the resources
necessary to print it. If this “preprocessing” is not per-
formed, it is possible that the printing of a document
may fail at any point during the printing process, even
at the very end, due to the inability of the printer to
comply with commands of the document page descrip-
tion. |

Addttional problems are associated with the prior art

'systems that employ PostScript ®). For example, to

print a given page of a document, it is generally neces- |
sary to read and process, before presenting a page, the
entire PDL description of all the preceding pages of the
document, in order to decide the state of the document
page setup parameters (i.e., resource declarations, dic-
tionary definitions or the like). In other words, a print
controller program must read the entire PDL descrip-
tion of a document to consider the effect of every page
setup command between the beginning of the document
and the specified page. While this page setup scanning
process 1s relatively straightforward, it does require a

5,422,992

3

significant amount of processor time, which can be

better used by the printer. |
Additionally, there are no syntax or semantics de-

fined in the PostScript ® language to handle a struc-

ture, a prologue or a scope of a data declaration. There 5

1s a convention. This convention, however, does not
need to be followed.

One problem with the well known InterPress ®) sys-
tem from Xerox ®) is that its structure does not effec-
tively handle dictionary definitions contained in an
inputted data stream. Nor does InterPress ®) use the
prologue structure in an expeditious manner. Also, the
- standard InterPress ® encoding is only binary rather
than clear text which a human can read.

SUMMARY OF THE INVENTION

‘Accordingly, one object of this invention is to pro-
vide a method and apparatus for the determination and
efficient processing of hierarchical structure elements of
a PDL document, such as the beginning and ending of 20
pictures and/or pagesets in a document data stream so
as to speed up the processing of document data streams.

It 1s another object of this invention to provide a
method and apparatus which can keep track of the
scope and status of material defined within the defini-
tion for each document data stream in an efficient man-
ner.

It 1s a further object of this invention to provxde an
apparatus and methodology for selecting in an input
data document stream a given page or picture for pro-
cessing 1n an efficient manner without the requirement
for processing all preceding pages in the document.

It 1s yet another object of the invention to create a
current context of interpretation as the document is
being processed which handles state variables and a 35
“context stack™ for keeping track of various dictionaries
used for processing such as context dictionaries, content
dictionaries, a user dictionary, and a system dictionary.

These and other objects are achieved according to
the present invention by providing an efficient method 40
of processing a page description language as defined in
ISO/IEC DIS 10180, (hereinafter DIS 10180) for exam-
ple. According to DIS 10180, as currently constituted,
each document data stream is provided in a structure -
which 1s either a pageset or picture. The pageset and 45
picture elements consist of an optional prologue which
contains definitions and declatory commands and an
optional body. A pageset body consists of zero or more
pagesets or pictures while a picture body consists of
zero or more pictures or tokensequences. The tokense- 50
quence which contains specific tokens or commands for
defining specific images along with necessary operators
contains “content” while other elements in the docu-
ment are called “structure”. The structure sets up the
environment for content to generate the appropriate
output images. The effects of a prologue within the
hierarchical level of a picture or pageset is until the end
of that picture or pageset. Therefore, the prologue of a
‘picture in the hierarchical structure of a document does
not influence those structures at the same or peer level 60
or superior structures while influencing structures at a
lower hierarchical level. This invention effectively han-
dles this hierarchical tree’structure along with the scope
of the prologue by using a stack and various pointers.

A tree-linked hierarchical structure advantageously
enables the processing of any portion of the document
by directly addressing that portion of the document and
those portions which are higher in the hierarchy with-

10

15

25

30

35

65

4

out the necessity of processing any other items 1n differ-
ent branches of the hierarchical tree. In other words,
only structural definitions which occur in the hierarchi-

- cal tree which are above a given portion of the docu-

ment need be processed. This increases the efficiency of
the processing of the document and also facilitates the
determination of the type of resources which will be

needed in the printing device or the display device prior
to the commencement of the actual printing of the doc-
ument. This increases the speed and efficiency by Wthh
various devices print or display the document.
Whenever a hierarchical level in a document is being
processed, an entry 1s pushed into a picture/pageset
stack corresponding to that hierarchical level. Each
entry in the picture/pageset stack has a pointer to a
prologue data structure and a pointer to a current con-
text of interpretation (hereinafter called “CCI”) data
structure. The CCI data structure 1s used whenever
content of a document is being processed. The entries in
the CCI data structure can be modified when the struc-

ture of a document or file is being processed and can

also be modified as content is being processed. How-
ever, content cannot directly modify the entries in the
picture/pageset prologue data structure. |

As a document is being processed, variables defining
the state of the virtual machine which is performing the
processing are defined in a state variable table. The state
variables in a state variable table can be modified by the
various processing commands.

When the presentation of a document begins, a pro-
logue data structure is created which, for the first hier-
archical level of the document, has a pointer to a defauit
state variable table. When a content portion (tokense-

~ quence) of the document is processed, a Current Con-

text of Interpretation (CCI) data structure is created
having a pointer to its own state variable table which
initially has the same state variables as the state vari-
ables in the default state variable table. When the imme-
diately superior structure element of the tokensequence
ends, the CCI data structure is deleted after some pro-
cessing, if necessary.

Upon processing subsequent hierarchical levels, if a
CCI data structure exists for the hierarchical structure
clement immediately above, the pointer to the state
variable table of the prologue data structure for the
subsequent hierarchical level is set equal to the pointer
to the state variable table in the CCI data structure for
the immediately above element. If a CCI data structure
does not exist for the hierarchical structure element
immediately above, the pointer to the state variable
table of the prologue data structure for the subsequent
hierarchical level is set equal to the pointer to the state
variable table in the prologue data structure for the

‘immediately above element.

If state variables were modified during the processmg
of a tokensequence and the immediately superior struc-
ture element is a setup procedure, upon the completion
of the setup procedure, the pointer to the state variable
table in the CCI data structure of the tokensequence is
copied to the pointer in the state variable table. If the
immediately superior structure element is not a setup
procedure, any modification of the state variables was
only intended to be used for the current tokensequence
element and therefore, the changes made to the state
variables are not be saved. |

S
BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and
many of the attendant advantages thereof will be
readily obtained as the same becomes better understood
by reference to the following detailed description when
considered in connection with the accompanying draw-
ings, wherein: |

FIG. 1A and 1B are illustrations of sample documents
and their hierarchical structural elements;

F1G. 2 is an illustration of the hierarchical structure
of a document:

FIG. 3 is an illustration of the “grammar” of a piC-
ture, pageset, prologue, picture_body and a pageset__
body; ,

FIG. 4 illustrates the structure of an exemplary two
page SPDL document;

FIG. 5 is an illustration of a sample hardware embodi-
ment which can employ the present invention:;

FIG. 6 is an illustration of the virtual machine or
processing model used to process SPDL documents:

FIG. 7 is an illustration of the picture/pageset stack
and various hierarchical structure elements which push
Or pop entries onto the stack;

FIG. 8 is an illustration of the picture/pageset stack
and the picture/pageset prologue data structure and
CCI data structure pointed to by the entries in the pic-
ture/pageset stack;

FIG. 9 is an illustration of a state variable table;

FIGS. 10 and 10B illustrate a process performed at a
“picture_begin” command; FIG. 10A handles the ma-
nipulation of the picture/pageset stack and the pic-
ture/pageset prologue data structure and FIG. 10B
handles the processing of the state variables:

F1G. 11 illustrates a process used to create a current
context of interpretation data structure upon encounter-
ing a tokensequence structure element;

FIG. 12 illustrates a part of the system dictionary:

FIG. 13 is an illustration of the context stack:

FIG. 14 illustrates a context dictionary generator
data structure;

' FIG. 15 illustrates a context stack link data structure;

FIG. 16A-16C illustrate various states of the pic-
ture/pageset stack, CCI data structure, prologue data
structure, context stack link data structure and context
dictionaries during the processing of a document;

FIG. 17 illustrates the process used to push a context

J,422,992

3

10

15

20

25

30

35

45

dictionary into a context stack link data structure when |

instructed by a tokensequence;

FIG. 18 illustrates various data structures after a
dictionary has been pushed into the context stack link
data structures;

FIG. 19 illustrates the process executed when a dic-
tionary 1s popped out of a context stack link data struc-
ture by a tokensequence;

FIG. 20 illustrates the various stacks and data struc-
tures after pushing and popping of context stack link
data structures have occurred:;

FI1G. 21 illustrates the user dictionary link data struc-
ture and user dictionary;

FIG. 22 illustrates the process used to manipulate the
user dictionary: |

F1G. 23 is an example of a user dictionary containing
one entry;

FIGS. 24A-24E illustrate the states of the picture/p-
. ageset stack, CCI data structure, prologue data struc-
ture, user dictionary links, and user dictionaries during
various processing steps of a document;

30

55

65

6

FIG. 2§ illustrates a process used when the end of a
tokensequence element is encountered:

FIGS. 26A and 26B illustrate a process to save the
necessary variables before a CCI data structure is de-
leted:

FIGS. 27A and 27B illustrate a process to delete
unnecessary CCI data structures and data structure
related to the CCI data structures; and |

FIGS. 28A-28E illustrate data structures used during
the processing of state variables.

DETAILED DESCRIPTION OF THE
DRAWINGS

Referring now to the drawings, wherein like refer-
ence numerals designate identical or corresponding
parts throughout the several views, and more particu-
larly to FIGS. 1A and 1B thereof, there are illustrated
two documents and their structural elements such as

pictures and pagesets as defined in the Standard Page

Description Language (“SPDL”). In SPDL, a docu-
ment can be defined as a single picture or a single page-
set. A pageset can consist of additional pagesets or pic-
tures. A picture cannot be greater than one page and
cannot cross from one page to another. FIG. 1A illus-
trates a document consisting of one pageset with four
pages (the highest level of pictures). FIG. 1B illustrates
a single page document containing text and two pic-

~tures. The document of FIG. 1B could be represented

as either a pageset of one page or a picture as it is only
one page.

