. US005410711A
United States Patent [19] [11]] Patent Number: 5,410,711
Stewart . 45] Date of Patent: Apr. 25, 1995
[54] PORTABLE COMPUTER WITH 4,922,450 S5/1990 Roseetal. .vreeereeevennnnneneee. 395/750
BIOS-INDEPENDENT POWER 4,980,836 12/1990 Carter et al. ..coeeveereeenennnneen. 364/483
MANAGEMENT | 5,021,950 6/1991 Nishikawa ..u.eeeeivemenerennenne.. 395/325
| 5,129,091 7/1992 Yorimoto et al. 395/750
[75] Inventor: Gregory N. Stewart, Austin, Tex. 5,142,684 8/1992 Perryetal.cooueevveevenenee 395/750
) _ | 3,167,024 11/1992 Smith et al.ccoveeeeeevveenneene. 395/375
[73] Assignee: Dell USA, L.P., Austin, Tex. 5,230,075 7/1993 Canova, Jr. et al. ...c....... 395/750
[21] APPL NO.: 655.880 - 5,241,680 8/1993 Cole et al. cevrrrerrnerncrnrennn. 395/750
: Primary Examiner—Jack B. Harvey
2 : .)
122] Filed Feb. 14, 1991 | Assistant Examiner—Glenn A. Auve
[S1] Int. CL6 e, GO6F 1/32 Attorney, Agent, or Firm—Robert Groover; James
[52] US. Cl ...t 395/750; 364/707; . Huffman; Jeff Hood
364/273.1; 364/DIG. 1; 364/948.8; 364/DIG2. [57] ABSTRACT
[58] Field of Search 395/750, 575; 364/707, A personal computer which a microcontroller, separate

364/273.1, DIG. 1, 948.8, DIG. 2; 371/66, 14, from the main processor, is used for power-manage-
12 ment functions. Under certain conditions, this power-

management microcontroller can take control of the

[56] References Cited system bus. This provide BIOS-independent power
U.S. PATENT DOCUMENTS management, and permits sophisticated power manage-
4,203,153 5/1980 BOYA wooooooeooeroes e 395/750 ~ ment to be performed without placing any burden or
4,611,289 9/1986 Coppola ..., 3954750 CODStraints on the user’s choice of operating system or
4,758,945 7/1988 Remedi -..oovororrrrrrsesresroeen 395,750 ~ application software.
4,851,987 7/1989 DAY wooooooeeeeererrereeresresrsnnnne. 395/550
4,907,183 3/1990 Tanakacccceeceeeererrueenenene 395/750 17 Claims, 37 Drawing Sheets
OPTIONAL
MEMORY
QG x 8

8 » IMEC x 4

U.S. Patent Apr. 25, 1995 Sheet 1 of 37 5,410,711

OPTIONAL

- MEMORY
2MEG x 8

8 & IMEG x 4]

OPTIONAL
MEMORY
2MEG x 8

' OR
- IMEG x 8
PROCESSOR | .. DATA (15:0 STANDARD

S e—| e

OR IMEG x 8
80386 SX ADDRESS (:1) 8 * 256K x 4

COPROCESSOR |
- 80C287
- OR
80387 SX

BOTTOM BOARD 1 OP (14:0)

t

CODE DATA
—1

RAN

ANALOG POWER
| BATIERY MANAGEMENT

IMONITORING | CONTROLLER _
SIGNALS . RAM

!
: DATA (13 !

: SRAM

: 8K x 8

! | OPTIONAL |

: | 3Mx8

| _

| HARD D IDE _

FL . -
Bt s

PRINTER/ CONNECTOR EXTERNAL
FLOPPY COMBO —KEYBOARD
PORT CHIP 'KEYPAD

CONN ECTOR

SUFFER INTERNAL
R WIERL

OPTION _
DB/ \ -~ FIG. 1

U.S. Patent Apr. 25, 1995 Sheet 2 of 37

AC ADAPTER
DC POWER SUPPLY

F1

8 ANALOG TO DIGITAL CHANNELS

| PULSE WIDTH MOD
SMhz—
ﬁ MICRO~CONTROLLER

5,410,711

Sheet 3 of 37 5,410,711

Apr. 25, 1995

U.S. Patent

TAVOV =

44000 =
- @dE=

20,

*11VE MO
*RIVHEZ

AQLS/¥Md
M
«JOUVH) =

-
i
!
!
.
!

diL44ANOD
J0-00

!
l
l
!
----“-------_--_-—_ﬂJ

L__----_-_---_

43l dvav

(v

 Sheet 4 of 37 5,410,711

Apr. 25 9 1995

U.S. Patent

—-——————

dMd STTIIN =

- d3LYIANI

o AY3LLYE
2 . NIV
YILYIANI

OL 1LNOA

D s s T 1 [

bf 94 Ol

711

L

5,410

Sheet 5 of 37

Apr. 25, 1995

U.S. Patent

0y J¥N9IS
o N9l Ol
}
[0:¢1]Lvo
g31y-QA
Py MO O _———

**0}@ ‘SJoAp (DUO

ay 34N9l4 OL

1Jo2JIp—iq ‘sexnw ‘apoda(Q SSAIPPY |V

S S A |
9 [1 []

[0:6]VS MIOSAS

NIV AGHHIOI ~OMOI ~OYO!

¥00/g
90D}I)U)
1y

Ia[[0J}U0)
—O0JOTN

410888400

SIH LV

Sheet 6 of 37 5,410,711

Apr. 25, 1995

U.S. Patent

SIAE(AR]E

M0~ Ld1 5079 ~NITL3SY
I : [0:%1]d0
~SITNOD ~S3l
Gl
._oEEEo VLVONON
uwinj 3y _.Sw + = —=! 04
Lnoal —
[0]wvyp v_osom
HVI :og
Y \m Nd - -I
9% N9 OL
30D} 3y
._< 10d
aix
[0:€L]PON 90
B
S DJoQ /(
o'chore —

Oy NI Ol

Sheet 7 of 37

Apr. 25, 1995

U.S. Patent

5,410,711

7 JdN9I4

[0:2]nvap

[0:c1]aavy

Zg ~J0)

[0:£]vLvay

120g
320449} U)|

was /N

{
Py 34NOI OL oy 3¥n9H Ol

Gy JHMOId OL

Sheet 8 of 37 5,410,711

Apr. 25, 1995

U.S. Patent

Py 4dNOI

3% N9 OL
SHIIN
[0:2]LvP
e
N 34 | [zZowy
MNd y0d
O\/ Mod 7 404

[0:]as

;A

L

By JANII4 OL

U.S. Patent Apr. 25, 1995 Sheet 9 of 37 5,410,711

Irst~ or

' tiowCin
dreg_sel liowcin&me_rstv &
|DLE dr _sel IOW
_ fowci~ STATE
00t

lorcinddmc_rst~ &dreg_sei

I0R __
READ —

STATE] *. jorct
010

xid & liorci~v

dreg_se! jowci~ &

orci~v

ASSERT

100 xid& liowci~

Ixid
XD
STATE

WAIT
101

—
id

MILES Slave Cycle State Machine, (AT is Master)

FIGURE SA

U.S. Patent Apr. 25, 1995 Sheet 10 of 37

5,410,711

Tm__out Tm_out
tlochrdy .
| | tlochrdy '
lochrdy=1

MILES Master, (Exception Cycle), State DASRT
Machine, (AT is Slave) A_QE~
1011

FIGURE 5B

09 JYNII

5,410,711

99 N OL

99 N9 OL A

. _ o
o _ HN
o 1
— . _
T
= dOL™ON .
2 HE Wjoshs 0)
1353 "
_ #1ju—do _
2 . Glumdo o _
4 04}]do oM
: ;
- _ |
s J9 4N9L OL ﬁ_..o " b LU doxul
) L«
o i v q
-l 1S L@
[¥1 100N T P!
sorws LOSLInwap
d _ lfowmpoy "LSEON
£1JoON ~ To#1]0oN UTLNI

U.S. Patent

1 .
\ o
= 99 N9
—
< 29 34n914 OL
N _
90D} 403U 1D
5 T el
b _ 1S3
k P 34N9N4 0L - - ~1S3L <
™ N3V <
E nn n AGYHIO!
e - ~ ~NCL3STY<
- PSTXAWTP ¢
SEans
]
IOMO0I ~N0|
, — T W
- 1 -
;5 o T o s
s ~|SY O
< F-I 0:LJLvp lozzJes
T oiLinvep “IGH0)
__ s — 0oNS
..-II Py A
= [0:6]00N ~INOGD —
‘_nl..v _”3”_:_!3 LW~ doxw
(e
A,
N
. 09 34N9I4 OL
=

Sheet 13 of 37 5,410,711

Apr. 25, 1995

U.S. Patent

Y9 J4N0I4

P9 NI OL

[0:c11ooN

abD}{oA ~|S3is

49 34Nl O

L

P9 J4NOI

5,410,711

=

‘S

2 #[OSAS ¢

3 OJUI WDJS 1S3l <

- oL, _ 29 3UN9 0L

0:LJONP<

ﬁo C1]LVD<
0°C1JoON-

10 HSOUAS ¢

2 [0:2]nvyp

q

)

!

319 oS~ XNW P ¢
*o 1 VIVaY [PSTXNWITD ¢ _
0:Zi]aavy ~ZOM WD«
uo ZOOI.EOh J
M _ i I _ ;
, 80P IM) < l 49 3¥N9I4 OL

-
o

39 N9 0L

U.S. Patent

Sheet 15 of 37 5,410,711

Apr. 25, 1995

U.S. Patent

90 34N9l4

P9 NJI3 OL

oolvluo
aApayoo
~307 Pl
[PSXNWITP
[98™XNW™D
oM~ WDJ

19 34N914 0L

~)SI 3

pIX

~1040!
~jOMO|
jos—baJp
~]SJ

L
W|08AS

v

A_o uz:o_h_ OL

Dg 3N914 0L

Sheet 16 of 37 5,410,711

Apr. 25, 1995

U.S. Patent

19 J4N0OI4

99 N Ol

XAW™pT)0
U0}

V9 3J4N9I3 JOVAYALNI VINIS YITIONLNOD OMOIN STTIN

E .
NS &

5,410,711

[¥ ;___u__%

Sheet 17 of 37

[G1]ur~do

ol :
O} — _moﬁa

Apr. 25, 1995

m105As
D}0p uin}al 81038 1Y

gXnUIT}a.

e R
[0:£]nvYP

[0:£]Wv¥oP

[¥1 100N

U.S. Patent

Sheet 18 of 37 5,410,711

Apr. 25, 1995

U.S. Patent

-9 N9 G
N
0qe
B [0:2Wvaop

Hod g Ju00-0.10)W

,M.
P!

Emémé[ﬂeﬁ]ém

PIX

11

CIUd KO8
[o:L]onp = 98
= |
=0 L
5 < |—awops
s v —(
1571ppo _ ..
42098
[0:41]uy s L0%11PPY
¢a
$10"ws & 1d
)81 oL B : ' |
u*ﬂlogm o . 3 x_ogw

~ Sheet 19 of 37 5,410,711

Apr. 25, 1995

U.S. Patent

D89 JUNOIA

opo2ap

SO S31IN
4Hd 1d1
~S0ZN0D

APLV

~1S)

[0:2]1vP<
1531 <
IMOI<

N3V <

D40«

-

EIIII--I-—-
S

-l-—a----

T
7 \ _

I A

I-‘

I

I <
TR

489 3:4NJI1 Ol

ATISAS

Ni 1353y

1541
1S3l

N3V

AQYHIOI

MO

QYO

5,410,711

449 J4N9I4
)
Gt
&
-
|
3
=
72
" 1S
m ~ Z|m yiudoxw
- 0l
3 [¥1]ude
)
<
ZNOOI_ulﬁO
~[30 PO
.__._.OOI..O.IﬁO

U.S. Patent

~30 P 1D

- D9 N OL

Sheet 21 of 37

Apr. 25, 1995

U.S. Patent

0NO!

1—89 J4N914 % Sl
_ . . l $™9

i .__—- h -

~]S4

5,410,711

N4V

[0:€]~uM [0:6]vLY

4

ETEN)(C %m C joy~eNIVeg3L]y = [C]viM

(3w + av3y)do]ay~+ L laus 2 jau~sNIvegaL]~ = [Z]~vim
[3LiM 0 Jaue L lau~ Z lau~*N3vsa3t i~ = |1]~vem

[ALrimd0 Jat~A | Jau~e Z Jau~eNIVegaL]~ = [0]~uM

5,410,711

Sheet 22 of 37

Apr. 25, 1995

U.S. Patent

~3)

[0:c1]aavy |
oo =—]

JOVANILNI WVAS STTIN

~30Y

<

 |BS”D

lo:glivo
[0:21Joon

quuo

%|osAs
o8~ XNW™D

ss94ppd Apfop

d9 34N9I Pe}IassD §| NIQL JO)D SU G/C §f Wi} N0 Bul} ay)
| SISOl J0}99)3p N0 SWH D)M Jejunod Aiouiq 3q ¢

5,410,711

- NG - J . -
d« NGO * , .
—~ ~)SITWS . NO h dds -—
e _ (0
= +—0 q
n 108
,w 00l = JUnOd UBYM N0 SaL)) JauH|
7 .
-— N3 0L
OAQYHO |

1o _
9]
e _
Tel
m._. |
A |

pubis HOLYN ol

~oonor—{_

U.S. Patent

711

L

5,410

Sheet_ 24 of 37

Apr, 25, 1995

U.S. Patent

v, 3dNOld

TVNIRYAL

I.l..lllill -

< .
— \ / ’

y 7/
[
\

\

S0d
—_— S
8-43A00

w.==
NS

WNINYIL 93N

VI TVNIMGL
V-38NL ONILYINSNI

V43N0
WNINYAL SO
3AVd Qv3]
SSINOHL S0

U.S. Patent

Apr. 25, 1995 Sheet 25 of 37 5,410,711

FIGURE 7B

[. [
Bk alh1"W)

5,410,711

U.S. Patent Apr. 25,1995 Sheet 26 of 37

FIG. 8A

d8 "Il

5,410,711

B S e s w— | WY S5 WY 5 VRN J5 VRNNEY B8 I VR i VAR f SENSRY) WY S

Sheet 27 of 37

Apr. 25, 1995

U.S. Patent _

U.S. Patent Apr. 235, 1995 Sheet 28 of 37 | 5,410,711

FIG. 8C

T 1T 1

804

U.S. Patent Apr. 25, 1995 Sheet 29 of 37 5,410,711

FIG. 8D

U.S. Patent Apr. 25, 1995 Sheet 30 of 37 5,410,711

FIG. 8E

- U.S. Patent

Apr. 25, 1995 Sheet 31 of 37 5,410,711

F1G. 8F

804

U.S. Patent Apr. 25, 1995 Sheet 32 of 37 5,410,711

FIG. 86

3

U.S. Patent Apr. 25, 1995 Sheet 33 of 37 5,410,711

FIG. 8H

804

U.S. Patent Apr. 25, 1995 Sheet 34 of 37 5,410,711

FIG. 8

U.S. Patent Apr. 25,1995 Sheet 35 of 37 5,410,711

FIG. 84

804

U.S. Patent Apr. 25, 1995 Sheet 36 of 37 35,410,711

FIGURE 9

PLUGS INTO BOTTOM BOARD

US. Patent Apr. 25,1995 Sheet 37 of 37 5,410,711 '

~ FIGURE 10

),410,711

1

PORTABLE COMPUTER WITH
BIOS-INDEPENDENT POWER MANAGEMENT

2

way Is to specify components at the lowest economical

power consumption. Thus, for instance, CMOS inte-
grated circuits and liquid crystal displays (LCDs) will
normally be used. An equally simple way is to increase

PARTIAL WAIVER OF COPYRIGHT . battery capacity. However, both of these routes rapidly
All of the material in this patent application is subject encounter limits, which are set simply by the tradeoff of
to copyright protection under the copyright laws of the the cost of lower-power components, or of the elimina-
United States and of other countries. As of the first tion of functionality, the user expectations.
etfective filing date of the present application, this mate- 1o The third way is to use power-management algo-
na%’ S P rotected as unpybl}shed mate:nal. . rithms so that, at almost every instant, all components
ortions of the material in the specification and draw- bei d in the 1 ;. de for their
ings of this patent application are also subject to protec- are being operated In the lowest-power mode for .
tion under the maskwork registration laws of the United f:urrent demands. Thu§, for example, a processor WI.HCh
States and of other countries. 1s not currently executing a program may be placed into
However, permission to copy this material is hereby 15 “sleep” mode, to reduce its overall power consumption.
granted to the extent that the owner of the copyright =~ For another example, substantial power savings can be
and maskwork rights has no objection to the facsimile = achieved simply by stopping the system clock (or by
reproduction by anyone of the patent document or slowing down the system clock to a very low rate). For
patent disclosure, as it appears in the United States another example, it 1s common practice, in portable
Patent and Trademark Office patent file or records, but 20 computers with an LCD display, to provide back light-

otherwise reserves all copyright and maskwork rights
whatsoever.

CROSS-REFERENCE TO OTHER
APPLICATIONS

‘The following applications of common assignee con-
tain at least some drawings in common with the present
application, and are believed to have effective filing
dates 1dentical with that of the present application, and
are all hereby incorporated by reference:

Ser. No. 656,265, filed Feb. 14, 1991, entitled “Re-
chargeable System with Separate Battery Clrcults in a
Common Module”;

Ser. No. 656,647, filed Feb. 14, 1991, entitled “Porta-
ble Computer system with Adaptive Power-Control
Parameters’’;

Ser. No. 655,619, filed Feb. 14, 1991, entitled “Porta-
ble Computer with Dual-Purpose Standby Switch”:

Ser. No. 656,262, filed Feb. 14, 1991, entitled
“Method for Detecting Low Battery State Without

Precise Calibration™; all of which are hereby i Incorpo-
rated by reference.

'BACKGROUND AND SUMMARY OF THE

235

30

35

ing for use of the display under low-fight conditions;
but, since this back lighting consumes relatively large
amounts of power, it will normally be turned off after a
short period of inactivity (or even, alternatively, after a
short duration regardless of activity), until the user
again demands back lighting.

All of these hines of approach have some inherent
limits. For example, it is hard to foresee any integrated
circuit technology which would be economical in the
1990s and more power-efficient than low-power low-
voltage CMOS. Some further improvement in this area
1s foreseeable, but no revolutionary improvements ap-
pear likely. Moreover, in practice, such improvements
are largely outside the control of system designers:
when lower-power chips are sampled, system design
houses will buy them; but system design houses cannot
greatly accelerate the pace of introduction of such
chips.

It 1s also true that the smartest power-management
programs cannot reduce the time fraction during which
the user wishes to look at the display, or enter data
through the keyboard. However, in this area there does

INVENTION 45 appear to be room for improvement, and system design
The present invention relates to potable battery-pow- lmprovements can help achieve power efficiency.
ered computers. Many power management schemes have been pro-
_ o posed, where parts of the system are shut down during
The Ongoing Downsizing of Portable Personal periods of inactivity. (One example of a portable com-
Computers 50 puter system with power-monitoring functions is de-
Potable personal computers were introduced in the scribed in U.S. Pat. No. 4,980,836 to Carter et al., which
early 1980s, and proved to be very useful and popular. s hereby incorporated by reference. Another source of
fﬂxs this market has developed, it 13as become Increas- proposed teachings regarding power-management func-
ingly clear that users strongly desire systems to have tjons is provided by the DS1227 product preview, con-
small volume, small weight, and long battery-powered 55 tained in the 1988 data book of Dallas Semiconductor
lifetime. Thus, small potable computers Cl§pt0p com- Corporation, which is hereby incorporated by refer-
puters) have proven extremely popular during the late ence.) These approaches tend to extend the usable
1980s. Users continue to demand more features, longer SN
: ! working time between recharges.
time between recharges, and lower weight and volume. In addition. it has b :>ed that
This combination of demands is difficult to meet. More- 60 1 accition, 1t has been recognized tha management
over, as of 1990, another smaller generation of potable ?f the charging and dlschatrg{ng cycles of Ni-Cd batter-
computers has begun to appear, referred to as “note- 1e5 can help to extepd their Ife. : :
book” computers. This smaller form factor will only Either of these power-management f!lﬂCthllS Tequires
~ exacerbate the difficulty of the above tradeoffs. some 1ntelligent control. The conventional way to im-
65 plement this has been using the main microprocessor

Approaches to Power Conservation (CPU). To accomplish this, the necessary program steps

are inserted into the BIOS software (basic input/output
system software), which is stored in ROM.

There are three basic approaches to extending the
operating lifetime of a portable computer. The simplest

5,410,711

3
BIOS Software

The BIOS software provides a robust startup for

personal computers, and has been a key part of all DOS-

compatible computers since the original IBM PC. How-
ever, the BIOS is inherently limited to 16-bit ‘“‘real-
mode” operation: it cannot operate in the 32-bit “pro-
tected mode” which is available in the 80-286 and later
80X 86 processors.

Thus, any operating system which fully exploits the

abilities of the more advanced processors must bypass.

the BIOS software. (Many systems copy the BIOS code
into DRAM memory, simply for faster operation (be-
cause the access time of the BIOS ROM may be slow).
Thas 1s not the same as replacing the BIOS, as described
above, and does not present the same issues of compati-
bility.) For example, BIOS is bypassed when an ISA-
architecture computer is running UNIX or PS/2
(which, in 1990, are the two most common 32-bit Intel
operating systems).

