United States Patent [
Kulakoviski et al.

[S4] DATA COMPRESSION/DECOMPRESSION
AND STORAGE OF COMPRESSED AND
UNCOMPRESSED DATA ON A SAME
REMOVABLE DATA STORAGE MEDIUM

[75] Inventors: John E. Kulakowski; Rodney J.
Means, both of Tucson, Ariz.

International Business Machines
Corporation, Armonk, N.Y.

[21] Appl. No.: 943,613

[73] Assignee:

122] Filed: Sep. 11, 1992
[51] Int. CLO .oeeeeeeeereeerreene e GO6F 12/02
[S2] U.S. ClL oererrrvesccsenenn e 395/425
[58] Field of Searchcccevvveiiriiiiiiiiiineennennnnes 395/425
[56] References Cited
U.S. PATENT DOCUMENTS
3,668,647 6/1972 Evangelisti et al. 395/600
4,499 539 12/1982 WVo0sacek ..coccerirncrvervnnrnnnnne 395/400
4,622,585 11/1986 Reitsma ...ccevveienieneeenrencennens 348/409
4,914,725 4/1990 Belsen et al.ccocveveveeerennnen. 318/560
5,109,226 4/1992 Macl.ean, Jr. et al. 341/95
5,247,646 9/1993 Osterlund et al. 395/425

OTHER PUBLICATIONS

BNA’s Patent, Trademark & Copyright Journal
(0148-7966/94/30-31.00) vol. 48 pp. 165-166, “Foreign
Sale of MS-DOS . .. ”; Jun. 16, 1994,

PKZIP-Compress Files Into Zip Files, pp. 15-26, Jul.

O O 0O R

US005394534A
111 Patent Number:

451 Date of Patent:

5,394,534
Feb. 28, 1995

27, 1989, with file listing from a diskette having soft-
ware copy of the manual.

Shah et al, Data Compressor Decompressor IC, 1990

IEEE International Symposium On Circuits And Sys-
tems, May 1-3, 1990 (New Orleans) pp. 41-43.

Primary Examiner—David L. Robertson
Attorney, Agent, or Firm—H. F. Somermeyer

[57] ABSTRACT

A data file having a plurality of data blocks is divided
into one or more transfer units of data blocks. Before
data storage, each transfer unit of data blocks is sub-
jected~to its own data compression cycle to create a
group of compressed data blocks. The size of the data
transfer unit, in bytes, is selected to facilitate addressing
and retrieving individual recorded groups of com-
pressed data blocks while providing good channel utili-
zation and compression efficiency. Also the data trans-
fer unit size is selected in part based upon data storage
efficiency, ie. the storage of the compressed data
should fill as many addressable data storage areas as
possible. Upon recording each group of compressed
data bytes, an entry is made into a file directory for

enabling addressing the recorded compressed data
blocks.

14 Claims, 5 Drawing Sheets

HOST PROCESSOR SELECT
A DATA TRANSFER UNIT{DTWU)
OF DATA BLOCKS FUR
RECORDING AS A GROUP OF
COMPRESSED DATA BLOCKS

HOST PROCESSOR ALLOCATES
A NUMBER OF ADDRESSABLE
AREAS FOR STORING THE

SELECTED DTU OF DATA
- BLOCKS

DTU OF DATA BLOCKS IS
TRANSMITTED TO DATA

STORAGE SYSTEM

DATA STORAGE SYSTEM
OMPRESSES DTU INTO A

GROUP OF COMPRESSED
DATA BLOCKS & RECORDS

THE GROUP AS ONE
CONTINUUM OF DATA

DATA STORAGE SYSTEM
SENDS DETAILED STATUS TO
HOST PROCESSOR AS TOTHE]R

RECORDING OF THE GROUP

OF COMPRESSED DATA
BL.OCKS

HOST PROCESSOR
ASSOCIATES ALL GROUPS
OF DATA BLOCKS

U.S. Patent

/0

HOST PROCESSOR SELECTS
A DATA TRANSFER UNIT(DTU)
OF DATA BLOCKS FOR
RECORDING AS A GROUP OF
COMPRESSED DATA BLOCKS

/13

HOST PROCESSOR ALLOCATES
A NUMBER OF ADDRESSABLE
AREAS FOR STORING THE

SELECTED DTU OF DATA
BLOCKS

DTU OF DATA BLOCKS IS
TRANSMITTED TO DATA

STORAGE SYSTEM

DATA STORAGE SYSTEM
OMPRESSES DTU IN TO A

GROUP OF COMPRESSED
DATA BLOCKS & RECORDS
THE GROUP AS ONE
CONTINUUM OF DATA

DATA STORAGE SYSTEM

SENDS DETAILED STATUS TO

HOST PROCESSOR AS TO THE
RECORDING OF THE GROUP

OF COMPRESSED DATA
-~ BLOCKS

HOST PROCESSOR
ASSOCIATES ALL GROUPS
OF DATA BLOCKS

20
NO

YES

FI Ec:_z

Feb. 28, 1995

5,394,534

Sheet 1 of 5

//

HOST PROCESSOR
i PERIPHERAL
| CONTROLLER
l DATA STORAGE
[_ DEVICE _J

- L o r - e e s

_FI EC?B

LBA 23

/4
71

/185

ANALYZE DATA TO
BE RECORDED

SELECTA PLURALITY
OF DATA BLOCKS
FORA DTU

/189
TRANSFER DTU TO
DATA STORAGE SYSTEM

/190

U.S. Patent Feb. 28, 1995 Sheet 2 of 5 5,394,534

TRANSFER DATA ?

NCLUDING DECOMPRESS 252 | HARDAARE
e o "~ | DECOMPRESS
|

280
UPDATE A
COMPRESSED FILE
| 8/

COMPARE NEW DATA
ENGTH WITH OLD DATA

LENGTH & PADDING IN
LAST SECTOR

275 N\ ——— " =] '
i &‘
| |
' | SOFTWARE 274 | HARDWARE | | I
COMPRESS COMPRESS 1 | -
WRITE UPDATING | | I DECOMPRESS DECOMPRESS] | |
DTU IN SAME o { -
| SECTORS | l . | |
| L . _ i I
288 7 4ni TN |

ALLOCATE 270 L
NE W SECTORS - | |
| HOST |
| PROCESSOR |

Frso74

U.S. Patent Feb. 28, 1995 Sheet 3 of 5 5,394,534

TO HOST

PROCESSOR //) _520
1 Joo T wv09 2 o8 |
l Py 07
| CD OPTICAL l
' COMPRESS DISK MICROPROCESSOR] |
| DECOMPRESS CONTROL l
| 1o, 106
’ 170 DATA 4 |
| BUFFER ECC l

e L= ¢+ TO OPTICAL DISK DRIVE (2))
L=

RECORDING SELECTED

GROUPS OF DATA UNITS z//é* /’{5
122 /7 /23
-y ——/~ DEALLOCATE
_— ——— UNUSED
/18 /8 79 Y120 ALLOCATED SECTORS

_FIEEZ?E
CRITERION
199 MAX SECTORS
IMAGE NO PER GROUP= 16
DATA
YES 96 200
 MIN=4%SB MIN = 2 x SB
197 20/
MAX = 64 % SB MAX = 32 % SB

U.S. Patent

Feb. 28, 1995 Sheet 4 of 5 5,394,534

130 13 132 /133 154
NUMBER OF DATA BLOCKS
/135

LINK ON

140

/4] /42

NUMBER OF SECTORS USED TO STORE
| READ BUFFER | o MPRESSED DATA

M5

/46 147 /48
NUMBER OF DATA BLOCKS TO
EAD DATA | LBA ADDRESS | oe "o eFERRED it

NUMBER OF SECTORS TO BE READ (N} DECO'SERESS LINK ON
/149 150 /5]

FILENAME
LBA ADDR

/6021 LBA ADDR

LBA ADDR

LBA ADDR

160

LBA ADDR

/169

7 |

N\ 172 —~173 (74 /75
SECTOR ID__ || DATA SWC] DATA '] CONTROL| ¢ ECC ' J| 80
|

Fr=-/

o 16/ (162 (/63
——ﬂ

NUMBER OF DATA BLOCKS IN ONE
TRANSFER UNIT DTU MIN MAX

NUMBER OF BLOCKS & SECTORS C

NUMBER OF BLOCKS & SECTORS

NUMBER OF BLOCKS & SECTORS C

1 1
S N R .

NUMBER OF BLLOCKS & SECTORS C

64 |) 65
! .

