United States Patent [

Lefons

OO 0O A

US005398199A
Patent Number:

5,398,199
Mar. 14, 1995

[11]
[45] Date of Patent:

MANY-VALUED LOGIC PROCESSOR FOR
DATA QUERY SYSTEMS

[54]

176] Inventor: Ezio Lefons, 13 Via Bitonto, [-70026
Modugno BA, Italy

[21] Appl. No.: 846,806
[22] Filed: Mar. 4, 1992
[30] Foreign Application Priority Data

Mar. 6, 1991 [IT] Taly wooerorecorecrernrrererrenn, RM91A0154
[51] Imt. Clé GO6F 15/32; GO6F 15/40
[52] US.CL FR—— 364/735; 364/746.2;

364/DIG. 2; 395/600
395/600, 375, 775, 425,
395/800: 364,735, 746.2

[58] Field of Search

llllllllllll

[56] References Cited
U.S. PATENT DOCUMENTS
3,827,030 7/1974 SEIDPDP worreeeremreresrrressresrresseneen 395/375
4,286,330 8/1981 1saacsOn ...ccccecvvmvecececnconennnnnn 395/375
4,357,678 11/1982 DaVIS .cceerrrreerreereeceeenereennns 395/775
3,274,788 12/1993 KOIKE .eevrreeiiririneecrevnennan 395/425

OTHER PUBLICATIONS

“Dedicated Machines Take on Data-Base Manage-
ment” 2328 Electronic Design, vol. 30, No. 12, Jun.
“Extending the Database Relational Model to Capture

More Meaning” ACM Transactions, vol. 4, No. 4, Dec.
1979.

Sigmod Record, vol. 19, No. 1, Mar. 1990, pp. 29-35
“Four Valued Logic for Relational Database Systems”.

Primary Examiner—Paul V. Kulik
Attorney, Agent, or Firm—Pollock, Vande Sande &
Priddy

[57) ABSTRACT

This data query apparatus comnsists of an application
software and a circuitry for the processing of the data
selection condition of the user query embodied in a host
data base management system or information retrieval
system. The application software translates the selec-
tion condition into the standard form which the cir-
cuitry can process. From the host system, and for each
data record to be analyzed, the circuit apparatus re-
ceives the logical values taken on by the atomic condi-
tions of the query and returns the logical value that the
global selection condition takes on. This system allows
the user to query the data on the basis of any truth-
valued logic set up an arbitrary number of logical val-
ues, within the limits fixed by the system developer.

3 Claims, 16 Drawing Sheets

BT TO HOST SYSTEM DATA BUS
 pres i1
cS I .
80l - 80z 803_ HOST SYSTEM
McPU | [meoM | [wram] 25T TR
LOC. CONTROL
AND TMER
804 MCPU ADDRESS CONTROL

i eessesssl whi Seshesssesd el Ssielaaa——y O S SN LY Y N NS el piel Seiieledielaeiel sl lemlewbeleial Sy Skl W

807

TS | oos
=T

EVAL 112

806 AND DATA BUS

U

SNd V.1V(cll

VA LINJYID

5,398,199

: Ndd
s OOl 594d
" ol
3 _]
= 0 E _
Snd O/ E
) 20l —_— DINOD NOLLYINddY
N
2 ,_ _
= SI0A3Q 340D —~ A
< O/T ¥IHLO eol - £J)= |
=
>.

|72 _
100
— 43 IdN0D £ — —

o 19 T _ -

L¥0d 0/T 80l T

S

90| H m

$0l

.r vdd9
GOl .c _

L el iiSgeninie— T Al — Al — e A ety

U.S. Patent

Oll

60

5,398,199
o
O
™

Ol OYdNOD NOLLYIddY

= (3009) (S21907)
‘S T T INILNOY — =il ARETLY
~ YIAOONT AYINO (c0z NOILYI403dS
3 202
7 c0z—"1 _ b0z
S0Yd _
. ol (NV)) |
NOILYIIddY
& o NOLLYWHOASNVY L |
& 00! T7IINONYD |
< |
= 102
; o N - |
g <0 NS.},...“ TQQ
uI - = — |l
— 44 IdNOD — gy — Y339
| 192 |

o0l

80
Snd V.1va _ _ _ FUVMLIOS WALSAS _

U.S. Patent

U.S. Patent Mar. 14, 1995 Sheet 3 of 16 5,398,199

40 402 403 404 405
AFF NEG IND AFF NEG IND AFF NEG IND AFF NEG IND
oo 3 2 o1 | [1 o 32
CODE CRCUT AX CIRCUT AE CRCUT OF CRCUIT OX

FIG. 4

50 202 003

TUF AFF NEG IND AFF NEG IND

2 o |0
4 3 |0

o 2 (-6
3 4 16

CODE CIRCUIT AX.AE CIRCUIT OE,0X

FIG. S

U.S. Patent Mar. 14, 1995 Sheet 4 of 16 5,398,199

5,398,199

Sheet 5 of 16

Mar. 14, 1995

U.S. Patent

_

sna v.iva any 208 II £08

|
|

|

|

|

|

|

m TJOMLNOD SS3HAAVY NdOW 08
|

|

|

_

|

|

- dINLL ANV
TO4.LNOD “007

I R et

SN V.1Lvd W3LSAS LSOH Ol

U.S. Patent Mar. 14, 1995 Sheet 6 of 16 5,398,199

806 \cPU ADDRESS CONTROL
AND DATA BUS

U.S. Patent Mar. 14, 1995 Sheet 7 of 16 5,398,199

C23 (C21C20

806 MCPU ADDRESS CONTROL AND
_______________ DATA BUS
| REGS 807 1
| 808 810 I
, REG V REG U |
| U1 US |qy |
| U2U5 ey |
C31 C12
! C30 o272 C13 L Us U4 !

RN

- e S S W RS S TR A TSN B TR AR b

. R . sl ey SaEeeEEE—— A Ty Shine S

EVAL 112 - e B-=CIRCUT-3]

r-__mh“-ﬁ__--h———-__—__m———_——"_-ﬂﬂ_-m—___-_"“_

U.S. Patent Mar. 14, 1995 Sheet 8 of 16 5,398,199

806 MCPU ADDRESS CONTROL AND
DATA BUS
| REGS 807 810

REG U

v Pviskeesy s diskisesleeee SN WIS S AR A

- e A S LS. S S S EELAAMES i el Sy Selbaibasbl o Seeeeesibbiae S SRS S Sk A

1135

138 11—
AT 11218) Y B
1048 1145
IIIII N0Zh 11221129) 4440 1148
1 ,

||||||M
11 1137

III“I ”04l 1124 1131 1141 1144
L i
||||||MD

(101 1138 | 1146

! !
I““I 1126 1133 | 1142
1IN
11 e
T . B-—-CIRCUIT—1

- e e geereslaan P SELANEEEEE e AT S S e e S DI Sl e A

!

|

|

|

!

|

!

|

!

|

!

|

!

|

|

|

I

l -

!

| |sss

IJi :

!
SR (R I

S FEEebeepesl el Eelalaeessl deek alFePeeshliphied Sal S— L] o B T R I It T TR T

&
E _

N

TO THE OTHER
B-CIRCUITS

A wisssssbissesl S eeebbbisbess b eeesiniSieal del EeeeeslEE fall GeesinSbisbeesl B deisepieisig el shlespssink E SEETEElEEE BEE SEPEEEEEELE EFE SN P bbbl el abessssssy s develeesbbll e EwTseen iy

— e——— Sk Sl P

U.S. Patent Mar. 14, 1995 Sheet 9 of 16 5,398,199

806 MCPU ADDRESS CONTROL AND
DATA BUS
| REGS 807 810 -__.
808 REG U

!

!

_____________________ II o
S

1235 |

| 1239] 1243 =
][22 P rzge *'
— D 1248 1 |
NI gz T s
1™) |

E

!

!

I !

11 1237 | !
I""I 1204| 1224 1231 1241 19 I |
i<l . o

g

g

g

1511 1238 1246

I“l" 12261933) 124

e WL

-m-_-“h_h___-“-“-

)

10 THE OTHER
B—CIRCUITS

i I T S p—

U.S. Patent Mar. 14, 1995 Sheet 10 of 16 5,398,199

806 MCPU ADDRESS CONTROL AND
DATA BUS

I ReGs807 | 89 | 810 | |
! 808 REG U
| 17
, C16 |
| 12 |
s C1y H% :
Jllm s

_____________________ I']

S e T T
i N e “ i

1335

i 339 13 / &y, i i
| II"“-I- 1143 1) P |
i |I||I| 1021 43221329) 434 1348 l [
| 1 ’ |
| il |
! 11 e 1337 o
| (111304~ 328 1331 , |
| s e -
‘ [[I3T" sz) X .
! IIIIII-I'I 1338 1346 | l
! L s 5
= w
' 1317 o
! M) 7= e | |
| N |
i TO THE OTHER ’
| B~CIRCUITS |
| |

US Patent Mar. 14, 1995 Sheet 11 of 16 5,398,199

806 MCPU ADDRESS CONTROL AND
______ DATA BUS
[REGS 807 N]
REG U

T 1!

(__- 1435
| 1439] 1443
401 14211498 /

448 1445

"I"I 021 14221429) 444 1448
™ ™)

“ 1403 ! 1423
1430

1 - 1437

1404
I""I | 1424 1431 1441 1444

|I|||| 1405 7 1425))

T yael 1446

I"'" | 4261433) 144
IIIII
| 1407 1427
wr UL 2
- THHT D B—CIRCUIT-1

E A
=
~J

—

— ekl Emk TEEE—————— P Tk S e ey

P

l—-_—m-__“_m“m-H
|

N—

10 THE OTHER
B—CIRCUITS

i
!
!
|
|
!
|
!
!
!
!
!
!
!