F1G. 2 1s an illustration of the hierarchical structure
of an SPDL document. The document illustrated in
FIG. 2 contains a pageset 10 as its highest hierarchical
structural element. Pageset 10 consists of pageset 12 and
picture 14. Pageset 12 further consists of the pictures 16,
18, and 20. To define hierarchical levels by way of
example, pageset 12 is at a lower hierarchical level than
pageset 10 but at a higher hierarchical than the pictures
(pages) 16, 18, or 20. Each hierarchical element will
usually consist of a lower level hierarchical element
and/or one or more tokensequence elements. A to-
kensequence is a special type of structural element
which contains content. Content is the substance of
what is printed or displayed for a document. A tokense-
quence, for example, may describe a drawing, text or
image. The representation of content such as a drawing,
text, or 1mage by way of tokensequences allows for a
very rapid and efficient processing of a document for
presentation, especially when only a portion of a docu-
ment is to be presented because the tokensequences of
pages which are not to be presented do not have to be

-processed. Pictures 14, 16, 18 and 20 each will probably

have at least one tokensequence element.

As shown in FIG. 3, a picture and pageset have a set
“grammar”. A picture is defined as having an optional
prologue and an optional picturebody, and a pageset is
defined as having an optional prologue and an optional
pageset body. The optional prologue defines various
parameters used by a processing system to process a
document and contains elements such as an external
declaration, informative declaration, resource defini-
tion, resource declaration, document production in-
struction - declaration, context declaration, dictionary
generation declaration or set-up procedure. All of these
elements in the prologue are optional and, in fact, may
be repeated in the sense that there may be multiple
Instances of the same item. Consequently, multiple lev-
els of a prologue may be present and the handling of

5,422,992

7

these multiple Instances can be accomplished as set
forth below.

FI1G. 4 1s a detailed illustration of the structure ele-

ments of a sample two page document. The document
consists of one pageset 50 having a prologue 51 and a

pageset body 60. As discussed with regard to FIG. 3, a

prologue is an optional structural element which defines
various parameters for the picture or pageset. The pro-
logue 51 contains four subordinates; resource definition
52, dictionary generator 54, dictionary generator 56,
and setup procedure 38, and corresponding tokense-
quences. The resource definition 52 is a structural ele-
ment which indicates tokensequence 53 contains the
content which defines resources used for presentation
(e.g., the definition of a form used by a document).

‘The dictionary generator 54 indicates that tokense-
quence S5 defines a dictionary. Similarly, dictionary
generator 56 indicates that tokensequence S7 defines a
dictionary. A dictionary definition contains ordered
pairs consisting of a key and a value. Whenever a key is
encountered in content, the value from a dictionary
corresponding to the key is substituted therefor. The
value entry in a dictionary can be an integer number, a
real number, procedure or any other type of value.
Dictionaries created by dictionary generators are made
read only and are created to be context dictionaries, as
explained below.

The setup procedure 58 initializes various state vari-
ables which are used when processing content. Exem-
plary state variables are variables such as Curren-
t_Color, Current_Font and Current._Position. The
setup procedure 1s also used to alter the contents of the
user dictionary, if desired. The user dictionary is a
read/write dictionary which is searched after the con-
text and content dictionaries are searched without en-
countering the searched key.

Pageset body 60 contains two pages having pictures

61 and 75. Picture 61 has its own prologue 62 which

defines parameters only for the picture 61 and does not
affect picture 75. Prologue 62 contains context declara-
tion 63 and its dictionary identifier 64, dictionary gener-
ator 63 its tokensequence 66, setup procedure 67, and its
tokensequence 68. The picturebody 69 of picture 61
contains tokensequences 70 and 74, and picture 71 hav-
ing picturebody 72 and tokensequence 73. The second
page of the document has picture 75 with picturebody
76 having tokensequence 77. |

The context declaration 63 indicates a manipulation
of context dictionaries which are defined in higher hier-
archical levels of the structure. If a dictionary identifier
such as dictionary identifier 64 follows a context decla-
ration, the dictionary identifier will indicate how the
search order of the context dictionaries are to be
changed. If a dictionary identifier element does not
follow the context declaration, any defined search order
of the dictionaries will be eliminated, no context dictio-
naries will be searched for the particular hierarchical
level, and the user dictionary and the system dictionary
will be placed in the bottom of the context stack. The
search order of the dictionaries is defined using context
dictionary stack data structures, as will be explained in
detail below.

It should be understood that FIG. 4 illustrates only an

10

15

20

25

30

35

8
system will generally have at least a CPU 102, memory
generally in the form of ROM 106 and RAM 104, input-
/output means to receive the document data stream,
and a means for displaying/printing a resultant output.

The resultant output image may be produced by an
image raster device which may be directly comnnected to

the CPU or may have its own distinct native type of
imaging which would then, of course, require a transla-
tion of a document data steam into the type of imaging
commands which the individual imaging device might
have. An example of this might be a PostScript ® type
of device connected to a system which transmits the
document description data stream, as called for in this
invention, and which then processes and prints the data
after a translation into PostScript ®) language. This, of
course, allows for means of supporting existing printers.

As previously discussed, a document contains struc-
ture and content. FIG. 6 is an illustration of a system for
processing the structure and content of an SPDL docu-
ment into a presented image. While a document can be
processed using a single processor such as CPU 102 of
FI1G. S5, the illustration of FIG. 6 contains separate
structure processor 152, content processor 162, and
imager 164 for combining the processed structure and
content into a presented image 166. The processing
model illustrated in FIG. 6 will hereinafter be referred

to as the virtual machine.

Examining the elements of FIG. 6, an SPDL docu-
ment 150, created by a word processor or a page de-
scription generator, for example, is interpreted by the

“structure processor 152 after being parsed by a known

conventional parsing processes. The parsing process 1s
not described in detail herein for brevity. When a to-
kensequence, a structure element containing.content, is
processed by the structure processor 152, the content of
the tokensequence is sent along a line 156 to the content
processor 162. Note that if the entire SPDL document
1S not to be presented but only certain pages are desired
to be presented, the content of the tokensequences of
the pages which are not to be presented are not trans-
mitted to the content processor 162. This advanta-
geously reduces the processing time over prior art sys-

tems.

43

When the content processor 162 is processing con-
tent, it 1s necessary for it to know various parameters
defined by the structure of the document. To accom-
plish this, the structure and content processor have
access t0 a CCI data structure 154 and a picture/pageset

- prologue data structure 158. The CCI data structure 154

50

35

abstract description of the structure of an SPDL docu-

- ment and an actual SPDL document might use a differ-
ent description. |

Turning now to an exemplary hardware implementa-

tion of the present invention illustrated in FIG. 5, a

65

1s a structure through which the structure and content
processors communicate. The CCI data structure exists
as a structure element containing content 1s being pro-
cessed. Once the processing of the hierarchical level of
the structure element is complete, in general, the infor-
mation 1n the CCI data structure is returned to the
structure processor and the CCI data structure is de-
leted or saved by the structure processor. For example
in FIG. 4, prologue 51 contains tokensequence elements
33, 55, 57 and 59. Whenever a tokensequence is pro-

cessed, a CCI data structure is created. When the to-

kensequence being processed ends, the information
which has been placed in the CCI data structure is
returned and the information is connected to the pic-
ture/pageset prologue data structure.

The current context of interpretation consists of a set
of available resources and the state of the virtual ma-
chine. The set of available resources is the set of re-
sources which may be used in processing a particular

J,422,992

9

content element. The state of the virtual machine is a
context stack, an operand stack, and state variables.
These elements making up the state of the virtual ma-
chine will be explained in detail below.

When text or image content is being processed by
content processor 162, the processed document content
and the print instruction from the structure processor
152 through line 160, are combined in an imager 164
which outputs a presented image 166.

While the processing model of FIG. 6 illustrates only
one CCI data structure and one picture/pageset pro-
logue data structure, each level of structure actually has
its own CCI data structure and picture/pageset pro-
logue data structure. To keep track of the different
levels of structure, a stack such as stack 202, illustrated
in FIG. 7 is used.

A bottom entry 210 in the stack exists whenever a
document is being processed. The pointer to CCI data
structure 214 mitially points to null as no tokensequence
element containing content has yet been encountered
and therefore there is no need for a current context of
Interpretation. A CCI data structure is used only when
content of a tokensequence element is being processed
and is used as a communication link between the struc-
ture processor and content processor. The pointer to
prologue data structure 212 of the bottom Stack entry
210 points to default values of the picture/pageset pro-
logue data structure until the values in the prologue
data structure are changed by elements within a docu-
ment.

The elements within an SPDL document are initially
processed by a parser 200. The parser 200 accepts a data
stream from an SPDI. document and identifies various
structure elements within the data stream. The tokens
Picture_begin, Picture_end, Pageset_begin and
Pageset__end indicate a change in hierarchical structure
level. When these structure elements are recognized by
the parser 200, the parser will call an appropriate rou-
tine to handle the processing of the data stream. A con-
ventional type of either hardware, software or combina-
tion parsing may be used. The parser 200 for example
could be implemented in CPU 102 of FIG. 5. It could
also be part of structure processor 152 of FIG. 6. The
parsing further could be performed by a separate pro-
cessor, for example. For the sake of brevity, no further
discussion of the mechanism for parsing is made.

Elements 180-190 of FIG. 7 illustrate various hierar-
chical structural elements of a single SPDL document.
The structural elements are for illustrative purposes
only and show a simplified Version of a document. An
actual SPDL document would probably contain to-
kensequences as well as other structure elements. Be-
fore processing of the document containing elements
180-190 begins, the picture/pageset stack 202 is empty.
When the document is being processed and a picture
begin 180 is encountered, one entry is pushed onto the
picture/pageset stack 202 containing a pointer to a pro-
logue data structure and a pointer to a CCI data struc-
ture. When a picture end 182 is encountered, that one
entry on the stack 202 is popped off. The picture/page-
set stack 202 will then be again empty.