Such advanced operating systems are becoming in-
creasingly common. However, for some years to come,

most computers sold will still need to be compatible

with DOS.

This means that, if the BIOS is used for power-man-
agement, the power-management functions may disap-
pear for users who are running an advanced operating
system. |

Many DOS programs will also bypass some parts of
the BIOS. For example, many game programs replace
the Disk handler or the keyboard handler. Windows 3.0
software (which is becoming extremely popular) also
bypasses large parts of BIOS.

Thus, the risk is that, if hardware-specific power-
management functions are inserted into the BIOS, they
may be lost when programs bypass the BIOS. This can
led to drastic problems, such as a computer which is
locked out of sleep mode (and therefore runs down its
batteries), or which is locked into sleep mode (and
therefore is unusable).

For this reason, many existing laptop computers have
been required to use only simplified power-management
functions.

Previously proposed systems often rely on an inter-
rupt to awaken the processor. In many cases, the inter-
rupt used is the NM/signal (the non-maskable inter-
rupt). The use of the NMI line is particularly likely to

cause software problems, and especially so in a system
which runs UNIX or OS/2.

Power-Management Microcontroller

In the presently preferred embodiment, a microcon-
troller performs battery monitoring and power-manage-
ment functions. This microcontroller receives an inter-
rupt signal which is an ANDed combination of many
signals. (In the presently preferred embodiment, these
signals include, e.g., TX and RX lines from both serial
ports, lines from the parallel port, lines from the floppy
disk controller, etc. However, this list could be ex-
panded or contracted.) Thus, the microcontroller can

readily detect activity or alarms (e.g. from the real-time
clock).

Interface Chip

In the presently preferred embodiment, this power-
management microcontroller is interfaced to the system
bus through an interface chip which performs many
interface management functions. This innovative inter-

10

15

20

25

30

35

45

50

35

65

4
face chip provides greatly increased versatility and
functionality. The combination of a microcontroller
with such an interface chip provides advantages which
are not limited to the needs of power management.

For the system to enter sleep mode, the Microcon-

troller sends a command to the interface chip, and the
interface chip then allows the microcontroller to act as

a MASTER on the system bus.

The interface chip also has other output lines, for
controlling other subsystems.

The interface chip is also connected to intercept in-
structions fetched by the microcontroller from 1ts off-
chip program memory. Under certain conditions, the
interface chip will replace a fetched instruction with a
different instruction. This is called “return-cramming,”
and in effect permits different functions to be overlaid
onto the microcontroller’s program address space.

Thus, this capability permits certain additional flexi-
bility to be achieved in a Harvard architecture mi-
crocontroller. The interface chip, in the presently pre-
ferred embodiment, watches for certain instruction
sequences (e.g. a conditional jump into a certain address
range) and initiates a “return-cramming” sequence if
such an instruction sequence 1s detected. One use of this
capability is to permit data to be stuffed back into the
microcontroller’s program memory space (which can
otherwise be difficult in a Harvard architecture).

Sleep and Standby Modes

The presently preferred system embodiment has both
sleep and standby modes: in sleep mode the micro-
processor (CPU) is still executing at reduced speed-
—and the screen and hard disk may or may not be
turned off. (Thus, the choice to enter sleep mode or not
relates primarily to the presence or absence of 1/0
activity.) Almost any stimulus will bring the system out
of sleep mode.

In the standby mode, more of the system is powered
down. The standby mode must be entered actively, i.e.
in response to a user command (or software command).
The standby mode, in the presently preferred embodi-
ment, can be exited only by a manual input from the
user.

Sample System Configuration

In the presently preferred embodiment, as shown in
FIG. 1, a variety of peripherals are connected to the
system bus. These preferably include at least a floppy
disk drive, a hard disk drive, a serial port UART, and a
display controller. Of course, other systems may be
configured with other peripherals, depending on the
system bus, such as memory expansion boards, real-time
clock, etc.

The specifics of these peripherals are not highly rele-
vant to the disclosed power management architecture.
However, one feature to note, regarding at least some of
these peripherals, is that a great deal of power can be
saved by powering them down into a standby state. For
instance, two primary candidates for such standby ac- -
tion are the hard disk drive and the display. Even with
an LCD display, the power budget required to operate
the display controller and the display is quite signifi-
cant. Similarly, any hard disk drive, even when the
heads are not being moved, a non-zero amount of power
is consumed to maintain the synchronous rotation of the
platters.

The mnovative teachings disclosed herein provide a
personal computer in which a microcontroller, separate

J,410,711

S

from the main processor, is used for power-manage-
ment functions. Under certain conditions, this power-
management microcontroller can take control of the
system bus.-This provides BIOS-independent power
management, even for devices which have 1/0- 5
‘addressed ports which must be written to enter standby
mode, and permits sophisticated power management to
be performed without placing any burden or constraints
on the primary operating system.

BRIEF DESCRIPTION OF THE DRAWING

The present invention will be described with refer-
ence to the accompanying drawings, which show im-
poritant sample embodiments of the invention and
which are incorporated in the specification hereof by 15
reference, wherein:

FIG. 1 shows the overall electrical organization of
the portable laptop computer of the presently preferred
embodiment.

FIG. 2 shows the analog connections used, in the 20
presently preferred embodiment, for monitoring the
state of the two battery banks. FIG. 3 shows more de-
tails of the power-supply and power-control circuitry
actually used, in the presently preferred embodiment.

FIG. 4 is a block diagram of the microcontroller 25
interface chip, in the presently preferred embodiment.

FIG. 5A is a state diagram which shows the operat-
ing of a first state machine, in operatlons where the
microcontroller interface chip is accessing the system
bus as slave.

FIG. 5B is a state diagram which shows the operation
of a second state machine, in operations where the mi-
crocontroller interface chip is accessing the system bus
as master. |

FIG. 6 is a diagram of the microcontroller interface
chip, i the presently preferred embodiment. Note that
this diagram is somewhat more detailed, in certain re-
spects, than the diagram of FIG. 4. |

FIG. 6A is a diagram of the MC_TOP block shown
in FIG. 6, and FIG. 6A-1 is a diagram of the MC-intfc
block shown in FIG. 6A.

FI1G. 6B 1s a diagram of the at_interface block shown
in FIG. 6, and FIG. 6B-1 is a diagram of the index block
shown 1n FIG. 6B.

FIG. 6C is a diagram of the sram__intfc block shown
in FIG. 6.

FI1G. 6D 1s a diagram of the misc_blk block shown in
FIG. 6.

FIG. 7A shows the physical structure, and FIG. 7B
shows the electrical connections, of the rechargeable
battery module of the presently preferred embodiment,
containing two electrically separate banks of 7 batteries
each.

FIGS. 8A-8J show various views of the external
physical appearance of the portable laptop computer of 55
the presently preferred embodiment.

- FIG. 9 shows generally how circuit boards are em-
placed and connected in the portable laptop computer
of the presently preferred embodiment.

FI1G. 10 1s a detail view of the case-closing switch and 60
button of the presently preferred embodiment.

DESCRIPTION OF THE PREFERRED
- EMBODIMENTS

The numerous innovative teachings of the present 65
application will be described with particular reference
to the presently preferred embodiment. However, it
should be understood that this class of embodiments

10

30

35

45

50

6

provides only a few examples of the many advanta-
geous uses of the innovative teachings herein. In gen-
eral, statements made in the specification of the present
application do not necessarily delimit any of the various
claamed inventions. Moreover, some statements may
apply to some inventive features but not to others.

Overall Orgamization

The presently preferred embodiment provides a
80C286 or 386SX laptop computer, with hard disk and

LCD display, powered by rechargeable NI-Cd batteries
and a nonrechargeable lithium battery.

Physical Conformation

FIGS. 8A-8J show various views of the external
physical appearance of the portable laptop computer of
the presently preferred embodiment. This provides a
“laptop” computer, which can provide the full power
of a normal personal computer for several hours of
operation between battery recharges. This is a ‘note-
book” size laptop computer, measuring approximately
8.5X 11X2 inches, in the presently preferred embodi-
ment. Weight, cost and power consumption are impor-
tant considerations in such products.

FIG. 8A shows a perspective view of the notebook
computer of the presently preferred embodiment in the
open position. Visible elements include case 802, cover
804, hinges 806, display screen 810, keyboard 820,
floppy disk drive 830, and dust cover 803 (which covers
the receptacle for the rechargeable battery pack).

FIG. 8B shows a front view of the computer of FIG.
8A, with the cover open. Note that the dual-purpose
standby/sleep button, described below, is visible.

F1G. 8C shows a from view of the computer of FIG.
8A, with the cover closed.

FIG. 8D shows a rear view of the computer of FIG.
8A, with the cover open. Note that keyboard, display,
and serial port connectors are visible.

FIG. 8E shows a rear view of the computer of FIG.
8A, with the cover closed.

FIG. 8F shows a rear view of the computer of FIG.
8A, with the cover closed, and with a dust cover 805
eraplaced to cover the external connectors visible in
FIGS. 8D and 8E.

- FIG. 8G shows the right side of the computer of
FIG. 8A, with the cover open, and FIG. 8H shows the
fight side of the computer of FIG. 8A, with the cover
closed. FIG. 81 shows the left side of the computer of
FIG. 8A, with the cover open, and FIG. 8J shows the
left side of the computer of FIG. 8A, with the cover
closed.

The presently preferred embodiment is actually
planned for production in two versions, one using a
CMOS version of the 80286 processor and one using a
CMOS version of a 386SX processor. Of course, these
two processors are extremely similar to each other, and
the differences between them have little relevance to
the power of management architecture features de-
scribed. Disclosed innovations can be applied not only
to other Intel 8086-derived processors, such as the
80386 and 80486, but can also be applied to other pro-
cessor families which may, in the future, find use in
low-power portable computer systems.

‘The presently preferred embodiment relates to sys-
tems used in the ecture. (Such systems are also referred
to as systems which use the “AT bus.”) However, it is
alternatively possible to adapt at least some of the dis-
closed teachings to other architectures, such as EISA

5,410,711

7

bus systems or to other buses which may find use in the
future.

In the presently preferred embodiment, an HT21
chip, from Headland Technologies, is used to provide a
variety of peripheral support functions to the main mi-
croprocessor. These include bus management, memory

management, interrupt control, and DMA control. Se-

rial port management and keyboard interface are pro-
vided by an 82C186 combination chip from VTI Of
course, other implementations of support logic and glue
logic can be used if desired, within this well-known
architecture.

The presently preferred system embodiment is a fam-
ily of two highly similar notebook computers, varying
primarily in the processors used. Both have an external
closed size of about 8.5 11X2 inches. One version is
based on an Intel 80C286 microprocessor running at
12.5 MHz, and the other version is based on an Intel
386SX processor running at 20 MHz. Both notebooks
contain similar I/0 devices, including, in the presently
preferred embodiment:

a Sharp VGA flat panel display;

Conners Peripherals 222 or 242 20 or 40 MB 2.5” hard
disk;

Epson 3.5" floppy disk drive;

WD 90C20 VGA controller chip;

VTA 82C106 1/0 combo chip;

1 MB on board VSOP memory;

2 expansion memory slots; and

Power management microcontroller, with the Mi-
crocontroller

Interface chip (“MILLES”) gate array assembly.

In addition, the following 1/0 connectors are avail-
able on the back panel for external devices:
25 pin D connector for parallel/floppy disk;
9 pin D connector for serial;

15 pin D connector for external CRT;
6 pin DIN connector for mouse; and
6 pin DIN connector for external keyboard.

Also available, through slide off panels, are an expan-
sion connector for an optional modem, an 80387SX
numeric coprocessor socket, and the 2 expansion mem-
ory connectors.

FIG. 9 shows generally how circuit boards are em-
placed and connected in the portable laptop computer
of the presently preferred embodiment. Top board 920,
and power module 930, are docked into Bottom board
910.

FIG. 10 1s a detail view of the case-closing switch and
button of the presently preferred embodiment. (This is a
cutaway view, looking from the fight side of the case,
showing the lid in the process of closing.) When the lid
904 1s closed, it bears against movable lever 1002, which
in turn bears against switch 1004. However, when the
lid 1s open, button 1002 is easily accessible to the user’s
finger, as may be seen in FIG. 8A.

‘Thus, the cam-like action of lever 1002 provides reli-
able button depression when the case is closed. The
switch 1004 is mounted, in the presently preferred em-
bodiment, on the power module board 930.

Rechargeable Battery Module

FIG. 7A shows the physical structure, and FIG. 7B
shows the electrical connections, of the rechargeable
battery module of the presently preferred embodiment,
containing two electrically separate banks of 7 batteries
each. Note that a fuse is included in the model of each
bank of batteries.

d

10

| &

20

25

30

35

43

30

35

65

8

In the presently preferred embodiment, the battery
module 1s configured as two banks of 7 Ni-Cd batteries
in series. Thus, each bank provides a rated voltage of 8.4
Volts.

The battery sizes are selected, in the presently pre-

ferred embodiment, to provide a charge capacity of
1700 mA-hr for each bank; but of course the battery

sizings could be changed if needed.

Connections for Power Supply and Management

FIG. 2 shows the analog connections used, in the
presently preferred embodiment, for monitoring the
state of the two battery banks. FIG. 3 shows further
details of the power-supply and power-control circuitry
in the preferred embodiment.

The power system for any battery powered computer
varies quite a bit from a standard desktop computer.
The power system used in the presently preferred em-
bodiment is unusual, even for battery powered systems.
Power 1s available from several sources; the main bat-
tery, a reserve battery, and an AC to DC adapter which
1s external to the system. Power from the main battery
and the AC to DC converter must be regulated to 5
volts through the DC to DC converter 210. This is
located on the System Power Module 930, which is
located along the back fight hand wall of the case. the
ON/OFF switch 1s also located on the SPM, and pro-
trudes through the plastic case on the fight side of the
unit (as seen in FIG. 8A). Since the external AC to DC
adapter and main battery are on a common node on the
input to the DC to DC converter, the battery banks are
protected from overcurrent from the AC adapter by
diodes D1A and D1B. Diodes D1 can dissipate up to
900 mW at their 2 Amp nominal current draw. A signifi-
cant dissipation results even when a low voltage drop
Schottky Barrier diode is used. In the presently pre-
ferred embodiment, this power loss is reduced by short-
ing diodes D1 with a pair of FETs whenever there is no
external power being supplied. (This circuit arrange-
ment, with FET pair Q3' and Q4', may be seen in FIG.
3)

The battery management circuitry, in the presently
preferred embodiment, is centered around a national
Semiconductor COP888CF microcontroller (shown as
US in FIG. 2). This device has 8 analog inputs to an
analog to digital converter, 2 timer outputs that can be
set up as pulse generators, several digital I/0 lines and
internal program ROM. The microcontroller monitors
both banks of batteries 220A and 220B for both the
current through, and the voltage of, each string of 7
cells. (In the presently preferred embodiment, each
battery bank includes seven KR-1700AE Ni-Cd cells, as
shown in FIGS. 7A and 7B.) The microcontroller soft-
ware applies a very short duty cycle pulse for a period
of time to check that the battery is accepting the charge
current properly, and is not shorted. Then, when the
battery voltage reaches about 7 volts, the pulse width is
increased until about 800 mA. are being applied.

The microcontroller has a feature called the “Watch-
dog timer output.” Through a fairly safe scheme, this
output will generate a pulse on line WPOUT if the
microcontroller is not executing its program properly.
If this occurs, U6 latches the condition, which tristates
U7A and U7B. A pullup on the output causes the gate
of Q1A and Q2B to be pulled to ground, shutting the
charger’s current path off to the battery. This provides
a safe condition during reset, and a safe condition in
case the microcontroller should fail.

5,410,711

9

The charge current is regulated thrdugh a pulse

- width modulation scheme in which Q1A and Q1B are

switched at a frequency of about 10 kHz. The width of

the pulse determines how much average current is al-
lowed to flow through the battery. L1A and L1B are
toroidal core inductors that prevent excessive amounts
of current to be sourced from the adapter. The two
diodes D2A and D2B provide negative current to flow
through L1A and L1B after Q1A and Q1B are turned
off, and the field induced in L1 collapses. Transistors

3

10

Q3A and Q2A are turned on to allow the gate of Q1A

to be pulled to the 21 volt level of the dc to dc con-

verter. Op amp U2A is used as a differential amplifier

across R1A (0.01 ohms) to obtain a signal IA which
measures the current from battery bank 220B. The out-
put of U2A is filtered and scaled by U3A, and is read by
the microcontroller US through one of its analog to
digital converter inputs. The pulse width is adjusted by
the microcontroller U5 to maintain a constant current
of about 800 milliAmps. U3A is also used to filter and
prescale the battery voltage measurements, to produce
an analog signal VA to US5. Signals VB and IB are
similarly generated to measure the voltage and current
of the other main battery bank 220B.

Q3 1s turned on by the microcontroller pulse through
U7 and US8. Tuming on Q3 pulls the base of Q2 low,
which causes it to conduct, allowing 21 volts to be
supplied to the gate of the power FET, Q1. Ul inverts
the signal from the microcontroller, turning Q4 off
- whenever Q3 is on when the signal from the microcon-

15

20

25

30

troller goes inactive (high), the base of Q4 is driven

high, causing Q4 to conduct and drain the gate capaci-
tor of Q1 through a small resistor (about 220 ohms) to
ground. This allows for a fast turn off and turn on time
for the FET (Q1). Keeping Q1 in its non-linear region
keeps it from becoming heated, so that no heat sink is
needed for these FETS.

FIG. 3 shows some additional details of the power
management circuitry. This circuitry is shown primar-
ily for very full compliance with the best mode require-
ments of the U.S. patent law. Note, however, the relay
310, which switches back and forth between the two
battery banks 220A. and 220B. |

Power-Management Program
The following high-level pseudo-code shows the

program structure which is a actually used, in the pres-

ently preferred embodiment, for
POWER ON

Perform basic integrity check
Check power switch
If switch on go to NORMAL START

If switch off go to NORMAL CHARGE MODE
NORMAL START

Turn on POWER ON led
Initialize port direction and interrupt registers
Initialize timers
Test for AC Available
Begin Normal Operation MAIN Loop
MAIN-—(Normal Operation) |
Monitor—Battery Voltage Standby Switch AC
Available System ON switch and blink Charge
LED if on Activity Lines (Reset timeouts when
active) If Dynamic adjustment enabled reset HD
and floppy timeouts during keyboard activity.
TIMER INTERRUPT-—5.12 msec.
Service Watch Dog Timer Register
Store current battery voltage

power management.

35

45

30

33

635

10

Compare with past for rapid drop detection
Compare with minimum absolute level
Compare with warning level
Test alternate battery before activating alarm and
switch batteries if indicated

Decrement Seconds Timer
Each Second:

Decrement timeout counters
Battery Change
Hard Disk
System Sleep
Backlight Timeout
~ If Beeper active
Decrement pause counter and call BEEP
Test and debounce standby switch
BATTERY DETECT INTERRUPT
Switch to reserve battery
Start 2 minute timeout for system power off
Turn off LCD to reduce power consumption
If Floppy and HD not active, put system in standby
mode
Accumulate reserve battery use time, (After 1 minute
of reserve on time, or one month of operation, the
reserve charger will be enabled during the next
battery charge cycle. After 2 minutes of use the
reserve battery will be charged from the main bat-
tery if no AC is available.) Monitor BDT#* line for
new battery installed to terminate function Test
new battery and switch reserve off if voltage good
BATTERY CHANGE
Read current battery voltage
Read target battery voltage
Switch if alternate is same or higher
LOW-POWER—1 mode
BEEP for 5 seconds (2 times every second) (COP
should enable speaker on low volume if user has it
off)
Turn on LOW BATTERY LED
Set Low Power 1 Flag
LOW-POWER—2 mode
Beep for 5 seconds (2 times every second) (COP
should enable speaker on high volume regardless of
the user setting)
Flash LOW BATTERY LED
Turn off LCD back light
Set CPU clock to slow speed
Set Low Power 2 flag
Enable keyboard interrupt and turn LCD backlight
on with any key |
Scan for presence of external power or new battery
LOW-POWER——3 mode |
Place main CPU in standby mode if not already there
Output continuous beep for 3 seconds
Save voltage reading for future comparison
Turn off the power module
POWER ON ALARM (Standby Switch held low for 5
S€C Or more)
Exit immediately if external video active
LCD backlight is turned off
CPU clock speed goes t slow speed.
Flash Power On LED indicating Standby mode
A beep alarm is sounded if operating on batteries. (2
beeps every 4 minutes)
Monitor the standby switch to determine when the
LCD panel is opened to exit this mode.
Exit standby immediately when the cover is opened.
STAND-BY/RESUME KEY
Enter and exit standby when button lifted

5,410,711

11
CPU clock set to slow speed

LCD backlight is turned off

CPU 1s placed in HOLD mode for minimum power
consumption

POWER LED is flashing (0.5 sec on 2 sec off)

COP pulses the HT21 refresh line to refresh memory
Monttor the STAND-BY/RESUME key to exits
stand-by mode

Exit hold for a fixed period on each timer interrupt to
allow system time to be maintained.

Mask keyboard and mouse interrupts and have COP
clear the keyboard controller buffer and restore the
interrupt controller mask register before exiting
standby.