FIG. 14

U.S. Patent Mar. 14, 1995 Sheet 12 of 16 5,398,199

806 MCPU ADDRESS CONTROL AND
L DATA BUS

["ReGs 807 - so_ |
! 808 REG C REG U
(C17
| C16

C15
| C14
: C13 U3
| 3 i
' C10 -1

o e\ e . — . — . Co—— A ———— — o e

e B 8 1548

J501]— 21 1529 Y,
IIIIII-'III 1537 1546 ‘

IIIIII 1502] " 4599 1530 - 1549
§

|

|

!

!

| 1538 |
“I“l 1924 1532 [1542 1545 |
|

!

!

!

iR e

e 153 1547

T e
11111

PR 111

N/

TO THE OTHER
B-CIRCUITS

o
(fD
/
]
l
S R

U.S. Patent Mar. 14, 1995 Sheet 13 of 16 5,398,199

806 MCPU ADDRESS CONTROL AND
1 DATA BUS

!_REGS 807 810 -
! 808 REG U |
l i
| C16

C15 '
| 14 U3 '
Bitlie=r gl
' C10 .1)

1600! 1620, 1636

i<l
“II" 1601 1621 1629
>

1637

|||||| 1622 1630) e 1649
"II" 1603, 1623
T el

1604
IIII" 1024 1632 | 1642 1645

T
T B
g1 ZLL 55 1647

@
g
1< ’_ {
i
|
!

L I L —I_———‘_““-—_m_-—_—__-

1639

T T -
Tl)

e L |

1617 ™ Y1099 I |

oo ____B-CIRCUT-1 | |

NS |

TO THE OTHER |

B-CIRCUIS ;

U.;S. Patent Mar. 14, 1995 Sheet 14 of 16 5,398,199

806 MCPU ADDRESS CONTROL AND
. DATA BUS

L. =] L. . & = N ;N N i) L & N N B N B _ N N N N & B _ 3 N] N N SRRl —

808 JREG C REG V REG U

=]

OO IO
sl gl el nemdl wdy el Sl c—
O NI LD IO~

e R P el —

700, 17201728

S Tty

1737 1746

I

1 :
! .
! |
' [s, }
i Il-“ 1738 ! i
i ey g;u e ||
! {
| 1715 II"") X l |
= T 1739 1747 !
! |||||| 1726 1734 -
| lllll-l-l | |
' 11 ‘
! {17 T i I
| e BEORCUTD
I e — '
| TO THE OTHER |
i B~CIRCUITS |
i t

U.S. Patent . Mar. 14, 1995 Sheet 15 of 16 5,398,199

806 MCPU ADDRESS CONTROL AND
______ DATA BUS
810 o

REG U
C17
C16
C15
613 3
12 07
C10 1

N

—

] 1 1836
1800 8201 3828 1

840] 18
“—")
"“" 1801) 78211829
%

1857

"I"I 1822 1830) 1g4:

II 1803 | 1823
1831

|
ml" 1804 1824 183
Ill-l-l,
II"" 1805 1825
T ™) Yl

1839

llll" . 1826 1834
T3

8 \[[11807] = a7
181/ mlll-l-) 1835

-ﬂh_ﬂ_—m-“-“—_“_-

N

TO THE OTHER
B-CIRCUITS

i
_-‘I
|
b
(Fi

i

i

i

i

i

i

i

!

P
.
|

U.S. Patent Mar. 14, 1995 Sheet 16 of 16 5,398,199

SEX CiVIL STATUS YEAR OF MARRIAGE
m MARRED 1950
m SINGLE ?
f MARRIED ?
f ? ?
m MARRIED 1937

SEX CIVIL STATUS YEAR OF MARRIAGE
m MARRIED 1950
SEX CIVIL STATUS YEAR OF MARRIAGE

!
!
SEX CIVIL STATUS YEAR OF MARRIAGE %
f MARRIED ? ,
!
!
!

2033
NAME SEX CIVLL STATUS YEAR OF MARRIAGE

5,398,199

1

MANY-VALUED LOGIC PROCESSOR FOR DATA
QUERY SYSTEMS

FIELD OF THE INVENTION

This invention can be applied to file management and
data base management systems and, in particular, to
digital apparatus and its associated software for the
- processing of data query transactions.

BACKGROUND OF THE INVENTION

Information Retrieval/Data Bank systems (IR sys-
tems) and Data Base Systems (DB systems) are basic
applications of digital computers. Whereas the IR sys-
tems are generally available only on mainframes via
networks, the DB systems are available on the majority
of computers, from mainframes to personal computers,
and consist of software packages and sometimes special-
ized hardware apparatus. The query process involves a
selection of stored records. The user can request the
execution of final operations on the selected records
(their printing or display on the screen of the personal
computer) or, for DB users, also intermediate opera-
tions (their manipulation and storage). The records are
selected on the basis of the query condition expressed
by the user on the data by means of a query language.
The language provided by the system developer, how-
ever, 1s not always semantically adequate to support all
the user needs.

The aim of the system developer is to implement
methods for the fastest possible selection of records
from those available. The selection execution time de-
pends on data structures utilized, performance of CPU
and mput/output devices, data transmission speed be-
tween main memory and mass storage, and, finally,
query complexity. In fact, the more the number of
atomic conditions expressed by the user, the longer the
mean CPU time needed to evaluate them on the data.
On the other hand, there may be inherent difficulties
directly concerning the decision as to whether particu-
lar records do or do not satisfy the query condition.

As an example, a common use of IR systems, namely,
bibliographical reference systems, is first considered. In
this context, the user query concerns the retrieval of
bibliographical references on a specified subject and it is
formulated as a logical expression of keywords-each
one signifying a search topic. A problem arises in the
presence of keywords which are generic or not in-
cluded in the thesaurus on which the bibliographical
source classification is based. The current query pro-
cessing method consists of assigning every biblio-
graphic source with a “probability of relevance” to the
specified topics, then evaluating the probability of rele-
vance of the source to the global query and, finally,
furnishing the bibliographic sources in decreasing order
of probability (exceeding a given threshold).

As regards DB systems, the main difficulty is due to
the possible presence of null values. The American
National Standard Institute report (ref. [1] of bibliogra-
phy) lists 14 kinds of null values, that is, 14 cases when
a data value 1s considered null. For example, the value
is null whenever it is inapplicable to some entities (the
maiden name of male employees), applicable but pres-
ently non-existent (the profession of a child), inconsis-
tent, or unknown (because it 1s protected, unavailable,
missing, being updated or validated, etc). Lastly, the
value 1s null when it depends on values which are null
themselves. The decision process is also problematic

10

15

20

23

30

35

43

50

335

60

65

2

when the data value is a placeholder for one in a given
set of (real and/or null) values. This “special value”
case differs from the “null value” in that the actual
value 1s neither null nor protected and, in any case, it is
not suitable to specify it with precision. Details can be
found in Lefons’ paper (ref. [5] of bibliography).

The usual query processing consists typically of the
following schematic steps. Step I: query compilation
and translation into object code. In particular, the query
condition is decomposed into atomic conditions directly
applicable to the data. The object code contains the
imstructions to evaluate the atomic conditions and to
appropriately assembie the partial results. Step II: serial
or indexed read-in of a data record from peripheral
memory. Step IIl: evaluation of the atomic conditions
on the data. For each atomic condition, this evaluation
process assigns the truth value true or false as result
according to whether the data record does or does not
satisfy that atomic condition. Step IV: assembly of the
results obtained in step III by means of Boolean opera-
tions and, or, and not. On the basis of the result (true or
false) of this composition, the record is selected or re-
Jected. Steps I, I, and IV are repeated for all records
avallable. Step V: execution of the intermediate/final
operations on the selected records.

There are two main inconveniences which compro-
mise the flexibility and functionality of the system. One
is the fact that the time required to process the selection
condition depends directly on its complexity. The sec-
ond 1s derived from the presence, often unavoidable, of
null, special, or probability values as possible data val-
ues and, consequently, as results of the atomic condition
evaluation. In fact, using the ordinary two-valued logic
{true, false}, conditions applied to null, special, or prob-
ability values cannot be assigned a proper truth value.
The problem of deciding if and how to support many-
valued logics is, at present, a difficult task for the system
developer. In state-of-the-art systems, the trend is to
adopt fuzzy logics for the IR systems. As for Data Base
Management Systems (DBMSs), the proposed solutions
generally disagree on both the number and meaning of
truthvalues to be considered and the logic semantics
(truth tables for and, or, and not). In his paper (ref. [2]
of bibliography), E. F. Codd suggests the use of the
standard ternary logic to support the null value meaning
“property unknown” and the application of the so-
called null substitution principle to evaluate the three-
valued logical expressions. One problem with the null
substitution principle is that if is computationally hard
to apply (its complexity is esponential in the number of
nulls which occur in the logical expression to be evalu-
ated).

SUMMARY OF THE INVENTION

The query system for data base/bank of the subject
invention overcomes the problems described above
with respect to existing solutions and proposals and is
technically more advanced in that it performs the com-
position of results of the atomic condition evaluation in
a standard way which 1s independent of the query com-
plexity. Moreover, this system can be built to support
any finite number of truth values. In fact, it sets no limits
to number and meaning of manageable logical values
and permits a query language to be defined and a query
processing tool to be implemented which both respond
better to the user’s semantic needs.

J,398,199

3

This query system consists of an application software
which transforms the selection condition and a circuit
which processes the logical values taken on by the
atomic conditions.