3

7. (76 (77 178 /79

AS
/70

Fr=-88

U.S. Patent Feb. 28,1995 Sheet 5 of 5 5,394,534

25

2l
PREPARE
READ DATA

226 (227
NO \, DATA ARE
RECEIVE COMPRESSED
WRITE COMMAND s (230

SETCOMPRESS BIT
IN READ COMMAND

TO "ON"

23/
IDENTIFY GROUP(S)
HAVING DESIRED DATA
232

REQUEST ONE READ
PER GROUP IN
SEQUENCE

COMPARE COMPRESSEL
NUMBER OF SECTORS
WITH UNCOMPRESSED

NUMBER OF SECTORS

CHECK
COMPRESS

SECTOR BIT,

DECOMPRESS READ DATA
217 DATA AS IT IS WITHOUT
COMP DECOMPRESSING
P
DATA ——-—-—-——--mrr———————
'
SATA STORAGE SYSTEM Frs=1-

SENDS CCR
TO HOST PROCESSOR

DATASTORAGE SYSTEM

ST REPORTS TO
RESENDS DATA TO THE T,'fg S&Fégcs?&%%s

DATA STORAGE SYSTEM

ROST PROCESSOR
DEALLOCATES

THE REPORTED
UNUSED SECTORS

DATA STORAGE SYSTEM

RECORDS DATA WITH-
OUT COMPRESSION

5,394,534

1

DATA COMPRESSION/DECOMPRESSION AND
STORAGE OF COMPRESSED AND
UNCOMPRESSED DATA ON A SAME
REMOVABLE DATA STORAGE MEDIUM

DOCUMENTS INCORPORATED BY
REFERENCE

MacLean et al U.S. Pat. No. 5,109,226 1s incorporated
by reference for its showing of an in line data compac-
tion and decompaction apparatus associated witha pe-
ripheral data storage device.

Gelb et al U.S. Pat. No. 5,018,060 titled “ALLO-
CATING DATA STORAGE SPACE OF PERIPH-
ERAL DATA STORAGE DEVICES USING IM-
PLIED AILLLOCATION BASED ON USER PA-
RAMETERS”.

Belser et al U.S. Pat. No. 4,914,725 titled “TRANS-
DUCER POSITONING SERVO MECHANISMS
EMPLOYING DIGITAL AND ANALOG CIR-
CUITS”.

FIELD OF THE INVENTION

This invention relates to data storage systems that are
capable of storing both compressed and uncompressed
data on one removable data storage volume and to data
processing systems utilizing such data storage systems.
This invention also relates to data storage systems that
minimize wasted data storage space on a data storage
volume while storing compressed data.

BACKGROUND OF THE INVENTION

Many data storage media, such as data storage optical
disks, have a so-called fixed block architecture (FBA)
format. Such format is characterized in an optical disk
by so-called hard sectoring the disk’s single spiral track
into a plurality of sectors. Every one of the sectors have
identical data storage capacity, l.e. 512 bytes, 1024
bytes, 4096 bytes, etc. Because of the FBA disks and the
variability of data lengths of compressed data with
respect to the source uncompressed data, in-line data
compression has not been employed with FBA format-
ted disks. It is desired to efficiently store and enable
simple random address accessing a variable amount of

5

10

13

20

25

30

35

compressed data resulting from a compressing data 45

formatted into addressable blocks. Such compressed
data are then recorded on a FBA formatted disk. If the
sector data does not compress to a fewer bytes, then the
data are stored without data compression on the data
storage disk.

It 1s also desired to maintain host processor addressa-
bility of the compressed data blocks within each com-
pressed group of data blocks. It 1s also desired when
compressing data for storage on a FBA storage medium
to maintain a maximal addressability of all unused data
storing sectors even though the number of sectors re-
quired to store the compressed data blocks is unknown.
A further desire 1s to provide for random addressing of
the compressed data blocks recorded in an FBA format-
ted storage medium. |

The data pattern randomness of most input data
streams and the variability in the resulting length of the
compressed data output after the application of the
various compression algorithms, does not allow for the
prediction of the amount of storage space required to
contain the compressed data. This situation requires a
link between the transmission of the data stream to be
compressed and recorded and the results of the com-

50

535

60

65

2

pression process to assist the host processor in its stor-
age management process.

The function of updating a data file in this environ-
ment can not use any usual data updating process (read,
update, write back) because the data pattern as a result
of the update may not compress to the same degree as
the original data block and therefore updated com-
pressed data most probably will not fit in the original
storage space required to store the original data.

In an fixed block architecture (FBA) environment,
data are recorded on a data storage medium in fixed
sized units of storage called sectors where each record-
ing track on the medium contains a fixed number of
such sectors. The addressing convention for optical disk
devices consists of a track address on the medium and a
sector number of the particular track. On optical media
storage devices, each of the sectors consists of two
major parts; an Identification field (ID) used by the
device controller to locate a particular sector by a phys-
ical address and a data field for storing data. The infor-
mational content of the ID’s on hard sectored optical
disks are indelibly recorded, as by a stamping/molding
process, on the medium at the time of manufacture.
Other data storage formats also are usable to practice
the present invention, such as the known count-key-
data (CKD) and extended count-key-data (ECKD)
formats used on many magnetic disk media.

An FBA device attached to a host via the known
Small Computer Standard Interface (SCSI) must pro-
vide the capability to resolve a Logical Block Address
(LBA) used by SCSI architected direct-access data
storage devices to address fixed sized units of storage to
a unique physical address (track and sector) on the
medium. The SCSI attached FBA device provides to
the host a contiguous address space of N (N 1s a positive
integer) storage locations which can be accessed for
reading or writing in any sequence. Each LBA direc-
tory structure (addresses ranging from O to N) is the
addressing mechanism used to store and retrieve data
blocks in the SCSI-FBA environment (some FBA de-
vices also provide the capability to address the storage
space using the physical address).

As can be seen from the preceding paragraphs, the
principal problem facing a designer of a storage system
using data compression techniques in the SCSI-FBA
environment is to provide a mechanism by which fixed
size units of data, herein termed data blocks, in an input
data stream can be recorded in a variable amount of
medium storage space and still maintain addressability
to the unoccupied storage space and provide for ad-
dressability to the recorded data blocks.

Since many optical disks today are of the removable
type, it is further desired to enable the removable data
storage medium to be self-describing as to compressed
and uncompressed data.

DISCUSSION OF THE PRIOR ART

The Vosacek U.S. Pat. No. 4,499,539 shows first
allocating a number of data storage segments of a cache
or buffer for storing a maximum number of data bytes
that are storable in an addressable track of a direct ac-
cess storage device (DASD) connected to the cache or
buffer. The DASD 1s a magnetic disk storage device.
The protocol is to stage or transfer one track of DASD
data to the cache or buffer in one input-output operation
(one access to the DASD). Upon completion of the
actual data transfer, the cache or buffer 1s examined. If

5,394,534

3
less than all of the first allocated segments contain data,
then the empty allocated segments are deallocated.
Pointers are recorded in a first one of the allocated
segments for pointing to additional allocated segments
that store data from the same DASD track. In this man-
ner the DASD track is emulated in the cache or buffer.

Co-pending commonly-assigned application for pa-
tent Ser. No. 07/441,126, now U.S. Pat. No. 5,097.261
shows a data compaction system for a magnetic tape
peripheral data storage system. Tapes do not have any
addressable data storage areas. The entire tape is for-
matted each time it is recorded. This formatting feature
in magnetic tapes enables storing variably sized records
as variably sized blocks of data. The storage of uncom-
pressed and compressed data is by addressable blocks of
such data. The application does show including a plu-
rality of records in one block of data recorded on the
tape. Another co-pending commonly-assigned applica-
tion for patent Ser. No. 07/372,744, filed Jun. 28, 1989,
now U.S. Pat. No. 5,200,864 shows a magnetic tape data
storage system that automatically stores a plurality of
small records 1n each block of recorded data. Each of
the records remain individually addressable. A purpose
of combining a plurality of records in one block is to
reduce the number of inter-block gaps for increasing the
storage capacity of the magnetic tape.

Data compression and decompression algorithms and
systems are well known. The MacLean patent, supra,
shows an 1n line (real time) data compression/decom-
pression system for use in high speed data channels.
This system uses an algorithm shown in the Langdon,
Jr. et al U.S. Pat. No. 4,467,317. Batch processed (soft-
ware) data compression and decompression is also weli
known. PKWARE, Inc., 7032 Ardara Avenue, Glen-
dale, Wis. 53209 USA provides the software programs
PKZIP for batch compression, PKUNZIP for batch
decompression among other compression-decompres-
sion software. Another data compression-decompres-
sion algorithm has been used for both batch (software
processing) and in-line (hardware-integrated semicon-
ductor chips) processing. The known Lempel Ziv-1
data compression/decompression algorithm is used for
both m-line (real time) and batch data compression and
decompression. It is preferred to use the latter algo-
rithm. Shah and Johnson in the article DATA COM-
PRESSOR DECOMPRESSOR IC in the “1990 IEEE
International Symposium on Circuits and Systems, New
Orleans, La. USA (pp 41-43) on May 1-3, 1990 describe
an integrated circuit using the known Lempel-Ziv algo-
rithm mentioned above. In practicing the present inven-
tion, it is preferred that a compression-decompression
algorithm that facilitates both batch and in line opera-
tions be used. Of course, only batch or only in line data
compression-decompression may be used to success-
fully practice the present invention.

