United States Patent [19]

US005390301A
5,390,301

[11] Patent Number:

Scherf 451 Date of Patent: Feb. 14, 1995
(54] METHOD AND APPARATUS FOR 5,113,354 5/1992 Harper et al. ...ccveverrnnenen. 364/514
COMMUNICATING DEVICE-SPECIFIC 5,122,949 6/1992 Harper et al.euuueen... 395/109
INFORMATION BETWEEN A DEVICE 5,179,666 1/1993 Rimmer et al. 395/275

DRIVER AND AN OPERATING SYSTEM IN
A COMPUTER SYSTEM

Steve D. Scherf, Sunnyvale, Calif.
Acer Incorporated, Taipey,

[75]
[73]
[21]
[22]

151}
152}

Inventor:
Assignee:
Appl. No.: 929,884

Filed: Aug, 11, 1992

Et. CLE oo GOGF 3/00
| SRTK o; KU 395,/325; 395,/700;
364/DIG. 1; 364/239; 364,/239.9; 364/280;
364/280.2; 364/280.9; 364/284

364/975.4, 968, DIG. 1
395/700, 325

[58] Field of Search

lllllllllllll

[56] References Cited
U.S. PATENT DOCUMENTS

4,589,063 5/1986 Shahetal.cccecennnnnnn..... 364/200
4,649,479 3/1987 Advaniet al. ... 364/300
3,046,025 9/1991 Harperetal. ..cccccvveverenannnens 395/518

s

213

ANY
DEVICES TO
PROCESS?

202

ANY
FIELDS LEFT TO
INITIALIZE?

207

CAN

SELECT
FIELD TO
[INITIALIZE

Y
FILL IN THE
FIELD WITH e
THE PROPER
VALUE
206
1S
THE LEVEL
HARDWARE _~"BE{ OW THIS DRIVER A SOFTWARE

SOFTWARE OR HARD-

Primary Examiner—XKevin A. Kriess

Assistant Examiner—J. Hall Backenstose

Attorney, Agent, or Firm—Townsend and Townsend
Khourie and Crew |

[57] ABSTRACT

A method of communication between a device driver
and a system kernel uses a standardized generic data
structure. which facilitates communication of numeric
limitations as well as flags. In addition, device-specific
extensions may be added to the data structure to permit
communication of new types of information concerning
devices without sacrificing standardization. Device
drivers store device capability information in the data
structures during system startup, and the system kernel
reads the information prior to performing an 1/0 re-
quest.

27 Claims, 8 Drawing Sheets

212

END

DOES
THIS BRIVER KNOW
THE VALUE FOR

THE DEVICE?

WARE DRIVER?

208

CAN

QUERY THE
HARDWARE
FOR THE
APPROPRIATE
VALUE

WE QUERY \ N WE QUERY
THE HARDWARE FOR THE NEXT SOFTWARE
THE PROPER DRIVER LAYER?
VALUE?
v CHOOSEA | — 209 y
PREDETERMINED
240 SAFE VALUE 211

DETERMINE
THE NEXT
DRIVER LEVEL
TO QUERY

U.S. Patent

" Feb. 14, 1995

ALLOCATE DATA
STRUCTURE

PLACE INFORMATION
IN DATA STRUCTURE

STORE ADDRESS OF
DATA STRUCTURE

END

FIG. 1

Sheet 1 of 8

101

102

103

104

105

5,390,301

U.S. Patent

'Feb. 14, 1995 Sheet 2 of 8

213

212

DEVICES TO

END
PROCESS?

204

DOES
THIS DRIVER KNOW
THE VALUE FOR

THE DEVICE?

ANY
FIELDS LEFT TO
INITIALIZE?

SELECT
FIELD TO
INITIALIZE

FILLINTHE
FIELD WITH
THE PROPER
VALUE

206

IS
THE LEVEL
BELOW THIS DRIVER A
SOFTWARE OR HARD-
WARE DRIVER?

HARDWARE SOFTWARE

208

CAN CAN

WE QUERY WE QUERY
THE HARDWARE FOR THE NEXT SOFTWARE
THE PROPER DRIVER LAYER?

VALUE?

CHOOSE A 209 Y
PREDETERMINED
210 SAFE VALUE 211

5,390,301

QUERY THE
HARDWARE
FOR THE

APPROPRIATE
VALUE

FIG. 2

DETERMINE
THE NEXT

DRIVER LEVEL
TO QUERY

U.SS. Patent Feb. 14, 1995 Sheet 3 of 8 5,390,301

302

303 204

INSERT POINTER TO
v DRIVER'S BLOCK INSERT POINTER TO
HASHING FUNCTION IN DATA STRUCTURE IN

BLOCK I/O HASH DRIVER'S HASH TABLE
FUNCTION TABLE

1S
THIS A BLOCK
DEVICE?

306 307
305

INSERT POINTER TO
Y | DRIVER'S CHARACTER INSERT POINTER TO

1S
THIS A CHARACTER
DEVICE?

HASHING FUNCTION IN DATA STRUCTURE IN
BLOCK I/O HASH DRIVER'S HASH TABLE
FUNCTION TABLE

308

FIG. 3

U.S. Patent Feb. 14, 1995 Sheet 4 of 8 5,390,301

402

1S THIS
A BLOCK OR
CHARACTER
DEVICE?