In reference to the query processing steps illustrated
above, the application software runs at Step 1. Its task is
to properly encode the query condition on the basis of
the number of truth values, their binary codes, the logic
semantics and type of circuit apparatus utilized. Steps II
and III perform the functions previously described. The
circuit apparatus replaces the software process at Step
IV. Its input is the encoded query condition produced
in Step I and the partial results produced in Step III
The output is (the code of) the truth value that the
global condition takes on and it is the same as that ob-
tainable by applying the truth tables of the logic. On the
basis of the result, the system decides whether that
record must be discarded, accepted, or included in some
class of relevance to the query. The main advantages of
processing the query condition with this circuit over
the conventional process at Step IV are that it is inde-
pendent of the logic adopted and its extremely fast
response-time (linear in (14+1logon), where n is the num-
ber of truth values of the logic).

Moreover, this query apparatus has two important
flexibility characteristics. (1) The circuitry can be used
for any logic whose number of truth values is less than
or equal to the maximum fixed by the system developer.
In this case, the time required to produce the output is
the same as for an apparatus especially built for logics of
that truth value number. (2) The present debate about
the semantics to be assigned to a many-valued logic is
avoided. In fact, various alternative logic semantics can
be supported and can be selected for the query process-
Ing; the application software adjusts the selection condi-
tion to the logic selected by the user or, in lack of a user
specification, to the logic designated by the system
developer as the default logic. This flexibility can be
further increased by allowing the user to directly for-
-mulate his own semantic criterion of query processing
when expressing the selection condition. Although this
requires an adaptation of the query language for this
capability, a language semantically richer than those
commercially available can be offered to users, as advo-
cated by G. H. Gessert and E. F. Codd (cf., refs. [4] and
[3] of bibliography, resp.)

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the subject data query system em-
bodied in a digital computer in block diagram form;

FIG. 2 illustrates the application software in block
diagram form;

FIGS. 3 through 7 show typical tables utilized by the
application software;

F1G. 8 illustrates a detailed schematic diagram of the
circult apparatus;

FIG. 9 depicts the details of one type of circuit for
up-to-3 valued logics; and

FIG. 10 depicts the details of one type of circuit for
up-to-4 valued logics;

FIG. 11 through 14 depict the details of the four
fundamental types of the circuit for up-to-8 valued log-
1cs; and

FIGS. 15 through 18 depict the details of the four
fundamental types of the generalized circuit for up-to-8
valued logics;

FIG. 19 illustrates a sample database; and

10

15

20

25

30

35

45

50

35

65

4

FIG. 20 1llustrates a typical printer output relative to
a query against the database of FIG. 19.

DETAILED DESCRIPTION

- The data query system is illustrated in FIG. 1. The
system consists of a conventional file management sys-
tem which comprises the apparatus of this invention.
(To provide an illustrative example, FIG. 1 refers to a
personal computer architecture). The host system typi-
cally consists of a CPU 100 connected via DATA BUS
to the main memory (ROM 101, RAM 102), an eventual
numeric coprocessor (COPE 103), and an I/O port
device 104 to interface, via 1/O BUS, various peripheral
devices such as digital terminal DT 105, printer LP 106,
large disk storage units UD 107, and other eventual
peripheral 1/0 devices or drives for permanent storage.
As to the software component, the host system is
equipped with usual system software and, in particular,
with a compiler 108 which translates the query into
object code. Depending on the application of this query
system, the file management system (GEDA 109) con-
sists of an information retrieval system (IRS) or data-
base management system (DBMS). Compiler 108 and
system GEDA 109 exchange data via data bus, or di-
rectly via interprocess communication path CC1 in the
case where the compiler 108 is embedded in GEDA
109. The apparatus of this invention consists of applica-
tion software COMPQ 110 and processor module
PRCS 111 which governs circuit EVAL 112. Processor
PRCS 111 conveys input data to circuit EVAL 112 via
leads C and V and receives its output via leads U. Host
system and processor PRCS 111 communicate between
them via data bus 113. |

Application COMPQ 110

The user query, entered via terminal DT 105 for
example, 1s processed by system GEDA. 109. By means
of the data dictionary (not shown), GEDA 109 deter-
mines the files (stored on secondary memory UD 107)
involved in the query and, interacting closely with com-
piler 108, generates the corresponding object code. The
code 1s stored in memory RAM 102 to be subsequently
read and executed by CPU 100.

Application COMPQ 110, illustrated in FIG. 2 in
block diagram form, adapts the query selection condi-
tion to the distinctive features of the logic selected
among those supported by the system (discussed be-
low), and contains two basic components: canonical
transformation application CAN 201 which transforms
the selection condition, and encoder routine CODE 202
which encodes the transformed selection condition in
binary string form. Routine CODE 202 interfaces file
management systemm GEDA 109 via module LOGICS
204.

Canonical Forms of the Query Condition

Application CAN 201 receives the logical expression
representing the query selection condition from com-
piler 108 via interprocess communication path CC2 and
transforms it to minimal canonical form.

A detailed explanation of the canonical forms of a
logical expression is beyond the scope of this presenta-
tion. Here it suffices to say that every logical expression
can be put into an equivalent canonical form, that is,
transformed in a set of clauses. A clause is a logical form
of atomic conditions; it is a “conjunct” if it is an and-
product of atomic conditions, or it is a “disjunct” if it is
an or-sum of atomic conditions. The canonical form is

5,398,199

said to be “disjunctive” or “conjunctive” depending on
whether it 1s an or-sum of conjuncts or an and-product
of disjuncts respectively. Each clause involves all dis-
tinct atomic conditions of the query and there is an
ordering among the atomic conditions. Each clause
differs from the others in the form of one or more

atomic conditions. Here we limit our presentation to the
three following forms of atomic condition within a
clause: (1) affirmative, (2) negative, or (3) indifferent,
according to whether the atomic condition appears in
the clause, respectively, as (1) positive literal (not ap-
plied with logical not), (2) negative literal (applied with
logical not), or (3) don’t care literal (corresponding to
don’t care in Boolean algebras). In virtue of the order
assigned to the atomic conditions, the clauses do not
contain the real atomic conditions but only the proper
codes of their form.

Since the truth-valued results of the atomic condition
evaluation on a data record are assembled by circuit
EVAL 112, application CAN 201 transmits to compiler
108 via interprocess communication path CC2 the se-
quence of atomic conditions in their affirmative form,
regardless of whether one or more are negative condi-
tions (applied with logical not in the user query). There-
fore, the object code produced by compiler 108 always
concerns the evaluation of atomic conditions in the
atfirmative form, according to the order assigned from
application CAN 201.

On completion of the transformation of the query
condition to a minimal canonical form (that is, with a
minimal number of clauses) and when the number of
clauses is greater than 1, application CAN 201 generates
a clause which we term “final” to distinguish it from the
previously described ones. Since circuit EVAL 112
evaluates the truth value of an entire clause at once on
the basis of the truth values taken on by the (affirmative)
atomic conditions, the purpose of the final clause is to
permit the entire canonical form and hence the query
condition to be evaluated again by means of EVAL 112.
This 1s achieved by considering clauses as virtual
atomic conditions and, consequently, the truth-valued
results of clause evaluation as the results of evaluation
of such virtual atomic conditions. Therefore, the final
clause consists of as many virtual atomic conditions (of
the affirmative form and encoded as such) as the clauses
and 1t 1s a disjunct or a conjunct depending on whether
the canonical form is disjunctive or conjunctive respec-
tively.

As a final function, application CAN 201 passes the
canonical form and eventual final clause to encoder
routine CODE 202 via interprocess communication
path 203. To encode the canonical form and final clause
according to the logic semantics selected, routine
CODE 202 reads information associated with that logic
from module LOGICS 204 via interprocess communi-
cation path 205.

Logics Specification Interface

Module LOGICS 204 contains a code table and one
or more correspondence tables.

The code table is unique for all logics supported by
the query system and its columns contain the binary
code of integers 0, 1, 2, etc. For any logic of, say, n truth
values, the first n rows of the code table are utilized.
FIG. 3 illustrates the code table for up-to-4 valued log-
ics. Sub-table 301 refers to two-valued logics, sub-table
302 to three-valued logics while table 303 refers to
four-valued logics.

3

10

15

20

25

30

335

40

435

50

33

60

65

6

The correspondence tables can be more than one and
the values of a table depend on (a) the logic associated
with that table, namely the truth tables for and, or, and
not; (b) type of circuit EVAL 112 utilized; and (c) bi-
nary code used to represent the truth values. As will be
seen later, circuit EVAL 112 can be of type AX (com-
posed of AND/XOR gates), AE (composed of AND-
/EQUIVALENCE gates, i.e. AND/XNOR gates), OE
(composed of OR/EQUIVALENCE gates), or OX
(composed of OR/XOR gates). For the n-valued logics
currently reported in the literature, any n, the number
of bits of truth value code is n—1, that is, it equals the
number minus one of truth values of that logic. On the
contrary, special logics not considered in the literature
require an n-bit code. (The use of fewer bits than that
specified above generally produces a longer circuit
response-time and lowers the use flexibility of the query
system. The circuit apparatus relative to less than n— 1
bit code will not be illustrated).

The correspondence table of any given logic has
three columns and as many rows as the number of bits
of truth value code for that logic. The columns refer
respectively to the three forms of atomic condition in a
clause, namely, the (1) affirmative, (2) negative, and (3)
indifferent forms. A column contains either one or two
values for each row: when two values are present, the
first value applies to clauses which are conjuncts while
the second to clauses which are disjuncts; when only
one value is present, it applies to both types of clauses.

F1G. 4 shows the tables associated with the ordinary
two-valued logic {T,F}. (For this logic, the final clause
1s not generated). The truth values are assigned the
usual 1-bit code shown in table 401, that is, 1 for T, and
O for F. Tables 402, 403, 404, and 405 are the respective
correspondence tables related to circuit EVAL 112 of
type AX, AE, OE, and OX.

FIG. 5 shows the tables associated with the standard
three-valued logic {T,U,F}. The 2-bit code assigned to
the truth values is shown in table 501, that is, 11 for T,
01 for U, and 00 for F. Correspondence table 502 refers
to circuit EVAL 112 of type AX/AE, while table 503
refers to type OE/OX.