Images or “non-coded” data have been compressed
and decompressed for saving data storage space.
Reitsma U.S. Pat. No. 4,622,585 shows one video com-
pression scheme.

SUMMARY OF THE INVENTION

An object of this invention is to provide flexible data
compression-decompression controls that enable ran-
domly accessing compressed data through relatively
simple accessing mechanisms.

In accordance with the present invention, a data file
having a plurality of addressable data blocks is seg-
mented into a plurality of groups of such data blocks.

5

10

15

20

25

30

35

43

50

35

60

65

4

Each group of data blocks is separately compressed and
decompressed as one unit of data. Each such group is
separately transmitted between a host processor and a
data storage unit, communications link, etc as one data
transfer unit (DTU). The size of the DTU, in terms of
the number of data blocks to be included, is determined
empirically based upon the data storage capacity (num-
ber of data bytes) storable in sectors of a data storage
unit, the number of bytes in each of the data blocks of
the data file and other system parameters. The data
storage of each group in compressed form in a data
storage device is described by the data storage system to
the host processor, preferably by a command linked to
the host processor command effecting the data storage
in compressed form. The host processor establishes a
directory describing the storage of each and every
group of the data file. If the data file is transferred to
another system or host processor in the compressed
form, the compressed data file directory accompanies
the compressed groups. Retrieving compressed data
from a data storage device is by retrieving the group of
data blocks having the data block(s) desired to be read.
Each compressed group of data blocks is transferrable
between host processors and data storage units without
decompression. The DTU or group receiving data stor-
age medium may be formatted in the well known fixed-
block architecture (FBA), the well known count-key-
data (CKD), the well known extended count-key-data
(ECKD) or any other format. |

The foregoing and other objects, features, and advan-
tages of the invention will be apparent from the follow-
ing more particular description of preferred embodi-
ments of the invention, as illustrated in the accompany-
ing drawings.

DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a flow chart illustrating data storing opera-
tions using the present invention.

FIG. 2 1s a simplified block diagram of a data process-
ing system in which the FIG. 1 illustrated data storing
operations may be advantageously employed.

FIG. 3 1s a diagrammatic showing of a Logical Block
Address (LBA) directory for illustrating identifying
recorded compressed groups of data blocks of a data
file.

FIG. 4 1s a flow chart showing machine operations
that update a compressed data file.

FIG. 5 is a block diagram of a peripheral controller
usable in the FIGS. 2 and 4 illustrated data processing
systems.

FIG. 6 diagrammatically illustrates storing a com-
pressed group of data blocks as shown in FIG. 1.

F1G. 7 diagrammatically illustrates host processor
commands using a SCSI connection to a data storage
system as shown in FIGS. 2 and 4.

FIG. 8A diagrammatically illustrates a file directory
of a plurality of compressed groups of data blocks of a
file.

FIG. 8B diagrammatically illustrates format of a disk
sector.

FIGS. 9-13 are flow charts showing details of the
operation shown in FIG. 1.

FIG. 14 is a logic diagram illustrating applying the
present invention to a multi-unit data processing system
that has a plurality of data storage devices and host
processor interconnected as by a data link or local area
network.

5,394,534

S

DETAILED DESCRIPTION

Referring now more particularly to the appended
drawing, like numerals indicate like parts and structural
features in the various figures. A data file having a
plurality of data blocks is divided into one or more
transfer units of data blocks. Before data storage, each
transfer unit of data blocks is subjected to its own data
compression cycle to create a group of compressed data
blocks. The size of the data transfer unit, in bytes, is
selected to facilitate addressing and retrieving individ-
ual recorded groups of compressed data blocks while
providing good channel utilization and compression
efficiency. Also the data transfer unit size is selecied in
part based upon data storage efficiency, i.e. the storage
of the data, after compression, should fill several allo-
cated addressable data storage areas. Each of the allo-
cated sectors in each group 1s filled to capacity except
the last sector of a group that may be partially filled. It
is desired to reduce the number of partially filled data
storage sectors for more efficiently filling the FBA data
storage disk with data. This desire is balanced with
enabling efficient random access t0 the compressed data
blocks stored on the FBA data storage disk.

Each stored or recorded group of compressed data
blocks is accessed from disk 30 as a single data unit
irrespective of the number of disk 30 sectors in which
the group 1s recorded. Since each group of compressed
data blocks is compressed in a separate data compres-
sion operation, all of the data in each such group must
be decompressed starting with the beginning, i.e. first
compressed bytes, in each group. Therefore, in ran-
domly accessing a compressed desired data block in a
given group, all of the compressed data blocks of each
stored group are read from disk 30 as a single disk re-
cord. The single disk record i1s decompressed up to the
desired or addressed compressed data block. The de-
sired compressed data block is then decompressed for
processing. Limiting the size of the groups of com-
pressed data blocks provides for quicker access to any
desired compressed data block. This desire is balanced
with a desire to maximize utilization of the disk 30 data
storage space. An example of managing these two pa-
rameters for creating a desired size compressed data
blocks (that varies with each application) is described
later.

In an alternate arrangement, each data block 1s sepa-
rately compressed. A plurality of such separately com-
pressed data blocks are combined into a single disk
record. The byte position within the single disk record
for each of the separately compressed data blocks is
recorded in the single disk record. Such byte position or
offset enables addressing each of the compressed data
blocks within a group.

To facilitate access to the groups of compressed data
blocks, the host processor program maintains a direc-
tory that identifies the addressable data storage areas
containing the group as well as the data blocks in the
respective groups. This identification preferably takes
the form of a file directory that is maintained in host
processor 11. Such directory is also stored on the vol-
ume or data storage disk contamning the group(s) of
compressed data blocks. Preferably, the directory is
transmitted to the disk device as a part of each transfer
of a compressed file having plural groups of compressed
data blocks. This arrangement establishes on the FBA
disk a directory that effects addressability of the com-
pressed data blocks within the respective groups.

10

15

20

25

30

35

435

20

35

60

65

6

FIG. 1 illustrates recording a data file by grouping a
plurality of data blocks of the file into a smaller number
of groups of compressed data blocks. Step 10 1s exe-
cuted in a host processor 11 (FIG. 2). A data file, or part
of a data file, is identified for compressed data storage.
The data file consists of a plurality of data blocks. The
term data block includes data records (coded data),
sub-file structures, individual images, graphs and the
like, drawings and other forms of graphics, combined
graphics (non-coded data) and text(coded data), and the
like. As later detailed, the data file is divided into de-
sired sizes of compressed data blocks for transfer as a
data transfer unit DTU to a storage unit or over a com-
munication link and for maintaining a random access
capability to the recorded groups of compressed data
blocks. The size of each DTU and resultant recorded
group is dependent on diverse variables, as will become
apparent. Completion of one execution of step 10 results
in one such group of data blocks being selected for
compression and storage.

Step 13 is executed by host processor 11 (FIG. 2).
The number of uncompressed data bytes in the DTU of
data blocks (the product of the number of data blocks
times the number of bytes in each daia block) i1s divided
by the data storage capacity of one addressable data
storage area (sector of an FBA formatted disk) and
rounded to a next higher integer if the product includes
a fraction. This number represents a maximum number
of addressable data storage areas required to store the
data; either uncompressed or if a compression does not
compress the data into fewer bytes for storage. At this
juncture, it is not known how many addressable data
storage areas are required to store the group of data
blocks after compression. To ensure that the group of
data blocks is storable on the data storage medium (opti-
cal disk 30 is used in the illustrative embodiment), a
number of the addressable data storage areas sufficient

" to store the entire group of compressed data blocks is

initially determined for storing the group of data blocks
in an uncompressed form.