Next, a pageset begin 184 is encountered. An entry
210 1s pushed onto the picture/pageset stack containing
a pointer to a prologue data structure 212 and a pointer
to CCI data structure 214. If content from a tokense-
. quence 1s encountered which is on the level of a pageset
begin, the pointer to CCI data structure 214 will be
changed from pointing to null to pointing to a CCI data

10

15

20

23

30

35

10

structure created in response to the tokensequence.
After the pageset begin 184, a picture begin 186 is en-
countered. An entry 204 is pushed on top of the stack
202 above the entry 210. Entry 204 contains pointer to
prologue data structure 206 and a pointer to CCI data
structure 206. After the picture corresponding to pic-
ture 186 has ended, picture end 188 pops off entry 204
from the stack 202. Remaining in the stack, and now the
only entry, is entry 210. A pageset end 190 pops the
entry 210 off of the stack 202.

For purposes of simplicity, reference numeral 202
will always refer to the picture/pageset stack for every
document, the highest hierarchical structural element
will correspond to entry 210 on the picture/pageset
stack 202, and element 204 will correspond to any sec-
ond hierarchical level of any document.

In an actual clear text encoding of an SPDL docu-
ment, the structure terms could be denoted as < pic-
ture> and <pageset> for a beginning while < /pic-
ture> and </pageset> may be used to denote an end-
ing. Clear text encoding in SPDL follows the Standard
Generalized Markup Language (“SGML”), as defined
in ISO document 8879:1986, incorporated herein by
reference. Alternatively, an SPDL document can be
represented 1n binary form as opposed to the clear text
form and a binary encoding scheme for the document
data streams could use special tags along with a byte
count to identify a begin and end condition for a picture
and pageset. A binary SPDL document is encoded
according to Abstract Syntax Notation One (“ASN.1”)
as defined 1n ISO/IEC document 8824:1990 and follows
the Basic Encoding Rules, as defined in ISO/IEC
8325:1990 both of which are incorporated by reference
herein.

FIG. 8 illustrates the picture/pageset stack 202 of
FIG. 7 and the data structures pointed to by pointer to
prologue data structure 206 and the pointer to CCI data
structure 208. The picture/pageset prologue data struc-
ture 220 and the CCI data structure 240 correspond to
the picture/pageset prologue data structure 158 and

CCI data structure 154 illustrated in FIG. 6.

45

Examining the contents of the picture/pageset pro-
logue data structure 220, a given pageset level in the
hierarchical structure is stored in entry 221 and a given
picture level is stored in a picture level entry 222. A
series of pointers 223,224, 225, 226, 227, 228, 229, 230
and 231 identify various items such as a pointer to an

~ external declaration 223, a pointer to a informative

50

33

65

declaration 224, a pointer to a resource definition 225, a
pointer to a resource declaration 226, a pointer to a
context declaration 227, a pointer to dictionary genera-
tor 228, a pointer to a state variable table 229, a pointer
to a machine state 230, and a pointer to a user dictionary
link 231. Item 232 of picture/pageset prologue data
structure 220 contains an initial transformation in the
coordinate system.

The CCI data structure 240 pointed to by a pointer to
CC data structure 208 of a stack element 204, created
during the processing of a tokensequence element, con-
tains various parameters used by the content and struc-
ture processor as a document is being processed for
presentation. The elements in CCI data structure 240

“include a pointer to resource declaration 242, a pointer

to a context stack 244, la pointer to an operand stack
246, a pointer to a state variable table 248, a pointer to
a machine state 250, and a pointer to a user dictionary
link data structure 252. The CCI data structures created
for processing can be considered temporary data struc-

5,422,992

11

tures as they are created upon first encountering a con-
tent portion (1.e., tokensequence element), and are de-
stroyed when a tokensequence ends and the hierarchi-
cal structure element of the tokensequence ends.

FIG. 9 illustrates an exemplary state variable table
300 which can be pointed to by pointer 248 of the CCI
data structure and/or pointer 229 of the picture/pageset
prologue data structure. The state variables in this table
are used to define various parameters including graph-
ics variables used for the processing of content. Actual
implementations of the present invention may likely
contain more state variables than those state variables
illustrated in the state variable table of FIG. 9.

Turning now to the details of processing a document,
FIGS. 10A and 10B illustrate the steps which take place
When the beginning of a picture in an SPDL document
is encountered. FIG. 10A handles defining the pic-
ture/pageset prologue data structure while FIG. 10B
handles the processing of state variables. Global vari-
ables such as the picture level (Pic_level) and pageset
level (PS_level) are available for use by any of the
routines while the variables Picture_level 222 and the
Pageset__level 221 are local variables contained within
the prologue data structure 220 pointed to by entry 206
in the picture/pageset stack 202 found in FIG. 8. The
routine of FIGS. 10A and 10B would be executed, for
example, when picture 61, picture 71, or picture 75 of
~ the document illustrated in FIG. 4 are encountered
during processing.

The Pic__level is initialized to zero at the initialization
of the processing for a new document data stream or on
“power up”. If step 401 determines that the hierarchical
level being processed is not the highest hierarchical
level (i.e., at the beginning of processing and where all
higher levels have already been processed), flow pro-
ceeds to step 402 where an error check occurs. An error
flag 1s set in step 403 if any problems occur, followed by
a return to other processing by the CPU 102 of FIG. 5
in step 404. Otherwise, processing continues and the
global variable Pic_level is incremented at step 405.

‘When selection of pages is needed, the following
process would be inserted after step 405. If (Pic_le-
vel==1) then page-number is incremented. This
means, after step 405, that Pic_level is examined to see
if it 1s one. If 1t is one, then the “picture begin” denotes
the beginning of the highest level of picture hierarchy,
that is, the start of a page. Therefore the page-number is
incremented. “Page-number” is initialized as zero at
power on Initialization or upon a reset of the processing
system. The “Page-number” ideally should be a global
variable which can be accessed by any routine. As the
Pic_level is a global variable, the level number is to
through all other routines and allows for multiple levels
to be implemented.

An allocation of memory occurs in step 406 for the

picture/pageset prologue data structure 220 of FIG. 8.

A pointer to the address of the picture/pageset pro-
logue data structure is pushed on the stack 202 in step
407. In step 408, as a tokensequence has not yet been
encountered and therefore, a CCI data structure for the
picture begin being processed does not exist, null is
- pushed into the pointer to the CCI data structure of the
picture/pageset stack. The Picture_level and the
Pageset__level of the prologue data structure 220 are set
. in step 409. Flow then proceeds to the flowchart illus-
trated 1n FIG. 10B for processing of entries in the pro-
logue data structure and state variable processing.

10

_ 12

The first step of FIG. 10B, step 420, examines
whether the picture begin which is being processed is
the first entry of the picture/pageset stack. If it is, flow
proceeds to step 422 where the state variable table
pointer of the allocated prologue data structure is set to
point to a default state variable table. This step 15 per-
formed as the first hierarchical level is being processed
and therefore, there are no state variables which have
been previously modified which need to be used. In step
424, all of the pointers in the allocated prologue data
structure are set to point to null except for the previ-
ously defined state variable pointer. ,

If step 420 determines that the entry being processed

- is not the first entry of the picture/pageset stack, flow

15

20

235

30

35

45

50

55

65

proceeds to step 426 where the pointers in the allocated
prologue data structure point to the same addresses as
the prologue data structure of one picture/pageset stack
entry below, except for the state variable table pomter.
Note that the stack entry below corresponds to the
above hierarchical level as lower hierarchical levels are -
pushed onto the top of the picture/pageset stack. Flow
proceeds to step 428 where the pointer to the CCI data
structure of the picture/pageset stack of the entry
below is examined to see if it is set to null. If it 1s, flow
proceeds to step 430 where the pointer to the state
variable table in the current prologue data structure is
set to point to the same address as the state variable
table pointer of the prologue data structure of one stack
level below. If step 428 determines that the pointer to
the CCI data structure of the entry below in the pic-
ture/pageset stack is not equal to null, the pointer to the
state variable table of the current prologue data struc-
ture 1s set to point to the same address as the state vari-
able table of the CCI data structure of the level below.

From step 432, flow proceeds to step 434 where the
value of the current transformation is copied to the
initial transformation entry of the allocated prologue
data structure. In step 436, the picture begin process is
completed and flow returns to the structure processor
for further processing of the document.

The processing that occurs for a pageset begin is

similar to that illustrated for a picture begin in FIGS.

10A and 10B, except for some minor changes. These
changes would include, for example, instead of deter-
mining if picture_level is equal to the Pic_level, both
the picture_level and the Pic_level must both be zero.
Further, step 405 is changed so that the PS_level is
incremented instead of the Pic_level being incre-
mented. The process illustrated in FIG. 10B can be
identically performed for a pageset begin.

FIG. 11 illustrates a flow chart of the process used to
create a CCI data structure when a tokensequence is
encountered and there is not a hierarchical level of the
document immediately above with a CCI data struc-
ture. The process illustrated in FIG. 11 for the creation
of the CCI data structure would occur, for example,
when tokensequences 53, 55, 57, 59, 66, 68, 70, 73 and 77
of the document illustrated in FIG. 4 are processed.
Step 74 does not create a CCI data structure because it
uses the CCI data structure created by step 70.

- To create the CCI data structure when a tokense-
quence element is encountered and the pointer to CCI
for the top entry of the picture/pageset stack points to
null, the structure processor calls step 602 of FIG. 11.
Step 604 allocates memory for a new CCI data structure
such as the CCI data structure 240 illustrated in FIG. 8.