FIG. 6 shows the tables associated with the standard
four-valued logic {T,A,I,F}. (The truth values A and I
correspond to the null values which mean “missing and
Applicable” and “missing since Inapplicable” respec-
tively). The 3-bit code assigned to the truth values is
shown in table 601, that 1s, 111 for T, 011 for A, 000 for
I, and 001 for F. Correspondence tables 602, 603, 604,
and 605 refer to circuit EVAL 112 of type AX, AE,
OE, and OX respectively. This logic has two negation
operators (1.e., two truth tables for not), termed NOT
and INV, as described by Gessert (ref. [4] of bibliogra-
phy). The NOT and INV columns of the correspon-
dence tables refer respectively to these two possible
negative forms of the atomic condition.

FIG. 7 shows the tables associated with Codd’s four-
valued logic {T,A,LF}. The truth values of this logic
have the same meanings as those of the standard four-
valued logic but different truth tables. E. F. Codd
strongly suggests this four-valued logic to be an integral
part of the future relational DBMS products (ref. [3] of
bibliography). As to the 3-bit code assigned to the truth
values, table 701 illustrates the code utilized when the
canonical form produced by application CAN 201 is
disjunctive or consists of a single conjunct, while table
711 1llustrates that utilized when the canonical form is
conjunctive or consists of a single disjunct. Correspon-

5,398,199

7

dence tables 702, 703, 704, and 705 are associated with
the truth value code shown in table 701, while corre-
spondence tables 712, 713, 714, and 715 are associated
with that shown in table 711, and are related to circuit
EVAL 112 of type AX, AE, OE, and 0X respectively.

In general, the truth values of a logic may be assigned
various binary codes. Therefore, the tables shown in
FIGS. 4, 5, 6, and 7 refer only to one possible code.

The values of a correspondence table refer to the
column headings of the code table. The code table is
referenced by all correspondence tables, as also those
associated with different logics than those referred to in
FIGS. 4 through 7. Furthermore, it can be utilized to
process any query based on the user’s personal logic
semantics, provided that the query language furnished
to the user can support this semantical capability, as
already mentioned. (This aspect, as well as the criterion
for deriving truth value codes and correspondence ta-
bles on the basis of the logic semantics, and the bases of

S

10

15

the code table will not be discussed in detail because 20

beyond the scope of this presentation). If the query
system supports various logics, then the user can specify
which has to be applied in the query condition evaluat-
ing process. When not specified, the system default
logic 1s selected. Information concerning the selected
logic i1s transmitted from system GEDA 109 to module
LOGICS 204 via interprocess communication path
CC3. This results in selecting the proper correspon-
dence table and code sub-table. Routine CODE 202
accesses module LOGICS 204, and hence the selected
tables via interprocess communication path 205.

C Strings

Routine CODE 202 encodes the clauses of the canon-
ical form and the final clause as follows. For each
clause, as many bit-arrays as rows of the correspon-
dence table are constructed. The first array is obtained
by replacing each atomic conditton in that clause with
the column of the code table headed by the value (con-
tained in the first row of the correspondence table) that
corresponds to the form of that atomic condition; the
second array is obtained by properly replacing the
atomic conditions with the columns of the code table
headed by values contained in the second row of the
correspondence table, and so on. More precisely, since
a clause 1s either conjunct or disjunct, only three col-
umns of the correspondence table are involved for each
clause and for each atomic condition. So, we assume
that every row of the correspondence table has only
three values which identify three column headings of
the code table, and the first, second, or third header
value 1s used according to whether the encoding atomic
condition in the clause appears as affirmative, negative,
or indifferent, respectively. Therefore, each array con-
sists of as many rows (C strings, denoted by C0,C1, . . .
, Cn—1) as the rows of the code sub-table concerned
(that is, the number of truth values of the selected
logic), and the number of bits of every C string equals
the number of distinct atomic conditions expressed in
the query.

Once all clauses of the canonical form and final clause
are encoded 1n C string arrays, application COMPQ 110
ends its task, and the host system transmits the follow-
ing data to processor PRCS 111 via data bus 113: identi-
fier of the selected logic (1 byte). This data is unneces-
sary whenever the query system supports only one
logic; type of the canonical form, namely, disjunctive or

235

30

35

45

50

35

60

65

8

conjunctive (1 bit); number of clauses (1 byte); number
of atomic conditions (1 byte); C string arrays.

As soon as the transmission has been completed, the
host system can definitively start the data record pro-
cessing in order to execute the user query.

V Strings

For each data record to be processed, the host system
evaluates and transmits to processor PRCS 111 in the V
string form described below, the sequence of truth val-
ues taken on by atomic conditions, according to the
order assigned to them. -

This truth value sequence and the subsequent one
resulting from the processing of all clauses of the canon-
ical form are encoded on the basis of the truth value
code in the so-called V strings (denoted by V1,V2, . ..
, ¥n—1 when referring to common logics, or V0,V1, .
.., ¥n—1 when referring to the special n-valued logics
assigned an n-bit code, respectively). V1 (resp., VO0) is
the ordered sequence of the first bits of the truth value
code sequence, V2 (resp., V1) is the ordered sequence
of the second bits of the truth value code sequence, and
SO on, up to the Vn—1 string, which is the ordered
sequence of the last bits of the truth value code se-
quence. The V strings relative to the truth values taken
on by the atomic conditions are constructed by host
system, and the bit length of these V strings equals that
of the C strings relative to the clauses of the canonical
form. On the contrary, the V strings relative to the truth
values resulting from the processing of clauses are con-
structed by processor PRCS 111, and their length
equals that of the C strings relative to the final clause.

Processor PRCS 111

The circuit apparatus card, illustrated in FIG. 8 in
block diagram form, is plugged into one of the expan-
sion slots of host computer. The operation of the circuit
apparatus card 1s controlled by a microprocessor shown
in FIG. 8 as MCPU 801. MCPU 801 can be any state-of-
the-art microprocessor, for example a 32 bit micro-
processor. However, in order to reduce the query pro-
cess time, the register length must not be less than the
maximum number of distinct atomic conditions that
system GEDA 109 permits in the query.

The main functions of MCPU 801 are: (1) to commu-
nicate and manage the relative protocol with the host
system via data bus 113, (2) to write and read registers
REGS 807 via data bus 806, and (3) to time the opera-
tion of circuit EVAL 112.

Read only memory (MROM 802) is the memory
device on processor card 111 which contains the in-
struction set for the operation of MCPU 801. Random
access memory (MRAM 803) consists of the read/write
memory which 1s used by MCPU 801 as read/write
memory space for transferring information to and from
the host computer. The communications protocol be-
tween host system and processor 111, whose actual
description i1s unimportant in this presentation, is han-
dled by means of local control and timer 804 and buff-
ered interface 805 devices, while the physical and link
layer protocols are handled by the devices which com-
prise processor card 111. REGS 807 are parallel regis-
ters subdivided in registers REG C 808, REG V 809,
and REG U 810. The C registers 808 and V registers
809 convey data input to, and the U registers 810 data
output from the combinational circuit EVAL 112 over

the respective C, V, and U leads. Circuit EVAL 112

5,398,199

9

provides the evaluation of truth values that the clauses
and then the final clause take on.

For each data record on completion of its task, pro-
cessor PRCS 111 transmits the truth value code taken
on by the final clause to host system. In parallel to the
process performed by processor PRCS 111 on current
record, CPU 100 evaluates and constructs the V strings
relative to the subsequent data record. The overlapping
of these two basic and repetitive processes allows the
wait times, hence the global query response-time, to be
minimized.

b-circuits of EVAL 112

Circuit EVAL 112 consists of a certain number of
so-called b-circuits which are used in parallel or timed
by MCPU 801.

A b-circuit can be of types AX, AE, OE, and OX, and
to assure the highest use flexibility of the query system,
all b-circuits must be of the same type. So, we shall
assume that the b-circuits of circuit EVAL 112 are all
duplicates of a given b-circuit, except leads for input-
/output data transmission.

For any given clause, a b-circuit processes the (V
strings and) C strings of an array (for example the one
constructed on the basis of the first row of the corre-
spondence table) and produces an equally lengthed U
string as output to be used by MCPU 801 to determine
the first code bit of the truth value that the clause takes
on. Similarly, the b-circuit which processes the (V
strings and) C strings of the array derived from the
second row of the correspondence table produces the U
string to be used by MCPU 801 to determine the second
b1t of the truth value code, and so on.

Consequently, the parallel utilization of b-circuits in a
number equal to that of bits of truth value code allows
a clause to be processed as fast as possible. Moreover,
the availability of more b-circuits than those above can
enable the query system to process more than one
clause parallely.

Registers REGS 807

The C and V registers are set respectively to the C
and V strings by MCPU 801, and they are applied to the
input of circuit EVAL 112 through leads shown in
FIG. 8 respectively as C and V leads. The U registers
are set by circuit EVAL 112 to signals (U strings) gen-
erated on leads shown as U leads. Each lead refers to a
register.

Registers C 808 are grouped by the b-circuit to which
they convey data, and they are set by MCPU 801 for
each clause to be processed. On the contrary, registers
V 809 are shared by all b-circuits and their content is
persistent during processing of all clauses on the current
data record, except for the processing of the final clause
where they are set by MCPU 801 to the V strings con-
structed on the basis of U strings as produced in appro-
priate registers U 810 by the b-circuits.