Step 15 is executed by both the host processor 11 and
data storage system 12. The selected DTU of data
blocks is transmitted by the host processor to the data
storage system. The data compression of the selected
DTU of data blocks is compressed before storage on the
data storage medium (not shown) of data storage device
21. There are several methodologies that may be em-
ployed herein. The FIG. 1 indicated methodology re-
quires the data storage system to allocate the maximum
number of addressable data storage areas. Then the data
transfer occurs requiring the data storage system to
compress the selected DTU of data blocks just betfore
the data are recorded on the data storage medium (not
shown) of data storage device 21. Upon completion of
the compression and data storage or recording as one
continuum of data, data storage system 12 determines
the number of addressable data storage areas actually
used to store the compressed group of data blocks. The
unused but allocated addressable data storage areas are
then deallocated. In the event that certain data blocks
compress to a greater number of bytes than the original
or uncompressed data, then, as will become apparent,
the data compression step 1s not used. Control data are
recorded on the FBA disk that indicates which data are
compressed and which data are not compressed. Such
control data are used in retrieving data from the data
storage (FBA) disk, as will become apparent. As later
detailed in this specification, step 16 data storage system

5,394,534

7

12 sends the storage locations of the just-recorded
group of compressed data blocks to the host processor
11 for inclusion in a directory of the data file to which
the recorded group of data blocks is a member.

As second methodology has the data compression- 5
decompression performed in host processor 11. As
such, host processor 11 includes the data compression
mechanism, either software or hardware, and sends the
compressed selected group of data blocks to data stor-
age system 12 for storage. In this instance, if batch com- 10
pression 1s used, host processor determines the number
of addressable data storage areas required for storing
the compressed group of data blocks. Host processor 11
then sends the required number of addressable data
storage areas to data storage system 12 for allocation 15
just before the compressed data are transmitted to the
data storage system.

In a third methodology, the uncompressed group of
data blocks are_transmitted twice by host processor 11
to data storage system 12. A first transmission enables 20
data storage system 12 to accurately measure the num-
ber of addressable data storage areas that will be re-
quired to store the compressed data. In the first trans-
mission the data are compressed but not recorded. The
number of compressed data bytes are counted to deter- 25
mine the data storage extent (number of sectors or ad-
dressable areas) for the compressed data. The data stor-
age system 12 then allocates the indicated number of
contiguous sectors for receiving and storing the com-
pressed data. A second transmission of the same data to 30
the data storage system 12 results in the compression
and storage of the compressed data in a data storage
medium.

In each of the above described methodologies, if the
number of bytes in the compressed file is greater than 35
the number of uncompressed data bytes, then the data
are recorded in the uncompressed form. Further, when
updating a group of compressed data blocks, the num-
ber of compressed data bytes may exceed the capacity
of the currently allocated sectors. As described later 40
with respect to FIG. 4, a change in allocation of sectors
for storing the updating DTU may be required.

Also, in each of the above described methodologies,
the data blocks to be compressed and stored from each
DTU are preferably compressed and stored as one 45
group. That is, all data blocks in each DTU are com-
pressed during one data compression cycle to produce
one group of compressed data blocks. An alternate data
compression approach is to individually compress each
of the data blocks in each DTU. Then the group of 50
compressed data blocks consists of a plurality of indi-
vidually compressed data blocks. In the alternative data
compression, a header in each group can identify the
byte offset within each group of the individually com-
pressed data blocks. Such individually compressed data 55
blocks may also be identified on the data recording disk
by illegal recording code characters, such characters
are well known for diverse data recording codes.

Host processor 11 in step 19 logically associates all
recorded groups of compressed data blocks via a later 60
described file directory. When employing the above
described first methodology, upon storing the com-
pressed data, data storage system 12 reports to host
processor 11 the actual number of sectors used to store
the compressed data and further address and identifying 65
data therefore, as will be described.

At step 20, host processor 11 determines whether all
of the data to be compressed and recorded have been

8

recorded. The details regarding the recorded group of
compressed data blocks (see step 19) have been entered
into the later described file directory (FIG. 8A). If all of
the above described machine operations have been
completed, then the operation is “done”, enabling exit-
ing to other machine operations beyond the present
description. Otherwise, steps 10-19 are repeated as
above described until all of the data have been com-
pressed and recorded. It 1s to be noted that other ma-
chine operations may be performed by host processor
11 1n a multi-tasking or interrupt driven data processing
environment while steps 10-19 are in the process of
execution as is known in the data processing art.

FIG. 2 shows a data processing system in simplified
form. Host processor 11 attaches a data storage system
12. Data storage system 12 includes a peripheral control
20 that connects host processor 11 to data storage de-
vice 21. Device 21, in one embodiment of this invention,
1S a magneto-optical data storage device that operates
with removable magneto-optical data storage media or
a single medium (disk). As later used in this specifica-
tion, the term programmed machine includes host pro-
cessor 11, peripheral controller 20 and programmed
portions of data storage device 21. The compression-
decompresston mechanisms are preferably in the pro-
grammed machine. For in-line compression-decompres-
sion, it is preferred that the compression-decompression
occur in peripheral controller 20. As later described
with respect to FIG. 14, the location of the compres-
sion-decompression mechanism can be anywhere in the
programmed machine. For batch compression-decom-
pression it is preferred to place the compression-decom-
pression in host processor 11.

F1G. 3 illustrates a logical block address (LLBA) struc-
ture 23 used in magneto-optical disk data storage sys-
tems for addressing sectors of an optical disk. LBA 23 is
a logical to real address translation mechanism that
enables full advantage of practicing the present inven-
tion. This sector addressing is based upon the logical
addressing found in many present day optical disk data
storage devices. The attaching host processor 11 ad-
dresses data on the data storage medium (not shown) of
data storage device 21 using a logical block address
included in LBA 23. LBA 23 determines which of the
addressable physical data storage addressable areas,
such as sectors, are addressed by the respective LBA
address. In an alternate addressing arrangement, host
processor 11 requests access to a named file. This alter-
nate addressing arrangement includes host processor 11
identifying byie location within the file to begin a data
operation and a number of bytes (byte length) fo be
subjected to the data operation, i.e. read from the disk,
for example.

L.BA 23 1s managed by either one of two algorithms.
A first one has been used for optical disks. In this algo-
rithm, the number of entries in LBA 23 is constant for
each disk and is based upon the number of addressable
entities in the disk designated for storing data. Spare
addressable data storage areas or sectors are not in-
cluded in the LBA 23 logical address sequence, as is
known. Known secondary pointers enable addressing
spare sectors via LBA 23.

A second algorithm for addressing using LBA 23 is
used 1n magnetic flexible diskettes. In this second algo-
rithm, the address range of LBA 23 varies with the
number of demarked or unusable sectors. LBA 23 iden-
tifies for addressing only the tracks and sectors that are
designated for storing data. In the event one of the

5,394,534

9

sectors identifiable by the illustrated address translation
becomes unusable, then the unusable or defective sector
is skipped and replaced by another sector. Such substi-
tution 1s well known.

All of the addressable tracks and sectors on disk 30
are addressed via LBA 23. Such addressing is a table
look up matching the host processor 11 supplied logical
address to a physical disk track and sector storing the
data identified by the supplied logical address. Each
L.BA logical address has one entry 14 in LBA 23.

Numerals 17 and 18 indicate groups of compressed
data blocks recorded on disk 30 using the present inven-
tion. Numeral 17 indicates the first group of compressed
data blocks of one file. Numeral 18 indicates subse-
quently recorded groups of compressed data blocks
from the same file. The enumeration of the data blocks
in the recorded groups 17-18 is maintained 1n its origi-
nal sequence as generated by host processor 11. As will
become apparent, the compressed data blocks in the
respective groups are identified in a file directory
shown in FIG. 8A.

FIG. S illustrates a peripheral controller 20 used 1n an
early embodiment of this invention. Such peripheral
controller 20 1s interposed between host processor 11
(FIG. 2) and data storage device 21. Data storage de-
vice 21 may be the optical disk device shown 1n the
Belser et al US patent, supra. Controller 20 includes the
compression-decompression mechanism for in-line or
real time data compression-decompression. A connec-
tion between host processor 11 and peripheral control-
ler 20 1s effected by a SCSI module 100 that implements
the known small computer system interface. An 10 data
buffer 103(dynamically allocated into input data buffers
and output data buffers using known techniques) tempo-
rarily stores data received from or to be transmitted to
the host processor 11. An Optical Disk Controller
(ODC) 104 manages the reading and writing of the data
to a suitable optical recording disk (not shown) in data
storage device 21. Error Correction Control (ECC)
module 106 detects and corrects errors in data being
read and generates ECC error detection and correction
redundancy characters to be written to the medium
with the data. Run Length Lmmted (RLI.) (mod-
demod) encoding and decoding is performed in data
storage device 21 in a2 usual manner. Such mod-demod
encodes and decodes recorded data patterns, such as
used in the known 1-7 d-k code. Microprocessor 107
(plus control store 108 and dynamic store 109) controls
the various elements of the controller 20. A Compres-
sion/Decompression (CD) module 101, such as an inte-
grated circuit referred to by Shah et al, supra, imple-
ments the compression algorithms. CD module 101
includes automatic circuit timing and control, as 1S
known, to control data flow through peripheral con-
troller 20 under supervision of microprocessor 107. This
compression-decompression is in real time (in-line) with
the data transfer. Busses 102, 110 and 111 interconnect
the modules, as shown. Controller 20 is preferably pack-
aged with data storage device 21 on a common frame.