- The address of the created data structure 240 is stored
as the address pointer PTR_CCI and step 606 puts the

5,422,992

13

pointer PTR__CCI into the pointer to CCI data struc-
ture, for example into location 208 of the picture/ page-
set stack 202 of FIG. 8. Step 608 creates a state variable
table for the CCI data structure and puts the address of
the state variable table into the pointer to state variable
table, for example, 248 of CCI data structure 240. Next,
the values of the state variable table pointed by the
pointer to state variable table 229 of the picture/pageset
prologue data structure 220 are copied from the pointed
table of the picture/pageset prologue data structure to
the pointed state variable table of the CCI data structure
in step 610.

Step 612 assigns the values of the various pointers in
the CCI data structure 240 from corresponding entries
In picture/pageset prologue data structure 220. This
includes copying the pointer to resource declaration
226 to pointer 242 of the CCI data structure, copying
the pointer to context declaration 227 to 244 of the CCI
data structure, copying the pointer to the machine state
230 to the pointer to machine state 250 of the CCI data
structure, and copying the pointer to user dictionary

link 231 to pointer 252 of the CCI data structure.

- Last, step 614 constructs an appropriate operand
stack based upon the superior structure element to the
tokensequence. This step may include writing the null
pointer to operand stack 246 of the CCI data structure
or other pointer values. Flow then returns to the struc-
ture processor in step 616.

The process illustrated in the flowchart of FIG. 11
assumes that when a tokensequence ends, the values
from the CCI data structure are copied into the pic-
ture/pageset prologue data structure, if necessary.
However, it is possible that a tokensequence, such as
tokensequence 70 of FIG. 4, does not have the CCI data
structure destroyed when the hierarchical level of the
document drops one level, such as upon encountering
picture 71. g

In this case, Picture 71 would cause the process 1llus-
trated in FIGS. 10A and 10B to be executed. When step
428 of FIG. 10B is reached, the pointer in the CCI data
structure in the picture/pageset stack for the entry
below the top entry is determined not to be null as the
CCI data structure for the tokensequence 70 was not
destroyed. Therefore, step 432 is executed which sets
‘the pointer to the state variable table in the new pro-
logue data structure to be equal to the pointer to the
state variable table of the CCI data structure for the
stack entry below. Consequently, if there happens to be
- a modification of state variables by any element after
tokensequence 70 but before tokensequence 74, the state
variable created for picture 71 will be modified and the
state variable table used when processing tokense-
quence 70 will not be modified.

Turning back to FIG. 4 for examples of the creation
of the different levels of the picture pageset stack point-
Ing to the picture/pageset prologue data structure and
the CCI data structures for the levels, when pageset 50
of FIG. 4 is encountered, processes for pagesets, similar
to those for pictures illustrated in FIGS. 10A and 10B
are called, and a first entry is pushed onto the picture/ p-
ageset stack, corresponding to entry 210 in the pic-
ture/pageset stack 202 of FIG. 8. The resource defini-
tion 52 contains tokensequence 53 which causes the
creation of CCI data structure which will be pointed to
by pointer 214. When tokensequence 53 ends, the
pomnter to CCI data structure 214 will be set to point to
null and the CCI data structure will be destroyed after
the structure processor takes the necessary information.

3

10

15

20

25

30

35

45

50

33

14

Similarly, when tokensequences 55 and 59 are encoun-
tered, a CCI data structure will be created for each
tokensequence and destroyed at the end of the tokense-
quences after the structure processor takes the neces-
sary information. |

For the setup procedures 58 and 67, the structure
processor takes the state variable table of the returned
CCI and replaces the pointer to state variable table in
the prologue data structure with the pointer to the state
variable table which is returned. An illustration of the
manipulation of the relevant data structure used to keep
track of the state variables is described with respect to
FIG. 28A-28E.

When picture 61 is encountered, which is a lower
hierarchical level, an entry 204 is pushed onto the pic-
ture/pageset stack 202. A CCI data structure is created
as tokensequence 66 is being processed and destroyed at
the end of tokensequence 66 after the structure proces-
sor takes the necessary information. A similar process-
ing occurs for tokensequence 68.

Tokensequence 70, like other tokensequences, causes
the creation of a CCI data structure. However, because
there is a picture 71 below the tokensequence 70, the
CCI data structure corresponding to the tokensequence
70 15 not destroyed at the end of the processing of to-
kensequence 70 but remains in memory. Picture 71
causes the creation of a third hierarchical level and a
third entry is pushed onto the picture/pageset stack 202.
Tokensequence 73 causes the creation of a CCI data
structure for the third entry of the picture/pageset
stack. When tokensequence 73 ends, the CCI data struc-
ture for the third entry is destroyed and the hierarchical
level changes back to the second level corresponding to
picture 61. Therefore, the CCI data structure originally

created fort tokensequence 70 is again used for tokense-

quence 74. When tokensequence 74 ends, the corre-
sponding CCI data structure is destroyed. Also, when
tokensequence 74 ends, there is an end-to picture 61 and
the second entry of the picture/pageset stack is popped
off. ;

Picture 75 is at the second hierarchical level and
Causes a new second entry to be placed onto the pic-
ture/pageset stack. Tokensequence 77 causes a CCI
data structure to be created for the second entry on the
stack and the end of tokensequence 77 is the end of the
document and all CCI data structures are destroyed and
entries on the picture/pageset stack are popped off as
the document has ended.

When a tokensequence ends, it is usually necessary to
delete its CCI data structure and perform various
pointer manipulations. Before a description of how a
CClI data structure, such as CCI data structure 240 of

- FIG. 8, is deleted, a detailed description of the handling

of the various types of dictionaries will be given.

As an SPDL document is being processed, four types
of dictionaries are used to look up values and proce-
dures used by the document; a system dictionary such as
is shown in FIG. 12, a user dictionary such as is illus-
trated in FIG. 23, context dictionaries, and content
dictionaries which are created by tokensequences. A
dictionary is a set of ordered pairs of objects corre-
sponding to keys and values. Whenever a key is encoun-
tered in the SPDL content of a document, the value in
the dictionary is substituted therefor. The value portion

65 of a dictionary can be any type of value such as an

Integer, real, procedure, or any other type of object.
FIG. 12 is an example of a system dictionary. The
system dictionary contains all the operators of SPDL

5,422,992

15

content in the key field and corresponding procedures
In the value field. For example, when “add” is encoun-
tered 1in the SPDL content, the value corresponding to
add is looked up in the system dictionary, for example,
and the procedure corresponding to add indicates two

values are popped from the operand stack, their types
are checked, they are added, and the result is pushed

back into the operand stack. Other types of procedures
which might be found in the system dictionary are illus-
trated in FIG. 12 and there will ordinarily be many
more entries in the system dictionary. The system dic-
tionary is not modifiable by the user or SPDL docu-
ment and 1s part of the system which processes the
SPDL documents.

‘The next type of dictionary is a user dictionary. The
user dictionary is initially empty but can have entries
added and modified by tokensequence elements. Not
only can information be written into it, but once it is
written, it can be changed by the user. It is the dictio-
nary in which the entries are user modifiable (e.g. the
dictionaries are read/write dictionaries) and which the
user does not need to create using the operator ‘dict’.
The values in a user dictionary can be any type of value
and mnclude integers, reals, and procedures. Conceptu-
ally, there is only one user dictionary. However, if one

10

15

20

25

hierarchical level requires a modified user dictionary,

whereas other levels do not use the modified dictionary,
the system will be required to store different values for
the same key for the different hierarchical levels and
therefore, there will be different entries in the user dic-
tionary for the different hierarchical levels.

The next type Of dictionary is a context dictionary.
Whereas there is only one system dictionary and one
user dictionary, there can be many context dictionaries
for each hierarchical level and within a hierarchical
level. The context dictionaries are read-only dictionar-
1es. That is, once the context dictionaries have been
defined, they cannot be modified by a user. The context
dictionaries are created by tokensequences under a dic-
tionary generator structure element. A further explana-
tion of generation of context dictionaries can be found

in commonly owned copending U.S. patent application
Ser. No. 07/931,808, filed on Aug. 11, 1992, entitled

“Method and System to Handle Dictionary Generator

and Context Declaration in Standard Page Description
Language” and the disclosure of which is incorporated
by reference herein.

The last type of dictionary is a content dictionary
which is a user defined dictionary and defined by the
tokensequence element. The content dictionary is a
read/wrnite dictionary when created and is valid only
within the scope of the most immediately superior
structure element. A more detailed explanation of the
content dictionary will be given below.

It 1s possible that keys in dictionaries being searched
can be found in any of the various dictionaries. There-
fore, there is a search order employed by the present
invention to search the various dictionaries for the keys
and defined by what will be referred to as “the context
stack”, as illustrated in FIG. 13 The context stack is
searched from the top. The context and content dictio-
naries are the first dictionaries to be searched. The user

dictionary is the next to the bottom and the system

dictionary is at the bottom of the stack. In the parent
applications of this continuation-in-part application, the
context stack was described only in reference to the
context dictionaries. However, the context stack defines
the search order for all dictionaries.

30

35

43

30

>3

65

16

When a key 1s searched for in the dictionaries, first
the pointer to the context stack in the CCI data struc-
ture 1s examined to determine the context and content
dictionaries to be searched. If the key is not found in the
context or content dictionaries pointed to by the con-

text stack link data structures, explained below, the user
dictionary is searched by examining the pointer to the

user dictionary link structure in the CCI data structure
to determine 1if the key exists in the user dictionary. If
the key is not found in any of the context or content
dictionaries, or the user dictionary, the system dictio-
nary 1s then searched. It is not necessary to have a
pointer to the system dictionary in the prologue data
structure or CCI data structure as there 1s only one
system dictionary and the system dictionary is not mod-
ified. The system dictionary can always be found in the
same location and therefore, there is no need to keep
track of the location of the system dictionary for the
various hierarchical levels of the document.