BLOCK CHARACTER

404

EXTRACT POINTER TO

EXTRACT POINTER TO

DRIVER'S BLOCK HASHIN DRIVER'S CHARACTER
FUNCTION FROM BE;OCKG HASHING FUNCTION FROM
/O HASH FUNCTION TABLE CHARACTER /O HASH

FUNCTION TABLE

405

IS

Y POINTER N
NULL?
406 407
USE PREDEFINED SAFE EXECUTE RETRIEVED
GENERIC /0 STRUCTURE HASH FUNCTION TO FIND |
APPROPRIATE I/O
STRUCTURE FOR THE
DEVICE
408
READ CONTENTS OF DATA
" STRUCTURE
409 410

411
BUILD I/O REQUEST GIVE REQUEST T0
ACCORDING TO DEVICE DRIVER TO SERVIGE END
CAPABILITY INFORMATION

FIG. 4

U.S. Patent Feb. 14, 1995 Sheet 5 of 8 5,390,301

501

1S THIS
TYPE OF DEVICE
EXPECTED?

s
' 504
FAILED 1/O
1S THIS
REQUEST Y < TYPE OF DEVICE N
- EXPECTED?
506
NON-SCATTER/ SCATTER/ y
GATHER 1/O GATHER
REQUEST SUPPORTED?
507
. MORE
DATA TO
TRANSFER?
Y
508
o 500

FIG. 5A

U.S. Patent Feb. 14, 1995 Sheet 6 of 8 5,390,301

o 508 o

FIND FIRST EMPTY SCATTER/GATHER
TABLE ENTRY

510

1S THE
CURRENT
CONTAGEQUS DATA
BUFFER ABOVE 10_maxadr OR
BELOW (10_maxadr-
|Owinsz)?

512
AQUIRE SAFE DATA BUFFER SET CURRENT SCATTER GATHER
WITHIN 10_maxadr AND DATA POINT TO START OF
|Owinsz WINDOW REMAINING DATA BUFFER
513
S14 SET CURRENT s/g TABLE TRANSFER
COUNT TO SMALLER OF # OF

| 1S CURRENT TRANSFER COUNT =
|0_sgtsz OR IS NUMBER OF
s/g LIST ENTRIES = 10_sgsz OR
S ALL DATA ACCOUNTED FOR

REMAINING DATA BYTES TO TRANSFER
OF REMAINING TRANSFERABLE
BYTES, I0_sgesz, OR
(I0_sqtsz-TOTAL CURRENT TRANSFER

y COUNT)
517
515 516 DECREMENT COUNTER
DID OF REMAINING BYTES
GIVE REQUEST REQUEST v BY THE # OF BYTES
TO DRIVER COMPLETE TRANSFERED AND
TO PROCESS SUCESSFULLY? ADVANCE TO NEXT
PHYSICAL CHUNK OF
DATA BUFFER
N' g8
FAILED IO REQUEST
5
519
END

FIG. OB

U.S. Patent

Feb. 14, 1995

>

601

1S
THERE
- MORE DATATO
TRANSFER?

602

1S
REMAINING
DATA BUFFER ABOVE
1O_maxadr OR BELOW
(10_mazadr-l0_winsz)?

AQUIRE SAFE DATA BUFFER
WITHIN IO _maxadr AND
|O_winsz ADDRESS WINDOW

606

GIVE REQUEST TO DRIVER
TO PROCESS

607

DID
REQUEST
COMPLETE
SUCESSFULLY?

| FAILED /O REQUEST

60%

END

FIG. 6

Sheet 7 of 8

604

SET REQUEST DATA POINTER
TO START OF REMAINING
DATA BUFFER

605

SET TRANSFER COUNT TO SMALLER
OF # OF REMAINING DATA BYTES TO

TRANSFER, # OF REMAINING TRANS-

FERABLE BYTES, OR I10_tsz

610
DECREMENT COUNTER OF

REMAINING BYTES BY THE
OF BYTES TRANSFERED

AND ADVANCE TO NEXT
PHYSICAL CHUNK OF DATA
BUFFER

9,390,301

U.S. Patent

Feb. 14, 1995 Sheet 8 of 8 5,390,301

704 732

| KERNEL

FIELD | FIELD | FIELD

/0 HASH
FUNCTION
TABLE

BLOCK {/O
HASH
MEMORY

FUNCTION
TABLE

CHARACTER
/O HASH 720 740
FUNCTION

DEVICE

DRIVER HASH

726
TABLE

LEVEL 1 728A

LEVEL N 728N

744

HARDWARE CONTROLLER

764A 764N

DEVICE oo o DEVICE
1 N

760A 760N

7306

700..-2

FIG. 7

5,390,301

1

METHOD AND APPARATUS FOR
COMMUNICATING DEVICE-SPECIFIC
INFORMATION BETWEEN A DEVICE DRIVER
AND AN OPERATING SYSTEM IN A COMPUTER
SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to communication protocols in
a computer system, and more particularly, to a method
of communication between a device driver and a kernel
In a computer system.

2. Description of the Related Art

Most operating systems, and particularly the UNIX
operating system, are capable of supporting several
different system architectures, and can interface with
many different types of input/output (I/0) cards and
peripherals. Generally, each such device is connected
to the system via a hardware controller, and also has a
software program called a “device driver”. The core of
the operating system software, or the “kernel”, uses
these device drivers to program the hardware control-
lers to facilitate input and output with the devices. In
most systems, several devices may share the same con-
troller and/or device driver.