SLEEP MODE

Reduce clock speed to slow

Turn off LCD backlight

Enable keyboard interrupt

Monitor system activity (keyboard, ports, and restore
full speed if any activity detected

If inactive for more than 1 minute and AC is avail-
able, begin Sleep Charge Mode

Allow Standby Key press to exit sleep mode

" NORMAL CHARGE MODE

Turn on CHARGE led

If Reserve Charge Flag set, start reserve charge with
2.5 hour fail safe timeout

Minimum duty cycle for 3 minutes

Monitor voltage rise and current

If max voltage and no current then battery open

If current rise with no voltage then shorted

If OK gradually increase current to target value of
750 mA. Start fail safe timeout of 4 hours

Monitor voltage until it starts to decline or holds
constant for xx minutes |

If voltage reaches the power supply maximum then

monttor the charge current watching for an in-

crease Or a constant value for xx minutes to indicate -

end of charge

When end conditions are reached shut off charging
current Flash CHARGE led at a low duty cycle
when charged

Wait 0.5 hour with charge off before resuming trickle
charge on batteries to allow them to cool off from
charge

SLEEP CHARGE MODE

Turn on CHARGE led

Minimum duty cycle for 3 minutes

Monitor voltage rise and current

If max voltage and no current then battery open

If current rise with no voltage then shorted

If OK gradually increase current to target value of
xxx mA. Start fail safe timeout of xx hours

If voltage reaches the power supply maximum then
monitor the charge current watching for an in-
crease or a constant value of xx minutes to indicate

- end of charge

Exit charge mode and start blink of CHARGE led
before system exits sleep mode

Flash CHARGE led at a low duty cycle when
charged

When end conditions are reached shut off charging
current

HOST BIOS FUNCTIONS
POST

Reset COP
Checksum MILES SRAM and compare version
number

10

15

20

23

30

35

45

50

55

60

65

. 12
If necessary reload COP program
Start COP
Transfer setup parameters to SRAM and clear
CDONE to interrupt COP
Check for proper operation of COP
Set processor to compatibility speed (per SETUP)
Turn on LCD backlight
SWITCH DISPLAYS
Send Display_.Type command to COP (LCD/CRT)
WAIT FOR KEY (INT 16H function 0)
If no character is available issue a CPU-HOLD com-
mand to the COP
SETUP
COP returns status of standby button, et. to setup
Transfer interrupt mask to be used in standby to COP
Transfer parameters to COP before-exiting setup
CTL/ALT/DEL (soft boot)
Place COP in reset before resetting CPU
EXTERNAL PROGRAM INTERFACE
Verify power status before programming Flash
Eproms
Enable reserve battery for Flash programming power
backup
The Appendix shows a detailed implementation of
the COP code to perform these functions, in the pres-
ently preferred embodiment. However, the foregoing
listing shows the key relations of the preferred program
structure.

CPU AND BUS MANAGEMENT

The presently preferred embodiment provides two
versions, differing primarily in the choice of CPU: one
version with an Intel 80C286, and one version with an
Intel 386SX.

The presently preferred embodiment relates to sys-
tems used in the ISA architecture.

(Such systems are also referred to as systems which
use the “AT bus.”) However, it is alternatively possible
to adapt at least some of the disclosed teachings to other
architecture’s, such as EISA bus systems or to other
buses which may find use in the future.

In the presently preferred embodiment, an HT21
chip, from Headland Technologies, is used to provide a
variety of peripheral support functions to the main mi-
croprocessor. These include bus management, memory
management, iterrupt control and DMA control. Ad-
ditional information regarding this chip may be found in
its data sheet, which is available from Headland Tech-
nologies, and which is hereby incorporated by refer-
ence.

Serial port management and keyboard interface are
provided by an 82C186 combination chip from VTI. Of
course, other implementations of support logic and glue
logic can be used if desired, within this well-known
architecture.

In the presently preferred system embodiment, the
BIOS 1s carried in flash EPROM. Thus, BIOS update
requires erasing the flash EPROM. If power were lost
while this operation were in progress, the machine
would become nonfunctional. Therefore, in the pres-
ently preferred embodiment, the on/off switch is disre-
garded while flash EPROM programmation is in
progress.

POWER-MANAGEMENT MICROCONTROLLER

A COP88BCF microcontroller is used to perform the
power-management functions, in the presently pre-
ferred embodiment. This microcontroller has an un-

5,410,711

13
usual feature: A/D converter circuitry is included on-
chip, so that the chip can directly receive 8 channels of
analog mput. However, alternatively, other microcon-
trollers could be used, with off-chip converters or ana-
log interface chips if desired.

THE MICROCONTROLLER INTERFACE CHIP
(“MILES”)

FIG. 4 is a block diagram of the microcontroller
interface chip, in the presently preferred embodiment.
This figure shows significant signals which interface to
the other chips, and also shows some important on-chip
registers. The significance of these signals and registers
will now be described.

The microcontroller interface chip (which is often
referred to herein as “MILES”) is an interface chip
between the National Semiconductor COP888CF mi-
crocontroller, its SRAM for program memory, and the
AT bus. .

The Microcontroller Interface Chip allows the BIOS
to download programs to the SRAM, and the
COPS88BCF can thus execute in ROMiless mode by
fetching code from the SRAM. This is accomplished by
a serial communication channel between the Microcon-
troller Interface Chip and the Microcontroller.

The Microcontroller Interface Chip also allows the
COP8BSCF to read and write to the AT bus, so that it
can control the system clock speed register in the HT?21
chip, etc. The AT bus also has the capability to perform
I/0 reads or write to the SRAM while the COP888CF
1S executing code.

The COP888CF performs power management func-
tions such as monitoring the battery level, turning off
the display when not in use, and powering down the
machine after programmable periods of inactivity.

The main function of the Microcontroller Interface
Chip is to interface between COP888CF microcon-
troller, an external SRAM, and the AT bus (which is
driven by the HT21 chip by Headland Technologies).

FUNCTIONAL BLOCK DEFINITIONS
MILES AT BUS INTERFACE BLOCK

This interface (schematically shown in FIG. 4) con-
trols the AT address, data, and control signals
(IORC~, IOWC~, AEN, IOCHRDY (In the present
document, a tilde ~following a signal name is used con-
ventionally to indicate an inverted or active-low signal.)
when executing AT I/0 cycles to the Microcontroller
Interface Chip. This interface handles both slave and
master cycles on the AT bus by providing an intelligent
state machine. This state machine keeps track of AT
cycles as well as tristating the address/data busses and
control signals. Address bits are be latched, and data
bits are not latched, on slave cycles (i.e., when an AT
master is writing to the SRAM). Data is read from or
written directly to the SRAM.

MILES COPS888CF MICROCONTROLLER
BLOCK |

This interface (schematically shown in FIG. 4) in-
cludes a serial/parallel shift register for both the address
and the data paths. The SRAM address is supplied from
the AH and AL registers. The COP888CF always pro-
vides the address and data serially, and expects to re-
ceive the data requested serially on the next cycle. As
will be described later, COP888CF reads from certain

3

10

15

20

25

30

35

45

50

35

65

14

addresses are treated as Exception Cycles by the Mi-
crocontroller Interface Chip.

The microcontroller address is first shifted into the
Microcontroller Interface Chip serially via the
COP88ECF D port pins D1 and D3 and then, depend-
ing on the cycle type, is passed to the SRAM or the AT
bus. The COP888CF read data is then latched in the
Microcontroller Interface Chip and shifted serially into
the DO pin of the microcontroller while the D port
write data is shifted into the Microcontroller Interface
Chip from the D7 pin and redirected to the SRAM, or
the AT bus. |

This block also includes two 8-bit control registers
which can be loaded from the output data from the D7
pin of the microcontroller. Fifteen of these status bits

‘are output directly to MILES output pins to control

various external devices. The remaining bit selects ei-
ther 1) AT1/0 cycles or 2) SRAM or Register cycles
for the COP888CF Exception Cycles. (See Sect 1.3.4.)

MILES EXTERNAL SRAM BLOCK:

This interface (schematically shown in FIG. 4) gener-
ates the SRAM control signals (OE ~, WE~, CE~) as
well as tristating the data bus during SRAM read cy-
cles. Internal handshake signals, between the SRAM,
the microcontroller and the AT bus, are mainly decode
signals to distinguish between cycle types. The SRAM

interface is compatible with 8K X 8 memory as well as
32K X 8.

MILES STATE MACHINES

The Microcontroller Interface Chip Gate Array in-
cludes two state machines: 1) a Slave state machine,
and 2) a Master (Exception Cycle) state machine.

‘The Slave state machine tracks any AT bus cycles to
the SRAM and generates the AT system data (SD)
tristate enables. It slow monitors the AT signals SA,
IOWC~, IORC~, and AEN to distinguish between
read and write cycles. It also generates IOCHRDY to
Insert wait states on the Microcontroller Interface Chip
Slave 1/0 cycles to SRAM until the COP838CF is
finished accessing the SRAM. This prevents conflicts
between microcontroller accesses and AT accesses to
the SRAM.

The second state machine, the Master state machine,
controls all Exception Cycles. This includes microcon-
troller writes to the SRAM, the Microcontroller Inter-
face Chip Master I/0 cycles to the AT Bus, and the Set
CDONE Bit cycles. This state machine drives the nec-
essary AT control signals and busses required for the

Master I/0 cycles (SD, SA, AEN, IOWC~, and
JORC~).

MILES MISCELLANEOUS BLOCK

This block includes latches for AT control signals
IOWC~, IORC~, IOCHRDY). It also includes logic
to generate the state machine reset signal when the
microcontroller is HALTed since the COP888CF Shift
Clock does not clock during HALT. It also includes the

slave state machine time out signal generated from a
3-bit counter.

MILES REGISTER DEFINITIONS AT BUS
INTERFACE REGISTERS

These four registers and one chip select are the only
the Microcontroller Interface Chip registers that appear

in the AT address space. The address in the table head-
ing is the AT address.

5,410,711

15

Index Register (IR): AT Address: h1EA

X X X X X Index Value |

The Index Register (IR) is an 8-bit index into the
Internal Interface Registers (IIR) of the Microcon-
troller Interface Chip. When the AT bus master reads
or writes to the Virtual Data Register (VD), it accesses
the (IIR) indicated by the contents of the (IR). Only bits
2-0 are implemented. All other bits will be read as
zeroes. Writing to bits 7-3 has no effect. On RESE-
T__IN~low, this register is set to zero.

Virtual Data Register (VD): AT Address: h1EB
| Virtual Data .

The virtual Data Register (VD) is an 8-bit port into
the (IIR) of the Microcontroller Interface Chip. When
the AT bus master accesses the (VD), it actually ac-

cesses the (IIR) indicated by the current value of the
(IR). |

Parallel Port Direction Register (PPD): AT Address; h3BE,SD3

X X PPD X X X X |

The Parallel Port Direction Register (PPD) is a sin-
gle-bit register used in conjunction with the Parallel
Port Mode Register (PPM) to control the direction of
the Parallel Port. When the (OOM) is set for Extended
Mode Operation, this register controls the LPT_DIR
pin out of the Microcontroller Interface Chip. When
the (PPM) is set for Compatibility Mode Operation,
then the LPT_DIR pin is always forced high (i.e., the
Port is always an output) and the (PPD) has no effect on
the port. Only bit 5 is implemented. Writing to any
other bits will have no effect. This register cannot be
read from the Microcontroller Interface Chip. When
this address is read, the Microcontroller Interface Chip
will not drive the SD bus; another device may drive the
data (but not necessarily). On RESET_IN ~low, this
register is set to zero.

Parallel Port Mode Register (PPM): AT Address: h102,SD7

The Parallel Port Mode Register (PPM) is a single-bit
register used to set the Mode of Operation of the Paral-
lel Port. When bit 7, SD[7], is written low, the port is set
to Extended Mode operation. When bit 7 is written
high, the port is set to compatibility mode operation,
with the port configured as an output. Writing to any
other bits will have no effect. In the presently preferred
embodiment, only bit 7 is implemented. This register
cannot be read from Microcontroller Interface Chip.
When this address is read, the Microcontroller Interface
Chip will not drive the SD bus, another device may
drive the data (but not necessarily). On RESET_IN ~-
low, this register (bit 7 only) is set to one.

>

10

15

20

25

30

35

4>

50

35

65

16

COM2CS ~(C2) Modem Chip Select: AT Address:
| h2F8-h2FF

The COM2CS ~(C2) is a direct decode of the above
AT addresses. Whenever there is an I/0 read or write
in this address range, the COM2CS ~ pin on the Mi-

crocontroller Interface Chip will be driven low. All
other times it is inactive high the Microcontroller Inter-
face Chip does not drive onto the SD bus during these

accesses. Reset has no effect.

MILES Internal Interface Register (IIR)

These four registers are used to generate and control
AT read and wrnite accesses to the SRAM. They are
accessed indirectly from the AT bus by writing the
address f the desired register into the (IR) and perform-
ing a read or write cycle to the (VD) Register.

Address High Register (AH): AT Address: h1EB

X Al4 Al13 Al2 All A10 A9 A8

The Address High Register (AH) contains the 7 high
order address bits of the 14-bit address to be applied to
the SRAM. During AT 1/0 reads or writes to the
SRAM, the contents of this register are input to address
pins A8-A13 of the SRAM. A14 is output on pin OP14
if 1t 1s enabled by the A14EN bit in the Control Regis-
ter. The AH register does not increment after access to
the Data register. The unused bit (7) is not implemented
and will be read as a 0. Writing to the unused bit has no
effect. The AH Register is undefined after RESE-
T_IN~goes low.

Address Low Register (AL): AT Address: h1EB

A7 A6 A5 A3 Al A0 |

The Address Low Register (AL) contains the 8 low-
order address bits of the 13-bit address to be applied to
the SRAM. During ATI/O reads or writes to the
SRAM, the contents of this register are input to address
pin AQ0-A7 of the SRAM. During SRAM accesses, the
AL register auto increments as an 8-bit counter. The
register 1s incremented at the completion of an access to
the Data Register. The AL Register is undefined after
REST_IN ~goes low.

Data Register (DR): AT Address: h1EB

D7 D6 D5 D4 D3 D2 Dl DO |

The Data Register (DR) is the data port to the
SRAM for AT Master and Slave 1/0 cycles. Since the
AL register auto-increments, sequential reads can be
accomplished by multiple reads from the DR. Likewise,
sequential writes to SRAM can be accomplished by
multiple writes to the DR. The DR does not actually

latch data; it is a data port between the Microcontroller
Interface Chip and the AT.

Control Register (CR): AT Address: hl1EB

X X X AI4EN WDOUT~RST~CDONE |

The Control Register (CR) contains 4 bits which
control or contain information about the state of the
Microcontroller Interface Chip gate array. The unused

5,410,711

17

bits (7-4) are not implemented and will be read as)’s.
Writing to the unused bits has no effect. The Control
Register bits are described on the following page:
The Microcontroller Interface Chip Control Register
(CR) bits are defined as follows:
AI4EN: A14EN controls whether A14 is output form
port OP14 during SRAM accesses. |

This allows the upper 16 k of a 32 kX8 SRAM to be
used.

1—A 14 output on OP 14.
0—A14 not output on OP14.
0 1s the RESET_IN ~ value. , |
WDOUT~: WDOUT ~reflects the value of the
WDOUT ~signal from the COP888CF.
WDOUT ~can be serfcleared in three ways:
1) set to 1 by writing a 1 to the WDQUT ~bit in
the Control Register.
2) set to 1 by asserting the RESET—IN ~ pin low.
3) cleared to O by asserting the WDOUT ~pin
from the microcontroller.

The COPB88CEF asserts a pulse when the WatchDog
times out; it does not hold it.

RST: The RST ~bit controls the RESET ~output to
the COP888CF microcontroller.

When RST! is low, the COP***CF is held in reset
and ATI/O cycles to the (DR), and SRAM accesses
will complete with no wait states. When RST ~is high,
the COP888CF will be executing code, and ATI/O
cycles to the (DR) may have wait states inserted by
IOCHRDY while the Microcontroller Interface Chip

waits for the proper time in the COP888CF instruction

cycle to access the SRAM.
1—the RESET ~output pin is driven high (deas-
serted)
0—the RESET ~output pin is driven low (asserted)
0 1s the RESET _IN~ Value (the Microcontroller
Interface Chip Reset)
CDONE: The Controller DONE bit is a handshake bit
between the AT host and the COP888CF microcon-
troller. The COP888CF will set this bit to indicate
that it has performed the action requested by the AT
host. To indicate that it has performed the action
requested by AT host. To indicate that it wants the
COP888CF to perform an operation, the AT host
should load a command into the SRAM, clear the
CDONE bit, and poll the CDONE bit to see when
the COP883CEF has completed executing it. When the
Microcontroller Interface Chip sees the CDONE bit
has been cleared, it asserts INT (interrupt) to the
COP888CF. The interrupt handling routine will fetch
the command from SRAM, execute it, and then exe-
cute the set CDONE Exception Cycle setting the
CDONE bit which deasserts the INT signal. The
CDONE bit can be set/cleared in four ways:

1) Set when RESET__IN ~is asserted.

2) Set when MC_RST ~bit is asserted. |

3) Set by the COP888CF via Exception Cycle.

4) Cleared by an AT I/0 write of 0 to the CDONE
bit.

~ Generic Chip Select (GCS): AT Address: h1EB

Index: b 100 '

An 1/0 read or write to this address will cause pin
-~ GCS~(Genetic Chip Select) to be asserted low while

IOWC~or IORC~1is asserted.

5

10

15

20

25

30

35

45

50

35

60

65

18

MILES COPS888CF Internal Only Registers

‘These registers are part of the serial interface to the
COPS8B8CF and are not directly accessible to the AT

- channel. |

Internal Address High register (IAH): (No AT Address)

X Al4 Al3 Al2 All AI0 A9 AR

‘The Internal Address High register (IAH) contains
the upper byte of the address the COP888CF shifted out
of the D3 pin. This address will be combined with IAL
register and presented to the SRAM or AT Address
Bus, depending on the cycle.

Internal Address Low register (IAL): (No AT Address)

A7 A6 A5 A4 A2 Al A0

The Internal Address Low register (IAL) contains
the lower byte of the address the COP888CF shifted out
of the D1 pin. The address will be combined with the

IAH register and presented to the SRAM or AT Ad-
dress Bus, depending on the cycle. _-

Internal Data Out register (IDOUT): (No AT Address)

D7 D6 D5 D4

D3 D2 DI DO

The Internal Data Out register (IDOUT) is written
with the COP888CF D-port data. It is serially shifted
out of the D7 pin at the same time as the address. This
data 1s the microcontroller output data for all microcon-
troller write cycles to the SRAM or AT channel.

Internal Data In register (IDIN): (No AT Address)

D7 D6 D5 D4 D3 D2 D1 DO

The Internal Data In register (BIN) contains the byte
of data that was read from the SRAM and will be
shifted into the DO pin of the COP888CF.

Internal Qutput Port High register (OPH): (OP Register)
10 M~OP14 OP13 OPI2 OP11 OP10 OP9 OPS

- The Internal Output Port High register (OPH) and
the Internal Port Low register (OPL) and internal regis-
ters that are controlled by the C1 and CO pins of the
COPB8BCEF C-port. On XLD, if cl=1, the data from the
IDOLIT register is latched into the OOP register indi-
cated by the CO bit. The IO_M~bit is a dedicated
control bit. During Exception Cycles, it selects either 1)
/0O read/write cycles or 2) SRAM Writes or Set
CDONE Bit cycles. All the other bits are output on the

OP [14:8]pins. When RESET._IN ~ goes low, the OPH
register is cleared to all zeros.

Internal Output Low register (OPL): (OP Register)
OP7 _OP6 OP5 OP4 OP3 OP2 OP1 QPO

The Internal Output Port Low register (OPL) and
the (IOH) register are internal registers that are con-

trolled by the C 1 and CO pins of the COP888CF C-

port. On XLD, if Cl=1, the data from the IDOUT
register is latched into the OP register indicated by the

5,410,711

19
CO pm. All the OPL bits are output on the OP [7:0]

pins. When RESET_IN ~ goes low, the OPL register is
cleared to all zeros.

Internal Address Compare register (IAC): (No AT Address)
Al4

The Internal Address Compare register (IAC) is
loaded with the value of the upper bit of the IAH regis-
ter, bit 14, on COP888CF Exception Cycles. It is then
compared with each subsequent cycle’s bit 14 and will
prevent the exception action (SRAM write for exam-
ple) from repeating if there is a match. This will con-
tinue until the first compare fails, at which time normal
operation will resume. The reason for this is to prevent
multiple Exception Cycles from being generated erro-
neously. When the COP888CF generates a subroutine
call to an address with bit 14 set, it will generate a read
to that address the Microcontroller Interface Chip will
recognize this and jam a RET (urn from subroutine)
instruction into the input data pin, D0, of the
COPBBECF. While the microcontroller is executing this
instruction, it will continue to prefetch data from the
location of the bogus subroutine. Since the Microcon-
troller Interface Chip will ignore these fetches, it will
not generate additional Exception Cycles. While the
IAC 1s active during Exception Cycles, the IAH and
IAL bits 0-13 will be latched until A14 is cleared to
prevent the AT address from changing during AT 1/0
Exception Cycles.

MILES Cycle Definition

MILES Slave 1/0 read/write cycles to MILES
Registers(AT 1s Master)

MILES Slave 1/0 reads and writes to the Microcon-
troller Interface Chip Internal Interface Registers (IIR)
are accomphshed by accessing the AT Interface Regis-
ters at address h1EA and h1EB, using the appropriate
index as was described above.