FIG. 6 illustrates compression of several data blocks
into one group of compressed data blocks recorded 1n a
number of data storing sectors 118 of track 117 of disk
30. A group 115 of a plurality of data blocks 116 is
selected for recording as described with respect to FIG.
1. Group 115 of compressed data blocks 1s transmitted
to controller 20 by host processor 11. CD 101 in con-
troller 20 compresses group 115 sufficiently to be re-
corded as a group of compressed data blocks in sectors

10

15

20

25

30

35

45

50

33

65

10

118 plus about one-half of sector 119. The remaining
half of last sector 119 1s filled with padding bytes, as is
known. Numeral 122 indicates a sector that was allo-
cated previously. Numeral 123 indicates a next sector(s)
that were 1nitially allocated according to the above-
described first methodology. The linked response of
controller 20 to the write-compress command indicates
to host processor 11 that sector(s) 123 are to be deal-
located as such sectors did not receive any of the data
from group 115. Host processor 11 responds to control-
ler 20 to deallocate sectors 123.

The above description assumes that host processor 11
1s performing data space management. This arrange-
ment 1s usual. It is to be pointed out that in a mulii-host
arrangement of sharing device 21 that one of the hosts
may be designated to perform space management. Also,
in some systems the pernipheral controller performs data
storage space management.

FIG. 7 illustrates in abbreviated form three com-
mands for use in a known SCSI interface. WRITE
command 130 includes the operation code field 131 that
indicates the command is a WRITE command. LBA
address field 132 indicates the first LBA address that
data being transmitted in accordance with the instant
WRITE command 1s to begin (the lowest LBA address
of possibly several LBA addresses required to be used
in storing data into a plurality of disk 30 sectors). Field
133 indicates the number of units of data that are to be
transferred from host processor 11 to device 21 for
storage on disk 30. One unit 1s that data storable in one
sector of the disk 30. FBA disks may have different data
storing capacity sectors, such as 512, 1024 (1 kb), 2048,
or 4096 bytes of data. Field 134 indicates whether or not
the data to be transmitted 1s to be compressed. Field 135
indicates that this WRITE command is linked to read
buffer command 140. This command linkage requires
peripheral controller 20 to report to host processor 11
the details of the data storage, i.e. number of sectors
actually used, the data that enables host processor 11 to
build an entry for the later described FIG. 8A illus-
trated file directory, and identifies the sectors to be
deallocated. It is noted that LBA 23 is updated in host
processor 11 with a copy thereof recorded in a sector of
disk 30. Also, a copy of the FIG. 8A illustrated file
directory is recorded on disk 30, preferably in a uncom-
pressed form at a first LBA 23 logical address that im-
mediately precedes the first LBA address for storing
compressed data.

Read buffer SCSI command 140 includes operation
code field 141 that indicates the command-is a READ
BUFFER command. Controller 20 responds to receipt
of a READ BUFFER command to transfer data from
an output register(s) of IO butfer 103. Controller 20
stores the information relating to storing a group of
compressed data blocks in such output buffer 103 regis-
ter(s) in preparation to respond to the READ BUFFER
command linked to the WRITE command 130. Field
142 1ndicates to controller 20 the number of sectors used
to store the compressed data blocks. That is, host pro-
cessor 11 knows the number of disk sectors required for
storing the compressed data blocks, hence the new
entry for the FIG. 8A illustrated file directory.

READ DATA command 145 has operation code
field 146 having an indication that the command is a
READ DATA command. The first LBA address to be
used for transferring data from disk 30 to host processor
11 1s indicated 1n field 147. Field 148 indicates the num-
ber (n) of data blocks requested or commanded to be

d,394,534

11

transferred from the FBA disk to the host processor 11.
Field 149 indicates to controller 20 the number (N) of
disk sectors that are to be read. Field 150 indicates that
decompress 1s either on or off. Link on bit 151 is usually
reset to be inactive. For reading one group of com-
pressed data blocks, controller 20 reads the indicated
number (N) of sectors, decompresses the data blocks,
then transfers the decompressed data blocks to host
processor 11. Controller 20 counts the number of data
blocks transferred such that when the indicated number
n of field 148 is reached, the data transfer is terminated.
The data block counting is also used as an integrity
check. |

The FIG. 8A illustrated file directory can indicate
different levels of detail, the selected level is application
dependent. Every file that has data blocks recorded in
groups of compressed data blocks has a separate portion
of the directory respectively indicate by numerals 161,
162 and 163 for three different data files. Each row 160
of each directory represents one entry. A first entry in
each directory include in column 164 the filename of the
file and the LBA address at which the directory is re-
corded on disk 30. Column 165 in the first or top most
entry indicates the number of data blocks in each data
transfer unit. The term data transfer unit (DTU) indi-
cates that a given number of data blocks are to be trans-
terred between disk 30 and host processor 11 during
each data transfer. The remaining entries 160 are re-
spectively for the transmitted and recorded groups of

compressed data blocks. Again, column 164 in the re-

spective entries indicates the first LBA address used to
store the group. Column 165 indicates the number of
data blocks recorded and the number of sectors used to
store the respective groups of compressed data blocks
on disk 30. Once all of the data blocks are compressed
in a single data compress operation, the group of com-
pressed data blocks are a continuum of data with no
external indication of the data block boundaries. The
decompression mechanistn and associated controls
identify the data block boundaries after decompression,
as 1s known.

In addition to the information contained in the FIG.
S8A illustrated file directory, additional details of each
group may be provided. In such an alternate implemen-
tation of the file directory, controller 20 returns, in
addition, for each group of compressed data blocks (i.e.
for each respective eniry of the FIG. 8A illustrated file
directory) a map of the relation of data blocks and data
storing sectors (uses the LBA logical address, not the
actual physical location on disk 30) for each of the
groups. This additional information is used by the host
to manage the recorded data and unused disk 30 sectors
indicated in LBA 23.

All entries contain the above indicated mapping of
data blocks to LBA addresses for each and every group
(Gp.) of compressed data blocks in the current file. That
is, each data block is indicated as being recorded in one
or more sectors, depending on the compression and size
of the data blocks. Several compressed data blocks may
be recorded in one sector. In this instance, the LBA
addresses are the same for starting and ending, i.e.
LBA 0 to LBA g for example could occur for several
data blocks.

A format of the FIG. 8A illustrated directory using
the additional addressing information is set forth below.

10

15

20

25

30

35

40

45

50

35

60

65

12
First entry Filename Number of data blocks in a
data transfer unit
Second entry Gp. 1 LBA Number of data blocks and
sectors in this group
data block n LBA N at byte B

datablockn + 1 LBA N at byte B2

data blockn + 2 LBA Nj at byte B3
(Map of all data blocks in group (Gp.) 1 continues, term “byte”
indicates byte displacement of the respective compressed data
block as recorded in a sector.)

Third entry Gp. 2 LBA Number of data blocks and

sectors
(Map of data blocks to LBA addresses is set forth above)

The super scripts merely indicate 1st (no super
script), second, etc byte positions of the respective
blocks n, n-1, n4-2 ete.

The above described directory structures enable the
data contents of a single group of compressed data
blocks to be updated without the necessity of reading
and then rewriting the entire file. An update of a group
of compressed data block only requires the reading of
one group of compressed data blocks. The update group
of compressed data blocks may require more sectors for
storage than that use to store the previous generation
group of compressed data blocks. That is additional
sectors have to be allocated. Since it is desired that each
group of compressed data blocks are recorded in con-
tiguous sectors (except of unaddressable intervening
defective sectors), a new allocation may be required.
All of this activity is explained later with respect to
F1G. 4. Host processor 11 uses this information to deter-
mine the next available set of contiguous LLBA ad-
dresses that have sufficient number of addresses (sec-
tors) for storing the updated group of compressed data
blocks.

For WORM (write once, read many) optical disks,
the host processor may issue a MEDIUM SCAN com-
mand to locate the next available LBA addressed sector
for storing the updated group of compressed data
blocks. Host processor 11 saves this information in an
expanded directory entry for use when the data are to
be retrieved or read.