The register length is not less than the established
maximum number of distinct atomic conditions that can
occur in the user query. Since the actual number of
atomic conditions expressed in a query is generally less
than the maximum, some bits of the C, V, and U regis-
ters can be superfluous, for example the right-most ones.
On the other hand, MCPU 801 determines the truth
value of a clause on the basis of the entire content of
appropriate U registers. In order to minimize the time
necessary to analyze the U registers, MCPU 801 sets the
supertluous bits of the C and V registers so that a given

10

15

20

23

30

35

45

50

33

60

65

10

pattern 1s set to the superfluous bits of the U registers,
for example a pattern of all 1’s or all 0’s. In order that
the superfluous bits of the U registers be set to the pat-
tern of all 1’s (resp., all 0’s), MCPU 801 is programmed
to set to 1’s (resp., to 0’s) the superfluous bits of the C
and V registers assigned to the CO strings and the even-
tual VO string. (The VO string, we must recall, refers to
special logics whose n truth values are assigned an
ncode). As to the superfluous bits of all the other C and
V registers, if the b-circuit is of type AX/OX (resp.,
AE/OE), then they are set to all 0’s (resp., to all 1%s).
We assume that MCPU 801 operates so that the super-
fluous bits of the U registers are set to 1’s (resp., to 0’s)
whenever the processed clause is a conjunct (resp., a
disjunct).

Number of Registers REGS 807

‘The number of the C, V, and U registers depends on
both the maximum number of truth values supported by
the query system and the number of bits of truth value
code. The n-valued logics assigned an (n— 1)-bit code
(such as those referred to in FIGS. 4 through 7) are first
considered. ~

FIG. 9 illustrates the typical circuit EVAL 112 of
type AX for up-to-3 valued logics. Since the truth val-
ues of a 3-valued logic have a 2-bit code, circuit EVAL
112 consists of two b-circuits, namely b-circuit-1 930
and b-circuit-2 940. These b-circuits share the two V1,
V2 registers of REG V 809. Since every clause is en-
coded by two arrays, each one consisting of three C
strings (the C0,C1,C2 strings), b-circuit-1 930 is con-
nected to the three registers of REG C 808, shown as
C10,C11,C12, which are set to the C strings of one
array, for example that derived from the first row of the
correspondence table, while b-circuit-2 940 is con-
nected to the three C registers, shown as C20,C21,C22,

which are set to the C strings of the other array, that
derived from the second row of the correspondence

table. The U registers of REG U 810 are (at least) two
for each b-circuit: the Ul,U2 registers are connected to
b-circuit-1 930, and the U3,U4 ones to b-circuit-2 940.

FI1G. 10 illustrates the typical circuit EVAL 112 of
type AX for up-to-4 valued logics. Since the truth val-
ues of a 4-valued logic have a 3-bit code, circuit EVAL
112 consists of three b-circuits, namely b-circuit-1 1040,
b-circuit-2 1060 and b-circuit-3 1080. These b-circuits
share the three V1,V2,V3 registers of REG V 809.
Since every clause is encoded by three arrays each one
consisting of four C strings (the C0,C1,C2,C3 strings),
b-circuit-1 1040 is connected to the four registers of
REG C 808, shown as C10,C11,C12,C13, which are set
to the C strings of one array, for example that derived
from the first row of the correspondence table; b-cir-
cuit-2 1060 i1s connected to the four C registers, shown
as C20,C21,C22,C23, which are set to the C strings of
another array, for example that derived from the second
row of the correspondence table, while b-circuit-3 1080
1s connected to the four C registers, shown as
C30,C31,C32,C33, which are set to the C strings of the
third array, that derived from the third row of the cor-
respondence table. The U registers of REG U 810 are
(at least) two for each b-circuit: the U1,U2 registers are
connected to b-circuit-1 1040, the U3,U4 registers to
b-circuii-2 1060, and the U5,U6 ones to b-circuit-3 1080.

In general, a b-circuit of EVAL 112 for up-to-n val-
ued logics needs n—1 registers V 809, n registers C 808,
and at least logon to n—1 registers U 810.

5.398.199

11

Circuit EVAL 112 for the query evaluation based on
the special n-valued logics assigned an n-bit code is now
considered. In such cases, EVAL 112 consists of n b-
circuits, that is, one more than in the (n— 1)-bit code
case. The additional V register relative to the VO string
is shared by all b-circuits.

The number of registers REGS 807 is independent of

the b-circuit type. Therefore, that presented above also
holds for circuit EVAL 112 of type AE/OE/OX.

Registers REG U 810

As previously stated, MCPU 801 determines one
code bit of the truth value that the processed clause
takes on by testing a proper U register 810 set by the
b-circuit associated with that bit, according to the fol-
lowing criterion.

If the processed clause is a conjunct, then MCPU 801
assigns a 1 to the bit if the U register bits are all 1’s,
otherwise it assigns a 0. On the contrary, if the clause is
a disjunct, then that bit is assigned a 0 if the U register
bits are all 0’s, otherwise it is assigned a 1.

As the clauses of the canonical form are processed by
circuit EVAL 112, the bits so determined are properly
catenated (in the way described in the section entitled V
strings) in order to construct the V strings to be used for
the final clause evaluation. When the final clause is
processed, the bit code of the truth-valued result is
determined by MCPU 801 according to the same crite-

rion as above. (Notice that clauses and final clause are of

opposite type, that s, if clauses are conjuncts, then the
final clause is a disjunct, and conversely).

The availability of a number of U output registers for
each b-circuit allows the query system to also utilize
EVAL 112 for the query evaluation based on logics
whose number of truth values is less than the fixed
maximum. In this case, there are two main advantages.
The first is that the response-time of circuit EVAL 112,
viz. its b-circuits, is the same as that made for logics of
that specific number of truth values. Therefore, a
unique circuit fits all cases. The second advantage is the
possibility of parallely processing more clauses, since
the processing of a clause involves less b-circuits than
the maximum. This lowers the global query process
fime.

When EVAL 112 is utilized for query evaluation
based on logics whose number of truth values is less
than the actual maximum, some C and V registers may
be supertfluous (i.e., unnecessary even though their con-
tent is physically involved in circuit process) or uninflu-
ential (1.e., neither necessary nor physically involved in
circult process). In such cases, the uninfluential registers
are not set by MCPU 801, while the superfluous ones
are set to all O’s or to all 1’s depending on whether
EVAL 112 15 of type AX/OX or AE/QE, respectively.

The four registers U 810 of circuit EVAL 112 rela-
tive to up-to-3 valued logics, shown in FIG. 9, are uti-
lized as follows.

When that adopted is a three-valued logic, MCPU
801 tests the U2 and U4 registers set by b-circuit-1 930
and b-circuit-2 940 respectively.

When that concerned is the two-valued logic, only
one b-circuit is involved in evaluating a clause. More-
over, the V2 and C12,C22 registers are uninfluential, so
they are not set by MCPU 801. Then, the two b-circuits

in FIG. 9 can process two clauses in parallel: b-circuit-1

930 processes one clause and its output analyzed by
MCPU 801 is that stored in the U1 register, while b-cir-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

cuit-2 940 processes the other clause and its tested out-
put 1s that stored in the U3 register.

The six registers U 810 of circuit EVAL 112 relative
to up-to-4 valued logics, shown in FIG. 10, are utilized
as follows.

When that adopted is a four-valued logic, the output
analyzed by MCPU 801 is that contained in the U2, U4,
and U6 registers, set by b-circuit-1 1040, b-circuit-2
1060 and b-circuit-3 1080, respectively.

When the logic 1s a three-valued logic, only two
b-circuits are involved in evaluating a clause. More-
over, the V3 and C13,C23,C33 registers are superfluous
(this can be seen by comparing the circuit in FIG. 10 to
that in FIG. 9), so they are set by MCPU 801 to all 0’s
since the circuit in FIG. 10 is of type AX. Two of the
three b-circuits of EVAL 112 are used to process a
clause. For example, b-circuit-1 1040 processes the C
string array derived from the first row of the correspon-
dence table associated with the three-valued logic con-
cerned, whereas b-circuit-2 1060 processes the array
derived from the second row. The third b-circuit, e.g.
b-circuit-3 1080, processes another clause: first the C
string array derived from the first row of the correspon-
dence table and then that derived from the second row.
The corresponding output of b-circuit-1 1040 is that
stored 1In the U2 register, that of b-circuit-2 1060 is
stored in the U4 register, while the output of b-circuit-3
1080 in the U6 register.

When the selected logic is the ordinary logic, only
one b-circuit is involved in evaluating a clause. More-
over, the V2,V3 and C12,C13,C22,C23,C32,C33 regis-
ters are uninfluential, so they are not set by MCPU 801.
Therefore, the three b-circuits can process three clauses
in parallel. The corresponding output of b-circuit-1
1040 15 that stored in the U1 register, that of b-circuit-2
1060 1s stored in the U3 register, and the output of b-cir-
cuit-3 1080 in the US register.

EVAL 112

For each record, registers V 809 are set to the V
strings and shared by all b-circuits. Their content is
persistent during the evaluation of all clauses, except for
the final clause.

For each clause, registers C 808 are set to the C string
arrays which encode that clause. Each array is pro-
cessed by a b-circuit.

Once the C registers connected to a b-circuit are set,
MCPU 801 enables that b-circuit to operate by a
CLOCK signal (not shown). The b-circuit output is
stored into registers U 810. On the basis of the number
of truth values of the logic, MCPU 801 examines the
proper U register to determine the first, the second, . . .
, or the last bit of the resulting truth value code depend-
ing on whether the C string array processed by that
b-circuit is derived from the first, the second, .. ., or the
last row of the correspondence table, according to the
above described criterion.

Finally, the truth value code resuiting from the final
clause evaluation is transmitted to the host system for
the appropriate processing.

The entire process is repeated for all records to be
analyzed and is applied to the V strings as soon as they
are received from the host system.

Circuit EVAL 112 for the query evaluation based on
logics whose n truth values are assigned an (n— 1)-bit
code is first described.