MILES Slave I/0 read/write cycles to MILES SRAM
| (AT is Master) |

When an AT device 1nitiates an LJO read or write to
the Microcontroller Interface Chip SRAM, it must
supply the appropriate indices to provide the memory
address which will be latched in the AL and All regis-
ters 1n the Microcontroller Interface Chip. These ad-
dresses are then passed to the SRAM. During the data
phase of the cycle (when the DR is indexed), the AT
state machine in the Microcontroller Interface chip will
immediately drive and hold IOCHRDY low until the
SRAM 1s available for access by the AT device.
IOCHRDY will then be released and the cycle com-
pleted. After every access to the DR, the AL is auto
incremented in the Microcontroller Interface Chip.
(NOTE: Data for slave cycles is never latched in the
Microcontroller Interface Chip.) For no wait state
reads or writes (1.e., loading SRAM with code or for
executing a quick check sum on the SRAM), the
RST ~bit should be asserted low prior to initiating the

slave block reads or writes. When RST ~is asserted, the

microcontroller will be held in reset so that the AT state

machine in the Microcontroller Interface Chip will not
drive IOCHRDY to insert waits.

10

15

20

25

30

35

45

50

35

65

20

Microcontroller Read from SRAM

When the COP888CF microcontroller reads from the
SRAM, it generates the address via its D1 and D3 pins
serially through the Microcontroller Interface Chip to
the SRAM. The SRAM data will then be shifted seri-
ally out of the Microcontroller Interface Chip into the
COP888CF via pin DO.

Microcontroller Write to OP Registers

When the COP888CF wants to write a value to the
OPH or OPL registers, it should write that value to its
D port into the Microcontroller Interface Chip IDOUT
register. It should then write the appropriate control
value to the C port. When XL D is asserted at the end of
a microcontroller SRAM read cycle, if C1 of the C port
is high, the 8-bit OP latch indicated by the CO bit will
be open. The input data for the OP registers is the
IDOUT register. When XLD is deasserted, the latch
will close and retain the data from the IDOUT register
which is driven out the corresponding OP pins of the
Microcontroller Interface Chip.

Microcontroller Exception Cycles

These are special cycles that are implemented by the
Microcontroller Interface Chip. The COP888CF initi-
ates an Exception Cycle by performing a subroutine call
to the top 16 K of its Program Memory Map; e.g. ad-
dress bit 14 1s set the Microcontroller Interface Chip
will recognize the address as an indication of an Excep-
tion cycle and stuff a RET (urn from subroutine) in-
struction into the IDIN register the Microcontroller
Interface Chip then takes whatever action is indicated
by the exception during the next serial code fetch from
the COP888CEF.

To the COP8RECF, it will appear that the first in-
struction of the routine is a return and it will pop the old
PC off its internal stack and continue to execute instruc-
tions after the subroutine call.

Since the COP888CF takes 5 cycles to complete the
PET instruction, and since it will prefetch instructions
from the virtual subroutine it thought it jumped to, the
Microcontroller Interface Chip will ignore all subse-
quent cycles to the exception space until it sees a mi-
crocontroller read from SRAM cycle. This will prevent
the Microcontroller Interface Chip from taking errone-
ous exceptions while still allowing back-to-back Excep-
tion Cycles by the COP888CF code.

The Exception Cycle Memory Map is as follows:

Ac-tiﬁn

Mastér I/0 Read
Master I/O Write
SRAM Write

Set CDONE bit
SRAM Read

I0_M~
|

Al4 - Al3 Al2 All

PSS PS PX S

1 0
1 1
1 0
1 1
0 X

76 PS P4 P8 P4

1
0
0
X

10__M ~1is a control bit in bit 7 of the OPH register.
It selects between: 1) I/0 read/write cycles and 2)
SRAM or Set CDONE Bit cycles. It is the microcon-
trollers’ responsibility to set this bit to the proper value
prior to initiating the Exception Cycle.

For ALL Exceptions Cycles, the COP888CF must
first acquire the AT bus by asserting DMA_REQ
(DMA request) and waiting for DMACK (DMA ac-
knowledge). It must then assert MASTER ~for proper
execution of the I1/0 cycle.

>,410,711

21

MILES Master I/O Read

During a MILES Master FO Write to the AT bus,
the microcontroller will shift the address into the Mi-
crocontroller Interface Chip IAH and IAL registers
which will then drive the AT address. The AT bus state
machine will write the data from the IDOUT register to
the At data bus. The COP888CF should have written

the intended AT write data to its D-port before execut-
g the Exception Cycle.

Microcontroller Write to SRAM

10

Address and data reshifted into the Microcontroller

Interface Chip serially to generate the SRAM address
and data. The Address is collected in the IAH and IAL
registers as for reads, the Data is collected in the
IDOUT register. The COP888CF should have written
the intended AT write data to its D-port before execut-
ing the Exception Cycle the Microcontroller Interface
Chip will stuff a PET (run from subroutine) instruction
- into the IDIN register and complete the write during
execution of the RET.

Microcontrolier Set CDONE Bit

When the Microcontroller Interface Chip detects a
read to the address for the Set CDONE Bit Exception,
it will cram a PET (return from subroutine) instruction
nto the IDIN register and set the CDONE Bit in the
Control Register, also clearing the COP88S8CF Inter-
rupt previously set when CDONE was cleared.

Sample Specific Circuit Implementation

The actual circuit implementation of the presently
preferred embodiment will now be described in very
great detail. However, it must be noted that the draw-
ings shown are actual engineering drawings, and there-
fore include a great deal of detail. Most of the signal
names on these drawings correspond to those discussed
above, but the significance of the others will be readily
apparent to those skilled in the art of digital design.

FIG. 6 is a diagram of the microcontroller interface
chip, in the presently preferred embodiment. Note that

this diagram is somewhat more detailed, in certain re-

spects, than the diagram of FIG. 4.

The at_interface block provides the interface to the
AT bus, and 1s shown in more detail in FIG. 6B. The
atmas block is a state machine, for accessing the AT bus
as master, and corresponds to the state diagram of FIG.
SB. The atslv block is a state machine, for accessing the
AT bus as slave, and corresponds to the state diagram of

15

20

25

30

35

45

50

FIG. 5A. The misc__blk block is shown in detail in FIG.

6D. The MC_TOP block provides the interface to the
microcontroller, and is shown in more detail in FIG.
6A.

FIG. 6A 1s a diagram of the MC_TOP block shown
in FIG. 6, and FIG. 6A-1 is a diagram of the MC_intfc
block shown in FIG. 6A. The block mc...pads merely
represents pads and pad drivers. Block ret.mux8 is an
8-bit-wide multiplexer, which implements the return-
cramming function: if line RET_SEL is low, data from
the program memory will be selected; if line RET___
SEL i1s high, data from the return cramruer memory
will be selected. Block cdata reg is simply a double
register, which multiplexes the in byte onto theaand b
bytes. Blocks 1at1$ and 1at8 are latches. Block sclk_cnt3
1s a 3-bit counter, which counts 8 sclock signals and
then generates a LEN signal on the following sclock
edge. Block s2p_reg8 is simply a serial-to-parallel regis-

35

65

22

ter, and p2s_.blk is a parallel-to-serial converter. Block
addr_sr is a shift register for address conversion.

FIG. 6B is a detailed diagram of the at_interface
block shown in FIG. 6. Block decode is simply a de-
coder, which implements tests for signal values as de-
scribed above. Block SDpad is an 8-bit bidirectional
interface (with registers) to I/0 pads, and block sApad
is a stmple 10-bit bidirectional pad interface. Bloc at_.
regs is simply a large collection of registers.

FIG. 6B-1 1s a detailed diagram of the index block
shown 1n FIG. 6B. This block shows the logical used to
implement four WR ~bits, and the resulting Boolean
relationships.

FIG. 6C is a detailed diagram of the sram__intfc block
shown in FIG. 6, which implements the SRAM inter-
face.

FIG. 6D is a diagram of the misc__blk block shown in
FIG. 6. Note that this includes a 3 bit binary counter
which will time out about 375 ns after TO_EN is as-
serted. |

Further Modifications and Variations

It will be recognized by those skilled in the art that
the innovative concepts disclosed in the present applica-
tion can be applied in a wide variety of contexts. More-
over, the preferred implementation can be modified in a
tremendous variety of ways. Accordingly, it should be
understood that the modifications and variations sug-
gested below and above are merely illustrative. These
examples may hélp to show some of the scope of varia-
tions 1n the disclosed novel concepts.

The presently preferred embodiments, as discussed
above, use Intel microprocessor for the CPU. However,
of course, the disclosed innovations can also be applied
to system using other non-Intel microprocessors of
comparable architecture. The disclosed innovations can
also be applied to other systems using other types of
CPU, such as 6800, SPARC, MIPS, or others. It is
contemplated that, in the future, the disclosed innova-
tions can also be applied to system using a multiproces-
sor CPU.

The presently preferred embodiment relates to sys-
tems used 1n the ISA architecture. However, it is alter-
natively possible to adapt at least some of the disclosed
teachings to other bus architectures, including not only
the EISA bus architecture (which is an extension of
ISA), but also the many other buses which are now
buses which are now in use or which may find use in the
future.

The presently preferred embodiment uses Headland
Technology and VTI chips for CPU support functions.
However, of course, a wide variety of other chips are
available to perform these functions, and many substitu-
tions are possible. In particular, some microprocessors
have been proposed with added support functions on-
chip. For another example, compact modules incorpo-
rating a microprocessor with peripheral support func-
tions are also available. A huge variety of such substitu-
tions can be made, while still obtaining the benefits of
the disclosed inventions.

Of course, many 1/0 and storage peripherals can be
added into a laptop system. The disclosed innovations
are generally applicable to such systems, regardless of
what peripherals have or have not been added. Thus,
for example, a laptop which contains a large bank of
NVSRAM, or which is connected to an Ethernet
adapter, or which includes speech recognition or syn-

5,410,711

23

thesis, would still present many power-management
1ssues similar to those discussed above.

For example, the principal disclosed embodiment, as
presently practiced, does not include any available ex-
pansion slots for the user to add cards into. However, it
contemplated that addition of an expansion bus might

be advantageous, and particularly so in combination

with microcontroller power-management architecture
described above.

For another example, the principal disclosed embodi-
ment, as presently practiced, does not include any avail-
able expansion slots for the user to add cards into. How-
ever, 1t 1s contemplated that addition of an expansion
bus might be advantageous, and particularly so in com-
bination with the microcontroller power-management
architecture described above.

For another example, the principle disclosed embodi-
ment, as presently practiced, never stops the system
clock. In the 286 embodiment, the clock is slowed to
250 kHz, and in the SX embodiment the clock is slowed
to 2 MHz. A fully static chip set, which would permit
the system clock to be stopped would be even more

10

15

20

24

advantageous; but, in the presently preferred embodi-
ment, the HT21 chip and the SX chip are not compati-
ble with fully static operation. Nevertheless, this is an
obviously desirable modification, as the appropriate
chip sets become available.

For another example, the principle disclosed embodi-
ment, as presently practiced, uses Ni-Cd rechargeable

batteries, and a small lithium cell as a nonrechargeable
backup battery; but at least some of the disclosed inno-

vative teachings can be practiced with other recharge-
able battery technologies (such as NiH cells), if such
technologies become commercially practicable, and/or
can be practiced with nonrechargeable batteries in
place of the NiCds of the preferred embodiment, and/or
can be practiced with nonrechargeable batteries other
than lithium cells.

As will be recognized by those skilled in the art, the
innovative concepts described in the present application
can be modified and varied over a tremendous range of
applications, and accordingly the scope of patented
subject matter is not limited by any of the specific exem-
plary teachings given.

APPENDIX

| A sample source code implementation is set forth, in the following appendix, to
ensure the fullest possible compliance with the best mode.requirements of US patent law.
Although the following code does represent the state of this code as of the effective filing
date of the present application, it must be noted that this specific example is still under
development. It is expected that this code will later be modified to add functionality,
improve performance, and possibly also to remove bugs. Thus, users are wamed that the
following example should be regarded as an engineering prototype rather than a finished
product, and should be used only with great caution. This assembly language code 1S

written for the COP888CF microcontroller.

Appendix to Patent Application of Dell Computer Corp.

-

.title COPB8S, 'Power Management'
.list 078 -05B

1ncld copB88.inc
incld except.mac |

ncld purmogmt.inc

- NAME PWRMGMT . MAC

Page A-ii

;05F lists all macro expension details for debug +020 for incld

-tItiii****ii*i*i‘i'1“*‘*****1**i******‘I******i*i*******'**‘*ii*i***‘***‘**

'

;¥ Copyright (¢) 1990 Dell Computer Corporation, Inc.
;¥ contains proprietary and confidential information.

This program .
All rights reserved =

;* except as may be permitted by prior written consent. *

'

. Revision Information $Revigsion:
: $Oate:

.IIIII****t***ﬂ****i*‘*ﬂi‘*‘*ﬁ*ﬁ*‘i*i***i******i*‘*’**i**t‘t**i*i**i******‘it

-ItIiI*Iiif*!****ﬂ*ii‘*tﬂ*i‘*ﬂ*iﬁ*i***ii*ﬂ***!'****ﬁ'tﬁ*i**iit**t**ﬁi*iiit'ti

1'“ s
01 Feb 1991 9:07:00 $

.Iit‘t****'*t'***i******i********"*‘**i‘i*i*‘*‘*‘i*i*ii**'ii'ﬂ*I***ii‘**i'**.

g

25

5,410,711
26

This program uses the ldie timer of the COP888CF for its time reference.

- At an 8MHz clock this coresponds to a resolution interval of 5.12 msec.

- (4096 counts at .8MHZ per timer tick)

: This 'program beging by setting up the ports for direction artd

- erabling the watch dog timer.

Start:

SYSOK:

ip’

.byte

ld
ld
ld
ld
ld
ld

ld
\d

Ld
ld
ld
ld
ld
ld

ld
ld

jsri
1feq
P

td

ld
ld
{d

isr

td

ld
ld

ld

jsr
ld
{d

1st .

jsr
rbit

start
1NOO

pendng, #00
mode, #0

cronde, #0
flashb,
alrmce,
tdelay,
batcent,
portee,
ported,
portle,
portld,

portge,

portod,
enad, #0

833383%%35

second, #secent
minute, #mini

XSUmp
a, xsumnpd
Sysok

systim, ¥mink
hdtim, #mink
ledtim, #mind
sysbyt, #02F

STmout

portcd, ¥01C
portce, #01F

b, #oplow

[bl, #0

put low

b, #ophigh

(bl, #ampson+fetoff
puthi .

dely50
S, ientri

:no delayed operations to start

:1 sec turn on delay

;first battery change in 1 minute

sPut A/D in low power mode

sinitialize timeout

;test the validity of the current params

;set default values

;set the initial timeouts

;initial € port datas
;make CO and C1 - C4 outputs

;Start at higﬁ speed, video off, opamps on
;This is to get around powerup |
; problem with MILES |

;Mait 50 msec for power to go away

:clear the TO cverfiow bit

nstart:

- ¥R '

main:

main00:

mainQ1i:

setbit
jsr
jsr
bitif
jp
cirbit

bitif
jmp

{d
id
jsril
jsrt
sbit
jmp

clrbit
setbit
jsri
jsr
jsr

ld
setbit
setbit
sbit
sbit
sbit

sbit
nop
nop
nop
rbit
bitif
ip
bitif
1mp
jmp

bitif
p
J8T
bitif
ip
bitif
)P

- bitif

27
hdcs(, wkeag
cksram

ckrbat
syson, portgp
nstart .

syson, flashb

acav, portep
spmoff .

¥

-

portcd, #01C
portce, #017
c20off

stchrg

4, ientrl
cmain

purled, portcd
syson, flashb
cl0on

vinit

dl ypmd

wkpnd, #0

‘bdt, wken

kbdint, wken
&,icnert

6,1entri
1,p8u

0, psw

0, psw

syson, portgp
ma in00

bxit, mode
reslop

reset

acav, portcp
mainil

clrliob

chrgrb, érgnde
main0i

trklec, Cromce

v

main

5,410,711

;Look for low going edges
;check sram parameters

;test reserve
;18 ‘the power switch on?

; Yes, then normal start sequence

;Next test for AC power
+ Shouldn't be here if no AC

sinitial C port data
;make CO - C2 outputs
sturn off video
;start the charger
;enable TO interrupt
:main loop for charge ’

sturn on power LED

sTUrn on video

;initialize voltage readings
:reset power monitoring mode
;clear any pending interrupts
:enable battery detect interrupt

:enable 70 interrupt
senable L port wakewp interrupt
; enable external interrupt

:global interrupt enable
:service all Interrupts now

+ now turn them back o7f
sMonftor system switch

L

sare we waiting for a new battery?
:wait for nes battery

:test for ac available
+ if operating from batteries

;1f reserveipattery being charged

~ don't turn on trickle charger

+Allow trickle charge when AC available
 if already set

;**.remu§e-for production
o Wl

:start tricklie charge

28

5,410,711

29 30

mainiQ:

bitif trklec, crgmde ;only true if AC adapter just unpluged

jsr trklof ; turn off trickle charge

bitif bdt, mode ;are we waiting for a new battery?

jmp reslop swait for new battery before testing voltage

bitif lobats, mode ;are we about to shut down system?

jmp lo3lop ;then wait for AC or new battery

jmp main ;uait before measuring batteries
¢ksmOQ:

laid

ret

: The cop888c¢cf has a vectored interrupt scheme, On an intarrupt‘

: the program branches to the instruction at OFFh. The program can
; then save the appropriate registers and issue a VIS instruction
to branch to the interrupt handier,

o

N g

=0ff

~+ This routine saves the contents of A, B, and X on entry to an interruot

-4

and restores them on exit.

push a | ;this is the only register we can save on stack
X ab | ;move contents of b to a
ld b, #¥saveb ;point to location to save B and X
X a,[be] ;save contents of original 8 register
X a,x sget contents of X register
X a, [b] and save in dats ram
vis
restor:
ld b,¥#savex spoint to location of saved X register
X a, (b-] | ;get old X cantént: |
X a,x sand put ba;k in X
x a, (bl - ~ ;now get the saved contents of B
X a,b -and put it back in B
DOP é. ;now we'lre bhack where we started
reti 1

- Timer TO underflow interrupt vector

timerQ: |
o d wdcnt, #009 ;service watch dog 2-65K window, clock monitor on
isr tstac)
bitif syson, flashb *is the cpu operating
ip tim0Q | |
ip timO1 + if not skip standby and refresh
t1m00:

test for cpu in hold
and do refresh if so
then check for activation

bitif hldreq, mode
isr refrsh

g - g

isr tststh

timll:

tCexit:e

bitif

jsr

bitif
jsr

i feq
ip
jsrl

darsz

bitif
ip
i feq
ip

: drs2z

iy B

31
hldreq, mode
flashp
lobatl, mode
flshlb

pendng, #0
tim01
iowlf7

second
t0exit
decent

bdt, mode
tim02
tdelay, 0
timd2
tdelay
tim02
resoff

bdt, mode
tsthew

cngoff, cromde
resoff

cngben, crgmde
docngb

5,icntri

restor

I

; Software interrupt vector

resery.

sSWwivec:

o
&

jsr
ip

jmp

tog

- N
° ¥
reset

5,410,711

;are we in standby mode

+ then flash the power led
:1s the battery low

; then flash the {ow bat led
:test for hd routine pending

:test hd busy status

;decrement seconds timer
:exit if not 2ero
sexecuted once every gecond

;skip if waiting for battery °
;test new battery delay

wait to initialize
: then reset voltage readings

:test for operation on reserve

; look for a new battery

;ﬁ;ve we switched batteries

; then turn off the reserve battery

:1s battery change enabled?

; then actually switch the battery banks

:i’.**t TEWRY e he >

:Light all the LED!s

.]

+ Decrement the various timeout counters

! |

cecent:

ld
bitif
jsr
drsz
ip
bitif
Jmp
bitif
Jmp
jsr

second, #seccnt

bdt, mode

incrti
minute

decO1

bdt, mode
spmoff
lobat3, mode
spmof f
decmin

;reset the seconds counter
rare we operating on reserve?
then increment reserve operation time
decrement the minute counter
until the minute is wp
;one minute on reserve battery?

) - 3 n » o N

; then turn off system
;10 secords at cutoff levetl?
; then turn off system

; then do our once a minyte stuff

32

c2c01:

cec(2:

dec(3:

decming

bitif
jsr
jst
bitif
jmp
Te.

bitif
ip
bitif

-«

Tl >

bitif
jst
td
bitif
jsr
ld

bitif

-1

bitif
ip
ld

ret

ifeq
jsr

drsz

ret
jsr
reg

ret

td

bitif

minQC:

jmp
bitif
jsr

ld

bitif
Ip
bitif
jmp
bitif

ip
jar

33

stdebl, flashb

tstpoa
resdcad

charge; cromde

adjcrg
8, sysbyt

acav, pnrtﬁp
dec(2
acovrd, a
StMmout

hdsec, a

ridhdc

a, sysbyt
fEd:ec, a

“rldled .

a, sysbyt
syssec, a
ridsys

acav, portcp
decQ3
batcnt,. #mind

tdelay, #0
chkiow
batent

engbat

minute, #mint
charge, crgnde
tstend

chrgrb, crogmnde
tstires

a, sysoyt

acav, portep
min0Q
acovrd, a
Stmout

hdse;, a
minQ1
rldhde

5,410,711

34

;We don't need to look unless switch is down *

:check for case closed

;ymake new readings once per second
;are we charging the batteries?