The context stack is referred to as a stack which
defines the search order of the four types of dictionar-
1es. However, the context stack is not a stack in the
conventional sense of the term. The term context stack
1s used to simplify the explanation of the search order
requirements for the dictionaries. In the context stack,
the bottom entry is always the same and points to the
address of the system dictionary. The next highest entry
in the context stack are the user dictionary link struc-
tures which correspond to the pointer 231 or pointer
252 1n the picture/pageset prologue data structure and
CCI data structure, respectively. It is possible for the

“user dictionary link structure to point to subsequent

user dictionary link structures. The highest entries in
the context stack are the context and content dictionar-
ies pointed to by context stack link data structures. As
the pointer to the user dictionary link structure, a mid-
dle element in the context stack, can be modified and
used to change entries in the user dictionary without
affecting the context and content dictionary search
order which is higher in the context stack, the term
“context stack” is not necessarily a conventional stack
but a conceptual stack-like structure.

Turning now to the various dictionaries used by the
CCI data structures and picture/pageset prologue data
structures used when processing a document, there are
three levels of dictionaries. At the highest dictionary
level are the context dictionaries and content dictionar-
1es which are user defined dictionaries by tokense-
quences. The context dictionaries are read-only dictio-
naries. Therefore, once they are created, they cannot be
modified. Context dictionaries are only used at the hier-
archical level in which they are created and for hierar-
chical levels below the level in which they were cre-
ated. Context and content dictionaries are at the highest
dictionary level, and therefore are searched first when a
key 1s encountered. If the key is found in one of the
context or content dictionaries, no further searching of
the dictionaries is necessary. If the key is not found in
the context or content dictionaries, the user dictionary
1s next searched for the key. If the key is not found in
the user dictionary, the system dictionary is searched
last.

Before an explanation is given of the handling of the
context and content dictionaries and the search order
thereof, a brief description of the generation process of
context dictionaries is necessary. When a dictionary
generator structure element such as dictionary genera-
tor 54 of the document illustrated in FIG. 4 is encoun-

5,422,992

17

tered, the tokensequence 55 under the dictionary gener-
ator will define a dictionary to be generated and the
structure processor labels the dictionary a context dic-
tionary and creates a context dictionary generator data
structure 650, as illustrated in FIG. 14. The context
dictionary generator data structure is a linked list con-
taining information pertaining to the pageset_level 652,
the picture_level 654, a dictionary identifier 656 corre-
sponding to the name of the dictionary, the dictionary
size 6358, the pointer to the dictionary data structure 660,
and a pointer to a next dictionary generator 662. The
pointer 228 to the dictionary generator data structure is
found in the picture/pageset prologue data structure
220 of FIG. 8. |

The entry “next” 662 in a newly created dictionary
generator data structure will point to a previously cre-
ated dictionary generator data structure if more than
one context dictionary is created. This is because newly
created dictionary generator data structures are in-
serted before previously created dictionary generator
data structures and not after them.

After a context dictionary has been created by a dic-
tionary generator, it is put on the top of the context
stack using a context stack link data structure. The
search order of the context and content dictionaries can
be modified. A context declaration defines or modifies
the search order of context dictionaries. Also, there are
operators in tokensequences which can manipulate the
context stack. The search order for the context dictio-
naries is defined by the context stack link data struc-
tures, an example of which is illustrated in FIG. 15. A
context stack link data structure 680, is pointed to by
pointer to context declaration 227 of picture/pageset
prologue data structure 220 and/or pointer to context
stack 242 of CCI data structure 240 illustrated in FIG. 8.
The pointer to context declaration and the pointer to
the context stack, while having different names, serve
similar purposes and will be identical upon the initial
creation of the CCI data structure and will have the

10

15

20

25

30

35

same basic structure such as that illustrated in FIG. 13. 40

The context stack link data structure contains
pageset_level 682 and picture_level 684, e.g. the levels
at which the data structure was created, a dictionary
identifier 686 which is the name of the dictionary, a
pointer to the dictionary 688 which contains the address
of the dictionary data structure 670, and an entry “next”
690 which points to either null or another context stack
link data structure. If there are more than one context
dictionary in the context stack, entry “next” 690 will
point to a context stack link data structure for a subse-
quent dictionary. Note that the context stack link data
structure 1s referred to as the context dictionary data
structure in the aforementioned parent U.S. patent ap-
plications. A more complete description of the context
stack link data structure of FIG. 15 can be found in,
commonly owned, co-pending U.S. patent application
Ser. No. 07/931,808, entitled “Method and System to
Handle Dictionary Generator and Context Declaration
in Standard Page Description Language” filed on Aug.
11, 1992, which is incorporated by reference.

Examples of the use context stack link data structures

the picture/pageset stack, the prologue data structures,
the context stack link data structures, and context dic-
tionaries at the beginning of picture 61 of FIG. 4. The

45

20

335

~are 1llustrated in FIGS. 16A-16C. FIG. 16A illustrates

65

picture/pageset prologue data structure 700, created for

pageset S0, pointed to by pointer 212 of the picture/p-
ageset stack 202 has a pointer to context declaration

18

702. The pointer to the context declaration 702 points to
a context stack link data structure 704 which, through
pointer 708, points to a subsequent context stack link
data structure 710. The context stack link data struc-
tures point to context dictionaries 718 and 716 which
were created by dictionary generators 54 and 56 of
FIG. 4 and their tokensequence 55 and 57 respectively.

Upon encountering picture 61 of FIG. 4, the hierar-
chical level of the document drops one level and as
described in the flowchart of FIG. 10A, an entry is
placed on the picture/pageset stack having a pointer
206 pointing to prologue data structure 220 and a
pointer to CCI data structure 208 which points to null.
The prologue data structure 220 has the same entries as
the prologue data structure 700. Therefore, the pointer
to context declaration 227 points to the same context
dictionary link structure as the pointer to context decla-
ration 702. The search order of the context dictionaries
for both the first and second hierarchical levels would
be context dictionary 716 and then context dictionary
718, as illustrated in FIG. 16A.

When the first tokensequence is encountered under
the picture element 61, it is necessary to create a context
of interpretation including a CCI data structure 240 as
illustrated in FIG. 16B. In FIG. 16B, dictionary identi-
fier 64 specifies the context dictionaries created by 54
and 56. A tokensequence such as tokensequence 66
under dictionary generator 65 will necessitate the cre-
ation of the CCI data structure 240 and the entries in the
CCl data structure 240 will be copied from prologue
data structure 220 as described in the process illustrated
in the flowchart of FIG. 12. As the values in the CCI
data structure 240 are copied from the picture/pageset
prologue data structure 220, the pointer to context stack
244 points to the same address as the pointer to context
declaration 227 in the picture/pageset prologue data
structure 220.

FIG. 16C illustrates the picture/pageset stack, pro-
logue data structure, context stack link data structures,
and context dictionaries after the tokensequence 66 of
FIG. 4 when dictionary identifier 64 specifies only one
context dictionary generated by dictionary generator
56. Context dictionary 732 was previously created by
elements not illustrated in FIG. 4. Context declaration
63 and dictionary identifier 64 created context stack link
data structure 726. Context stack link data structure
720, created by dictionary generator 65 and tokense-
quence 66, points to dictionary 732 using pointer 722.
Context stack link data structure has a pointer “next”
724 pointing to a second context link data structure 726.
Context stack link data structure 726 points using
pointer 728 to context dictionary 716 which was previ-
ously created by dictionary generator 56. As context
stack link data structure 726 is defined by context decla-
ration 63, the entry “next” 730 points to null. The
search order of the context dictionaries of the second
hierarchical level of the document is context dictionary
732 and then context dictionary 716, as illustrated in
FIG. 16C. |

As previously described, one way of modifying the
highest level of the context stack made up of context
stack link data structures is to use a context declaration
structure element containing dictionary identifiers.
However, it is possible to push a dictionary onto the
context stack data structures or pop a dictionary off of
the context stack data structures using a tokensequence
In a content. The *“begin” operator in a tokensequence
pushes a dictionary referenced in the operand stack into

19

the context stack. This function is performed using the
process illustrated in the flowchart of FIG. 17.

When an operator such as “begin” is found in a to-
kensequence, the process used to push a content dictio-
nary into the context declaration data structures illus-
trated in FI1G. 17 is called. Step 760 allocates the mem-
ory used by a new context stack link data structure and
the address of this allocated context link data structure
1s placed in the pointer ptr_CL. In step 762, the value of

the pointer to the context stack in the active CCI data 10

structure is copied into the “next” entry of the newly
created context stack link data structure. Next in step
764, the pointer ptr—CL is placed into the active CCI
data structure in the pointer to context stack of the data
structure. Step 766 places the value — 1 into the entries
pageset__level and picture__level of the context stack
link data structure allocated in step 730. The reason
why —1 is placed into the pageset..level and pic-
ture__level 1s to indicate that the context stack link data
structures have been manipulated by a tokensequence.
As will be explained later, if a dictionary is popped out
of the context stack data structures, there are different

5,422,992

15

20

processes for deallocation of memory depending on

how the dictionaries were placed in the context stack
link data structures (i.e. whether the dictionaries are
context or content dictionaries). Last, step 768 places
the pointer to the dictionary pushed onto the context
stack into the dictionary pointer of the context stack
link data structure created in step 760.

FIG. 18 illustrates the picture/pageset stack, CCI
data structure, prologue data structures, context stack
link data structures, and context and content dictionar-
1es after a tokensequence has pushed a content dictio-
nary 744 onto the context stack. The structure illus-
trated 1n FIG. 18 can be considered to be generated at
tokensequence 66 of FIG. 4 and would be subsequent to
the structure illustrated in FIG. 16B.