As later described with respect to FIG. 10, another
control parameter is 2 minimum or maximum number of
sectors to be used in the CKD and ECKD examples for
practicing the present invention. The number N of sec-
tors required to store the uncompressed data is com-
pared with 2a MIN (minimum value) and a MAX (maxi-
mum value). If the number of required sectors is be-
tween the MIN and MAX values, then a DTU is made
using the number N. MIN ensures a reasonable usage of
disk storage space while MAX ensures a reasonable
access to compressed data blocks. If N is greater than
MAX, then N 1s made equal to MAX. If N is less than
MIN, then N is made equal to MIN. The number of data
bytes in a DTU 1s N*SB (SB is number of bytes storable
in one sector) for FBA devices and N*DB (DB is num-
ber of data bytes desired for storing one data block) for
CKD and ECKD devices. The number of bytes in a
DTU 1s stored in the first or top entry 160 (FIG. 8A) of
each file directory. As one variation, field 166 in each of
the entries 160 contains a compress DTU indicating bit
C. If Cis unity, then the data represented by the respec-
tive entry 160 are recorded in a compressed form. If bit
C 1s zero or nil, then the data are recorded on disk 30
without data compression. The compressed bit C may

3,394,534

13

also be recorded in each and every sector storing data in
accordance with the present invention.

FIG. 8B diagrammatically illustrates format of a disk
sector of an FBA disk. Sector 170 is in track 169 of disk
30. Intersector gap 171 separates sector 170 from an
immediately preceding sector (not shown). Sector 1D
172 i1s an embossed area that contains the track and
sector address of sector 170. Intrasector gap 173 sepa-
rates the hard sectored or embossed mark 172 from the
magnetooptically recorded portion that constitutes the
remainder of sector 170. Data synchromzation signals
DATA SYNC 174 are magnetooptically recorded with
the data stored in portion 175 of sector 170. Control
area 176 stores magnetooptically recorded control sig-
nals, as may be desired. A compress bit C 177 (consid-
ered a part of the control signals in area 176) it set to
unity indicates that the data in portion 175 are com-
press. If C 177 is set to zero or nil, then the data stored
in portion 175 are not compressed. Sector 170 ends with
the error detection and correction redundancy in ECC
178 portion. ECC 178 stored signals are generated and
stored in a known manner that is not pertinent {0 an
understanding of the present invention. Inter-sector gap
179 separates sector 170 from a next succeeding sector
180. It is preferred that compress bit 177 be used while
practicing the present invention.

FIG. 9 is a flow chart showing a sequence of machine
operations for storing a file in a plurality of groups of
compressed data blocks wherein each group is sepa-
rately transmitted from a host processor to a data stor-
age system as a DTU having a number of uncompressed
bytes as set forth above. At step 185 the data to be
recorded is analyzed for determining the number of
DTU’s to be generated. The actual size in bytes/data
blocks of a DTU may be different from file to file. In
step 186, the DTU size is modified to accommodate the
number of data blocks to be initially recorded for equal-
1zing the sizes of a plurality of DTU’s to be used. For
example, if the number of data blocks to be compressed
and recorded is less than two desired DTU’s and one
half of the number of data bilocks results in a number of
data bytes greater than MIN, then two DTU’s each
having one-half of the data blocks are created. This
same principle is applied to transferring data blocks
having any number of DTU’s except for updating a
recorded group of compressed data blocks, as will be-
come apparent. If the DTU sizes cannot be equalized,
then a last DTU may have a number of bytes less than
the MIN (minimum) number of bytes. Upon updating
the recorded group of compressed data blocks resulting
from a small 1ast D'TU, a DTU 1s generated that adds a
number of data blocks to make the size of the DTU,
hence group of compressed data blocks, larger to meet
the DTU size requirements set forth with respect to
FIGS. 9 and 11. FIG. 4 relating to updating a recorded
group of compressed data blocks illustrates machine
steps for storing an updated DTU that is too large for
the current allocated data storage space for a recorded
group of compressed data blocks resulting from com-
pressing and storing the updated DTU.

At “GET DTU” step 188 (FIG. 9), a DTU of data
blocks 1s built for data transfer. Step 189 transfers the
DTU to data storage system 12. Data storage system 12
compresses and stores the transferred DTU as described
earher. At step 190, host processor 11 ascertains
whether another DTU 1s to be transferred. If not (DO-
NE=1), then host processor 11 exits for performing
other work not related to practicing the present inven-

10

15

20

25

30

335

40

45

50

35

65

14

tion. Otherwise, steps 188 and 189 are repeated until all
DTU’s have been transmitted to data storage unit 12.

FIG. 10 1s a flow chart showing selecting a MIN and
a MAX value respectively for image (non-coded or
graphics) data and text (coded) data. The compressibil-
ity of data 1s a measure for selecting MIN and MAX. In
this regard, each file of image or text data may compress
substantially different from data from other files as well
as changing from data block to data block in either type
of data, image or text. Once a first group of data blocks
have been compressed and recorded as a group of com-
pressed data blocks, the compression ratio may be re-
corded in the FIG. 8A illustrated file directory as a
reference for subsequent compression and storage of
data blocks. The FIG. 10 illustration assumes that the
image data has been compressed 75% (compressed
image data blocks are 25% of original size) and text data
blocks have been compressed about 50%. These mea-
sured values may be changed for calculation purposes
for adding a margin of error accommodation into the
calculations.

Step 195 determines whether the data in the file is text
or image. If image, step 196 calculates the MIN value as
4*SB (bytes in a sector), i1.e. at least four sectors are to
be used for storing a group of compressed data blocks.
‘The number tour i1s selected in an arbitrary manner.
Sector size affects the minimum number of sectors to be
used. Step 197 calculates MAX as being 64*SB. In a
FBA disk having 1024 byte sectors, then the maximum
DTU size 1s 64 KB (Kilobytes). Again, system consider-
ations may change these values. Such considerations are
beyond the present description. From step 195, for text
data (IMAGE DATA=NO), step 200 calculates MIN
as 2*SB while step 201 calculates MAX as 32*SB. The
number of uncompressed bytes for image data in MIN
and MAX 1s equal to the number of uncompressed bytes
for text data. The different compression ratios change
MIN and MAX values mnversely to the expected com-
pression ratio. Upon completing either calculation, host
processor 11 stores the MIN and MAX values 1n the
first entry 160 (FIG. 8A) of the appropriate file direc-
tory and then exits the calculation.

The MIN and MAX values may also be predeter-
mined and included as parameter data defining a class of
data as set forth in Gelb et al U.S. Pat. No. 5,018,060
titled “ALLOCATING DATA STORAGE SPACE
OF PERIPHERAL DATA STORAGE DEVICES
USING IMPLIED ALILOCATION BASED ON
USER PARAMETERS”. Gelb et al teach that data set
parameters implicitly control peripheral data storage
operations. Such implicit control based on data base or
file parameter data may be applied to practicing the
present invention.

FI1G. 11 shows execution of a WRITE command by
data storage system 12 wherein the data blocks received
in on DTU are compressed then recorded as a group of
compressed data blocks. Step 210 receives a WRITE
command 130. Step 211 sets the link commanded in
field 135 for reporting the actual number of sectors used
to store the resultant group of compressed data blocks
and a compression ratio CR achieved. Step 212 sets a
compress mode 1n data storage system 12 for activating
CD 101 to compress the data blocks being received into
one continuum of compressed data. Step 213 receives,
compresses and stores the DTU data blocks. Step 216
compares the number of sectors actually used to store
the compressed data with the number of sectors initially
allocated. Step 217 compares the byte count of the

5,394,534

15

original data blocks in the received DTU with the byte
count of the compressed data blocks. In most instances,
the byte count of the compressed data blocks will be
less than the byte count of the original DTU data
blocks. In this instance, at step 218, data storage system
12 indicates to host processor 11 that the data storage
operation has been completed. The identification of any
unused sectors plus other information describing the
Just-completed data recording operation is to be trans-
ferred from data storage system 12 to host processor 11.
This transfer is effected by host processor 11 respond-
ing to the indication of a completed recording operation
by 1ssuing a READ BUFFER command 140 to data
storage system 12 to send the number of unused allo-
cated sectors and all other compression information to
host processor 11. Host processor 12 in step 219 re-
sponds to the indication of unused allocated sectors to
deallocate such sectors for use in storing other data.
Note that if the compress bit 134 is off, then no com-
pression OCcurs.