In UNIX implementations, each driver is uniquely
identified by a “major” number, and each device con-
trolled by that driver is uniquely identified by a “minor”
number. In this way, the kernel can feed an 1/0 request
to the appropriate driver by checking the major number
assoclated with the request, and the driver can in turn
teed the request to the appropriate device by checking
the minor number. The major and minor numbers to-
gether refer to a particular device on a particular con-
troller programmed by a particular device driver.

Conventionally, when the user adds a device and its
associated controller, he or she links the object code of
the device driver into the kernel, enabling the kernel to
program the new controller (via the device driver) to
communicate with the device.

In the past, the drivers have not provided the kernel
with information regarding the capabilities and limita-

>

10

15

20

25

30

35

40

- tions of the attached devices. This has led to several 45

detrimental effects including: 1) the kernel may ask a
controller or device to perform a task which it is not
capable of performing, resulting in data loss or a failed
170 request; 2) the kernel may not formulate an I/0
task in the most optimal way for the controller or de-
vice, resulting in reduced I/0 throughput; and/or 3) the
kernel may not take advantage of special features of the
controller or device, resulting in lower overall function-
ality.

Currently, device manufacturers use widely varying
interface protocols, making it difficult for the kernel to
obtain the information it needs. Furthermore, most
conventional communication schemes provide only
limited information to the kernel, preventing the kernel
from using the device efficiently. Previous attempts at
standardizing the interface protocols have been inade-
quate because they are not robust enough to supply full
information about the devices, and do not have the
capability of adding more information. Consequently,
devices using these systems have had to go outside the
standardized protocol in order to provide additional
information to the kernel, thus obviating the benefits of
the interface protocol.

50

33

65

2

Some examples of the limitations of such prior art
schemes are:

1) In some systems, information about a device can
only be obtained by the kernel using the major number
of the device as a key. Consequently, when one driver
is associated with several devices, the kernel is unable to
obtain mformation specific to the individual devices,
thus requiring the driver to report the least common
denominator of all its devices. As a result, if some of the
devices have a particular 1/0 capability while others do
not, and one driver covers both types of devices, the
kernel will not be able to take advantage of the particu-
lar 1/0 capability. |

2) Some systems, such as that used by the Santa Cruz
Operation, limit the amount of information that can be
communicated to the kernel. The Santa Cruz Operation
communicates only one aspect of disk controllers,
namely a one-bit flag indicating whether the “scatter/-
gather” feature is supported by the device. Other pa-
rameters, such as how much data may be transferred
with or without “scatter/gather”, or whether the de-
vice has any memory access limitations, are not commu-
nicated to the kernel. In fact, since such parameters can
only be communicated through integers, rather than
single-bit flags, it is not possible to communicate them
with the conventional scheme of operation. Rather, the
kernel guesses at some of these limits and ignores other-
s—a practice that may and sometimes does result In
reduced performance, data corruption, or even system
failure if the kernel’s assumptions are incorrect.

3) Some systems improve on that of the Santa Cruz
Operation, but are still fundamentally limited in that
they use flags where numerical information is needed,
and they provide no mechanism for adding more pa-
rameters than was initially contemplated.

Without a standard interface scheme which allows
for communication of all relevant information between
device drivers and the system kernel, including provi-
sions for adding more information than was initially
contemplated in the interface’s design, the kernel must
either be reprogrammed to deal with new communica-
tion protocols whenever peripherals are connected to
the system, or it must make dangerous assumptions
about the capabilities of the devices.

SUMMARY OF THE INVENTION

In accordance with the present invention, there is
provided a standardized method of communication
between a device driver and a system kernel which
addresses all of the problems discussed above with re-
spect to the prior art. In the present invention, the
driver characterizes the device abilities in a uniform
manner and the kernel can access the relevant informa-
tion efficiently. The method facilitates the communica-
tion of numeric limitations as well as flags. It keys infor-
mation by both major and minor numbers, thus allow-
ing access to individual device information even when
several devices share a driver. Finally, by providing an
extendible data structure, the method allows for addi-
tion of new types of information without the sacrifices
required by standardization.

‘The features and advantages described in the specifi-
cation are not all-inclusive, and particularly, many addi-
tional features and advantages will be apparent to one of
ordinary skill in the art in view of the drawings, specifi-
cation, and claims hereof. Moreover, it should be noted
that the language used in the specification has been
principally selected for readability and instructional

5,390,301

3

purposes, and may not have been selected to delineate
or circumscribe the inventive subject matter, resort to
the claims being necessary to determine such inventive
subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a flowchart showing the method of the
present invention in the data storage phase.

FIG. 2 1s a flowchart showing a method of placing
information into a data structure according to the pres-
ent mvention.

FIG. 3 is a flowchart showing a method of storing an
address of a data structure according to the present
invention.

FIG. 4 is a flowchart showing a method of retrieving
data from a data structure according to the present
invention.

FIGS. 5A and SB are flowcharts showing a method
for building an 1I/0 request according to the present
invention.

FIG. 6 1s a flowchart showing a method for process-
ing non-scatter gather 1/0 requests.