Context dictionary 744 can be considered to have
been created by the operator “dict” in tokensequence
66. When tokensequence 66 is encountered, the CCI
data structure 240 of FIG. 16B is created. The tokense-
quence 66 creates context stack link data structure 734
using the process illustrated in FIG. 17 when the opera-
tor “begin” is executed. 'As tokensequence 66 is being
executed, context stack link data structure 734, illus-
trated in FIG. 18, has the pageset_level 736 and the
picture__level 738 as — 1 because the context link data
structure 734 was created by a tokensequence and not
by the structure processor. The context stack link data
structure 734 points, using pointer 740, to a previously
created dictionary 744. Pointer 742 of context link data
structure 734 points to the next lowest context stack link

25

30

35

45

50

data structure 704. Consequently, when context and
content dictionaries are searched using the data struc-

tures illustrated in FIG. 18, first dictionary 744 is
searched, then dictionary 716, and dictionary 718. If the
key is found in any of these dictionaries, the searching
of the dictionaries stops. If the key is not found in the
content or context dictionaries, the user dictionary and
system dictionary are then searched.

FIG. 19 illustrates a process used to pop a dictionary

out of the context stack link data structures using a
tokensequence. When the routine of FIG. 19 is called,
for example when a tokensequence contains an “end”
‘operator, step 788 determines the address of the context
stack link data structure pointed to by the context stack
pointer of the active CCI data structure. Next, as the
context link data structure pointed to by the context

35

65

20

declaration is no longer to be used, the value of “next
in the context link data structure is copied to the context
declaration pointer of the active CCI data structure.
Step 792 determines if pageset_level equals —1 and
picture__level equals —1. If both of these values are
equal to — 1, the context stack link data structure was
created by a push onto the context stack and therefore,
1t 1s possible that the dictionary pointed to will not be
referenced by other objects and the memory for the
dictionary can be released. If the pageset_level and
picture_level are equal to —1 , step 794 determines 1if
the dictionary of the context stack link data structure is
referenced by any other objects. If it is not, the dictio-
nary is erased and the memory it was occupying is
released in step 796. If the dictionary is referenced by
other objects, the dictionary cannot be erased and step
798 only erases the context stack link data structure and
its memory. If the pageset__level and the picture_level
are both not equal to — 1, the dictionary may be needed
for later use and will not be erased in step 796. Instead,
only the memory of the context stack link data structure
will be released in step 798. Releasing memory allows
system resources to be freed and allows used memory to
be deallocated during processing.

- F1G. 20 illustrates the structure of the picture/page-
set stack, CCI data structure, prologue data structures,
context stack link data structures and context and con-
tent dictionaries after a tokensequence has popped a
dictionary 732 off of the context stack link data struc-
tures of the structure of a document illustrated in FIG.
16C and pushed a dictionary 756 onto the context stack
link data structures. The tokensequence, for example
tokensequence 70 of FIG. 4 which causes the dictionar-
ies to be popped and pushed, creates the CCI data struc-
ture 240. When the tokensequence instructs that dictio-
nary 732 1s to be popped off of the context stack link
data structures, pointer 244 will no longer point to con-
text stack link data structure 720 but will point to con-
text link data structure 726. When the tokensequence

b

contains a push instruction, context stack link data
structure 746 is created having picture_level and

pageset_level equal to —1 and pointed to by pointer
242, as illustrated in FIG. 20. The dictionary 756, previ-
ously created, is pointed to by pointer 752. “Next” 754
of context stack link data structure 746 points to context
link data structure 726 instead of context link data struc-
ture 720 as dictionary 732 has been popped off of the
context link data structures. When a tokensequence is
being processed, the pointer to context declaration 227
in prologue data structure 220 is not affected but the
pointer to the context stack 242 is modified. |

‘Turning now to the implementation of user dictionar-
1es, although the standard for implementing the Stan-
dard Page Description Language indicates that there
should only be one user dictionary, as the user dictio-
nary is modifiable, it is possible for the different hierar-
chical levels of a document to use different keys and
values in the user dictionary. Therefore, conceptually,
the single user dictionary can be considered as being
made up of various smaller user dictionaries in the pres-
ent invention. A user dictionary link structure, as illus-
trated in FIG. 21, is used to keep track of the various
smaller user dictionaries within the different hierarchi-
cal levels. | |

- User dictionary link structure 800 is pointed to by the
pointer to user dictionary link 231 of the prologue data
structure 220 of FIG. 8 and/or the pointer to user dic-
tionary link 252 of the CCI data structure 240. The user

5,422,992

21

dictionary link structure contains a pageset_level 802, a
picture level 804, a pointer to a user dictionary 806, and
anentry “next” which points to either another user
dictionary link structure or to null. The user dictionary,
for example 810, is similar to the context dictionaries
and system dictionary in that it has two columns, a key
column 812 and a value column 814. The user dictio-
nary can be modified by any tokensequence and may
have entries placed therein by a setup procedure, for
example setup procedure 58 having tokensequence 59
within prologue 51 of FIG. 4. | |

F1G. 22 illustrates a process used whenever there is
an operator “def”, or a write including a modification,
to the contents of the user dictionary. A modification of
the user dictionary and write to the user dictionary are
handled in a similar manner. If there is a write or modifi-
cation to the user dictionary, the keys in the dictionary
are searched. In both cases, if the key being searched for
is found, the corresponding value is modified. If the key
is not found, the key value pair is written into the dictio-
nary. Step 820 examines whether this is a first write,
“det”, to the first user dictionary in the user, dictionary
Iink. If there is a subsequent write to the user dictionary
after the user dictionary has been created, step 822 adds
to the existing user dictionary the entries indicated by
the tokensequence which write to the user dictionary. If
this 1s the first time the user dictionary is written to for
a particular tokensequence, flow proceeds from step
820 to step 824 where memory is allocated for a user
dictionary link structure. Also, the pointer ptr_link to
this allocated user dictionary link is determined. Next in
step 826, the address of the pointer to the user dictio-
nary link structure in the active CCI data structure is
copied to “next” of the newly created user dictionary
link structure. |

In step 828, the pointer to the newly created dictio-
nary link structure is placed into the active CCI struc-
ture at the entry for the pointer to the user dictionary
link. For example, this could be entry 252 of CCI data
structure 240 1illustrated in FIG. 8. Step 830 allocates
the memory for the user dictionary and determines the
address at which the entries in the user dictionary will
be added. It is necessary to create a smaller user dictio-
nary within the user dictionary for modifications of the
user dictionary because user dictionaries of higher hier-
archical levels should not be modified because they may
be needed in an unmodified form during further pro-
cessing. Therefore it is necessary to allocate a new por-

tion of the user dictionary, even for just a modification

~ 'when no additional entries in the user dictionary. Step
832 places the pointer ptr_udict into the dictionary
ponter of the user dictionary link structure. For exam-
ple, the ptr_udict would be placed in dictionary pointer
806 of user dictionary link structure 800 illustrated in
FIG. 21. Last, the key-value pair which is to be added
~or modified is written into the newly created dictionary
in step 834. Subsequently, flow returns to the content
processor for additional processing of the tokense-
quence. o |

An example of a user dictionary, with one entry, is
illustrated in FIG. 23. This user dictionary would be

created by a tokensequence which contains the follow-
~ 1ng content:

/add {mul} def

This tokensequence command indicates to place in the
user dictionary, an entry “add” in the key column and in
the corresponding value column {mul}, {mul} indicat-

10

15

20

25

30

35

45

50

33

65

22

ing a multiplication. When “add” is encountered in a
document which is being processed, “add” is first
searched in the context and content dictionaries. If it is
not found in these dictionaries, the user dictionary is
searched and “add” will be found. The value in the
dictionary corresponding to “add” is “{muil}”’. When
“add” 1s encountered in a document, the first two
entries on the operand stack will be multiplied and the
result pushed onto the operand stack. For example, if _
the command “2 3 add” is in a document when the key
“add” corresponds to a value “{mul}”, two is first
pushed onto the operand stack, and three is pushed on
top of two. When add is encountered, the top two val-
ues in the operand stack are multiplied together and the
result, six, is pushed onto the top of the operand stack.

FIGS. 24A-24E illustrate the picture/pageset stack,
prologue data structure, user dictionary link structures,
and user dictionaries that would exist as the document
in FIG. 4 is being processed. FIG. 24A illustrates the
states of the various structures at the beginning of pic-
ture 61 of FIG. 4. As picture 61 is on the second hierar-
chical level, there are two entries in the picture/pageset
stack 202 and therefore, there are two prologue data
structures 220 and 700. The user dictionary link struc-
ture 920 and user dictionary 940 were created by setup
procedure §8 and its tokensequence 59.

FIG. 24B can be representative of the structures as
tokensequences 66 or 68, are being processed. FIG. 24B
1s the same as 24A except that a CCI data structure has
been created because a tokensequence is being pro-
cessed. The pointer to the user dictionary link 252 in the
CClI data structure 2490 has been copied from the pointer
to user dictionary link 231 of the prologue data struc-
ture 220 and therefore points to the same user dictio-
nary link as pointer 231.

FIG. 24C illustrates setup procedure 67 and its to-
kensequence 68 in the process of writing entries into a
user dictionary 942. When tokensequence 68 is being
processed, CCI data structure 240 is created. When
there 1s a modification or a write to a user dictionary for
the first time at this second hierarchical level, the user
dictionary link structure 926 and user dictionary 942 are
created. . |

At the end of the processing of tokensequence 68, the
CCI data structure 240 is destroyed and the pointer to
user dictionary link 252 is copied to the pointer to user
dictionary link 231 of prologue data structure 220. The
resulting data structures are illustrated in FIG. 24D.
The search order of the user dictionaries for the second
hierarchical levels of both FIGS. 24C and 24D would
be dictionary 942 and then dictionary 940. -

It is possible for additional entries and modifications
to be made to the user dictionary after setup procedure
67. For example, tokensequence 70 can write additional
entries into the user dictionary. As tokensequence 70 is
being processed, CCI data structure 240 illustrated in
FIG. 24E is created. When the portion of tokense-
quence 70 containing the additional entries to the user
dictionary is encountered, the user dictionary link struc-
ture 932 is created. User dictionary 932 points to a
newly created portion of the user dictionary 944 and has
its “next” pointer point to the user dictionary link struc-
ture 926.