If at step 217, it is determined that the data compres-
sion resulted more data bytes in the compressed data
blocks than were in the original data blocks, then the
data blocks will be recorded without data compression.
This growth in size of the compressed data blocks may
occur when the original data blocks have certain data
patterns. In any event, at step 220, data storage system
12 sends a channel command retry (CCR) or its equiva-
lent to host processor 11. CCR indicates that the DTU
has to be retransmitted by host processor 11 to data
storage system 12. That is, the increased in size of the
DTU after compression is considered an error condi-
tion. The CCR indicates that a recording error has
occurred. Host processor 11 responds to the CCR at
step 221 by resending the DTU to data storage system
11. At step 222, data storage system 12 stores the DTU
without data compression. The above-described opera-
tions are exited from either step 219 or 222

FI1G. 12 1s a flow chart showing system operations for
reading data. Host processor 11 in step 225 prepares to
read data, 1.,e. identifies the data blocks to be read. Host
processor 11 then in step 226 searches for a file direc-
tory (FIG. 8A). Such file directory may be read from
disk 30. If there is no file directory relating to compres-
sion, then the data are not compressed. Also, if the field
166 of the FIG. 8 illustrated directory for the identified
group 1s zero, then that group is not compressed. Fur-
ther, if data to be read are compressed and it is desired
to decompress in a unit other the storing data storage
system 12, step 226 directs host processor operations to
read all identified data without decompression via path
227. From path 227, a usual data recording operation
not involving data compression is performed (not
shown). Host processor 11 builds issues one READ
command 145 for each of the recorded groups of com-
pressed data blocks to be read. Depending on the de-
sired read operation, field 150 or READ command will
be set to indicate either decompress or no decompress
OFF. Host processor 11 before sending the READ
command 145 to data storage system 12 examines field
150 at step 226. If host processor 11 at step 226 finds that
the data to be read are compressed and decompression
Is desired, then step 230 sets field 150 to compress ON.
All of the groups of compressed data blocks having data
blocks to be read are identified in step 231 via examina-
tion of the appropriate file directory 161-163. Host
processor 11 in step 232 then builds one or more READ
commands 145 for reading the step 231 identified

10

15

20

25

30

35

43

30

33

65

16

groups of compressed data blocks with decompression.
The term build used above indicates that the appropri-
ate control data are inserted into a READ command for
commanding data storage system 12 to perform a de-
sired read. Such command includes the number of LBA
addressed sectors to be read as well as the logical ad-
dress in LBA of a first one of the sectors. One READ
command is sent by host processor 11 to data storage
system 12 in step 232, there can be a number of READ
commands sent for fetching a plurality of groups of
record blocks. Data storage system 12 receives the
READ command. At step 233, data storage system
checks the sector compress bit of the first sector storing
the requested group to be read. If bit C 177 (FIG. 8B) is
unity, then the data are compressed. Data storage sys-
tem 12 then in step 234 reads the requested group in-
cluding decompressing the data. It is to be noted, that if
the READ command field 150 indicates decompression
1s OFF, then no decompression occurs even if bit C 177
1s set to unity. On the other hand, if bit C 177 equals
zero (data in the sector are not compressed), the at step
235 data storage system 12 reads and sends the read data
without decompression to host processor 11. The FIG.
2 illustrated system exits the read operation for one
group from either step 234 or 235.

FIG. 13 illustrates operation of data storage system
responding to a READ command 145. Step 236 re-
ceives the READ command. Step 237 checks the com-
press field 150. If the compress field indicates that de-
compress 18 ON, then C bit 177 of the sector being
accessed 1s checked to ensure that the data to be read is
in fact recorded and stored in a compressed form. Step
238 executes the READ command by decompressing
the data being read if field 150 indicates compression
and C bit 177 is ON. If the field 150 indicates decom-
pression if OFF, the data stored in the addressed sectors
are transferred without decompression whether com-
pressed or not. That is, in all cases, data storage system
12 transfers the data without decompression if field 150
indicates compress is OFF. This control enables trans-
ferring data in either compressed or decompressed
form.

FI1G. 14 illustrates one application of the invention in
a system having linked host processors. Both batch and
in line data compression/decompression are employed.
Compression-decompression software modules 251 and
273 provide batch data compression and decompression
while mtegrated circuit chips (hardware compress de-
compress) 253 and 272 provide in line (real time) data
compression-decompression Two data processing sys-
tems 240 and 241 are linked by data link 263. Link 263
may be a local area network (LAN), a data communica-
tion circuit or tramsfer of a removable data cartridge
manually or via a library, mail etc between the two data
processing systems. Host processor 250 in system 240
has a software compress-decompress facility 251, a
transfer link facility 252 that involves no compression
or decompression and an in-line hardware compress-
decompress facility 253. Facilities 251-253 may be
physically located in data processing system 240 in host
processor 250 or as a part of a channel connection that
includes logic switch 254 (programmed or hardware)
connecting host processor 250 to facilities 251-253.
Dashed line 255 indicates that switch 254 is program-
mingly controlled by host processor 250. A given data
processing system may have only 1) batch compress
facility 251 and link facility 252, 2) in-line facility 253
and link facility 252, 3) all facilities 251-253 or 4) either

5,394,534

17
facility 251 or 253 may be located either in data storage
system 262 or data link 263.

The input-output (IO) connections from facilities
251-253 are eftected by logic switch 260 that is pro-
grammingly controlled by host processor 250 as indi-
cated by dashed line 261. Switch 260 directs 10 data
flow between facilities 251-253 and a data storage sys-
tem 262 or data line 263.

Data processing system 241 is shown as being identi-
cal to data processing system 240. Data processing sys-
tem 241 includes host processor 270 that may have a
different computational arrangement and capability
from host processor 250, logic switch 271, facilities
272-274, data storage system 275 and switch 277 that
selectively connects data processing system 241 to data
link 263 to other systems and data processing system
240.

FIG. 4 illustrates updating a recorded group of com-
pressed data blocks. Host processor 11 in step 280 has
updated data blocks and desires to update a file re-
corded in data storage system 12 as a plurality of groups
of compressed data blocks. Step 281 compares the data
length (number of uncompressed data bytes) of the
updating DTU with the number of bytes in sectors
currently recorded as one group to be updated. Host
processor 11 also examines the number of padding bytes
in a last sector storing compressed data for estimating
whether or not the updated data blocks are storable in
the currently allocated sectors for the group(s) to be
updated.

At step 282 host processor 11 determines whether or
not the updating DTU can be stored in currently allo-
cated sectors or if more or difterent sectors should be
allocated. That 1s, if the updating DTU has more data
bytes than the currently recorded group, then addi-
tional sectors are allocated at step 288 (host processor
11 does the allocation). Such new sectors are preferably
contiguous sectors that may not include any sectors
containing the recorded group of data blocks to be
updated. Following allocation step 288, the updating
DTU is recorded at step 289. Then, host processor 11 at
step 290 deallocates the sectors containing the group of
data blocks to be updated. The FIG. 2 illustrated system
then exits the updating operation from step 2940.

If, at step 282, the number of data bytes in the updat-
ing DTU 1s substantially equal to the number of bytes
(uncompressed) of the recorded DTU, then the updat-
ing occurs at step 283 using the sectors currently storing
the group to be updated. The FIG. 2 illustrated system
then performs step 290 before exiting the updating oper-
ation. If the updating DTU has fewer bytes than the
recorded group, then the updating DTU is recorded in

sectors selected from the sectors containing the group

to be updated. The sectors not used to record the updat-
ing DTU are deallocated at step 290.

It may be decided that, independently of any data
growth patterns, to always store the updated data
blocks in a newly allocated set of sectors and to deallo-
cate or free the sectors storing the current group(s) of
compressed data blocks to be updated. In this situation,
steps 288-290 are performed. For example, if there 1s a
desire to save the original group(s) of compressed data
blocks, such original recording may be retained. Host
processor 11 then updates the approprate file directory
160-162 and exits the storage operation.

In the updating operation shown in FIG. 4, whenever
the compressed data has more bytes than the original
uncompressed data, the data are recorded in an uncom-

10

15

20

25

30

335

40)

45

50

33

60

65

18

pressed form. The steps shown in FIG. 11 are added to
the FIG. 4 illustrated sequence.

While the invention has been particularly shown and
described with reference to preferred embodiments
thereof, it will be understood by those skilled in the art
that vanious changes 1in form and details may be made
therein without departing from the spirit and scope of
the mvention.