Let us consider EVAL 112 of type AX. Every b-cir-
cuit operates as follows. The V1,V2, ..., Vn—1 regis-

5,398,199

13

ters are orderly anded with the corresponding C1,C2, .
. ., Cn—1 registers by AND gates. Then, the C0 regis-
ter and the n—1 bitstring results of logical and opera-
tions are xored (exclusive or) between themselves by
XOR gates. The bitstring result is the b-circuit output
and 1s stored in a U register. The logical xor operation
among bitstrings is performed by XOR gates connected
together so as to form a binary tree structure. The out-
put of intermediate XOR gates is also stored in U regis-
ters and constitutes the output tested by MCPU 801
when EVAL 112 is utilized for query processing based
on logics having a number of truth values less than the
maximum allowed. (As to the b-circuits in the drawing,
the intermediate output stored in the U registers has
been depicted only for the upper XOR/XNOR gates.)

The AE, OE, and OX types of circuit EVAL 112
differ from the AX type only in the logical gates they
utilize, as subsequently described.

EVAL 112 of Type AX

FIG. 9illustrates circuit EVAL 112 of type AX for to
up-to-3 valued logics.

The content of the V1 and V2 registers of REG V
809 1s carried over the respective V leads 901 and 902 to

10

15

20

both b-circuit-1 930 and b-circuit-2 940. The content of 25

the C10, C11 and C12 registers of REG C 808 is carried
to b-circuit-1 930 over the C leads 910, 911 and 912,
while that of the C20,C21 and C22 registers to b-circuit-
2 940 over the C leads 920, 921 and 922, respectively.

As to b-circuit-1 930, AND gate 931 performs the
logical and between signals 901 and 911, and its output
signal 932 1s applied to the lower input of XOR gate
933. The upper input of XOR gate 933 is signal 910.
Output signal 934 of XOR gate 933 is stored in the Ul
register of REG U 810 and is also extended to the upper
input of XOR gate 937.

The U1 register is the output of b-circuit-1 930 exam-
ined by MCPU 801 when EVAL 112 is utilized for
query evaluation based on the ordinary two-valued
logic. In this case, the V2 and C12 registers are uninflu-
ential. If the ordinary logic has been selected, then ap-
plication COMPQ 110 does not generate the final
clause. In fact, it is well known that the disjunctive
(respectively, conjunctive) canonical form of a logical
expression takes on the truth value T (resp., F) only if at
least one conjunct (resp., disjunct) does so. For this
reason, MCPU 801 is programmed to terminate the
processing of clauses if and soon as it detects in the Ul
register or in the analogous U3 register set by b-circuit-
2 940 a pattern of all 1’s when the processed clause is a
conjunct, or a pattern of all (’s when the processed
clause 1s a disjunct. In the former case, MCPU 801
transmits a 1 (for T) as result to the host system, while
it transmits a 0 (for F) in the latter case. Afterwards, the
circuit apparatus is ready to start the clause evaluation
process on the V strings relative to subsequent record.
On the contrary, if the above pattern is detected for no
clause, then MCPU 801 transmits a 0 (for F) or a 1 (for
T) to the host system according to whether the canoni-
cal form is disjunctive or conjunctive.

When a three-valued logic is selected, the V2 and
C12 registers are necessary and their content is applied
to the mput of AND gate 935 through leads 902 and
912, respectively. Output signal 936 of AND gate 935 is
applied to the lower input of XOR gate 937. Output
signal 938 of XOR gate 937 is stored in the U2 register
of REG U 810 to be analyzed by MCPU 801 as has been
already described.

30

33

43

50

335

60

65

14

The operation of b-circuit-2 940 is similar to that of
b-circuit-1 930. AND gate 941 performs the logical and
between signals 901 and 921, and its output signal 942 is
applied to the lower input of XOR gate 943. The upper
input of XOR gate 943 is signal 920. Output signal 944
of XOR gate 943 is stored in the U3 register of REG U
810 and 1s also extended to the upper input of XOR gate
947. The U3 register is the output of b-circuit-2 940
tested by MCPU 801 when EVAL 112 is utilized for
query evaluation based on the ordinary logic. In paral-
lel, AND gate 945 performs the logical and between
signals 902 and 922, and its output signal 946 is applied
to the lower input of XOR gate 947. Output signal 948
of XOR gate 947 is stored in the U4 register of REG U
810 to be subsequently analyzed by MCPU 801.

FIG. 10 1llustrates circuit EVAL 112 of type AX for
up-to-4 valued logics. According to the previously de-
scribed operation and architecture of the b-circuit, the
circuit in FIG. 10 is the appropriate extension of that in
FIG. 9.

The content of the V1,V2,V3 registers of REG V 809
is carried over the respective V leads 1001,1002,1003 to
b-circuit-1 1040, b-circuit-2 1060 and b-circuit-3 1080.
The content of the C10,C11,C12,C13 registers of REG
C 808 is carrnied to b-circuit-1 1040 over the C leads
1010,1011,1012,1013; the content -of the
C20,C21,C22,C23 registers is carried to b-circuit-2 1060
over the Cleads 1020,1021,1022,1023: the content of the
C30,C31,C32,C33 registers is carried to b-circuit-3 1080
over the C leads 1030,1031,1032 and 1033, respectively.

ILet us comnsider b-circuit-1 1040. AND gate 1041
performs the logical and between signals 1001 and 1011.
In parallel, AND gate 1042 performs the logical and
between signals 1002 and 1012, while AND gate 1043
performs the logical and between signals 1003 and 1013.
Then signal 1010 and the respective output signals 1044,
1045, 1046 of AND gates 1041, 1042, 1043 are xored
between themselves by means of a tree-structured XOR
gate network. In particular, XOR gate 1047 performs
the logical xor between signals 1010 and 1044 while
XOR gate 1048 performs xor between signals 1045 and
1046. Output signal 1049 of XOR gate 1047 is stored in
the Ul register of REG U 810 and is also extended to
the upper input of XOR gate 1051. The lower input of
XOR gate 1031 consists of signal 1050 which is the
output of XOR gate 1048. XOR gate 1051 performs the
logical xor between signals 1049 and 1050, and its out-
put signal 1052 is stored in the U2 register.

The operation of b-circuit-2 1060 (resp., b-circuit-3
1080) is quite similar. AND gates 1061, 1062, 1063
(resp., AND gates 1081, 1082, 1083) perform the logical
and between signals 1001, 1002, 1003 and the corre-
sponding signals 1021, 1022, 1023 (resp., 1031, 1032,
1033), producing output signals 1064, 1065, 1066 (resp.,
1084, 1085, 1086). Then, XOR gate 1067 (resp., XOR
gate 1087) performs the logical xor between signals
1020 and 1064 (resp., 1030 and 1084). Its output signal
1069 (resp., 1089) is stored in the U3 (resp., US) register
of REG U 810 and is also extended to the upper input of
XOR gate 1071 (resp., XOR gate 1091). In parallel,
XOR gate 1068 (resp., XOR gate 1088) performs the
logical xor between signals 1065 and 1066 (resp., 1085
and 1086) and its output signal 1070 (resp., 1090) is the
lower 1nput of XOR gate 1071 (resp., XOR gate 1091).
Output signal 1072 (resp., 1092) of XOR gate 1071
(resp., XOR gate 1091) is stored in the U4 (resp., U6)
register of REG U 810.

5,398,199

15

When the ordinary logic is adopted, the V2,V3 and
C12,C13,C22,C23,C32,C33 registers are uninfluential.
Those registers of REG U 810 then tested by MCPU
801 are Ul,U3, and US. The processing of clauses is
performed in accordance with that described for circuit
EVAL 112 of FIG. 9.

When a 3- or 4-valued logic is used, those registers of
REG U 810 tested by MCPU 801 are U2,U4, and US.

In particular, when a three-valued logic is selected,
the output produced by the circuit in FIG. 10 is the
same as that produced by the circuit in FIG. 9. In fact,
both signals 1003 and 1013 are sequences of O’s since, as
we said, the superfluous V3 and C13 registers are set to
all 0’s by MCPU 801. Thus, also output signal 1046 of
AND gate 1043 is a sequence of O’s. This allows signal
1045 to be extended through XOR gate 1048 and over
lead 1050 to the lower input of XOR gate 1051. In this
manner, b-circuit-1 1040 effects the same function as
that accomplished by a b-circuit particularly made for
three-valued logics (such as b-circuit-1 930). Similar
considerations hold for the superfluous V3,C23 and
V3,C33 registers applied to the input of b-circuit-2 1060
and b-circuit-3 1080.

Circuit EVAL 112 for the query evaluation based on
logics constituted of more than four truth values is the
appropriate extension of the circuit of FIG. 10 accord-
ing to the architecture design previously described. As
an example, FIG. 11 illustrates one b-circuit of EVAL
112 of type AX relative to up-to-8 valued logics, namely
b-circuit-1 1120. The b-circuit-2 to b-circuit-7 are the
equivalents of b-circuit-1 1120. The registers of REGS
807 shown 1n FIG. 11 refer only to those connected to
b-circuit-1 1120, except for the
V1,V2,V3,V4,V5,V6, V7 registers of REG V 809
which are connected to the input of all b-circuits
through respective leads 1101, 1102, 1103, 1104, 1105,
1106, 1107. For each given clause, the
C10,C11,C12,C13,C14,C15,C16,C17 registers of REG
C 808 contain the C strings of one of the arrays which
encode that clause and they are connected to the input
of b-circuit-1 1120 through respective leads 1110, 1111,
1112, 1113, 1114, 1115, 1116, 1117. The other C regis-
ters, C20,C21, . . ., C27 to C70,C71, . . ., C77 (not
shown), contain the C strings of the other arrays encod-

d

10

15

20

25

30

35

ing that clause and they are connected to the input of 45

b-circuit-2 to b-circuit-7, respectively. Finally, the U
registers of REG U 810 are (at least) three for each

b-circuit. FIG. 11 shows only the three U1,U2,U3 regis-

ters connected to b-circuit-1 1120.