; 1f so then check for end, etc.
;Lo speed up checks

- stest for ac available

;imp if no AC
rtest for AC override
;« and reset timeout counters if sctive

+is the hd timeout in seconds?
;reset the hard disk timeout

;to gpeed up checks
;is led 7.0. in seconds

;%o speed wp checks

;18 system T7.0. in secords

;test for ac available

;imp 1f no AC

;reset battery timer and don‘t Switch
; 1f plugged in to AC adapter

;gon't test batteries until after delay

;# of seconds to change batteries

; to allow for & skip return if no error

;reset the minute counter

;are we charging the batteries?

; 1f so then check for end, ete.

;are we charging the reserve battery?
; if so then test for -dv

.+ t0 speed w checks

;test for ac available
jmp if no AC

;tesf for AC override
; and reset timeout counters if active

;18 the hd timeout in seconcs?

;reset the hard disk timecut

21001

min02:

»
F

ld
bitif
ip
jsr

ld
bitif
ret

- jmp

.=07el
. addrw
. addrw
. addrw
.addrw
. addry
Laddrw
-acddrw
.80dr«
. addrw
. 80drw

Lacdrw

. aadrw
. addrw

. acdrw

.acdry
 .addrw

35

a, sysbyt
lcdsec,'i
mindd
ridicd

a, sysbyt

syssec, 8

ridsys

vigvec
wakeup
resery
resery
timelb
timela
resery
resery
resery
microw
timelb
timela
timer0
extirg
resery

swivec

5,410,711

410 speed W checks

:18 led 7.0. in seconds

+t0 speed wp checks

:is system T.0. in seconds

- The interrupt vector table starts from the lowest priority vector
; which is the VIS default address and goes down to the highest
- priocrity vector, the software interrupt.

;Default VIS routine must not do a RET!
:Port L Wakewp interrupt

:Timer 3 this should never oceur
:Timer 3 this should never occur

*UART this should never occur
:UART this should never occur
:TBD this should never occur
*Microwire BUSY Low

sldle timer
-Host CPU IRQ (CDONE)
:NM] interrupt is reserved

;Software interrupt (illegal Tnstruction)

; Multi input wake-up/port L interrupt vector

wakeup:

wake00:

b

wakeQ1:

\d
bitif
|8r
bitif

Jmp
bitif
ip
bitgif
jsr
bitif
p

jmp

bitif

b, #kpnd
bdt, (b]
resvon

bdt, mode
restor -
hidreq, mode
wake00
vramcs, wkpnd

t3tvid

slpmde, mode
wakeQd1

restoc

kbdint, wkpnd

;test for battery interrupt

; switch on the reserve bat

;1f reserve battery active

; then dont check anything else
;are we in hold

; then skip scme tests |

;test for activity

;1S the processor asleep?
: 1f not then cancel tests

;exit on keyboard interrupt

36

5,410,711

37
jsr hldoff Mk]
bitif cpuint, wkpnd ;18 cpu interrupt active
jsr shrton ; turn on for 50 usec
jmp restor

+ Default VIS vector

visvec:

; jmo tog
jsr togl
jmp start

; Microwire/plus busy low interrupt vector
MICrow: | |
rbit 3,lentrt

jmp restor

; Timer T2 T2B interrupt vector

time2b:
ld b, #ophigh
cirbit speakr, [b] | sturn of f the speaker
jsr puthi |
rbit 1,t2entrl
jmp restor

-y

; Timer T2 T2A/underflow interrupt vector

. .
¥
.

timela: 3
ld b, #¥ophigh
sethit speakr, [b] ';turn the speaker on
jsr puthi
rbit 3,t2entrl -
mp restor 3
> Timer T1 T1B interrupt vector
timelbs)
jsr " tloff
jsr tloff
rbit 0, ientrl ~ idisable interrupts until the néext beep
rbit 1, ientri
jmp restor

* Timer T1 T1A/underflow interrupt-veétor

timela:
rbit 5,psw
jmp restor

38

vstac:k

tstfig:

cmaing

waith:

chklow:

tocolow:

- g

chk00:

bitif
P
bitif
Jmp
ret

bitif

ret -

bitif
jmp
bitif
it >

bitif
jsr
sbit

rbit
ip

jsr
jsr

jsr
bitif
jmp
ld
1fgt
ip

isr
nop
jmp
isrt

clebit
sethit

ld
Jmp

ld

ifgt

39

syson, portgp

tstflg

syson, flashb

reset

syson, flashb

reset

syson, portgp

reset
acav, portep

copoff

bdt, portip
waith

0, psu

0, psw
cmain

o

acrgof
bergof
stergl

avrage
bankbh, oplow
thmin

a, batav

a, ¥vterm
chk(00

cngbat

semof f
stndby
kbdint, wken
lobat3, mode

minute, ¥Mint/é

Stbheep

b, #bavmin
a, (bl
a, (bl

.

5,410,711
40

°1s power good true

+ then make sure we know it

power is off, but

+ 1f weire here the cop doesnt know it's off

sdoes the cop know we're on -
;'yes sSo just return

> restart if cop thinks we're off

»

- sMonitor system switch

:Next test for AC power

; Stop system 1f no AC

stest for new battery
» and start over
-global interrupt enable

+service all interrupts now

: now turn them back off

sturn off A bat charger
sturn off B bat charger

;test for new battery and restart if available

:use running average for voltages
:test for current bank

> £ bank B

:get the A bank voltage

: and test for cutoff value

:try to change batteries

:kill power if other battery is bad

;put system in lowest power mode

; and don't aliow keypress to exit

;wait 10 sec for new battery or AC

:reset the minute counter for termination
;beep and prepare to turn off

:store the new ¥minimum+
218 it really less >

thmax:

tstdle:

tstdle:

{owbt1:

lowbt?2:

thmine

41

ip tbmax

X a, [b]

{d a, batbv

1d b, #bvmax
X a, [b]

ifgt a, [bl

X a, [bl

ld b, #avmax
\d a, [b*} -
SC

subc a, (b

bitif Tobatl, mode
ip tstdiz -
ifgt a, #¥lbidit
ip lowbtl

ld a, [b+]

ld a, (br}

s¢

subc a, (bl

ifgt a, ¥lbidl?
ip {owbt1

ret

ifgt a, ¥lb2dlt
ip lowbt2

ld a, (b+]

td a, [br]

SC

subc a, [bl

ifgt a, ¥lbodlt
ip Llowbt2

ret

setbit lobatl, mode
ld b, #oplow
| setbit lowbat, (b]
jmp putiow
bitif lobat2, mode
ret |
setbit lobatl, mode
jsrl stndby

td avernst, #1
ret

\d a, batbv

ifgt a, ¥vierm

J,410,711

+ 1% s0 continue
»

; else restore the old value

;now read bank B's voltage .

;' ard look for a maximunm
:5t0re the new maximum

;18 old valuve greater than new
; then put it back

~point to hfbhest bat A voltage

:for subtraction

;calculate the delta

jare we alraady'in low bat mode
» then fest for second delta
;18 1t greater than cutoff?
sthen warn user

; otherwise increment b

;to test bank B

Ul

+18 1t greater than cutoff?
sthen warn user

- a

otherwise increment b
:t0 test bank B |

;turn on tne low bat LED

;are we already 'in lobat2 moce
: then just‘return

sto start flashing

-

&

;get the B bank voltage
; and test for cutoff value

42

chk01:

Tamaxs:

readan:

getrdg:

P
jmp

ld

ifgt
ip

ld
ld

1fgt

jmp

ret

reachn

Ld
jp

43

chk01
toolow

b, #bbvmin
a, [b]
a, (bl
Tamax
a, (b}

a, batav
b, ¥avmax
a, b}

a, [b]

a, [bl
tstalt

a, adrsit

enad, #(

enad, #044
getrdg

5,410,711

:store the new "minisuaw*

:is it really less

: if 8o continue

+ else restore the old value

:now read bank A's voltage

+ and look for a maximum

store the new maximum

is old value greater than new
then put i1t back

test for delta V

- e g - a8 -

:3etup to read battery A's voltage
:Time delay to complete conversion

:read A/D _
;Put A/D 1n low power mode

sgetup to read battery B's voltage
;takes 3 clock cycles

CHKBAT determines which battery iilcurren;ly‘helected and then reads

b

the battery voltage. The.wvoltage i3 returned in A. No other registers

’
; are disturbed.

chxiat:]
ld a, #04 :3et single & divide by 6
bitif bankb, oplow :if on bank 8
or - &, ¥040 -+ getup to resd battery B's voltage
X a, enad ;and enable A/D converter
nop ;Time delay to complete conversion
nop
nop
n‘m v
NoE
nop

3

resiop:

res00:

res{1:

rogood:

lo3lop:

1c300:

cirlob;

nop
ld

ld
ret

shit
nop

~ nop

nop
rbit
bitif
ip
jsr

bitif
ip
ifeq
jp
jmp

el e I
35

setbit

ld
jsr
imp

bitif
ip
jsr
Jmp

bitif
jmp
jp

jsr
ld
bitif
isr
ld
bitif
jsr

5,410,711

45 46
a, adrsit *read A/D

enad, ¥0 ~put A/D in low power moce

0, psw :global interrupt enable

;service all i1nterrupts now

now turn them back aff

0, psw :
acav, portcp ;test for AC adapter
res0Q + if operating from batteries
tstn03 sreenable normal operation
main | .
" bdt, moda :wait for bdt to clear >
reslop ; until battery inserted
tdelay, #0
regQ]
reslop - ;wait before measuring batteries
tbgoced ;next test for good battery
nogood
main ;start over.-with good battery

.4

lobat3, mode ;wait 10 sec for new battery or AC
minute, #Mini/é ;reset the minute counter for termination

stbeep :beep and prepare to turn off

g

main -

- -

acav, portcp stest for AC adapter

16300 ; until AC plugged in

tstn03 sreenable normal operation -

main

bxit, mode :check for battery presence 2

main

lodlop : wait until battery removed or AC plugged in
{blotf0

b, ¥mode ;This 1s the same number of bytes and one
lobatﬁ, (bl ; less clock than testing mode directly
hldoff

b, #mode

lobat2, (bl

hldof?f

ld

clrbit
clrbit
clrbit

ret

47
b, #mode
lobat3, (b]
lobat2, [b]
lobatl, [b}

5,410,711

k4

: TSTPOA tests to see if the case is closed and flashes led's or beeps

; accordingly.

tstpoa:

¢closed:

closQ0:

clribde:

clresy:

stmout:

initl:

ld
ifgt
ip
inc

ret

setbit
bitif
ip

jsr
cirbit
ret

bitif
ret
bitif
ret
jsri
setbit
jsr
ret

cirbit

{d
setbit
jsr

ld
clrbit

jmp

ld
td
ld

1d

a, alrmct

a, ¥poasec
closed

a, almmct

poa, flashb
cav, portcp

g

clos00 >
dspof(
poabep, flashb

crton, flashb

poabep, flashb

s trxky

poabepn, flashb

stbheep

bdt, wkpnd

b, #oplow
csclr, [b]

putliow

b, ¥oplow
csclr, (bl

putliow

b, #sysent
X, ¥systim
ent, ¥3

:get number of seconds switch is down
'more than 5 seconds | |
: then case must be closed

. -
; increment count

;set case closed flag
:test for ac available

continue if no AC
turn off LCD if case closed,
but no alarm if AC present

L Y - e ¥

=

*i3 the ¢rt in use
: then don!t beep

if already in standby, don't do it again

:put system in standby mode and
; 1f on batteries then beep

o

;make sure interrupt is clear

clear 10 latch
first write bit high

- g - a

; and then low again

;set the initial timeouts

48

dlypmd

- rstpmd:

vinit:

reset:

drsz

ip
ret
\d
jsr
|d
ld
\d

ld

ld

ret

jsr
jsr
jsr
jsr
jsr
jsr
isr
jsr
jmp

td
td
ld

ld

jst
ld

jmp

49

cnt

L] b]

initl

tdelay, #200

vinit

a, batav
b, #huvmq;'
a, (bl

8, [b+]

a, (b}

a, batbv
a, (bl

a, [b+]

a, bl

readad
readad
rreadad
readad
readad
readad
readad
readad
avrage

psw, #0
ientri, ¥0
cntrl, #0
tientrl, #0-

dspsp
sp, HO6F

-start

15,410,711
50

;delay 1 second for battery to stabalize

;point to start of table
; and set max and min to current
H

;Setup the running average array
; this is slower than doing only

; the readings we need, but we only
; do 1t once in a while

sturn off all potential interrupts

; REFRSH wiil 6utpu‘t a stream of refresh pulses every 5.12 msec when

| : the CCP has the cpu in hoid |

-
r

refrsh:

refl86:

ld

setbit
setbit

ld

bitif

P

cirbit

b, #orted

rfresh, (bl

rfresh,-portcc

.ent, #41
s386, sysbyt
reflop

rfresh, [B]

-
!
-
s
-
]

- 5

enable output only during refresh

to average 1 refresh every 125 usec.
different refresh for 2856 than 386

do 386 refresh

otherwise do 286

reflop:

refext:

csplon:

hspeed:

| speed

dsplof:

dspof0:

sethit

drsz

ip

clrbit
clrbit

ret

clrbit

clrbit
clrbit
ld

getbit
setbit

ip

ld
clrbit

ip

ld
setbit

ip

sethit

ld
clrbit

o1
delay?

rfresh, (bl
delayl

cnt

refl8é

refext

rfresh, (bl

rfresh, [b)

cnt
reflop

rfresh, portcc
rfresh, [b]

crton, flashb

YIAMCS, wKken

vramcs, wWkpnd

b; #ophigh:

hispd, (bl

puthi

b, #ophigh

hispd, [b]

puthi

crton, flashb

b, #oplow
ledon, [bl

5,410,711
52

;to make 13.75 usec pulse

= gtretch it out to 20 usec.

>~

+to make 22.5 usec delay before next pulse

;1o turn off porte

st0 make 2.5 usec pulse
:one more for good measure

;disable as soon as refresh is done

:indicate lcd acti.ve'
;disable wakeup on video activity

now the low byte

:+ to turn on the +5v to thc LCD

; to turn on the backlight inverter
+do it and return to caller

- HSPEED and LSPEED are used to switch the processor speed by
- toggling the HIGHSPEED*-line (0P 13) on MILES

Doint to contents of OP high byte

; low for max clock speed
output to OP register

-8

Lad

point to contents of OP high byte
; set bit high for 1/2 clock speed
output to OP register"

o B

™5

sindicate crt active

sset the OP {ow byte
: to turn off the backlight inverter

cirbit
p

53

vadon, (bl
putlow

PUTLOW / PUTHI

5,410,711
54

to turn off the +5v to the LCD
before the LD controller

L X - N

These routines write a byte pointed to by the B register to the MILES

; CP Low byte or OP High byte registers respectively

cutlow:

-y b 3]

" - 8 -

hidoff:

; first set IO M” to 10 in OPH

hid0Q:

hlid01:

hld0e:

cirbit
ip

setbit

td

ld

setbit
cirbit

ret

bitif
p
ip

ld
setbit
jsr

ld
cirbit
clirbit
ise
cirbit

jsrl
bitif
Ip
bivif

ip

jsr

~Jsri

bitif

milsad, portcd

put

milsad, portcd

a,b]
a,partq

b, #¥ported

milstb, [b)
milsth, [b]
a

a, psw

hidreg, mode
hld00

hldo1

b, #ophigh
iom, (bl

puthi

b, #oplow
drgd, (bl
master, [bl
putlow

hidreq, mode

c20on

poa, flashb
hidoo
crton, flashb
‘hid02

dsponO

encsip
charge, cromde

' sput the value in port D

point to'port C for faster access
;toggle ¢l to a 1 |
rreset to 0 to latch data
;recover the flags
: and restore them

o

HLDOFF restores the processor to full speed operation

Are we in hold mode?

; yes then turn cpu back on
; MO then just exit sleep

;point to the op register data storage
; D port data = 10000000 for IO

;restore normal value

sclear the flag

;turn on the crt controllier

;don't turn on if case closed
; or the crt is active
sturn on the display

;exit sleep mode
bkl sare we charging

hig03;

9
ip hld03
jsr Stmout
clrbit puried, portcd
clrbit kbdint, wkpnd
clrbit kbdint, wken
elrbit cpuint, wken
clrbit cpuint, wkpnd
: now set 10 M” to M in OPH
td b, #ophigh
- elrbit iom, [b]
jmp puthi -

resvons

resv01:

bitif
ip
cirbit
setbit

ret

\d
sethit
clrbit
ld
jsrl
clrbit
setbit
jsr

ld
cirbit
isr

ld
jsrl
1nc

X

except

1feq

isr
ld

ret

“
.

acav, poricp
resvi?

bdt, (b}
rbin, portcd

minute, #mind/2
bdt, mode

rbin, portcd
(b, ¥

sthdby

kbdint, wken
cpuing, wken

putht
a, #.(sresdi)

mie0Q

3

a, portd
sramw, sresdi
portd, #0
incrdi
tdeiay, #20

5,410,711
56

;reload the timeout counters
;turn the power/stancky led on

sclear keytoard interrupt
sturn off wakeuo enable tTewrezawese

;point to the op register data storage

;paint to memory
; and return

- RESVON turns on the reserve battery if the main battery is removed
On Entry B points to WKPND

;test for ac available
;only turn on if no AC

;clesr the interrupt

; make sure the reserve is off ;**

;reset the minute couﬁter for termination
;set flag for new bat test

sturn on reserve battery

;clear all the pending interrupts
senter stanchy mode and

; only exit on new battery or acav

;make sure we're set to memory cycle

sget # of times reserve has been activated

;Save the count

;did we wrap

;then increment wueper byte
;debounce delsy

; TSTNEW monitors the bdt line uatchinq.for a new battery to be installed

tstnew:

jsr
bitif

Ip

clrbey

- acay, poricp

tstnOQ
tstnl1

:try to reset bat detect bit

;did user plug in AC adapter?
no then continue
yes then cancel standby after delay

o g -y

tstnl0:;

tstnll:

tstnO3:

setdly:

- 8 ol

thgood:

tbg00:

tbgc2

bitif

L

P

drsz
ret

setbit
jsr
clrbit
setbit
jsr
Jmp

ld
ret

bitif
Ip
retsk

jsr
bitif
ip
ifgt
retsk

jsr
ret

isr
1fgt
retsk

ret

1fgt

- retsk

jsr
ret

js¢
1fgt
retsk
ret

57

bdt, portlp
setdly

tdelay

rbin, por;cd
cirlob

bdt, (b}
kbdint, wken

Gl ypod
hidoff

tdelay, #20

acav, portcp
tbg00

chkbat
Llobat2, mode

thod?2
a, ¥vterm+i

chkbat
a, ¥vterm+1

5,410,711

-

;check for battery presence
; none yet

-debounce time

sturn off reserve battery

;CLRLOB sets B to point to MOOE

reenable kcyhoa;d interrupt
initialize min and max for new bat
exit standby mode

- e - g e

: 100 msec debounce

TBGOOD tests the new battery to see if it is above minimum voltage
and skips the next instruction on return if the battery is good

+If AC plugged in then

.;aluays return good

Then test new battery

+** nossibly eliminate e
;" and require all new to be v+10 **
: must be above minimums |

> if not try the other battery

'we can only get here if both

;banks are bed and no AC is avsilable
;read voltage on second bank

s above miniman?