What is claimed 1s:

1. In apparatus for storing data in compressed form in
a data storage device having a multiplicity of address-
able data storage areas, each of the data storage areas
for recording a first predetermined number of data
bytes, the data storage device being connected to a
programmed machine, said programmed machine for
receiving data to be recorded, said received data being
arranged in a plurality of addressable data blocks, the
improvement including, in combination:
selection means 1n the programmed machine for se-
lecting a plurality of data transfer units of said data
blocks to be recorded, each said data transfer umt
of data blocks having a given number of data bytes
not less than said first predetermined number and
includes one or more of said addressable data
blocks:
allocation means in the programmed machine con-
nected to the selection means for responding to said
given number to indicate that said data transfer
units of data blocks each requires a first number of
sald addressable data storage areas for storage in
the data storage unit and for indicating that all of
said first number of said indicated addressable data
storage areas are allocated for storing data from
respective ones of said selected data transfer units;
compression means in the programmed machine con-
nected to the selection means for receiving and
compressing said data transfer units of data blocks
into respective compressed blocks to be respec-
tively recorded in a second number of said first
number of addressable data storage areas, said sec-
ond number being equal to or less than said first
number;
data access means In said data storage device and
being connected to said compression means for
respectively receiving and then respectively re-
cording said compressed blocks m said second
predetermined ones of said first number of said
addressable data storage areas and indicating that
the respective compressed block is recorded 1n the
respective ones of said second predetermined ones
of said first number of said addressable data storage
areas; and
directory means in the programmed machine and
connected to said data access means and to said
allocation means for receiving said indications of
said allocation and said indications of said second
ones of said first number of said addressable data
storage areas for indicating that said compressed
blocks are recorded 1in said respective second pre-
determined ones of said first number of said ad-
dressable data storage areas and that said recorded
compressed blocks contain respective ones of said
selected data transfer units of data blocks and that
a plurality of said data transfer units of data blocks
have been separately compressed and recorded in
respective ones of said compressed blocks.
2. In the apparatus set forth in claim 1 further includ-
ing, in combination:

5,394,534

19

range means In said programmed machine indicating
a range of number of bytes to be used for transfer-
ring said said data transfer units between said pro-
grammed machine and said data storage device;
and
said selection means being connected to said range
means for receiving said range indication and re-
sponding to the received range indication for se-
lecting said given number of said data blocks to be
within said indicated range of data bytes such that
each of said data transfer units has a number of
bytes of data within said indicated range of number
of bytes. |
3. In the apparatus set forth in claim 1 further includ-
ing, in combination:
CKD means for supplying a plurality of CKD data
blocks;
sald data storage device having a CKD formatted
disk for receiving and recording CKD data;
said selection means being connected to said CKD
means for recelving and selecting a predetermined
number of said CKD data blocks for creating said
data transfer units of data blocks;
said data access means having CKD recording means
for receiving and recording each of said com-
pressed blocks as a single record on said CKD
formatted disk; and
repeat means connected to said selection means and
to said CKD means for repeatedly actuating the
CKD means to supply said data transfer units of
data blocks for compression and recording in said
respective CKD records.
4. In the apparatus set forth in claim 1 further includ-
ing, in combination:
said programmed machine including a host processor
connected to a peripheral controller, said data stor-
age device being connected to said peripheral con-
troller; |
an FBA sectored disk in said data storage device, said
FBA. sectored disk having a plurality of address-
able sectors, each said sector being one of said
addressable data storage areas; and
said selection means having FBA means for selecting
said data blocks for creating said data transfer units
to be recorded in a predetermined number of said
sectors on said FBA sectored disk: and
repeat means connected to said selection means and
sald compression means for repeatedly actuating
the selection means and said compression means for
respectively creating a plurality of said data trans-
fer units of data blocks from said data blocks for
compression and compressing each of said created
data transfer units of data blocks as a compressed
block for recording said compressed blocks on said
FBA sectored disk such that said file of data blocks
1s recorded in compressed form on said FBA sec-
tored disk in a plurality of said compressed blocks.
5. In the apparatus set forth in claim 1 further includ-
ing, in combination:
an FBA formatted disk in said data storage device,
said FBA formatted disk having a plurality of ad-
dressable sectors for receiving and recording data,
each of said sectors having a predetermined data
storage capacity indicated by a predetermined
number of data bytes; and
said selection means being connected to the FBA
formatted disk for responding to said sector data
storing capacity for selecting said given number of

d

10

15

20

25

30

35

45

50

35

65

20

bytes of data to be said predetermined number of
bytes 1 each of said sectors.
6. In the apparatus set forth in claim 1 further includ-
ing, in combination:
data recording management means connected to said
directory means and to said data access means for
actuating the directory means to establish a plural-
ity of said file directories, one file directory for
each said compressed block;
said recording management means actuating said
directory means to record in each of said file direc-
tories a number of said data blocks to be included in
each of said data transfer units of data blocks and
including recording a maximum number of bytes to
be included in any one of said data transfer units;
and
said selection means being connected to said direc-
tory means for reading said maximum number of
bytes and said number of data blocks and respond-
ing to said read numbers to select said data transfer
units.
7. In the apparatus set forth in claim 1 further includ-
ing, in combination:
update means connected to said selection means and
to said allocations means for actuating said selec-
tion means to update a predetermined one of said
recorded compressed blocks with updated data
blocks including receiving updated ones of said
data blocks and creating a new data transfer unit of
data blocks to include said updated data blocks:

said compression means receiving and compressing
said new data transfer unit into a new compression
block; and

satd update means connected to said allocation means

for actuating the allocation means to allocate a
number of said addressable data storage areas for
recetving and recording said new compression
block in said data storage device.

8. In the apparatus set forth in claim 1 further includ-
Ing, In combination:

first means in said allocation means for allocating

predetermined ones of said addressable data storing
areas for recetving and recording each of said com-
pressed blocks; and

second means in said allocation means responsive to

said first means allocating said predetermined omnes
of said addressable data storage areas to deallocate
second predetermined ones of said addressable data
storage areas that recorded respective ones of said
compressed blocks having identical identifications
as data blocks recorded in said first means allocated
predetermined ones of said addressable data stor-
age areas.

9. In a machme-effected method of compressing and
recording data blocks onto a data storage medium hav-
ing a plurality of addressable data storage areas, includ-
ing machine-executed steps of:

first selecting a plurality of data blocks of a file to be

compressed and recorded on the data storage me-
dium;

second selecting a plurality of submultiples of said

selected data blocks respectively as a plurality of
data transfer units;

estimating a maximum number of said addressable

data storage areas to be allocated for storing said
selected plurality of data blocks after compression
1n said data storage medium:

5,394,534

21

allocating said maximum number of said addressable
data storage areas to receive and store said selected
plurality of data blocks in a compressed torm and
indicating the allocation of said addressable data
storage areas;

compressing and recording each of said data transfer
units as respective compressed blocks including
recording each of said compressed blocks as a sepa-
rately recorded record; and

creating and maintaining a separate file directory
indicating the address and size of each of said re-
corded compressed block for enabling random
access to each said recorded compressed block
such that less than an entirety of said file of data
blocks are retrieved from said data storage medium
for accessing only predetermined ones of said re-
corded blocks less than all of said recorded com-
pressed blocks and modifying said indicated alloca-
tion to indicate a number of said addressable data
storage areas storing said compressed block.

10. In the machine-effected method set forth in claim

9 further including machine-executed steps of:

establishing a data storage space management for said

file including establishing said file directory to

5

10

15

20

include indications of a desired size in data bytes of 25

each of said data transfer unfits and establishing
one entry in the file directory for each of said re-
corded compressed blocks.

11. In the machine-effected method set forth in claim

9 further including machine-executed steps of:

before recording one of said compressed blocks, allo-
cating a first number of said addressable data stor-
age areas of the record medium for recording said
one compressed blocks; and

after recording said one compressed data block, deal-
locating a second number of said addressable data

30

35

45

50

35

63

22

storage areas that contain a recorded compressed
blocks wherein said second number is less than said
first number.
12. In the machine-effected method set forth in claim
9 further including machine-executed steps of:
supplying CKD formatted data blocks of one CKD
formatted file and selecting said CKD data blocks
to be compressed and recorded;
separately compressing a plurality of said data trans-
fer units of said CKD data blocks into respective
ones of said compressed blocks; and
recording the plurality of compressed blocks as one
record on a CKD formatted record member.
13. In the machine-effected method set forth in claimr
9 further including machine-executed steps of:
selecting an FBA formatted record medium to be said
record medium, selecting said FBA formatted re-
cord medium to have a plurality of addressable
data-storing sectors, selecting each data-storing
sector to be capable of recording a given number of
data bytes; and
selecting said data transfer units to respectively have
a first predetermined number of said data blocks
have a number of uncompressed data bytes equal to
a data storage capacity, in data bytes, of a second
predetermined number of said data-storing sectors.
14. In the machine-effected method set forth in claim
9 further including machine-executed steps of:
setting a range of number of bytes to be included 1n
each of said data transfer units; and
selecting a number of said data blocks for inclusion 18
each of said data transfer units such that said se-
lected number of data bytes for each of said data

transfer units i1s within said range.
* %X X e - 4

| —

	Front Page
	Drawings
	Specification
	Claims