FIGS. 25-27B illustrate the procedure used when a
tokensequence element has ended. When a tokense-

- quence element ends, the process illustrated in FIG. 25

is called and step 1002 determines if the immediately

J,422,992

23

superior structure element has finished. If the immedi-
ately superior structure element has finished, the CCI
data structure should be deleted by calling the processes
described in steps 1006 and 1008. If the immediately
superior structure element has not finished, step 1004
determines if the next structure element is a tokense-
quence or a picture within a picture or pageset.

When a tokensequence ends, there can be another
tokensequence immediately following. This could oc-
- cur, for example, if there was two tokensequences under
the setup procedure 67 of FIG. 4. One tokensequence
could modify the state variables and another tokense-
quence, for example a tokensequence at position 68.5,
could modify the user dictionary. Therefore, upon en-
countering tokensequence 68.5 (not illustrated), the
CClI data structure of tokensequence 68 should not be
deleted.

When picture 71i 1S encountered the CCI data struc-
ture of tokensequence 70 should not be deleted as the
CCI data structure created upon processing token 670 is
necessary for processing tokensequence 74. This is a
picture which is within a picture or pageset and there-
fore, the error routine should not be called but flow
should return to the structure processor. Note that
when picture 71 is encountered, step 1002 will deter-
mine that the immediately superior structure element,

the picture body 69, has not ended and flow will pro-

ceed to step 1004. |

The process called by step 1006 copies the necessary
values which need to be used at a later time. The pro-
cess called by step 1008 deletes the date structures
which are no longer necessary.

Step 1006 calls the process illustrated in FIGS. 26A
and 26B. Under certain processing conditions, the CCI
data structure is used as a temporary storage area of
data and when the tokensequence(s) which cause the

10

15

20

25

30

35

creation of the CCI data structure end, the CCI data

structure can be deleted. However, to modify certain
parameters used when processing a document for pre-
sentation, it is necessary to store the parameters once
they are modified. Therefore, under certain circum-
stances, certain pointers from the CCI data structure are
copied to the corresponding entry in the prologue data
structure before the CCI data structure is deleted.
After step 1006 calls the process illustrated in FIG.
26A, step 1020 determines if the immediately superior

structure element 1s a setup procedure. A setup proce-

dure can be used to modify state variables or the user
dictionary for future processing. Therefore, it is neces-
sary to copy these modifications to the pointers in the
prologue data structure. If the immediately superior
structure element is a setup procedure, flow proceeds to
step 1022 which determines if state variables were mod-
thed. If they were, the pointer to the state variable table
in the CCI data structure is copied to the corresponding
pointer in the prologue data structure by step 1024.
Next, step 1026 determines if the user dictionary was
modified. If it was, it is necessary to copy the pointer to
the user dictionary link which is in the CCI data struc-
ture to the corresponding pointer in the prologue data
structure 1n step 1028. Then, flow proceeds to B illus-
trated in FIG. 26B.

If step 1020 determines that the lmmedlately superior
structure element is not a setup procedure, flow pro-
ceeds to step 1030 which determines if the immediately
superior element is a resource specification. If it is a
resource specification, step 1032 saves the necessary
information from the operand stack. For example, in the

435

30

35

65

24

case of a color resource specification, a vector reference
on the top of the operand stack must be saved by struc-
ture processor. In cases of pattern and form resource
specifications, the dictionary reference is saved. The
flow then proceeds to process B illustrated in FIG. 26B.

Step 1034 examines if any context dictionaries are
defined. If they are, step 1036 gets the dictionary refer-
ence from the operand stack. The flow then returns to
the process illustrated in FIG. 25 and step 1008 calls the
CCI deletion routine illustrated in FIGS. 27A and 27B
which deletes the data structures which are no longer
necessary.

In FIG. 27A, step 1100 gets the context staek link
data structure pointed to by the CCI data structure.
Step 1102 determines if the PICTURE_LEVEL and
PAGESET_LEVEL are both equal to — 1. If they are
equal to — 1, dictionary manipulation has occurred by a
tokensequence element and therefore, the context stack
link data structure is not pointed to by any other CCI
data structure or prologue data structure and it can be
deleted. Step 1104 gets the dictionary pointed to by the
context stack link data structure. Step 1106 stores the
“NEXT” pointer of the context stack link data struc-
ture. Step 1108 then deletes the context stack link data
structure. Step 1110 determines if the dictionary is in
the link of a dictionary generator. If it is not, the dictio-

‘nary can be erased in step 1112. Flow then proceeds to

step 1114 where the next context stack link data struc-
ture is obtained using the information obtained in step
1106. When a context link data structure is obtained
which does not have the PICTURE_.LEVEL and
PAGESET _LEVEL equal to —1, flow proceeds to
process C 1illustrated in FIG. 27B.

In the process illustrated in FIG. 27B, step 1120 de-
letes the operand stack from memory as it is no longer
used. Step 1122 then determines if the most superior
structure element 1s a setup procedure. If it is not a setup
procedure, the state variable table can be deleted from
memory by step 1124 and the user dictionaries and user
dictionary link structures of the CCI data structure are
deleted by step 1126.

Step 1128 deletes the machine state from memory,
step 1130 deletes CCI data structure, and step 1132 puts
null into the pointer to the CCI data structure of the top
entry of the picture/pageset stack. Flow then returns to
the process illustrated in FIG. 25 and subsequently
returns to the structure processor which called the pro-
cessor illustrated in FIG. 25. |

Note that after the process illustrated in FIGS. 27A
and 27B 1s complete, it is possible that the hierarchical
level containing the content portion just processed can
end. If the hierarchical level does end, the picture/page-
set prologue data structure of the hierarchical level
which has ended is deleted from memory and the entry
in the picture/ pageset stack containing the pointer to
the prologue data structure and the pointer to the CCI
data structure is popped off of the picture/pageset
stack. A more detailed discussion of the ending of a

“herarchical level is contained in commonly owned U.S.
patent application Ser.

No. 07/876,601 entitled
“Method and System to Manage Picture and Pageset
for Document Processing”, which Is 1Incorporated
herein by reference. |

A description of the manipulation of state variables

by setup procedure 58 and its associated tokensequence
-~ 99, illustrated in FIG. 4, will be discussed with refer-

ence to the data structures illustrated in FIG. 28A-28E.

5,422,992

25

F1G. 28A illustrates the picture/pageset stack 202,
the prologue data structure 220 and default state vari-
able 450 at the beginning of the setup procedure struc-
ture element 58. The default state variable 1200 contains
the default state variables. The default state variables
are likely to be stored in a nonvolatile memory such as
a ROM or a disk storage device. Therefore, it may be
impossible to change the values in the default state
variable table as it may be read only. Although there are
three tokensequences (53, 55, and 57) prior to the setup
procedure 58, those tokensequences only change the
variables in a state variable table which is pointed to by
the CCI data structure created as each of the three
tokensequence 53, 55 and 57 are being processed. How-
ever, the changes to those state variable changes are
temporary and not stored.

At the beginning of tokensequence 59, a CCI data
structure 240 is allocated, as set forth in step 604 of FIG.
28A. In step 606, the pointer to the newly created CCI
data structure 240 is stored-in the pointer 214 to the CCI
data structure of the top entry of the plcture/pageset
stack 202. In step 608, a state variable table 460 is cre-
ated and its pointer is stored in the pointer to state vari-
able table 248 of the CCI data structure 420. In step 610,
the values of the state variable table 450 pomted to by
the pointer to the state variable table 229 in the pro-
logue data structure 220 are copied into the newly cre-
ated state variable table 460. For example, the values
X1, X2 and X3 in the entries 451, 452, and 453 of the
default state variable table 450 are copied to the entries
461, 462, and 463 respectively of the state variable table

460. The data structures are now as illustrated in FIG.
28B.

10

15

20

25

30

During the processing of the tokensequenée 59, the

state variables of the state variable table 460 may be
modified. For example, the following tokensequence
modifies the state variable tables Current_Posmon and
Current__Stroke _Width:

10 10 moveto 10 setlinewidth
F1G. 28C illustrates the condition of the data structures
after the state variables are modified.

FIG. 28D illustrates the data structures when the
content processor finishes processing the tokense-
quence 59 and the structure processor takes control at
the end of the setup procedure 58. The structure proces-
sor copies the pointer to state variable table 248 of the
CCI data structure 240 to the pointer to state variable
table 229 of the prologue data structure 220, as de-
scribed 1n step 1024 of FIG. 26A. Therefore, the state
variables have been effectively modified and the future
processing will use the pointer to state variable table
229 which points to a state variable table 260 having
modified values 461, 462 and 463.

FIG. 28E shows the data structures after the setup
procedure is finished. The CCI data structure is deleted
from memory as described in Step 1130 of FIG. 27B and
the pointer to the CCI data structure of the picture/ p-
ageset stack 202 is set to point to null as described in
step 1132 of FIG. 27B. |

The Structure Processor may push some value to the
operand stack before passing control to the Context
Processor. For example, when the color is defined in a
Resource Definition structure element, the Structure
Processor may push a single element of type Identifier
whose value depends on the value of the Color Name.

35

45

30

35

65

Similarly, when the Dictionary Generator structure
element 1s processed, the Structure Processor must push
a dictionary reference on the operand stack before pass-

26

ing control to the Content Processor. Therefore, differ-
ent values are pushed onto the operand stack depending
on the superior structure element to the tokensequence.