F1G. 7 1s a block diagram of a particular embodiment
of an apparatus according to the present invention for
communicating device-specific information between a
device driver and an operating system.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The Figures depict a preferred embodiment of the
present invention for purposes of illustration only. One
skilled in the art will readily recognize from the follow-
ing discussion that alternative embodiments of the
structures and methods illustrated herein may be em-
ployed without departing from the principles of the
invention described herein. In particular, this discussion
describes the invention with reference to the UNIX
operating system, as that is the preferred embodiment of
the invention. However, the principles of the invention

10

15

20

25

30

335

could easily be applied to other operating systems, as 40

will be clear to one skilled in the art.

The method of the present invention comprises two
main parts: storage of data structures by device drivers,
and retrieval of the data structures by the system kernel.
The storage phase typically occurs during system
startup, at which time all of the device drivers store
relevant information about their devices in data struc-
tures. The retrieval phase typically occurs prior to an
I/0 request involving a particular device.

The data structure is preferably a well-defined table
containing several fields. Each field holds an integer or
flag value which describes a characteristic of the I/0
controller or device. Since devices are often very differ-
ent, no single data structure exists that can efficiently
describe all possible types. To address this problem, the
following scheme is employed. A generic structure is
defined; it contains fields pertaining to common features
of all devices. One of its fields contains either a null
value or a pointer to a memory address containing a
device-specific extension of the generic structure. A
null value indicates that no extension is needed or pro-
vided. This scheme allows communication of additional
data without necessitating alteration of the original data
structure, thus maintaining backward compatibility
with older drivers.

Referring now to FIG. 1, there is shown a flowchart
of the data storage phase of the present invention. This
phase typically occurs during system startup, or initial-

43

50

39

65

4

ization. In step 101, the data storage phase starts. In step
102, each drniver in the system allocates one data struc-
ture for each peripheral it controls. In step 103, the
drivers fill the data structures with information reflect-
ing the features and limitations of the attached devices.
Once the data structures have been filled, the address of
each structure is stored in a table in step 104. This table
cross-references the data structure address with the
major/minor number pair, and the type of device (ei-
ther a “block” device or a “character” device), so that
the information in the data structure may be accessed
and retrieved by the kernel when needed. In step 105,
the data storage phase ends.

Referring now to FIG. 2, there is shown a flowchart
illustrating the preferred method of obtaining informa-
tion and placing it in the data structure (step 103 of FIG.
1), according to the present invention. Each driver
performs these steps for each device during system
startup. Essentially, for each field, the driver checks if it
has the information, and if it does not, it queries succes-
sively lower-level drivers (both software and hardware)
until it either gets the information or is unable to query
any further. For the purpose of this invention, the hard-
ware and hardware driver are considered to be one unit.
If the driver does not get the information, it chooses a
predetermined safe value. The driver then fills in the
field with the value, and continues on to the next field.

The flowchart of FIG. 2 shows the method in more
detail. In step 201, the data structure filling operation
starts. In step 213, the method of the present invention
tests whether there are any devices left to process. If
there are not, the method is complete and the filling
operation ends in step 212. However, if there are more
devices to process, the method proceeds to step 202. In
step 202, the driver checks to see if there are any fields
to be initialized, or filled with information. If not, the
method proceeds to step 213 to process the next device.
If there are any fields remaining to be initialized, the
driver proceeds with step 203, where it selects one of
the fields to initialize. |

Once a field has been selected, the driver checks in
step 204 to see if it knows the device’s value for the
selected field. For example, if the field is to specify the
data transfer rate, the driver checks to see if it knows
the rate for the device. If it does, it places the informa-
tion in the field in step 205. If the driver does not have
the information to fill in the fields, it can query lower-
level drivers for the information. In step 206, it checks
to see if the level below this driver is another software
driver or a hardware driver. Under the UNIX operating
system, there may be several levels of software drivers
above the hardware driver. The present invention ad-
vantageously parses each level until the software or
hardware driver with the device information is reached.
If 1t is a software driver, processing continues with step
208, where the upper-level driver determines whether it
can query the lower-level driver for the information. If
1t can, it determines in step 211 what is the next driver
level to query. Once this is done, processing returns to
step 204 to see if the driver now knows the value. If, in
step 208, the lower level software layer cannot be
queried, the upper-level driver chooses a predetermined
safe value in step 209, and proceeds to step 205 where it
fills in the field with the value.

If, in step 206, it is found that the level below the
current driver is a hardware driver, processing contin-
ues with step 207, where the driver determines whether
it can query the hardware for the proper value. If it can,

5,390,301

S

it does so in step 210 and continues with step 205. If it
cannot, 1t chooses a predetermined safe value in step 209
and proceeds to step 205.

Once the field has been filled in step 205, the driver
returns to step 202 to see if there are any more fields to
initialize. The method of the present invention is to loop
through all the fields to initialize them. Similarly, an
outer loop 1s used to process all the devices.

Referring now to FIG. 3, there is shown a flowchart
of the preferred method for storing the address of the
data structure once it has been filled with information
(step 104 of FIG. 1), according to the present invention.
In step 301, the process starts. In step 302, the method
determines whether the device is a block device. If not,
processing continues with step 305. If the device is a
block device, the method continues to step 303, in
which it inserts a pointer to the driver’s block hashing
function in a block 1/0 hash function table, indexed by
the device’s major number. Then, in step 304, the driver
inserts a pointer to the data structure in the driver’s
hashing table using the driver’s store function. The
present method uses the driver’s hash functions and the
store function provided by the drivers. This is done so
that the kernel will be able to activate the driver’s hash-
ing function when required, and the hashing function
will access the table to find the data structure.