AND gates 1121, 1122, 1123, 1124, 1125, 1126, 1127
respectively perform the logical and between signals
1101, 1102, 1103, 1104, 1105, 1106, 1107 and the corre-
sponding signals 1111, 1112, 1113, 1114, 1115, 1116,
1117. Then signal 1110 and respective output signals
1128, 1129, 1130, 1131, 1132, 1133, 1134 of AND gates
1121, 1122, 1123, 1124, 1125, 1126, 1127 are xored be-
tween themselves by means of a tree-structured XOR
gate network. In particular, XOR gate 1135 performs
the logical xor between signals 1110 and 1128 produc-
ing signal 1139. In parallel, XOR gate 1136 performs
xor between signals 1129 and 1130 producing signal
1140, XOR gate 1137 performs xor between signals
1131 and 1132 producing signal 1141, and XOR gate

20

35

60

1138 performs xor between signals 1133 and 1134 pro-

ducing signal 1142. Then XOR gate 1143 performs xor
between signals 1139 and 1140 producing signal 1145

while XOR gate 1144 performs xor between signals
1141 and 1142 producing signal 1146. Finally, XOR

65

16

gate 1147 performs xor between signals 1145 and 1146
producing signal 1148 which is stored in the U3 register
of REG U 810. Signals 1139 and 1145, which are the
output of mtermediate XOR gate 1135 and XOR gate
1143, are also extended and stored in the Ul and U2
registers, respectively.

When the ordinary logic is used, the output of b-cir-
cuit-1 1120 tested by MCPU 801 is the U1 register. The
V2,...,V7and C12,. .., C17 registers are uninfluen-
tial.

When the logic is 3- or 4-valued, the output register
tested by MCPU 801 1s the U2 register. The V4, ..., V7
and C14, . . ., C17 registers are uninfluential. Moreover,
when a 3-valued logic is used, the V3 and C13 registers
are superfluous and they are set to all (’s since b-circuit-
1 1120 1s of the AX type.

When the logic used is 5-, 6-, 7-, or 8-valued, the
output of b-circuit-1 1120 tested by MCPU 801 is the U3
register. If the number of truth values is less than 8, for
example 6, then the superfluous V6,V7 and C16,C17
registers are set to all O’s.

EVAL 112 of Types AE, OE, and OX

Circuit EVAL 112 of type AE differs from type AX
In that it utilizes XNOR (EQUIVALENCE, EXCLU-
SIVE-NOR) gates instead of XOR gates.

Circuit EVAL 112 of type OE differs from type AX
in that it utilizes OR gates instead of AND gates, and
XNOR gates instead of XOR gates.

Circuit EVAL 112 of type OX differs from type AX
in that it utilizes OR gates instead of AND gates.

In all cases, the output stored in registers U 810 is
independent of the EVAL 112 circuit type. Thus, regis-
ters U are tested by MCPU 801 according to the crite-
rion already discussed.

As to input, on the contrary, the correspondence
tables, hence the C strings produced by application
COMPQ 110 which are then applied to registers C 808,
are generally dependent on the EVAL 112 circuit type,
as shown in FIGS. 4 through 7.

On the basis of that previously stated, it is simple to
derive the equivalent of type AE/OE/OX from circuit
EVAL 112 of type AX already described. To provide
an 1illustrative example, FIGS. 12, 13, and 14 respec-
tively show the typical EVAL 112 b-circuit of type AE,
OE, and 0X for the query evaluation based on up-to-8
valued logics. For each of these b-circuits, what has
been said about b-circuit-1 1120 of type AX holds true.
As an example, b-circuit-1 1320 of type OE depicted in
FIG. 13 will be described in detail.

OR gates 1321, 1322, 1323, 1324, 1325, 1326, 1327
respectively perform the logical or between signals
1301, 1302, 1303, 1304, 1305, 1306, 1307, which corre-
spond 1n that order to the V1,V2, ..., V7 registers, and
the corresponding signals 1311, 1312, 1313, 1314, 1315,
1316, 1317, which correspond in that order to the
C11,C12, . . ., C17 registers. Then signal 1310 (corre-
sponding to the C10 register) and respective output
signals 1328, 1329, 1330, 1331, 1332, 1333, 1334 of OR
gates 1321, 1322, 1323, 1324, 1325, 1326, 1327 are
xnored (exclusive-nor) between themselves by means of
a tree-structured XNOR gate network. In particular,
XNOR gate 1335 performs the logical xnor between
signals 1310 and 1328 producing signal 1339. In parallel,
XNOR gate 1336 performs xnor between signals 1329

-and 1330 producing signal 1340, XNOR gate 1337 per-

forms xnor between signals 1331 and 1332 producing
signal 1341, and XNOR gate 1338 performs xnor be-

5,398,199

17
tween signals 1333 and 1334 producing signal 1342.

Then XNOR gate 1343 performs xnor between signals
1339 and 1340 producing signal 1345 while XNOR gate
1344 performs xnor between signals 1341 and 1342 pro-
ducing signal 1346. Finally, XNOR gate 1347 performs
xnor between signals 1345 and 1346 producing signal
1348 which 1s stored in the U3 register of REG U 810.
Signals 1339 and 1345, which are the output of interme-
diate XINOR gate 1335 and XNOR gate 1343, are also
extended and stored in the Ul and U2 registers, respec-
tively. |

When a 3-, 5-, 6-, or 7-valued logic is concerned, the
appropriate C and V registers which are superfluous are
set by MCPU 801 to all 1’s since b-circuit-1 1320 is of
the OE type.

Generalized EVAL 112

We now consider the circuit EVAL 112 for the query
evaluation based on special logics where, in order to
assure the same flexibility of use previously discussed,
the subject query system assigns truth value code of as
many bits as truth values.

In this case, as already mentioned, the number of
b-circuits that constitute EVAL 112 is one more than in
the case considered previously, and an additional regis-
ter (VO register) in REG V 809 is required to support
the VO string.

This kind of EVAL 112 circuit is termed “general-
1zed” for it can also be utilized for the query evaluation
based on the logics previously discussed (those whose n
truth values are assigned an (n— 1)-bit code), as will be
illustrated subsequently.

Generalized EVAL 112 of type AX is first consid-
ered. Every b-circuit operates as follows. The V0,V1, .
. ., ¥n—1 registers are orderly anded with the corre-
sponding CO0,C1, . . ., Cn—1 registers by AND gates.
Then, the n bitstring results of logical and operations
are xored between themselves by XOR gates connected
so as to form a binary tree structure. The bitstring result
1s the b-circuit output and is stored in a U register. The
output of intermediate XOR gates is also stored in U
registers and constitutes the output tested by MCPU
801 when generalized EVAL 112 is utilized for query
processing based on logics having a number of truth
values less than the maximum allowed. (As to the b-cir-
cuits in the drawing, the intermediate output stored in
the U registers has been depicted only for the upper
XOR/XNOR gates). The U registers are tested by
MCPU 801 according to the criterion already de-
scribed.

Generalized EVAL 112 of type AE differs from type
AX 1n that it utilizes XNOR gates instead of XOR gates.

Generalized EVAL 112 of type OE differs from type
AX in that 1t utilizes OR gates instead of AND gates,
and XNOR gates instead of XOR gates.

Generalized EVAL 112 of type OX differs from type
AX 1n that it utilizes OR gates instead of AND gates.

FIGS. 15, 16, 17, and 18 respectively show the typical
b-circuit of generahized EVAL 112 of type AX, AE,
OE, and OX for the query evaluation based on up-to-8
valued special logics. It suffices to illustrate only one,
for example, generalized b-circuit-1 1519 of type AX
depicted in FIG. 15, since this description also holds,
mutatis mutandis, for b-circuit-1 1619 of FIG. 16, b-cir-
cuit-1 1719 of FIG. 17 and b-circuit-1 1819 of FIG. 18.

AND gates 1520, 1521, 1522, 1523, 1524, 1525, 1526,
1527 respectively perform the logical and between sig-
nals 1500, 1501, 1502, 1503, 1504, 1505, 1506, 1507,

S

10

15

20

235

30

35

45

50

33

60

65

18

which correspond in that order to the VO0,V1, ..., V7
registers, and the corresponding signals 1510, 1511,
1512, 1513, 1514, 1515, 1516, 1517, which correspond in
that order to the C10,C11, . . . , C17 registers. Then
respective output signals 1528, 1529, 1530, 1531, 1532,
1533, 1534, 1535 of AND gates 1520, 1521, 1522, 1523,
1524, 1525, 1526, 1527 are xored between themselves by
means of a tree-structured XOR gate network. In par-
ticular, XOR gate 1536 performs the logical xor be-
tween signals 1528 and 1529 producing signal 1540. In
parallel, XOR gate 1537 performs xor between signals
1530 and 1531 producing signal 1541, XOR gate 1538
performs xor between signals 1532 and 1533 producing
signal 1542, and XOR gate 1539 performs xor between
signals 1534 and 1535 producing signal 1543. Then
XOR gate 1544 performs xor between signals 1540 and
1541 producing signal 1546 while XOR gate 1545 per-
forms xor between signals 1542 and 1543 producing
signal 1547. Finally, XOR gate 1548 performs xor be-
tween signals 1546 and 1547 producing signal 1549
which 1s stored in the U3 register of REG U 810. Sig-
nals 1540 and 1546, which are the output of intermedi-
ate XOR gate 1536 and XOR gate 1544, are also ex-
tended and stored in the Ul and U2 registers, respec-
tively. |

MCPU 801 tests the Ul register when a (special)
two-valued logic 1s concerned; the U2 register is tested
when a (special) 3- or 4-valued logic is concerned; while
the U3 register 1s tested when the (special) logic con-
cerned 1s a 5-, 6-, 7-, or 8-valued one.