;start over with géod bettery

: allow at least 10 minutes operation

&

: if not try the other battery

:we can only get here 1f both
;banks are bad and no AC is available

;read voltage on second bank

; allow at least 10 minutes operation

;start over with good battery

.:h

S8

5,410,711

59 60
incrdi :
\d 'a, #L(sresdi+1) :get # of times reserve has been charged
jsrl mleQ0
inc 8
X a, portd
except srame, sresdi+] ;save the count
ret
tstvid:
bitif vramcs, wken +i3 test for activity enabled?
ip vid0o |
clrbit vramcs, wkpnd
reg + if not active
vic00:
bitif hldreq, mode sare we in standby mode
ret + 1f so then return
bitif crton, flashb
ip rsticd
jsr dspon . selse make sure display i3 on
ip rsticd
rldlcd: | .
bitif vramcs, wkpnd ;test for activity
ip rstled :if active
ifeq ledent, #0 ;no timeouts 1f zero count
ret | o
bitif crton, flashb - ;is the LCD or CRT active
ret = if CRT
drsz lcdent ~; else decrement counter
ret + and return
setbit vrascs, wken <“enable wakeup on video activity
clrbit kbdint, ukpnd
setbit kbdint, wken * or a keypress
imp dspofl turn off display backiight & LOD
rstlicd: e '
ld a, lcdtim
X a, lcdent sreset the lcd counter
clrbit vramcs, wkpnd .
P SYsrst
rlchdc: .
bitif hdecs0, wkpnd :test for activity on hard disk
ip rsthd -if there is activity
i feq hdent, #0 no timeouts if zero count
ret
drsz hdent + elge derement counter
ret : and return
jmpl drvofi swhen we decrement to zero
rsthd: B '
{d a, hdtim sreset the timeout from system setting
4 a, hdent

clrbit hdesO, wkpnd

Sysrsts

ld

clrbit
jmp

ridsys:

o |

*
s

)

bitif
jp
bit1f
jp
1feq
ret
drsz
ret
jsrl
er'
setbit
setbit

jmpt

61

a, systim
a, syscnt

kbdint, wkpnd.

clrbsy

kbdint, wkpnd
SYsrst
10act, portgp
sysrst

-sysent, ¥0

sysent

drvof1
cdspotl
vVramcs, wken
hdcsO, wken

sleep

rtest for any active 1/0 devices

5,410,711

62
;reset system timeout if anything active
;to clear out [/0 activity flag
;tesf kKeyboard >

»

;no timeouts 1f Zero count

+if nothing active

sturn off the drive
. sturn off the display

eenable wakeup on video activity
or hard disk activity

READAD reads the A/D chamels and maintains the lagt 8 values of each

voltage and charge current in an array starting at location AYSAVE

readad:

re
ld
ld
ld

adloop:

- &

-
4

1d

>

td

ifne
Ip
Ld

bitif

jsr

jsr

Update arrays

ld
ld
ld

Ledate:

ld

L

jsr
drsz

ip

i

. #04

X o
-

#enad
, Ndebug
s, (bl
a, #¥020
a, [(b+]
a, (b-]
a, [x+]

charge, croacie

ready

forcer

with latest readings

x, ¥debug
b, #avsave
cnt, #5

a, [x+]
rotate
cnt

update

;Single conversion, divide by 6

-

;use the debug location to pass readings

get the enable conmand
bump to the next channel
and start the next conversion

H

'

:read the previous result
+ and store it

;test for overflow

: and continue till done

;Put A/D i1n low power mode

sAre we charging the batteries?
: then turn off charge and reread voltage

sacdress of A/D value array
;pointer to 1st element for A Batt

:get a reading
; and add 1t to the array

»

cploop:

torcer:

forlop:

- g -y

avyfage:

avyr s

avioop:

td
ld

td

arsz

ip
ret

td
clr
ld

ld
inc

drsz

ip
ret

ld

{d

jsr
jsr
jsr
jsr
jsr

ret

clr

clr

re
ld

ld

clr

63

cne, #3

b, #oatrc

b, ¥debug

<nt, ¥

o

a, (bl
a, (b+]

- ent

forlop

x, ¥avsave
b, #avwork

avr
a, batav
avr
a, bacrg
aver
a, batbv
avr
a, bberg
avr
a, batrv

[x+]
(bl
(D+]

L

, [bl.

;now o0 the discharge currents

;get the A current

; and save 1t

5,410,711

AVRAGE averages the last 8 readings for each battery voltage and
charge current and stores the 8 bit values in a table

64

;point to the first set of 8 readings

;16 bit workspace

;average battery A voltage
raverage batt A charge current
;average battery B voltage

;average batt B charge current

;clear the work area

‘;get the next reading
and add in the accumuylated value

L X - & o

-8

- ;average reserve battery voltage

save

get a zero

arxd add in the carry and clear it

sftiop:

drsz
p

ld
ld

ld
rre

td
rrc

drsz
ip

td
ld
ret

65

a, (b-]
ent

vl

- avioop

cnt, ¥3
a, [b+]

. (bl

(b~}
(bl

NIIHPHN

, [b*]
cnt
sftlop

a, [b-}]
a, (bl

5,410,711 |
66

; and save

;setup for the shift operation
;increment b to point to avwork+1

;it's more efficient to do it always
rather than a test and skip
restore the shifted value

;snos get the LS8
; and shift it as well

» - » e

;three times for divide by 8

;point back to avwork
;get the average value for return

; WRITAD returns the A/D values starting at 1F8th

- g -y

o R - a

- g - g

-

e

wiritad:

wiiT4p:

181 -
1F82 -

1F83 -

1F84 -
1F85 -

1F36 -
1F87 -
1F88 -

ld
td
ld

ld

except
|3

except
ld

except
ld

except

ld

o o

Bank A voltage
Bank A charge current
Bank B voltage

Bank B chargé current
Reserve battery voltage

Bank A discharge current
Bank B discharge current

. #batbe

a, [b-];_,

a, [x]
sramd 01F83
a, [b-}

a, Ix] *

sramu O1F87

a, [b']
a, [x]

sramw 01F86

a, [b-]
a, x]

srams 01F85

a, [b']
a, [x]

Reserve battery discharge current

;point to the data
;point to the data

;srite the parameters to SRAM
;get the last parameter

; and write in reverse order

-
¥

reacv:

tioff:

except
ld

except
{d

except
ld

X
except
ret

bitif
jsr
bitif
jsr
bigif
jsr
ld
td
ld

ld
add
X

ld

X

ld

add
X
id

td
X .
ld
ld

X
ld

td
bitif
setbit
bitif
setbit
bitif
jst

ret

ld
clrbit

67

sromw CiFde
a, {(b-]
a, [x]
sramw O1F83
a, (b-l
a, [x]
sram Q1F82
a, [b]
a, [x]
srame O1F81

chrgb, cromde

tlotf

chrgrb, cromde

rbcoff

enad, #04

b, #enad

g, #040

a, b+l =
a, [x+]

a, (bl

a, [x+]

a, [x+]

a, (b]

a, [x]
enad, #0
b, #crgmnde
chrgb, [b]
txcQ, cntri
chrga, [b]

txeld, t2entri

chrgrb, [b]
rbcon

b, #portgd

txc0, entri

5,410,711
68

READV momentair[y turns off the charger and rereads the battery voltages

18 timer 1 on?

;test timer 2 also

13 reserve battery being charged?
;start voltage reading for A batf

;use the debug location to pass readings
;get "the enable conmend

ybump to the next chanmnel

; and gtart the next conversion

;read the previous result

; and store it

;get the enable command

;bump to the next channel
; and start the next conversion
’

bunp x to point to b channel
;get the B reading

;and replace the old value

;was bank B charging?
; 1f 30 then reenable
;Hos about bank A

sFinally test the reserve battery

sturn off timer

t2off:

rocend:

rbcoff:

restre:

setbit
ld
\d
ld

ret

ld
clerbit

setbhit
ld

ld
ld
ld
cirbit

jmp

clirbit

Ld
cirbit

jmp

ld
clrbit
jsr

ld
jsri
inc
xd.
except
1feq

jsr

rECON:

ircrer:

e’ -

setbit
jsrl
ld

Ld
setbit
Jmp

{d
jsri
inc

except
ret

69

chrgb, {b}
b, #tmello
(b+], ¥
(bl, #0

b, #ortld

‘txc0, tdentri
chrga, (bl

b, #tmrdlo
(b+], ¥

[bl, ¥

b, #ophigh
speakr, [b]
puthi

-

chrgrb, crognde

b, #aplout_
chrgrb, (bl
putiow

b, #ophigh
iom, [b]

- puthi
-8, #.(srescr)

m1eQd

a _

a, portd
STamu, srescr
portd, ¥

b, #oplow
chrgrb, (bl
putlow

a, #L(srescr+1)
m1e00

a

a, portd

srams, srescr+i

),410,711
70

; then make sure output is high
;clear out the timer to avoid
; phasge shifts

sturn off timer |

; then make sure output is high
;clear out the tinef to avoid

; phase shifts

;make sure the speaker is also off

-

;point to OP low save byte
;turn off the Res batt charger

~ ;make sure we're set to memory cycle

;get # of times reserve has been charged

:save the count
;did we wrap
;then increment upper byte

;clear peak reading

;turn on the reserve batt charger

":9et # of times reserve has been charged

-

;3ave the count

LW] N g

- 9

rotates

adjcrg:

-

. testa:

ld
jsri
i fgt
ret
inc
X

except

ret

71

a, ¥ . (sresti)
mie00
a, mink

-

a, portd
Sram, sresti

- battery charge function

Qn Entry:

XX X M X X X X X

ret

bitif
ret
drsz
ret
ld

jsr

bitif

jsr
bitif
jsr
jsr
ret

ld

1fgt
IP
1fgt
ret

),410,711

.;Feserve operation time
:max time

-

:save the new time

ROTATE stores the lagt 8 values in an array pointed to by the B register
- these values are used to calculate average voltage and current for the

-

A - contains the most recient value read by the A/D

B - points to the beginning of the 8 byte array

A - contains value being discarded

B - points to start of the next array

a, [b+]
8, [br]
a, [be]
a, [b*]
a, [b+]
a, [(b+]
a, [bt+]
a, [b+]

“trklec, cromde

syscnt

syscnt, #8

a, bacrg.

a, ¥ihchrg
ghortt

e, ¥ilchryg

-y
L
L

;Store and 1ncrement

rare we trickle charging?
s 1f s0 just return
sonly adjust every 8 seconds

;compute the new avérages-'

Miakal *display duty'cycle_on smartviesw

;compare with desired charge rate
; if greater test for short

;18 charge rate correct?
: Yes, then done

72

shortt:

shortt:

tesths

¥
td

i feq

ret

1nc

ld
td
dec

ld
ret

ld

ifgt

jmp
td
\d

1fgt

ip
}mp

>

ld
td

inc

ld
ret

ld

1fgt

ip

ifgt

ret

ld
ld

i feq
- ret

inc

\d

ld
dec

ld
ret

73
5, #tlralo
a, (b}
a, ¥maxcrg

a, [(b+]
a, [b+]
a, [bl

a, [bl
hdent, #2

a, #vterm
a, batayv
acrgof

b, #t2ralo
a, [b]

a, dmincrg
short?

acrgof

a, (bl
a, [b+]
a, (bl

a, [b]
hdent, #2

“

a, bberg
a, #ihchrg
shortb

-a, #ilchrg

~,

b, #tiralo

a, (b}
a, ¥maxcrg

a, {bl

b, #1rblo

a, [bl

a, (bl
ledent, #2

5,410,711

';point to timer 2 a reg

; and get current setting
;are we already at maximun
; then stay put

’

b the charge rate

;increment to the b register
; and get the current setting
s decrement b? one

; and store i1t back

:force neu minimm current

;test for shorted battery

- ;check voltage

;18 voltage nominal

74

;battery is shorted if less than 7.5v

;:1f not then recuce charge
;are we above the minimum

:1f not then turn off

;decrease the on time

; and 1ncrease the off time

;wait before next check for -dv

;eompare with desired charge rate

+ if greater test for short

:is charge rate correct?
: yes, then leave 1T alone

;point to timer 2 8 reg
: and get current Eetting
;are we already at maximum
; then keep constant rate
rbump the charge rate
: arxd store it back
;point to the b register N
and get the current setting
decrement by one
and store it back

L w e =4

IE

saorth:

ld 'u, #vterm

ifgt a, batbv

jmo bergof

ld b, #tiralo

{d a, (bl

ifgt a, #mincrg

ip short?2

jmP bergof
shorte:

dec a

X a, (bl

ld b, #tirblo

d 3, (b)

1nc a

X a, (bl

ld ledent, #2

ret
tstend:

drsz batent .

ip tst00

jme trickl
tst00: |

bitif -Thrga, crgnde

jsr testay %

bitif chrgb, cromde

jsr testby

bitif chrgrb, crogmde
tstri0:

jsr testry

ld cnt, #8

ld X, #batay

ld b, #crgrdg
saviop:

ld a, [x+]

X a, {b+]

drsz ¢nt

ip saviop

ret
tstres:

jsr avrage

ITs) tserQ0
Testav:

ld a, crgrog

ld b, ¥#ocatav

ifeq a, {bl]

ID vacnst

drsz hdent

5,410,711
76

;test for shorted battery
:check voltage

1S voltage nominal
;battery is shorted if less than 7.5v
:1f not then reduce charge

rare we above the minimums

;1f not then turn off

;decrease the on time

+ and increase the off time

=

:Maximum charge time

+trickle charge

;move last readings to 3 temp area

;compute average voltage

;get old average

;are we at a plateu
; test for timeout
;no -dV after -dPulse width

ip
ld

- 1fgt

tstavl:

vacnst:

acrgof:

-)

testac:

tstac:

tstacl:

testhv:

Ip

1d

ret

ifeq

ip
drsz

ret

clirbit

jsr

elrbit

ld

bitif

ret

imp

clrbit

ret

ld
td
i1fgt
p

ret

drsz
ip
ld

SC
subC

1192
jmp
ret

ld
1d

ifeq

ip
drs2
ip
ld
ifgt

il

tstavl

hdent, #1

a, [(b] |
acrgof

avenst, ¥evtime

t2ralo, #maxcrg

testac
avenst

chrga, portlc

ledent, #2

-éhrgb, cromde

trickl

charge, crgude

a, bacrg

b, #¥baimin
a, crgrdg+l
tstacl

a, (bl

hdent
tstac
hdent, #1

a, [b]
a, ¥deltai
acrgof

a, crgrdg+d .

b, ¥batbv
a, (bl
vbenst
lcdent
tstbvl
ledent, #1
a, {b]

;s cutoff it +dl > 12ma.

5,410,711
78

:look for -dv
: then turn off

:svoltage changed SO reset timer

;are we at maximm duty cycle?
; then Look for +dl
;decrement counter

;tell system we are done

;turn off the timer

; and timer output bit -

; force new minimum current for bank 8
;18 bank B still charging

; then leave it alonq'

: otherwise reset mode

scheck the current reading

; and compare with old average
;i 1 increasing
; then test limits

;save new minimm if | not increasing

sdon't aliow test for 1 min after max
; force new minismm

;once here, always here

;clear borrow for subtraction

find the delta I

»

:get old average

;are we at a platey

; test. for timeout

.

;loock for -V

p
tstbv(:
ld

ret

vbenst:
ifeq
jp
drsz

ret

bergof:

clrbit
jsr
cirbit
ld
bitif
ret
jmp
clrbit

-

ret

testbe:
ld
ld
1fgt
Ip
tsthel:

ret

tsthels

drsz
Ip

1d
sC
subC
1fgt
Rt~
ret

tegtryv:
: isr
ld

ld
X

1fgt
jp
ret

rocext:
ld

79
bergof

Lvcnst, #eveime

tiralo, #naxcrg
testhe
bvenst

chrgbh, cromde
tioff
chrgd, portgc

hdent, #2

chrga, crgmde

trickl
charge, crgmnde

a, bberg

b, #obimin
a, crgrdg+3
tstibel

a, (b}

lcdcnt_
tsthel
{cdent, #1

a, [bl
a,¥deltai
bergof

a, (bl
a, [(b]
rbcext

b, #ophigh

5,410,711
80

; then turn off

;voltage chahged S0 reset timer

:lock for +dl = .
sdecrement counter

-tell system we are done

sturn off the timer

: ard the output bit

:force new minimum current for bank A
;13 bank A still charging

; then leave it alone

;: otherwise reset mode

:check the current reading
: and compare with old average
*i3 1 increasing

b

;delay test until current is stable

: then turn off charge-

»

Display V on smartyiew
;get most recent reading
;point to stored maximum
; save new maximum?

shas V decreased

» then turn off cﬁarge

; otherwise just return

csSpegs

csSpsp:

. GsSprv:

makhex:

hexnbl :

cirbit

jsr
ld

except

Jmp

ld
jsr
jsr
ld
jsr
jmp

ld
jsr
jsr
td
{d
ld

jmp

ld

isr

pop
sWap

ard

1fg¢t

81
iom, (bl
puthi
portd, #
sramu, sresti
rbcend

a, portcd
makhex
smrtlo
a, portgp
makhex
smrthi

2, sSp

makhex

smrtio

b, #avwork

(b], #073
smren

a, batrv
makhex
smrtlo

makhex
smerthi

-, tiraio

L]
-

makhex -
smretlo
a, terato
makhex
smrthi

b, #avwork

hexnbl

a

a, ¥OF
a, #030
a, #0399
a, ¥07

;upper 2 bytﬁs

5,410,711

;make sure we're set o memory cycle

;reset reserve usage time

;port ¢ data

soutput to lower 2 bytes
: and port g data

;upper 2 bytes

;stack pointer
soutput to lower 2 bytes

:I‘pl . »
:Isl

upper 2 bytes

soutput to lower 2 bytes

-

;uoper 2 bytes

;on time for bank b

soutput to lower 2 bytes
;on time for bank 3

o=

;POINT to tesp ares

sconvert to hex
:recover original value

; and reverse nibbles

;mask off uwper nibble

82

5,410,711
83 84

X a, f(brl

ret
:This is a debug routine to write values to smart view on the host processor bus

The X register is used to point to the Data to be output

-
&

-+ The B register points to Port 0 during the data transfer

smr‘cld: v
: first set 10 M" to IO in OPH | |
\d b, #¥ophigh , ‘;pnint to the op register data storsge
setbit 1om, [(b] ; 0 port data = 10000000 for IO
jsr puthi | |
ld X, ¥#awwork ‘painter for data to be output
: next, set up DRQS in OPL IR
td a, oplow ° :get the op register data
x a, portd : SO Ne can retreive this later
ld a, portd ; emulate a store instruction
or a, #drgd :set the drgd bit in the register save data
X -5, portd ; 0 port data = 00000001 for DRQS
Ld b, #ported®

C0=90

clrbit milsad, [b]) .
Cl1 = 1 (this starts the DREQ cycle)

sethit miisth, (b]

-
¥
L
¥

-

now look for DACXK

= o

ckdack

next, pull master high in OPL
1d b, #portd ; point to the D port:
setbit master, (bl ; D port data = 00000011 for master®
clrbit milsth, portcd :

- e

close the OP Low register

write desired data to O port
X a, [x+} ;recover the data to output
X a, (bl ; and store it in port D

+ execute the io write exception cycle to'port 94h
except iow, 094

X a, [x} ;get the next byte to output
X a, (bl ; and put it in port D

+ exegcute the i0 write exceotion cycle to port 95h
except . iow, 095

+ ¢clear DRQ and master®

{d a, oplom
X a3, (B - ; A contains the original OP Low value
ld b, #ported : point back to port €

5,410,711
85 86

setbit mitstb, (bl + ; turn off master mode
clrbit milstb, (bl

; how set 10 M™ to M in OPH

ld b, #ophigh ;point to the op register data storage
clrbit 1om, [B] y 1poInt tC memory
jmp outhi T ; and return

:This is a debug routine to write values to smart view on the host processor bus
: The X register is used to point to the Data to be output -

The B register points to Port D AIring the data transfer

smrthis |
: first set 10 M™ to 10 in OPH .
id b, #¥ophigh ;point to the op register data storage
setbit 1iom, (bl ; O port data = 10000000 for 10
jsr puthi)
ld X, ¥avwork :pointer for data to be output

next, set up DRQRS in OPL

bl

ld a, oplow ;get the op register data

X a, portd : SO we can retreive this later

id a, portd ; emulate a store instruction

or a, #drgd :set the drgd bit in the register save dats
X a, portd ; D port data = 00000001 for DRQS

1d b, #ported

cirbit milsad, [b] : C0=0

setbit milstb, (bl ; C1 =1 (this starts the DREQ cycle)

now look for DACK

-y

ckdack

- next, pull master high in OPL -
ld b, #portd ; point to the D port | >
setbit master, (D] ; D port data = COC00011 for masters
clrbit milstb, portcd ; close the 0P Low register

: write desired data to D port
T x a, [x*) ;recover the data to cutput
X a, b1 - ; and gtore it in port D

dl

execute the io writs exception cycle to port 96h
except iow, 096
.. .

X a, [x] - ;get the next byte to ocutput
X a, (bl : and put it in pert D

+ execute the io write exception cycle to port 97h
except “1om, 097

™

; clear ORQ and master®

-
!

ld

X

ld

setbit
clrbit

td
clrbit

jmp

87

a, oplow
a, {bl
b, #ported

milsth, (b]
miistbh, (bl

now set [0 M~ to M in OPH

b, #ophigh
iom, [b]
puthi

5,410,711
88

~; A contains the original OP Low value

; point back to port €
; turn off magter mode

;point to the op register data storage
*point to memory
: and return

- TRICKL puts the system in trickle charge mode

wrickl:

L]
¥

trklon:

vriliof:

ld

clrbit
setbit
bitif
ret
isr
bitif
ret
setSit
ympl

clrbit

clrbit_

gsetbit
jsr
jsr
e

batent, #1

charge, cromde

crgled, portecd

acav, portcp

clrbsy
bdr, portip

trklec, crgmde

sttrkl

charge, crogmde
trklec, cromde

crgled, ported
tloft
t2off

dlypexd

ol

:30 we'll come back next time

: reset moce
sturn off the charge led
sdon't try to charge from batteries

sclear battery detect
:1s there a battery present .
: nop 1f no battery present

;mintmum charge rate

-mske sure no charge active

;no longer in trickle charge mode
sturn off the charge led

: so turn off the charge timers

sinitialize min and max

-

« SHRTOM will drop master for a short period of time to allow the cpu to

shrton:

shrtQ0:

bitif
ip
ret

hldreq, . mode
shrt00

: set 10 M to 10 in OPH

ld
setbit
setbit
jsr

ctrbit

b, #ophigh
iom, [b]

pd9020, (bl
puthi

cpuint, wkprnd

- service the timer interrupt in order to maintain the DOS/UNIX clock

sare we in hold currently
; 1f so then turn on for a short time
: otherwise just return

o

;point to the op register data storage
; 0 port data = 10000000 for 10
sturn on 90C20

;clear the interrupt bit

89
Ld b, #oplow
clrbit- drgd, (bl
clrbit master, (b]
jsr pution
td b, #portip

onioop: |

bitif cpuint, [b}
P onloop
jsr delay
ld b, #oplow
setbit drgd, (bl
ld a, [b]
X a, portd
setbit master, (bl
ld b, #ported
clrbit milsad, [b].
setbit milstb,‘ (bl

'+ now look for DACK
ckdack

next, pull master high in OPL

\d b, #portd
setbit master, (b]
cirbit milsth, pqrtcd

; now set [0 M” to M in OPH
ld b, #ophigh

cirbit iom, (b]

bitif c¢rton, flashb

ip shrtO1

elrbit pd9020, ([b]
shrt01:

jmp - puthi

5,410,711
90

~drop DRQS

* and master

+for a short time
;point to the L port

'wait for the interrupt to be serviced
: by the host cpu

; give cpu time to complete interrupt

- ;now lets reassert drg, etc

;get the op register data
sand write to port d
: set flag while we stitl point there

point to the D port

'
:+ D port data = Q0000011 for magter®

close the OP Low register

'point to the op register data storage
:point to memory

care we using the crt

: then don't turn video off

sturn off 90C20

: and return

SPMOFF outputs a active high pulse to kill the system power module.
This routine does not return, it just loops waiting for power to go away

spmoff:
; ip copoff
; jsr dspsp ;display stack
; ip . ;" debug only
d b, #ophigh
clrbit dcoff, (bl :Start low
isr puthi
ld b, #ophigh
setbit deoff, [b] «bring it high
jsr puthi : and leave it there

+ COPOFF turns off the COP by‘ forcing a watchdog error

copoff:

_:tstflh:

ld
ld

jsr

ld
td

jse
setbit
td

ip

21

b, #ophigh
(b], ¥#fetoff

puthi

b, #oplow

- {bl, ¥

putiow
rbin, portcd

wdcnt, #0

. 4

b, #aﬁlou
fllbat
dely>0

~egtftlh .