In step 305, the driver determines whether the device
1s a character device. If not, the driver proceeds to step
308 where the storing function ends. If the device is a
character device, the driver continues on to step 306, in
which it inserts a pointer to the driver’s character hash-
ing function in a character 1/0O hash function table,
indexed by the device’s major number. This character
I/0 hash function table is separate from the block func-
tion table. Then, in step 307, the driver inserts a pointer
to the data structure in the driver’s hash table. Finally,
in step 308, the storing function ends.

Referring now to FIG. 4, there is shown a flowchart

of the preferred method for retrieving the information 4,

from the data structure prior to a data request, accord-
ing to the present invention. As discussed above, these
steps are normally performed by a kernel prior to an
170 request for a particular device.

In step 401, the process begins. In step 402, the kernel
checks to see whether the device is a block or a charac-
ter device. If it is a block device, the method continues
in step 403, and the kernel looks in the block 1/0 hash
function table to find the pointer to the driver’s block
hashing function. If it is a character device, in step 404,
the kernel looks in the character I/0 hash function
table, to find the pointer to the driver’s character hash-
ing function.

Regardless of whether the device is block or charac-
ter, the method proceeds to step 405, where it checks
whether the pointer it just retrieved from the hashing
function has a null value. If so, in step 406, the kernel
uses a predefined safe generic 1/0 structure. If the
pointer is not null, in step 407, the kernel executes the
hash function at the memory location specified by the
pointer. This hash function, when executed, retrieves
the 1/0 structure for the device. In step 408, the kernel
reads the data structure to obtain the needed informa-
tion regarding the device’s capability. In step 409, the
kernel builds its I/0 request according to the device
capability information. In step 410, the I/O request is
given to the dniver for processing as is conventional,
and the process ends in step 411.

10

15

20

25

30

35

45

50

33

65

6

Referring now to FIGS. 5A and 5B, the method for
building an 1/0 request of step 409 is shown by the
flowchart. The process begins in step 500. In step 501,
the preferred method first tests whether the device type
for this I/O operation is expected. If it is not an ex-
pected device type, there is a failled 1/0 request in step
502 and the process ends in step 503. However, if the
device type is an expected one, the method proceeds to
step S04. In step 504, the method tests whether the data
space is physically contiguous. If the space is physically
contiguous a non-scatter/gather (s/g) 1/0 request is
created and processed in step 305 and the method ends
in step 503. In such cases, the data may be transferred in
as large a block size as the hardware will allow since all
the data resides in a contiguous space. If the space is not
contiguous, the process continues to step 506, where the
kernel tests whether the driver supports scatter/gather
(s/g). Scatter/gather is a conventional method used in
UNIX to store data over address spaces that are not
adjacent in memory. If s/g is not supported, the process
proceeds to step 505 and then ends in step 503.

Once step 507 has been reached, the system has deter-
mined that s/g is supported. The method of the present
invention uses the s/g method to formulate the /O
request and transfer the data. In step 507, the preferred
method tests whether all the data has been transferred.
The method will repeat the following steps until all the
data has been transferred. If it is determined that there
is no more data, then the process ends in step 503. If

there i1s more data to transfer, then the method contin-
ues 1n step 509 of FIG. 5B. In step 509, the method finds
the first empty s/g table entry. Next, in step 510, the
kernel tests if the first address of the current contiguous
data buffer 1s above the highest address accessible by
the current device (10.__maxadr) or below the window
of memory which the device can access (I0_maxadr
IO._winsz). If the data is not in the accessible memory
address space (l.e., above the maximum IO address),
then the method acquires a safe data buffer within the
I0_maxadr and the accessible window size in step 511.
This assures that data is transferred safely. After a safe
data buffer is acquired, the method proceeds to step 512.
If the data buffer is accessible, the method proceeds
directly to step 512. In step 512, the method sets the
current s/g data pointer to the start of the remaining
data buffer. Next, in step 513, the current s/g table
transfer count is set to the smaller of 1) the number of
remaining bytes to transfer, 2) the number of remaining
transferable bytes, 3) the maximum number of bytes in a
single s/g entry (I0sgesz), or 4) the maximum number
of bytes transferable by the device in a s/g request
(I0_—sgtsz) minus the total current transfer count. This
value 1s also subtracted from the total current transfer
count which identifies the number of bytes that are
being transferred with this I/0 request. This allows the
present invention to build as big a list as possible, while
avolding building a list that is too large. Next, in step
514, the method determines whether the 1) the current
transfer count equals the maximum number of bytes
transterable by a s/g request(IO__sgtsz), or whether 2)
the number of s/g list entries equals the maximum num-
ber of entries in a s/g request(I0.sgsz), or whether 3)
all the data is accounted for. If there is more data, the
method returns to step 509 to process the next entry in
the s/g table. However, if all the data is accounted for,
the method continues to step 515 and the 1/0 request is
given to the driver to process. In step 516, the method
tests whether the request was completed successfully. If

9,390,301

7

the request was not successfully completed, a failed I/0
request 1s returned in step 518 and the 1/0 request ends
in step 519 (same as 503). However, if the request was
completed, the method advances to step 517 where the
counter of remaining bytes to transfer is decremented
and the method proceeds to the next physical chunk of
data buffer. After step 517, the process returns to step
507.