Versatility of Generalized EVAL 112

In order to utilize generalized EVAL 112 for the
query evaluation based on common logics, MCPU 801
is programmed to set the VO register to all 1’s (resp., to

all 0’s) when the b-circuit is of type AX/AE (resp.,

OX/OE). In fact, considering b-circuit-1 1519 as an
example, when signal 1500 is a sequence of all 1’s, signal
1510 (corresponding to the CO register) is extended
through AND gate 1520 and over lead 1528 to the
upper input of XOR gate 1536. Consequently, the gen-
eralized b-circuit-1 1519 produces the same output as
that produced by the corresponding b-circuit-1 1120.

The output signal of each XOR/XNOR gate of a
b-circuit, for example signals 1541, 1542, 1543, 1547 of
generalized b-circuit-1 1519 and signals 1140, 1141,
1142, 1146 of b-circuit-1 1120, can be extended on sup-
plementary leads (not shown) to be stored into supple-
mentary registers U 810 (not shown). In this manner,
when the number of truth values of the selected logic is
appropriately less than the actual maximum supported,
each b-circuit can be utilized to process more C string
arrays or even clauses in parallel. The reason is that the
b-circuit itself is structurally composed of internal b-cir-
cuits. Every supplementary register U, if used, is tested
by MCPU 801 according to the criterion already de-
scribed.

Flexibility of the Query System

The flexibility of the subject data query system is
1llustrated by referring to the sample census database
shown in table 1901 of FIG. 19. Table 1901 contains
information about individuals: name, sex, civil status,
year of marriage, and other (not shown) data. The mark
“?? stands for null value: Jones is unmarried and so the
value of his year of marriage is null; Blake is married but
her year of marriage is unknown (that is, unrecorded)
hence null; 1t 1s unknown whether Clark is or is not

5,398,199

19

married, hence her civil status value and possible year
of marriage are null. Let the example query against the
database in table 1901 be relative to the printing of
information concerning the individuals married after
1940. (Here, there are expressed two atomic conditions:
(1) civil status=married, and (2) year of marriage
>1940.)

We shall assume that the query system provides
query evaluation based on 2 to at least 5 -valued logics.
Circuit EVAL 112 is, for example, composed of b-cir-
cuits of one type shown in FIGS. 11 through 18.

FIG. 20 shows the printout depending on the logic
utilized by the query system, possibly specified by the
user.

Printout 2010 refers to the query evaluation based on
the ordinary logic. In this case, the host system does not
process the records that contain null values in data
fields qualified by the query (namely, civil status and
year of marriage). The one table produced, namely
table 2011, is the usual so-called true result.

Printout 2020 results from the query evaluation based
on the standard three-valued logic {T,U,F}. In this
case, the host system assigns the result of atomic condi-
tion evaluation on data marked ‘?”’ the truth value U.
Now two tables are produced by the query system as
result of the query process: table 2021, which is the
same as table 2011, is the true result (that is, all and only
records which the query selection condition processed
by EVAL 112 takes the truth value T on), and table
2022 is the usual so-called maybe result (that is, all and
only records which the selection condition takes the
truth value U on).

Careful examination of the significance of the infor-
mation conveyed by the data of table 1901 reveals that
‘nulls relative to year of marriage can have different
meanings which is not so for nulls relative to civil sta-
tus. In fact, the value relative to the year of Jones’ mar-
riage is inapplicabile (because he is unmarried), hence
the properly corresponding truth value is I, while the
one referring to Blake’s marriage is applicable (because
she is married) but unknown, hence the properly corre-
sponding truth value is A. On the other hand, the civil
status value 1s always applicable to every individual,
hence only the truth value A can correspond to a possi-
ble null in this field. Since we have assumed that the
query system provides the query evaluation based on
up-to-3 valued logics, it is likewise possible to process
the query on the basis of a four-valued logic {T,A,IF}
selected by the user or by system default, for example
the standard one referred to in FIG. 6 or Codd’s logic
referred to in FIG. 7. In both cases, however, the query
system again produces printout 2020. The only differ-
ence from the previous analysis based on the standard
ternary logic 1s that here table 2022 (the maybe result)
refers to records which the selection condition takes the
truth value A on. |

Therefore, the adoption of a four-valued logic,
though more significant than a three-valued one, does
not produce a substantial increase of the user’s knowl-
edge of individuals which match the query. In particu-
lar, there 1s no evidence that Clark (because possibly
unmarried) has a lower average probability to match
the query than Blake (because surely married). The
problem with such four-valued logic is that the host
system can only assign the truth value A as result of
evaluating atomic condition (2) for Clark.

The above problem can be overcome by utilizing the
subject query system on the basis of a five-valued logic,

d

10

15

20

25

30

35

43

50

55

60

65

20

say, {T,ALA,LF} where Al is the special value which
means “A or I”’. This allows the host system to assign a
reasonable truth value, namely Al, when evaluating
atomic condition (2) for Clark. With this arrangement,
the query result is printout 2030, where table 2031 is the
true result; table 2032 is the maybe result (the records
which the selection condition takes the truth value A
on); while table 2033 is, say, the doubtful result (that is,
the records which the selection condition takes the
truth value Al on). In this fashion, printout 2030 when
compared to printout 2020 is easier for the user to un-
derstand and corresponds better to reality with respect
to the query. |

It must be stressed that the versatility and flexibility
of the subject query system is in the fact that it can be
utilized in a standard way whatever logic is being con-
sidered from those available, that is, from those whose
correspondence table is available to application
COMPQ 110. Moreover, the set of useable logics can be
increased with time without modifying circuit EVAL
112; one needs only to add the proper correspondence
table(s) and the truth value codes for the new logic(s).
Therefore, circuit EVAL 112 should be realized so as to
support a number of truth values adequate to future
needs.

While a specific embodiment of the invention has
been disclosed, variations in structural detail, within the
scope of the appended claims, are possible and are con-
templated. There is no intention of limitation to what is
contained in the abstract or the exact disclosure as
herein presented. The above-described arrangements
are only illustrative of the application of the principles
of the invention. Normally, other arrangements may be
devised by those skilled in the art without departing
from the spirit and the scope of the invention.

Bibliographic References Cited

[1] American National Standard Institute, entitled
“ANSI/X3/SPARC Study Group on Database
Management Systems Interim Report”, published
in FDT Bull, ACM SIGMOD Rec., vol.7, no.2,
1975.

[2] E. F. Codd, entitled “Extending the Database
Relational Model to Capture More Meaning”’, pub-
lished in ACM Trans. on Data Base Systems, vol.4,
no.4, (December 1979), pp. 397-434.

[3] E. F. Codd, entitled “The Relational Model for
Database Management, version 2”, published by
Addison-Wesley, Reading, Mass., 1990.

4] G. H. Gessert, entitled “Four Valued Logic for
Relational Database Systems”, published in ACM
SIGMOD Rec., vol.19, no.1, 1990, pp. 29-35.

[5] E. Lefons, entitled “Modello di Oggetti Fun-
zionali per Basi di Dati Analitiche”, published in
Rivista di Informatica, vol. XVIII, no.3, 1988, pp.
305-339.

I claim:

1. A digital information processing system for solving

many-valued logic equations comprising:

circuitry means for supplying a first plurality of input
strings V and a second plurality of groups of input
strings C;

a many-valued logic processor for processing said
sequences of many-valued input signals encoded by
V strings on the basis of sequences of many-valued
input operations encoded by said groups of C
strings, and producing sequences of output signals
representing U strings, a selected group of said U

d,398,199
21 22

strings producing a group of binary signals which each' sequence of many-valued _input Operat_ions on
is the plural-bit code of a many-valued truth value, said sequence of many-valued input values is repre-

by carrying out selected many-valued logical oper- sented by n strings C; and,
5(y g' u clecle M & P the many-valued logic processor provides processing
ations on said input many-valued truth values (or V 5

of N-valued logics whose N truth values are repre-
strings);

sented by binary code using N-1 bits and is realized
parallel registers having plural-bit storage locations in accordance with the circuit EVAL consisting of
for storing sequences of input signals representing

a plurality of b-circuits of either type AX, type AE,
said second plurality of C strings, sequences of type OF or type OX and each b-circuit produces a

: . .) . 10 plurality of sequences of output signals or U strings
Input signals representing said first plurality of V to be selectively processed by said output process-
strings, and sequences of output signals represent- ing means.

3. A digital information system having a many-valued
logic processor as defined in claim 1, wherein:

15 the many-valued processor provides the processing
of n arbitrary many-valued logic operations where
each of n truth values of said logic operation is
represented by a binary code using up to n bits;

each sequence of many-valued input values is repre-
sented using up to n strings V;

each sequence of many-valued input operations on
said sequence of input many-valued values is repre-
sented by n sirings C; and,

the many-valued logic processor for processing N-

ing said output U strings;

circuitry connecting said many-valued logic proces-
sor with said parallel registers plural-bit storage
locations for storing sequences of output strings U
produced by the many-valued logic processor; and,

output processing means for processing a group of
selected U strings stored in said parallel registers 20
plural-bit storage locations and producing, for each
selected string U, a predetermined binary signal
when the bits of said selected string U are all set to

a PT_CQEtEI'_mIHed Vfﬂ“e- _ 25 valued logic functions, whose truth values are rep-
2. A digital information system as defined in clam 1, resented by a binary code using up to N bits, is
wherein: realized in accordance with the generalized circuit

the many-valued processor executes n arbitrary EVAL consisting of a plurality of generalized b-

many-valued logic operations, where each of the n

circuits of either type AX, type AE, type OE or

truth values of a logic operation is represented by 30 type OX and each generalized b-circuit produces a
: . . : plurality of sequences of output signals or U strings

bmary code using n—1 bits; and each sequence o to be selectively processed by said output process-
many-valued input values is represented by n—1 ing means.
strings V; £ € % kX

35

40

45

50

35

60

65

	Front Page
	Drawings
	Specification
	Claims