>

lowbat, (bl
Ibloff
{blon

Routine to switch batteries every 4 minutes and

15,410,711

;high speed, video off

;This is to get around powerwp

; problem with MILES

sturn off the reserve battery

;invalid data for watchdog to force reset

;wait for.power to go away
;** DEBUG **

+ then reset idle count down timer. SKipe next instruction
+ after returning if operation is successful

cngbat:

cngatit:

cdeengbs

ld
isr
ret

setbit
clrbit
cirbit

td
retsk

setbit
cirbit
ld.

ld

XOr

imp

reseta:

resoff:

ld

ret

batcnt, ¥mind
tstbat

cngben, cromnde
rbin, ported
bdt, wken
tdelay, #200

cngoff, crogmde

_ chgben, crance

b, ¥#¥oplow
a,#bankb
a, (bl
a, (bl

putlow

~a, batav

8, bavmax

'make sure other bank is good

enable change on next timer tick
:turn on reserve battery

‘disable battery detect interrupt
:1 sac delay before battery test
;pretend we'lre done |

renable reserve off on next timer tick
; and don't switch again for a while
-o0int to the op register data storage
:set bit to invert

sinvert it '

;and store the new value

:set the byte 1n the H!iES 0P register

sreset maxirem on A

92

nobat:

tsthat:

Celay:

dellop:

delayl:

ret

93
clrbit cngoff, cromde
jsr clirbdt
bitif 'bdt, portlp
ip nobat
setbit “Tbin, ported
sethit bkxit, uke;
bitif bankb, oplow
1p reseta
id a, bathv
X a, bbvmax
ret
setbit bdt, wkpnd
setbit bdt, wken
ret
ld a, ¥04
bitif bankb, oplow
or a, ¥040
X a, enad
1d a, enad
xor a, ¥#040
nop
nop
nop
X a, enad
¢~ a, adrslt
ld b, ¥adrsit
nop
nop
nop
{d enad, #0
ifgt a, [b]
ret
i feq a, [b]
ret
retsk
ld cnt, #45
jst delayl .
drsz =ent
ip detiop -
ret

5,410,711

130 We won't come here again
:reset the battery detect latch

;then check to see if battery really present

:if battery just removed
+1f good then turn off the reserve

~; ard reenable the bdt interrupt
scheck for current bank

:reset maximua on B

:make sure interrupt is active
+ and reenable the bdt interrupt
+ then contimnue

.;set single & divide by 6

:if on bank B

+ setup to read battery B8'!'s voltage
;and enable A/0 converter

retreive the enable coomand
setup to read the other chametl

- % -y - &

Time delay to complete conversion

:start the next cycle
: get the previcus value

:delay and setup for compare

;Put A/D 1n low power mode

;no load V must be greater theﬁ toaded V.

; or we won't switch
;equal isn't good enough

sapprox 900 usec delay

» 20usec/loop at 8MH2

94

dely3Q:

delyba:

dely>t:

dely>2:

dely33:

: TSTSTB tests the standby button to see
. gtancby mode

tststb:

tstsQ0:

tsts01:

tsts02:

ld
rbit

ifbit
ip
P

rbit

ifhit
Jp
Ip

ld
drsz

Ip
ret

id .
bitif

p
bitif
ip
getbit

ret

setbit
ret

bitif
ip
clrbit
ret

bitif
ip
bitif
ip
clrbit
clrbit
ld
clrbit
bitif
jmplt
ret

5,410,711

95 96
ent, #20 ;**10 ;minioum of Simgec délay
9, tentrl ;clear the TO overflow bit
5, ientri ;require 1 full idle period to start
deiy51 ; before servicing watchdog
delySa ; Loop
5, ientrl ;clear the T0 overftow bit
5, ientrl ;wait for it to be set again
delyd3
dely52 :loop
wdcnt, #009 ;service watch dog 2-65K window, clock monitor on
cnt ;10 timer overflows |
dely51 *wait another S.12msec

1f the user is requesting

o

b, #flashb - . |

SWX, Portgp ;18 the standby suitcﬁ depressed?
tsts(1 '; low true so, if not pressed, check for release
stdebl, (b} :check csbounce bit |

tst300

staebl, (b] .

stdebe, [b]

stdebd, (b}

tsts02

stdebl, (bl

hidreq, mode ;are we already in standby?

exstby ; then exit |

poa, [b] ;was the case closed?

exsthy ; then don't enter standby when opened
stdebi, {bl

stdebl, (b]

alrmet, #0 ;switch is up, 30 clear count

pos, (bl

stbyen, sysbyt ;138 the standby switch enabled?
stnchyy '

;otherwise do nothing

97
exstby:

clrbit stdedl, (bl
clrbit stdebl, [b}
ld alrmect, #0
clrbit poa, [b)
clrbit poabep, [b]
jsr hidoff
ret

-

on every 2 seconds

flashp:
drsz erc
ret |
bitif purled, portep
ip pl edon
bitif poabep, flashb
jsr Stbeep‘
setbit purted, portcd N
ld erc, 20
bitif (obatl2, mode
ret -
bitif “Bdt, mode
ip lblon
ret

pledon: | |
bitif posbep, flashb
jsr stheep
cirbit puried, portcd
(d erc, #(seccnt/2)+1
bitif lobat2, mode
ret
bitif bdt, mode
ip lbloff
ret

{blon:
bitif lobat2, mode
jsr Stbeep
\d b, #oplow
setbit lowbat, [b]
jmp puttow

Lbloff:
jsr stbeep

[blof0:

| \d b, ¥oplow

clrbit lowbat, [b]

-
'

}mp putiow

FLSHLB uses the counter AVONST

5,410,711

;switch is up, so clear count

;bring cpu out of hotd

FLASHP uses the counter ERC to flash the power LED .5 secornds

;test the counter

;until underfliow

;test if light is off/on
;1f off then turn on

;should we beep

*

;turn led off
;off for approx 1.3 seconds

;don't affect low bat led

sturn on lowbat led

;shouid we beep

sturn the ted on
; for .5 seconds

;don't affect low bat led

;turn off lowbat led

beep i1f low bat 2 mode

L

to flash the low bat LED .Ssec on every

: secord.

929

+ Battery cordition while charging..

fishib:

stbeep:

ckrbat:

ckrQQ:

crgrbtf

ckac:

ckZmin:

drsz
ret

td

bitif

ip
P

jsr

cirbit

jsr

clrbie

(d
td
ld
ld
ld
ld
ld
{d
id
ld
rbit
shit

ret

\d

ld
jsri
1fgt
ip

ld
ld
ifgt

ret

e

td

bitif

1P
P

' fgt
ip

averst

avenst, ¥(seccnt/2)+1
lowbat, oplow
Ibloff

lblon

t20ff

chrgs, pSrtlc
tioff

chrgb, portge

b, #tlralo

b+, #L(beepct-1)
(b+), #H(beepct-1)
(e}, #L(beepct-1)
[b], #H(beepct-1)
b, #tiralo

(br], #.(btime)
[bl, #H(btime)
tlentrt, #095
cntrl, #090

1, 1entrl

0, icntri

g, #0384
a, enad
a, M. (sresti)

miel0 -

a, knind/4
ckac

a, adrsit
enad, ¥0
a, #vrmin

rbecret

enad, ¥#0
acav,lpcrtcp
ckamin
crgrbt -

a8, #mink/2
crgrbt

5,410,711
100

This register is safe to use because we can't have a (ow

;test the counter

:for .5 secorxds

;18 the LED already on?
; then turn it off

; else turn it on

;make sure charger is off completly
: SO we can use this timer
;this timer is duration

;point to timer relocad registers

;8tart the timer

;clear the perding flag
; and enable the interrupt

‘read rbat voltage
;start the conversion

;get rbat operation time

;charge 1f used for more than 1 minute
;cherge reserve battery if ac available

;get the reserve voltage -

;PUt A/D in tow power mode
ytest for minimum ﬁloued-voltage

;Put A/D in low power mode

;Next test for AC power

;2 minutes operation before charg from Bat

;1f more than 2 minutes

: charge even if no AC

ip

101
ckr00

+

5,410,711

; otherwise check voltage

+ CKSRAM will look for a ASh at address 1E02 to indicate that the SRAM
: data has been initialized.
- the area between 1E0Z2 and 1EFF, and then store an AS at.-1EQ2.

cksram:

ld
jsri
i feq

et

ld
clrbit
jsr

ld
except
except
except
except

except

except
except
except
except
éxcept
except
except

except
- except

~ except

except
except

except -

except
except

except
except
except
except
except
except
except
except
except
except
except
eicept
excep?
except
except

a, #(sinitf)
mieQQ
a, #OAS

b, #ophigh
iom, (bl
puthi
poftd, #0

srame, sresti

Srams, Srescr
Sramd,
srame, sresdl

STame,

Srams,

Sramm,

S amed,
Sramm,
Sramm,

Srame,

cwy(008

cmy009
cimyOCA
crry (008
cimy00C
cimy 000

- ST,

sramu, dmy0CE
srame, ayOOF
srame, cwyQi0
dmy011
sramu,'dhy012

srams, cy013
srams, dwyO14

srami, dwy015
sranm, chay016

- srams, amy017

sramud, Swy(Q18
srame . dwy(019
srams, anyGlA
sram, cmy(Q1B

“srcanw, awy01C

sramm, cwyQ1D
sramd, cwyO1E
srams, dmwyQ1F
sramﬁ, dmy020

srams, dwy(21
sramd, cwy022
srams, cwy023
sramu, cmy02é4
sramet, dny025

If 1t does not find the ASh it will clear

;get Lower byte of ackiress

;make sure we're set tc memory cycle

srescr+l

sreadi+d

.4

SN, dmyOZé |

102

-

- e

-
I

¢

except
except
ld
except
ld
except

ret

LAID
RET

S oMM,
Sran,
portd,
Sramm,
portd,
Sramm,

103
amyQ27
dny028
#OFF
sresti

#0AS
sinitt

: 100h times as below.

ehkist:

ckloop

td
\d
ld

except
ret

cnt, #0

ckadr,

- #0
ckdata, #OAA

a, ckadr

a, ckadr

cksm00

a, ckdata
a, ckdata

cnt

“ckloop-

a, ckdata
a, poretd

Sramm,

01£81

5,410,711

;force initial charge of rbat

carea now initialized

CHK1ST does a checksum of the first 100h locations in the program.
.» This can be extended to check all of program memory by adding a

+ TO every 100h block of memory, and then looping through each call

»

:loop counter (must be a register)
raddress in the block
;seed for checksum

:get the current acdresss to check

;increment for next time

" +gave the incremented value

104

:get the contents from the ackdress in block O
cand add in the rumning total
:store 1t back

:cdo this 256 times

=N

:get the checksum
;to report to host
;return checksum as 1st parameter

P

:This is a routine to test 1/0 writes to the host processor bus

-
¥

1ow080:
; first set I0 M™ to IO in OPH

’

id

setbit

jse

ld

b, #ophigh
iom, (bl

outhi

x, ¥temp

: next, set up DRQS in OPL

ld

X

a, oplow

s, portd

L

The X register is used to point to the Data to be output
- The B register points to Port 0 during the data transfer

;point to the op register data storage
: D port data = 10000000 for 10

spointer for data to be output

:qget the op register data

]
’

SO we can retreive this later

),410,711 |
105 106

ld a, portd ; emuilate a store instruction
or &, ¥rgo ;set the drgd bit in the register save data
X a, portd ; D port data = 00000001 for DRQS
id b, #portcd
clrbit milsad, (bl : C0=0)
sethit milgth, [bl ; €1 =2 1 (this starts the DREQ cycle)
; now look for DACK
- gkdack
: next, pull master high in OPL
\d b, #¥portd : point to the D port
setbit master, [b] s D port dats = 00000011 for mastere
:.close the OP Low register

elrbit milstbh, portcd

d

t o

> write desired data-to'D port
X a, [xl ;recover the data to output
X a, (bl ; and store it in port D

; execute the 1§ urite exception cycle to port 8Ch
except iow, 080 ”

X a, (bl :recover data
X a, [x} ;and return to temp while recovering A

; clear DRQ and master®
X a, [b]
ld b, #ported
setbit milsth, (b}
clrbit milstb, (b}

A contains the original OP Low value
point back te port C
turn off magter mode

- . X - a

; now set [0 M” to R in OPH

ld b, #¥ophigh ;point to the op register data storage
cirbit iom, (b] ;point to memory
imp outhi © ; and return

L
! |

e FETEEWTEXRWRRETRETTETTRTHRTET T TR S E R R T AT R Y
L

;- Instruction set checkout

s TEFRERTTRRARF TS ETETTTTTTA TSR TR AR AR TR TR N
4

instst: ld erc,#¥0 :initialize error reference counter

Section 1 - load memory locations with addresses.
This section utilizes all variations of the

-y » g - g - g

- load and exchange instructions.
Memory locations 010-01f are lLoaded with ' >
their respective addresses.

el

td 010, #010
ld 011,#011
Ld b, #012

ld a,b

eris
el:
érd:
eb:
erss
ed:

er8:

drsz
1fnec
jmp

isr

ip

jse
ip
jsr
ip
jsr

a, [b+]
(b+] ,#014°
(bl ,#015
A, #OCA
ab

“b,¥01f .

a, (bl
a,[b-]

a, {b]
a, (b}

ab

a,b

a, {b-1]
(b-],#01c
(b-1,#07D
x,¥1a
a,X

a, [x]
a,[x-]

a,[i-]
a,¥#002

a,x
a,x
a,x
a,x
a, {x]

a, {x+]

a, [x+]

- a,¥18

8, [x+]
a, [x]

3, #019 :results019?

erc

ert

atoc
el
atoc

v

atoc
)

3toC

5,410,711

108

eri0:
e10:
erlil:
eltl:
erld:
el2:
eril:
el3:
eri4:
el4d:

eris:
eld:
erié:
eld:
erl?:
- el7:
eri8:

eld:

eri9:
e19:
erd0:
el0:
erdl:
edl:
erll:
edld:
erdd:
el3:
“erid;
e2sd:
erds:
e25:
erdd:
edb:
erd?:
el7:
erd8:
e28:
erl9:

e29:

er30:
e30:
er31:
e31:
er3d:
e32:

-
4

-
¥

isr

jse

isr
ip
jsr

jsr

ip

- §sr
- lp

jsr
ip
jsr
ip
jsr
P
jsr
ip
jsr
ip

jsr

1P

8toC

atoc
10

atoc
et
atoc
el
atoc
el3
atoC
elé

atoc
eld
atoc
eld
atoc
el7
atoc
el8

atoc

- el9

atoc
e20
aTo¢
ell

atoc

e22
atoc
ed3
atoc
elé4
atoc
@25
atec

“e2b
atoc
el27

atoc
e28

atoc

el9

atoc

30
atogc
31
atoc
e32

109

v

5,410,711

Error subroutine - Error rusber output to port 80h

110

- » - B

Atoc:

!

except
ld

A

jmp

5,410,711
111

Error data stored in SRAM at 1FCCh

a8, portd ;Setup error data
sramm, C1FCO > and store in SRAM
a,erc soutput error #
a,temp ; to port 8Ch

1 ow080

; Section 13 - Multiply (16 x 16)

L]
'

msetup:

eray:
AF.

er50:
e50:

ersl:

-

e>1:

byp8:

er52:

eS2:

drez
drsz
drsz
drsz
ld
ld
X

td
id
X

ld
swap

ld

jse
drsz
{d

ifeq
P
jsr
ip
drs2
td

ip
jsr
ip
drsz
ld
i feq
p
jse
ip
drsz
ld“

ifeq
P
jsr

erc
erc
erc
erc

a,¥0ch

a, [b-1 .
a

a8, (b]

a, [b-]

g, (b]

mult

v

ere
a, [b~]
8, ¥096
byped
atoc
49
erc -
a, (b~

a, ¥oif

bypl?7

atoc

e50

erc

a, [b-]

a, ¥ J%e

byp<8

atoc

e51

ere

a, (b]

a, #0314

nJinst

atoc

e52

112

5,410,711 _
113 114

; Section 14 - Check new instructions

-
4

er53: jsr atoc | >
e53: - jp e53 |
erS4: jsr atoc
e54: jp e54
erds: jsr atoc
e55: ip e35
er5é: jsr atoc
e56: ip e56
ruinst: Ld b, #0b
ld ‘a,¥a

CoP 800 (16 x 16) multiply routine
Multiplicand in (1,0) multiplier in (3,2)
product in (5,4,3,2)

- g o N L N - g

-

cntr = 010
malt: ld cntr, #17
td b, #4
\d (be] , #0
ld (bl ,#0
ld X, #0
re
mloop: (d a, (bl
rre a
X a, (b-]
Ld a, (b]
rre
X a,(b-]
ld a, (bl
rec a
X a, [b-)
ld a, [bl
rre a
X a, (bl
ld b, #5
1fne
1P test
re
1d b, ¥4
d a, (x+]
adc a, [b]
X a, (b+]
td a, [x-)
adc a, (bl
X a, (bl
test: drsz ener
P =l oop

ret

tog:

togl:

-

atodbh:

halt:

ld
setbit

jsr
{d
clrbit

cirbit
ret

ld
clrbit
jsr

ld
clrbit
cirbit
ret

ld

nop
nop
nop

sbit

nop
sbit
nop
I‘Et-

.=0C00

115

b, #oplow

Towbat, (bl -

mtlm “

>

b, #ported
crgled, (bl
cwirlied, (bl

{owbat, (bl

enad, ¥0c¢

7,portgd

7, portod

T
ulk

v

Halt test to measure hait current

5,410,711

;turn on the low batt LED

: also the charge LED

-, &nd the power LED

-

;turn off the low batt LED

; turn the charge LED on
+ and the power LED on

Enter halt mode with A/D conversion started

; SRAM address for ports 02 - FFh

This routine will allow the COP to read [/0 ports between it's ending
address and OFFh. The routine i1s called uith A = L{port address) |

&

:read data out of SRAM

; SRAM ackiress for ports 102 - 1FFh

; This routine will allow the COP to read 1/0 ports between it's ending
; address and 01FFh. The routine is callied with A = L(port address)

tor100:

laid
ret

.=0EQO

;read data out of SRAM

: SRAM address for ports 202 - 2FFh

116

; This routine will allow the COP to read /0
; address and 02FFh.

10r20Q:

; This routine will allow the COP to
; address and Q3FFh.

_ichOO:

laid
ret

-20FQ0

laid

. ret

.=01000

5,410,711
117

POrts between it's ending

The routine is called with A = L{port address)

;read data out of SRAM
; SRAM ackiress for ports 302 - 3Iffh
read 1/0 ports between jtig ending

The routine is called with A = L{port address)

;Tead data out of SRAM

: |
; External interrupt G0 interrupt vector

extirq:

crderse:

toibeg:

jsr
jsr

ld
cirbit
jsri
rbit
except

ld
except
ret

' sread the command from SRAM

getead

dispch ;decode and execute

b, #ophigh o

fom, b] “ ;make sure we're get to memory for COONE
puthi '

3, peu

scdone, 0 : set CDONE for the hese

restor

a, #.(tblbeg)

a, #.(tblend)

cmderr ' ;invalid command

portd, #0ff ;indicate command error

sramd, 01£80 ;feplace original command

cksum : O - Checksum SRANM

sifrse : 1 - Initiate self test

togbat ; 2 - Switch batteries

sbatA ;5 3 - Select battery A

sbats ; & - Select battery 8

sbatR ; 2 - Select reserve battery
dsbatR ; 6 - Deselect reserve battery
dspon ; 7 - Turn on backlight and display
dspoff : 8 - Turn off backlight and display
batst ; 9 - Return battery status

118

thlend:

L L N L

.&CHI"

119

crgres

e
=

5,410,711
| 120
A - Enter sleep mode

B8 -~ Exit sleep mode

C - Enter slow clock mode

D - Enter fast clot.;.k mode

E - Enter starcky mode

F - Turn off System Power Mockle

10 - Current AC power & switches check

-y - 8 -8 LY L - a4 - g

:11 - Start power management
:12 - Put hard disk to sleep
:13 - Stop power mmnagement functions

+14 - Turn on the WO 90C20

219 = Turn off the WO 90C20
:16 - Dummy entry to reserve space
+17 - Start a charge cycle for test

';18'-- Set state of OF Low bits

+19 - Set state of OP High bits
:1A - Set high/low timer 1
+1B - Sat high/low timer 2

;1C - Charge reserve 0 = off/1 = on

The following i1s the actual table of jumps to the various routines.
This is a rather convoluted way of doing things, but this is the

simplest indirect jump/dispatch method supported by the COP.