Referring now to FIG. 6, a preferred embodiment for
processing non-s/g I/0 requests of step 505 of FIG. 5A
1s shown. The method for processing a non-s/g 1/0
request 1s very similar to the process outlined in FIG.
SA without the overhead required for s/g. As shown in
FIG. 6, the preferred method starts in step 600. In step
601, the method tests whether there is more data to
transfer. If there is not, the request is complete and the
method ends in step 609. However, if there is more data
to transfer, the process continues in step 602. In step
602, the kernel tests if the first address of the remaining

data buffer is above the highest address accessible with 20

the current device (IO_maxadr) or below the window
of memory which the device can access (IO_maxadr-
I0_winsz). If the data is not in the accessible memory
address space, then the method acquires a safe data
buffer within the I0_maxadr and the accessible win-
dow size, in step 603. This assures that data is trans-
ferred safely. After a safe data buffer is acquired, the
method proceeds to step 604. If the data buffer is acces-
sible, the method proceeds directly to step 604. In step
604, the method sets the transfer count to the smaller of
1) the number of remaining bytes to transfer, 2) the
number of remaining transferable bytes, or 3) the maxi-
mum number of bytes transferrable by the device in a
single request (I0_tsz). Next, in step 606, the I1/0 re-
quest 1s given to the driver to process. In step 607, the
method tests whether the request was completed suc-
cessfully. If the request was not successfully completed,
a fatled I/0 request is returned in step 608 and the 1/0
request ends in step 609. However, if the request was

completed, the method advances to step 610 where the 40

counter of remaining bytes to transfer is decremented
and the method proceeds to the next physical chunk of
data buffer. After step 610, the process returns to step
601 to transfer any remaining data.

FIG. 7 1s a block diagram of a particular embodiment
of an apparatus 700 for communicating device-specific
information according to the present invention. FIG. 7
shows a kernel 704 having an 1/0 hash function table
708 comprising a block I/0 hash function table 712 and
a character 1/0 hash function table 716. Kernel 704
communicates with device driver 720 through a com-
munication path 724. Device driver 720 includes a hash
table 726 and software driver programs 728A-N. De-
vice driver 720 communicates with a memory 732 and a
hardware controller 736 through communication paths
740 and 744, respectively. Memory 732 includes a data
structure 748 located at the data structure address. Data
structure 748 has a plurality of entries 750A-750N.
Each entry comprises a plurality of fields 754. Hard-
ware controller 736 communicates with hardware de-
vices 760A-N through corresponding communication
paths 764A-N. Hardware controller 736 includes the
hardware level program used for controlling the opera-
tion of devices 760A-N.

From the above description, it will be apparent that
the mvention disclosed herein provides a novel and
advantageous method for communication between a
device driver and kernel in a computer system. The

S

10

I5

25

30

35

45

30

55

60

65

8

foregoing discussion discloses and describes merely
exemplary methods and embodiments of the present
invention. As will be understood by those familiar with
the art, the invention may be embodied in other specific
forms without departing from the spirit or essential
characteristics thereof. For example, different indexing
schemes could be employed for the hash function tables.
Alternatively, the invention could be practiced without
device-specific extensions. Accordingly, the disclosure
of the present invention 1s intended to be illustrative, but
not hmiting, of the scope of the invention, which is set
forth 1 the following claims.

What 1s claimed is:

1. A method of communicating device capability
information of a hardware device, each hardware de-
vice having a major number, in a2 computer system from
a device driver which directly controls the device to a

kernel of an operating system, said device driver inter-

acting with said hardware device through a plurality of
software and hardware device drivers, comprising the
steps of:

obtaining, by the device driver, the device capability

information for each device the device driver con-

trols by at least one of the following:

a) obtaining the device capability information from
itself, if it has the information, or if not,

b) querying successively lower-level software and
hardware device drivers until the device capabil-
ity information is obtained or until it cannot
query any lower, and if the device capability
information is not yet obtained,

c) choosing a predetermined safe value;

storing, by the device driver, the device capability

information and at least a first pointer indexed by

the device’s major number in a data structure mem-
ory of the computer system; and

prior to the operating system performing an input or

output operation using the device, obtaining, by
the kernel of the operating system, the device capa-
bility information from the data structure memory
by accessing the data structure memory using said
pointer indexed by the device’s major number.

2. The method of claim 1, wherein the step of storing
the device capability information is performed during
startup of the computer system.

3. The method of claim 1, wherein said computer
system includes a generic data structure memory having
a plurality of predefined fields, and wherein the step of
storing the device capability information comprises the
steps of:

storing, by said device driver, a plurality of items of

information in said plurality of predefined fields of

said generic data structure; and

responsive to the need for additional device-specific

information, storing, by said device driver, the
additional device-specific information in an ex-
tended device-specific structure having an address
in the generic data structure, and storing a pointer
to the address in the generic data structure.

4. The method of claim 1, wherein the step of storing
the device capability information comprises the steps of:

allocating, by said device driver, a data structure

having a plurality of fields and having an address in
memorys;

placing, by said device driver, the device capability

information in the data structure; and

storing, by the device driver, the address of the data

structure in said data structure memory.