Obviously, numerous modifications and variations of
the present invention are possible in light of the above
teachings. For example, the picture/pageset stack can
have only one entry for each hierarchical level. This
entry could point to the prologue data structure for the
hierarchical level. The prologue data structure would
then have a pointer to a current context of interpreta-
tion data structure for the hierarchical level. This ar-
rangement would achieve equivalent results as was
described above as both a prologue data structure and
CCI data structure would be implemented. Also, it may
not be necessary to have the pointer to resource decla-
ration in the CCI data structure. It is therefore to be
understood that within the scope of the appended
claims, the invention may be practiced otherwise than
as specifically described herein.

What is claimed as new and desired to be secured by
Letters Patent of the United States is:

1. A computer implemented method for processing a
hierarchically structured document, comprising the
steps of:

creating a first state variable table having a first set of

state variables;
creating a first reference to the first state variable
table, said first reference to the first state variable
table being associated with a structure portion of a
predetermined hierarchical level of the document;

creating, for said predetermined hierarchical level of
the document when a content portion of said pre-
determined hierarchical level is processed, a sec-
ond state variable table and copying the first set of
state variables to a second set of state variables of
the second state variable table;
processing said content portion of said predetermined
hierarchical level using a second reference to said
second state variable table;
~ determining if processing of content for said prede-
termined hierarchical level is finished;
processing a structure portion of a ﬁrst subsequent
hierarchical level, wherein said first subsequent
hierarchical level is lower in the hierarchical struc-
ture of the document than the predetermined hier-
archical level;
copying one of the first and second references to a
third reference associated with the structure por-
tion of the first subsequent hierarchical level;

processing a structure portion of a second subsequent
hierarchical level, wherein said second subsequent
hierarchical level is lower in the hierarchical struc-
ture of the document than the first subsequent hier-
archical level;
creating, for said second subsequent hierarchical
level of the document when a content portion of
said second subsequent hierarchical level is pro-
cessed, a third state variable table referenced by a
fourth reference and copying the set of state vari-
ables referred to by the third reference to a third set
of state variables in the third state variable table;

processing said content portion of said second subse-
quent hierarchical level using the fourth reference
to said third set of state variables:;

determining if processing of said content portion of

sald second subsequent hierarchical level is fin-
ished: and

5,422,992

27

copymng the fourth reference to the third reference,
when said processing of said content portion of said
" second subsequent hierarchical level is determined
to be finished. |
2. A method according to claim 1, further comprising 3
the step of:
creating an entry in a stack for the predetermined and
the first subsequent hierarchical levels of the docu-
ment, each entry in the stack including a reference
to a set of references corresponding to structure of 10
a corresponding hierarchical level and used during
processing of the corresponding hierarchical level,
and including a reference to a set of references
corresponding to content of a corresponding hier-
archical level and used during processing of a con- 1°
tent portion of the corresponding hierarchical
level. |
3. A method according to claim 2, wherein said hier-
archically structured document is a document which

conforms to rules of a Standard Page Description Lan- 20

 guage.

4. A computer implemented method for processing a
hierarchically structured document, comprising the
steps of:

creating a first state variable table having a first set of

state variables;
creating a first reference to the first state variable
table, said first reference to the first state variable
table being associated with a structure portion of a
predetermined hierarchical level of the document;

creating, for said predetermined hierarchical level of
the document when a content portion of said pre-
determined hierarchical level is processed, a sec-
ond state variable table and copying the first set of 5
state variables to a second set of state variables of
the second state variable table;

processing a structure portion of a subsequent hierar-

chical level, wherein said subsequent hierarchical
level is lower in the hierarchical structure of the 4,
document than the predetermined hierarchical
level;

determining if processing of content of said predeter-

mined hierarchical level is in process;
copying the second reference to a third reference 45
associated with structure of the subsequent hierar-
chical level, when said processing of content for
said predetermined hierarchical level is determined
to be in process;
copying the first reference to the third reference sq
associated with the structure of the subsequent
hierarchical level, when said processing of content
for said predetermined hlerarchlcal level is deter-
mined not to be in process;
creating, for said subsequent hierarchical level of the 55
document when a content portion of said subse-
quent hierarchical level is processed, a third state
variable table referenced by a fourth reference and
copying the set of state variables referred to by the
third reference to the third state variable table; 60

processing said content portion of said subsequent
hierarchical level using said fourth reference to the
third state variable table; and

continuing processing of said content portion of said

predetermined hierarchical level after processing 65
of said content portion of said subsequent hierar-
chical level is complete, using said second refer-
ence to said second state variable table, when said

30

28

processing of content for said predetermmed hier-
archical level 1s determined to be in process.

5. A method according to claim 4, further comprising
the step of:

creating an entry in a stack for the predetermined

hierarchical level and the first subsequent hierar-
chical level of the document, each entry in the
stack including a reference to a set of references
corresponding to structure of a corresponding hier-
archical level and used during processing of the
corresponding hierarchical level, and including a
reference to a set of references corresponding to
content of a corresponding hierarchical level and
used during processing of a content portion of the
corresponding hierarchical level.

6. A method according to claim 4, wherein said hier-
archically structured document is a document which
conforms to rules of a Standard Page Description Lan-
guage.

7. A system for processing a hierarchically structured
document, comprising:

means for creating a first state vanable table having a

first set of state variables;

means for creating a first reference to the first state

variable table, said first reference to the first state
variable table being associated with a structure
portion of a predetermined hierarchical level of the
document;

means for creating, for sald predetermined hierarchi-

~cal Jevel of the document when a content portion
of said predetermined hierarchical level is pro-
cessed, a second state variable table and copying
the first set of state variables to a second set of state
variables of the second state variable table;

means for processing said content portion of said

predetermined hierarchical level using a second
reference to said second state variable table;
means for determining if processing of content for
sald predetermined hierarchical level is finished;
means for processing a structure portion of a first
subsequent hierarchical level, wherein said first
subsequent hierarchical level is lower in the hierar-

- chical structure of the document than the predeter-

mined hierarchical level;

means for copying one of the first and second refer-

ences to a third reference associated with the struc-
ture portion of the first subsequent hierarchical
level;

means fer processmg a structure portion of a second

subsequent hierarchical level, wherein said second
subsequent hierarchical level is lower in the hierar-
chical structure of the document than the first sub-
sequent hierarchical level; |
- means for creating, for said second subsequent hierar-
chical level of the document when a content por-
tion of said second subsequent hierarchical level is
processed, a third state variable table referenced by
‘a fourth reference and copying the set of state
variables referred to by the third reference to a
third set of state variables in the third state variable
table; - |
means for processing said content portion of said
second subsequent hierarchical level using the
fourth reference to said third set of state variables:

means for determining if processing of said content
portion of said second subsequent hierarchical
level is finished; and

5,422,992

29

means for copying the fourth reference to the third
reference, when said processing of said content
portion of said second subsequent hierarchical
level is determined to be finished.
8. A system according to claim 7, further comprising:
means for creating an entry in a stack for the prede-
termined and the first subsequent hierarchical lev-
els of the document, each entry in the stack includ-
ing a reference to a set of references corresponding
to structure of a corresponding hierarchical level
and used during processing of the corresponding
hierarchical level, and including a reference to a set
of references corresponding to content of a corre-
sponding hierarchical level and used during pro-
cessing of a content portion of the corresponding
hierarchical level.
9. A system according to claim 8, wherein said hierar-
chically structured document is a document which con-

10

15

forms to rules of a Standard Page Description Lan-

guage. _ |
10. A system for processing a hierarchically struc-
tured document, comprising: ~

means for creating a first state variable table having a
first set of state variables: |

means for creating a first reference to the first state
variable table, said first reference to the first state
variable table being associated with a structure
portion of a predetermined hierarchical level of the
document;

means for creating, for said predetermined hierarchi-
cal level of the document when a content portion
of said predetermined hierarchical level is pro-
cessed, a second state variable table and copying
the first set of state variables to a second set of state
variables of the second state variable table:

means for processing a structure portion of a subse-
quent hierarchical level, wherein said subsequent
hierarchical level is lower in the hierarchical struc-
ture of the document than the predetermined hier-
archical level: o

means for determining if processing of content of said
predetermined hierarchical level is in process:;

means for copying the second reference to a third
reference associated with structure of the subse-

20

25

30

35

40

45

30

35

65

30

quent hierarchical level, when said processing of
content for said predetermined hierarchical level is
determined to be in process;

means for copying the first reference to the third
reference associated with the structure of the sub-
sequent hierarchical level, when said processing of
content for said predetermined hierarchical level is
determined not to be in process;

means for creating, for said subsequent hierarchical
level of the document when a content portion of
said subsequent hierarchical level is processed, a
third state variable table referenced by a fourth
reference and copying the set of state variables
referred to by the third reference to the third state
variable table; \

means for processing said content portion of said
subsequent hierarchical level using said fourth ref-
erence to the third state variable table; and

means for continuing processing of said content por-
tion of said predetermined hierarchical level after
processing of said content portion of said subse-
quent hierarchical level is complete, using said
second reference to said second state variable table,
when said processing of content for said predeter-
mined hierarchical level is determined to be in
process. | |

11. A system according to claim 10, further compris-

ing:

means for creating an entry in a stack for the prede-
termined hierarchical level and the first subsequent
hierarchical level of the document, each entry in
the stack including a reference to a set of references
corresponding to structure of a corresponding hier-
archical level and used during processing of the
corresponding hierarchical level, and including a
reference to a set of references corresponding to
content of a corresponding hierarchical level and
used during processing of a content portion of the
corresponding hierarchical level.

12. A system according to claim 10, wherein said

hierarchically structured document is a document
which conforms to rules of a Standard Page Descrip-
tion Language.

*¥ % * x %

	Front Page
	Drawings
	Specification
	Claims