; This entire table starting from the JID Instruction above must -

; fit in the same 100 page of memory.

cxsum:

slftst:

- 9

sCatA:

teghbat:

stbatl:

statR:

jmp

ret

jmp
setbit
jset
jmp

ld

ret

cirbit
ip

cirbit

ret

setbit

chiksium

cmderr

bankb, oplow

crgalt
crderr
batcnt, #mind

bankb, oplow

togbat

rbin, portcd

rbin, portcd

sinvalid command

;make system think it's on bank-ﬂ
;force the change always

; and reset the timeout

;make system think it's on bank A

»

;TUrN ONn reserve battery

;turn off reserve battery

cspoff

batst:

- 9

sleep

endsip:

slwclk:

fstelks:

Pwrdwn

acpehk:

stripms

ret

jmpt

isri
isri
jmpl

setbit

ld
bitif
xor

X

jsr
clrbit
setbit
ret

clrbit
ld

jmp

jmpl

jmpl

jmp

ld

jsr
jsr

jmpl

121

dsplon

dsplof

reacdad
avrage
writad

s pmde, mode
a, #OCA

3386, sysbyt

'~a, #050

a, tenmp
htetlw
kbdint, wkpnd
kbdint, wken

slpmde, mode

temp, #0146

htctlw
l speed

hspeed

spmoff

chkac -

croerr

5,410,711

sturn on display and backiight

;turn off the display & backlight

;read the A/D channels
;compute the average

122

;and return the instantaneous results

-

;250KK2 for 286

;18 it really a 385

if so switch to 2 MHz

;set sleep mode register
;urite HT21 control and return
;Clear keyboard to start
senable wakeup interrupt

;turn off sleep mode
surite HT21 control and return

;set the processor speed to low

;set the processor speed to hfgh

»

;turn off System Power Module

;¢ parameters currently

.5 9ot the parameters

;checksum the parameters
; and store the checksum
; then set the timeout values

;invalid commend

chksum:

s trdby

- &

stnd00:

stchrg:

crgres:

cutlow:

outhi:

spwmti:

t2loop:

jmpl

jsr
jsr
jsri

bitif

ip

jsr

jsr

JSr
id

ret

Jmp

jsr

1feq

ympl
jmpl

jsr

jsr

cirbit
sethit
sethit

\d
id
td

Ld

123

chkist

chkact
drvoff
dspof(
crton, flashb
stnd0l

c20off

sleep
cpuhtid

erc, #1

stergl

getip

debug, #0
rocend
rostret

getip

a, debug
b, #oplow
a, b1
put | ou

getip

a, debug -
b, #oghigh
a, [bl
puthi

spwmix

o

get4p

txc, tlentri
chrga, portid
chrga, portlc
x, ¥debug

b, #t2ralo
cnt, #4

a, [x+]

5,410,711

;checkum 1st block of program

:3ee it system currentiy busy
;turn off the drive

sturn off the display
sare we using the cre

sturn off the $0C20

:slow the clock

- ;lowest power mode

;setp to flash every two secords

L

get 1 ;;nr'mtir from data area
and_stnre it in debug

- e - 5

;: then output to 0P Low and return

: same as above to OP High

124

;transfer indirect to allow alt entry

o~

*Make sure weire off to start
+ including the FET control line
+ make L4 an output

;transfef 4 parameters

5,410,711

125 126
X a, [br]
drs2 cnt
ip t2loop
ld t2cntrl, #080 renable pum mode
setbit chrga, crowde
ret
drvoff:
311 ¢! drvof]
chkact:
| ret
c20off: |
ld b, #ophigh paint to op high byte
elrbit pd9020, (b) sturn off the $0C20
jmpl puthi : after the tacklight and return
¢20on: | .
ld b, ¥#ophigh :point to op high byte
setbit pd9020, (b} sturn on 90C20
jept puthi i before the backlight
spwnlx: -
jsr getép
spemiac
clrbit -txel, centrl ;turn off the timer
setbit chrgb, ported ; and force the charger off
setbit chrgb, éortac ; G 1s an output
ld X, #debug
ld b, #tiralo
ld s, [x+] stransfer the first 2 parameters
X a, (bl
\d 3, [xe¢])
X a, (bl
td b, #tirble :then do the next two
ld a, [x+]
X a, [b+]
ld s, x]
X a, (bl
ld cnerl, #080 ; turn on timer
setbit chrgb, crgmde
ret
stergls
bitif acav, poricp ;gon't try to charge from batteries
ret
jsri clrbsy sclear battery detect
bitif bdt, portip ;18 there a battery presant

ret ; nop if No battery present
ld batcnt, #xctim max charge time = 3 hours

clrbit
ld

td

td

jsr
clrbit
setbit

sttrkl:

chkac:

chkacl:

chkac?d:

. chkac3:

ld
ld
id
td
ld
jsr
ld
ld
ld
\d
{d

ld
ctrbit
jsri
jsri
ld
and
SWap
pitif
or
bitif
ip

or

bitif
ip
or

bitif
ip
or

X
except
ret

127

crgled, portcd
syscnt, £
lcdent, #1
hdent, #1
clrotd

trklec, cromce

charge, crowde

b, ¥debug

(b+], #mincrg

(b+], #00

(b+], #¥(maxcrg-mincrg)
(b, #00

SPUMC S

b, #debug
“Tb+], #mincrg

(be], #00
(De], #Eﬁ-xcrgfmincrg)
(b1, #00

spwmla

b, #ophigh
iom, (b]
putht

clrbty

a, mode

a, #lobat2+iobat3
a

lobatl, mode
a, #020
acay, poricp
chkacl

a, #acav

SWX, portgp
chkac?

a, #swx

bdt, portlp
chkac3
8, #bdt

a, portd
sramsi, 01F81

5,410,711

rclear the peak readings
et trickle charge
sindicate weire rellly'charging

:set small duty cycle to start

\

;start Bat A charging

;3et small duty cycle to start

;start 8at B charging

F-

°reset the latch
;3et the contents of the mode byte

;3uap nibbles

;test for ac available
; 1f AC not avail

;also check standby switch

;1f switch is down

;put the flags in the O port

| ;and write them to SRAM

128

; This routine will become master and write the data in TEMP to HT21 ctl reg 5

#

htetiwe

5,410,711

129 130
:. first set [0 M" to 10 in OPR <
ld b, #ophigh :point to the op register data storage
sethit i1am, (bl + D port data = 10000000 for 10
jsrt puthi -
ld “x, #temp | | :pointer for data to be outp-ut

-
[

+ next, set up DRAS 1n OPL
ld a, oplow ;get the op register data

X a, portd ; 30 we can retreive this later
td a, portd ; emulate a store instruction
- or a, Krgd | ;set the drgd bit in the register save data
X a, portd ; D port data = 00000Q01 for DROS
td b, #portcd
cirbit milsad, (bl : 0 =90
gsetbit milstb, (bl *+ C1 = 1 (this starts the DREQ cycle)

now look for DACK
- ckdack

s

* next, pull master high in OPL
td b, #portd point to the D port

setbit master, (b] ; D port data = 0000G01T for master®

clrbit milstb, portcd close the OP Low register

+ Set the HTZ21 index register

ld (b), #05 ;point to the sleep control register
except iom, O1ED |

: write desired data to D port | . +
X a, [x] :recover the data to output

- a, (B] " ; and xtore it in port D

execute the 1o write exception cycle to port Q1EFh (HTZ1 C‘ontml')

e

except iow, Q1EF

Y

X a, {x] ' - ; and recover originﬁl 0P low

clear DRQ and master® |

L

X a, [b] : A contains the original OP Low value
td b, #ported ; point back to port C
setbit =ilstb, [b] . +; turn off mester mode
cirbit milsth,]
: now set 10 M” to M in OPH
td ' b, #¥cphigh ;point to the op register data storage
celrbit <tom, (bl ;point to memory
jmpl puthi .
cpdil.d:- |
td b, #portlp ;point to the L pore |
clrbit cpuint, wkpnd sclear the inter:':mt pending flag

bitif cpuint, (b} ‘wait for the interrupt to be acknowledged

5,410,711
131 132

isrl delay ; by the hest cpu

td a, oplow :get the op register data

X a, portd : SO we can retreive this later

ld a, portd ; emulate a store instruction

or a, #drgs ;set the drgs bit in the register save data
X a, portd : D port data = 000000071 for DRQS

ld b, #portcd

C0=4
Cl = 1 (this starts the DREQ cycle)

clrbit milsad, (b)
setbit milsth, (bl

- a - e

ckdack

: next, pull master high in OPL
td b, #portd
sethit master, (bl
clrbit miistbh, ported

point to the 0 port
D port data = 00000011 for master*
close the OP Low register

myg Wy LY LN

X a, (bl recover current OP Low settings
X a, oplow and save
 setbit hldreq, mode ;Tell interested parties sbout hold
1d b, #wkpnd)
clrbit kbdint, [b) | :Clear keyboard but,not timer to start
setbit kbdint, wken |
 getbit cpaint, wken
ret
clrold:
ld ent, 8 ;start with save ares cleared
ld b, ¥crgrag
clrerg: | .
clr a 4
X a, (b*] "
drsz ent
ip clrerg
ret i
drvofl:
id hdemd, #0€0 sEnter standcby commmend

; This routine will become master and write the data in hdemd to the Mard disk ctl reg

iowlif7: -

. first gset 10 M~ to 10 in OPH

\d b, #ophigh spoint to the op register data storage
setbit 1om, (b] : D port data = 10000000 for 10

jsri puthi

ld x, #hdcxd ';pointer for data to be output

s next, set wo DRQAS in OPL |
{d a, oplow ;get the op register data

),410,711

133 134
X a, portd ; 30 we can retreive this later
\d a, portd ; emulate a store instruction
or s, ¥irgs ;set the drgd bit in the register save data
X a, portd ; D port data = 00000001 for DRQS
Ld b, #ported |
clrbit milsad, (b] ; CO=Q
setbit milstb, (b] | :

€1 = 1 (this starts the DREQ cycle)

: now loock for DACK
ckdack

>

: next, pull master high in OPL _ __
ld b, #portd ; point to the D port -
setbit master, [b]_ 7 D port data = 00000011 for master®
cirbit milstb, ported | ;* close the OP Low register |

except ior, 03F6 sread alternate status port
X - a, [b} . ssave OP Low e
\d a, #.(03F6) - :to retreive io data
jsrt ior300 ¢
ifbit 7,8 stest disk busy status
jp hdbusy ;try again latsr
ifeq pendng, #0 | ;ho delay
ip “hdwrit
drsz pendng ;else lets wait a while
ip hdexit :
hawrit:
X a, [bl ;recover registers for now **

'.‘-

: write desired data to D port

X a, X1 ;recover the data to output
X a, (bl | ; wxl store it in port D

: execute the io write exception cycle to port 01F7h (HO Control)
except iow, O1F7

X a, I[x] ;and recover original OP low

: clear DRQ and master*

X a, [b] ; A contains the arigimt OF Low value
hdexit:

ld b, #ported

setbit miistb, (bl

cirbit milsthb, [b] |

point back to port C
turn off master mode

L X | L E |

; now set IO M™ to M in OPH

ld b, #ophigh ' ;point to the op register data storage
clrbit iom, [b] ;Point 0 memory

jsrt puthi | |

cirbit hdecs(, wkpnd ;30 we don't interrupt again

ret

5,410,711
135 | 136

L

hcousy: .
| ld pendng, #12 ;set the flag for 60 msec delay

p hdexit

The XSUMP routiﬁe dweti:km the system parameter data area to validate
the initial settings in case of a total system power failure that
causes the CDP.setingz-to be invalid

=y g g

XSUTp3 ‘
clr a -
ld x, ¥Fsystim
\d b, #texp
X ‘a, (Bl = :Clear the accumulator
ld cnt, #
xslop:
ld a, {x+) ; Get the p.rmtﬂ_:
add a, [b) ; and add it to the accumuiator
X “a, (b) ;save it back
drsz cnt)
p xslop
\d s, (bl ;return with calculated checksum in A
ret ; X points to stored checksum

; GET1P gets 1 parameter to the data location DEBUG for test purposes

'

get4p:
ld cnt, #
ip getp
getip:
ld cnt, #9
getp:
ld X, #debug
jmp gvpara
.=01ECQ
ml1eQ0: .
laid ;Allow COP to store parameters
ret | s at 1E02-1EFF v
_201F00 :place this at the top of SRAM

' ;';‘The GETM routine will return the value of a coomand
; placed at address 1F80h by the host CPU. The COP can
then call GSPARM or GVPARM to retreive the psramsters
to an ares in the data ram of the COP processor

. &
&

- g - g - g - s

On Entry:

CNT contains the number of parameters to retreive

o g - g - & -y

for GVPARM

- g - g

on Exit:

L - g - g

- &

getcmd:
td

taid
ret

gsparm:
id
gvparms
ld
td

sloop
ld
Laid

-ts M »

b

drsz

ip
ret

.end

137

-,m’ao

b, #temp
[(b], #081

a, (b}

a, [x+]

; EXCEPTION MACROS

[OR
{e
SRAMY
SCODONE

L 3

- a - s

.macro except, type, addr

oy - »

a mask vailue.

LTRCTO
.Set

"
&

= 04C00
= 046000
= 04000
= - 06000

OAD

bit, bitnum
mask, 1

5,410,711
138

X contains the address to store the parameters in COP dats space

The PSAVE area contains the parameters

;Address of coswend on this page
; get contents of 1F8Ch

spoint to the COP parameter ares

;temporary storage
;acdress of parameters in SRAM

ackdress of current parameter
get parameter
and store it in data space

then put it beck for next time
decrement the counter
anhd cmtiu.ug till done

®
[
-
s
.
’
-
4
-
7
¥
s
-
F
-
|

[/0 read exception cycle

1/C urite exception cycle
SRAM urite exception cycle
Set COOKE bit exception cycle

LY) L ¥ | ™ & N e

IOR forces the read data to be in the range CO0h - FFF

w

the macro EXCEPT takes three parameters: type (one of the above),
addr (four hex digits giving the exception address)

The 81T macros (SETBIT, CLRBIT, BITIF) allow the user to specify the
bit to be set/reset/tested using the same label name that is used as

;yields the mask value corresponding

"“
.set

If
-Set
.endi f
endif

JAACro

. set
.3et
. 00
.set
Af
.set
.else

exit
endif

- &NCdo
. endm

-MACTO

1f

Lerror
.else
bitrum
sbit

.endif
. &N

-MACro

. aCro

Af

139
b3 trm
bitrem

mask,mask*2

H(magk) |
mask H(mask)

bitrwm, mskval

oy
bitrem, bi treme 1

I

setbit, dunmy, addr

a<e

),410,711
140

: to the bit nunber

«gets the bit number coresponding
: 8 mask value

-

rgetnerate the shit instruction
; from the mask label

No Paramerter for bit operation

Arwmy
bitnum, addr

cirbit, dummy, addr

a<2

ammy *
bitream, addr

bitif, dusmy, addr

a<2

sgetnerste the rbit instruction
> from the mask label

- No Paramerter for bit operation

sgetnerate the i1fbit instruction
; from the mask label

5,410,711

141
.error No Paramerter for bit operation
.else
bitm dumwy .)
ifbit bitnum, addr
.endif
. enam

N nN 9

everyplace this is used

-4

.macro ckdack

ld b, #ackprt

.mloc cdack
cdack:

bitif dack, [b]

ip cdack

. endim

What is claimed is:

1. A computer system, comprising:

a system bus, including sufficient lines for carrying
data and address information in a predetermined
protocol;

at least one microprocessor CPU subsystem, con-
nected to access said system bus as master;

a plurality of other subsystems, each connected to
access said system bus as slaves;

one or more batteries, connected to provide power to
said subsystems;

a power-management controller, comprising a micro-

processor which 1s connected to directly access
said system bus 1n a first mode, as slave, and 1n a
second mode, as master;

sald power-management controller being connected
to directly monitor activity on said system bus, and
to monitor a state of said batteries,

to operate 1n said second, master mode to directly
cause ones of said subsystems to enter a standby
mode of reduced power consumption,

and to operate in said second, master made to directly

cause ones of said subsystems to wake up from said

standby mode when user input is detected, said
power-management controller directly coupled to
said system bus to gain immediate access to said
subsystems as master of said system bus to change
modes of said subsystems.

2. The system of claim 1, wherein said power-man-
agement controller comprises a microcontroller.

3. The system of claim 1, wherein said power-man-
‘agement controller comprises a microcontroller and an
interface chip.

4. The system of claim 1, wherein said power-man-
agement controller comprises a microcontroller having
on-chip multichannel analog-to-digital conversion capa-
bility.

5. The system of claim 1, wherein said other subsys-
tems include a hard disk controller, a display controller,
and a keyboard interface. | o

6. The system of claim 1, further comprising a system
clock generator, which is configured to generate a sys-
tem clock signal; and wherein said CPU and plural ones
of said other subsystems are connected to receive said
system clock signal; and wherein said power-manage-

142

The macro CKDACX generates the code to check for dma acknowledge
using a local label so that the label names do not have to be changed

:point to the port that DACKX is on

ment controller i1s connected to selectably slow said
system clock signal.

7. The system of claim 1, wherein said batteries are

. rechargeable.

8. A computer system, comprising:

a system bus, including sufficient lines for carrying
data and address information in a predetermined
protocol;

at least one microprocessor CPU subsystem, con-
nected to access said system bus as master;

a plurality of other subsystems, each connected to
access said system bus as slaves;

one or more batteries, connected to provide power to
said subsystems;

a power-management controller, comprising a micro-
processor which is connected to directly access
said system bus in a first mode, as slave, and, in a
second mode, as master;

said power-management controller being connected
to directly monitor activity on said system bus,

and to monitor a state of said batteries,

to operate in said second, master mode to directly
cause ones of said subsystems to enter a standby
mode of reduced power consumption,

and to operate in said second, master mode to directly
cause ones of said subsystems to wake up from said
standby mode when user input 1s detected;

program memory for storing instructions o be exe-
cuted by said controller;

said controller being connected to said system bus,
and to said program memory, through an interface
chip which includes at least one state machine, said
power-management controller directly coupled to
sald system bus to gain immediate access to said
subsystems as master of said system bus to change
modes of said subsystems.

9. The system of claim 8, wherein said power-man-
agement controller comprises a microcontroller having.
on-chip multichannel analog-to-digital conversion capa-
bality.

10. The system of claim 8, further comprising a sys-
tem clock generator, which is configured to generate a
system clock signal; and wherein said CPU and plural
ones of said other subsystems are connected to receive
said system clock signal; and wherein said power-man-

e

5,410,711

143

agemernt controller 1s connected to selectably slow said

system clock signal. .
11. The system of claim 8, wherein said batteries are

rechargeable.

12. A method of operating a computer system, com-

prising the steps of:

(A) repeatedly executing user-defined programmed
operations in at least one microprocessor CPU
subsystem,

wherein a CPU within said at least one microproces-
sor CPU subsystem, in response to at least some
ones of said user-programmed operations, accesses
a system bus as master;

(B) independently of and in parallel with said re-
peated execution of said user-defined program op-
erations, executing a second program from nonvol-
atile storage in a power-management controller,
comprising a microprocessor which is connected
to directly access said system bus in a first mode, as
slave, and, in a second mode, as master;

wherein, in response to commands of said second
program, said power-management controller

monitors activity of said system bus,

monittors at least one battery voltage,

10

15

20

25

30

35

45

50

35

65

144

conditionally operates in said second, master mode to
cause said CPU or other subsystems to enter a
standby mode of reduced power consumption,
and conditionally operates 1n said second, master
mode to cause ones of said subsystems to wake up
from said standby mode when user input is de-

tected, said power-management controller directly
coupled to said system bus to gain immediate ac-

cess to said subsystems as master of said system bus
to change modes of said subsystems.
13. The method of claim 12, wherein said power-
management controller comprises a microcontroller.
14. The method of claim 12, wherein said power-
management controller comprises a microcontroller
and an interface chip. |
15. The method of claim 12, wherein said power-
management controller comprises a microcontroller

- having on-chip multichannel analog-to-digital conver-

sion capability.
16. The method of claim 12, wherein said other sub-
sytems include a hard disk controller, a display control-

ler, and a keyboard interface.

17. The method of claim 12, wherein said batteries are
rechargeable.

	Front Page
	Drawings
	Specification
	Claims