5,390,301

9
5. The method of claim 4, wherein the step of obtain-
ing the device capability information is performed prior
to an input or output operation using the device.
6. The method according to claim 1 further compris-
ing the steps of:

building, by the kernel, an 1/0 request according to.

the device capability information obtained by the
kernel; and

passing the I/0 request from the kernel to the device

driver so that the device driver may perform the
requested 1/0 operation.

7. The method according to claim 1 wherein the
operating system is a UNIX operating system.

8. A method of communicating device capability
information of a hardware device in a computer system
from a device driver which controls the device to a
kernel of an operating system, said device driver inter-
acting with said hardware device through a plurality of
software and hardware device drivers, comprising the
steps of:

storing, by the device driver, the device capability

S

10

13

20

information in a plurality of fields of a data struc-

ture memory In the computing system, the data
structure having an address;

storing, by the device driver the address of the data

structure in a table;

prior to performing an input or output operation

using the device, obtaining, by the kernel, the de-
vice capability information from the memory data
structure;

wherein the step of storing the device capability in-

formation in the data structure comprises the steps

of, for each field of the data structure:

querying, by the device driver, successively lower
level software and hardware device drivers for
information relevant to the field; and

responsive to the information having been sup-
plied, placing, by the device driver, the informa-
tion in the field, otherwise placing a predefined
safe value in the field.

9. The method of claim 8, wherein the device driver
has a plurality of levels, and wherein one of the levels
comprises a hardware level program and the remaining
levels comprise software level programs.

10. The method of claim 9, further comprising the
following steps, performed after querying the device
driver for information and responsive to the queried
device driver failing to supply the information:

determining, by the computer system, whether the

level of device driver immediately below the last-
queried level is a software level or a hardware
level;
responsive to the determining step indicating a soft-
ware level, determining, by the computer system,
whether the software level may be queried;

responsive to the software level being able to be
queried, querying, by the computer system, the
software level for information relevant to the field:
and

responsive to the software level being able to be

queried and failing to supply the information, re-
peating, by the computer system, the preceding
three steps for successively lower levels of the
device driver.

11. The method of claim 10, further comprising the
following steps, performed responsive to the determin-
ing step indicating a hardware level:

25

30

35

45

30

33

65

10

determining, by the computer system, whether the

hardware level may be queried; and

responsive to the hardware level being able to be

queried, querying, by the computer system, the
hardware level for information relevant to the
field.

12. A method of communicating device capability
information of a hardware device in a computer system
from a device driver which controls the device to a
kernel of an operating system, comprising the steps of:

storing, by the device driver, the device capability

information in a plurality of fields of a data struc-
ture memory in the computing system, the data
structure having an address;

storing, by the device driver, the address of the data

structure in a hash table:

prior to performing an input or output operation

using the device, obtaining, by the kernel, the de-
vice capability information from the memory data
structure;

wherein the device driver has a hashing function,

wherein the kernel has a hash function table, and
wherein the step of storing the address of the data
structure comprises the steps of:

inserting a pointer to the hashing function in the hash

function table; and

inserting a pointer to the data structure in the hash

table.

13. The method of claim 12 wherein the hardware
device has a major number and a minor number,
wherein the step of inserting a pointer to the hashing
function includes the step of indexing the 1/0O hash
function table by the major number, and wherein the
step of mnserting a pointer to the data structure includes
the step of indexing the hash table by the major number
and the minor number.

14. A method of communicating device capability
information of a hardware device in a computer system
from a device driver which controls the device to a
kernel of an operating system, comprising the steps of:

storing, by the device driver, the device capability

information in a plurality of fields of a data struc-
ture memory in the computing system, the data
structure having an address;

storing, by the device driver, the address of the data

structure in a hash table;

prior to performing an input or output operation

using the device, obtaining, by the kernel, the de-
vice capability information from the memory data
structure;

wherein the device driver has a block hashing func-

tion if the device is a block device and a character
hashing function if the device is a character device,
wherein the kernel has a block I/0 hash function
table and a character 1/0 hash function table, and
wherein the step of storing the address of the data
structure comprises the steps of:

responswe to the device being a block device, insert-

ing a pointer to the block hashing function in the
block 1/0 hash function table;
responsive to the device being a character device,
msertmg a pointer to the character hashing func-
tion in the character I/0 hash function table; and

inserting a pointer to the data structure in the hash
table.

15. The method of claim 14 wherein the hardware
device has a major number and a minor number,
wherein the step of inserting a pointer to the block

5,390,301

11

hashing function includes the step of indexing the block
I/0 hash function table by the major number, wherein
the step of inserting a pointer to the character hashing
function includes the step of indexing the character 1/0O
hash function table by the major number, and wherein
the step of inserting a pointer to the data structure in-
cludes the step of indexing the hash table by the major
number and the minor number.

16. A method of communicating device capability
information of a hardware device 1n a computer system
from a device driver which controls the device to a
kernel of an operating system, including processing the
device capability information, comprising the steps of:

storing, by the device driver, the device capability

information in a plurality of fields of a data struc-
ture memory in the computing system, the data
structure having an address;

storing, by the device driver, the address of the data

structure in a hash table;

prior to performing an input or output operation

using the device, obtaining, by the kernel, the de-
vice capability information from the memory data
structure;

wherem the device driver has a hashing function,

wherein the kernel has a hash function table, and
whereln the step of obtaining the device capability
information comprises the steps of:

extracting a pointer to the hashing function from the

hash function table;

respoansive to the pointer having a null value, using a

predefined safe generic data structure, otherwise
executing the hashing function to obtain the data
structure; and

reading the contents of the data structure to obtain

the device capability information.

17. The method of claim 16, further comprising the
step of building, by the kernel, an I/0 request according
to the device capability information.

18. The method of claim 16 wherein the hardware
device has a major number and a minor number,
wherein the step of extracting a pointer to the hashing
function includes the step of indexing the 1/0 hash
function table by the major number, and wherein the
step of executing the hashing function includes the step
of indexing the hash table by the major number and the
minor number.

19. The method of claim 18, further comprising the
step of building, by the kernel, an I/0 request according
to the device capability information.

20. A method of communicating device capability
information of a hardware device in a computer system
from a device driver which controls the device to a
kernel of an operating system, comprising the steps of:

storing, by the device driver, the device capability

information in a plurality of fields of a data struc-
ture memory in the computing system, the data
structure having an address;

storing, by the device driver, the address of the data

structure 1n a hash table;

prior to performing an input or output operation

using the device, obtaining, by the kernel, the de-
vice capability information from the memory data
structure;

wherein the device driver has a block hashing func-

tion if the device is a block device and a character
hashing function if the device is a character device,
wherein the kernel has a block I/0 hash function
table and a character 1/0 hash function table, and

10

15

20

235

30

35

45

50

2

65

12

wherein the step of obtaining the device capability
information comprises the steps of:
responsive to the device being a block device, ex-
tracting a pointer to the block hashing function
from the block I/0 hash function table, otherwise
extracting a pointer to the character hashing func-
tion from the character I/0 hash function table;

responsive to the extracted pointer having a null
value, using a predefined safe generic data struc-
ture, otherwise executing the hashing function to
obtain the data structure; and

reading the contents of the data structure to obtain

the device capability information.

21. The method of claim 20, further comprising the
step of building, by the kernel, an I/0 request according
to the device capability information.

22. The method of claim 20 wherein the hardware
device has a major number and a minor number,
wherein the step of extracting a pointer to the block
hashing function includes the step of indexing the block
I/0 hash function table by the major number, wherein
the step of extracting a pointer to the character hashing
function includes the step of indexing the character 1/0O
hash function table by the major number and wherein
the step of executing the hashing function includes the
step of indexing the hash table by the major number and
the minor number.

23. The method of claim 22, further comprising the
step of building, by the kernel, an I/0 request according
to the device capability information.

24. A method of communicating device capability
information of a hardware device in a computer system
from a device driver which controls the device to a
kernel of an operating system, including processing the
device capability information, wherein:

the device has a major number, a minor number, and

the device driver has a plurality of levels;

one of the levels comprises a hardware level program

and the remaining levels comprise software level
programs;

the device driver has a hash table indexed by the

major number and the minor number, a block hash-
ing function if the device is a block device, and a
character hashing function if the device is a charac-
ter device: and

the kernel has a block 1/0 hash function table in-

dexed by the major number and a character 1/0
hash function table indexed by the major number;
the method comprising the steps of:

during startup of the computer system:

allocating, by the computer system, a data struc-
ture memory having a plurality of fields and
having an address;

storing, by the device driver, the device capability
information in the data structure; and

storing, by the device driver, the address of the
data structure in a table; and

prior to an input or output operation using the device:

obtaining, by the kernel, the device capability in-
formation from the data structure:; and

building, by the kernel, an I/O request according
to the device capability information.

25. The method of claim 24, wherein the step of stor-
ing the device capability information in the data struc-
ture comprises the steps of, for each field in the data
structure:

querying an upper level of the device driver for infor-

mation relevant to the field;

5,390,301

13

responsive to the device driver level failing to supply
the information:
determining whether the level of device driver
immediately below the last-queried level is a
software level or a hardware level;
responsive to the determining step indicating a
software level, determining whether the soft-
ware level may be queried;
responsive to the software level being able to be
queried, querying the software level for informa-
tion relevant to the field:
responsive to the software level being able to be
queried and failing to supply the information,
repeating the preceding three steps for succes-
sively lower levels; and
responstve to the determining step indicating a hard-
ware level:
determining whether the hardware level may be
queried; and
responsive to the hardware level being able to be
queried, querying the hardware level for infor-
mation relevant to the field; and
responsive to information having been supplied, stor-

ing the information in the field, otherwise storing a
predefined safe valve in the field. |

>

10

15

20

23

30

35

45

30

33

65

14

26. The method of claim 25, wherein the step of stor-

ing the address of the data structure comprises the steps
of:

responsive to the device being a block device, insert-
Ing a pointer to the
block hashing function in the block I/0 hash func-
tion table; responsive to the device being a char-
acter device, inserting a pointer to
the character hashing function in the character 1/0
hash function table; and
inserting a pointer to the data structure in the hash
table.
27. The method of claim 26, wherein the step of ob-

taining the device capability information comprises the
steps of:

responsive to the device being a block device, ex-
tracting a pointer to the hashing function from the
block 1/0 hash function table, otherwise extracting
a pointer to the hashing function from the charac-
ter I/O hash function table;

responsive to the extracted pointer having a null
value, using a predefined safe generic data struc-
ture, otherwise executing the hashing function to
obtain the data structure; and

reading the contents of the data structure to obtain

the device capability information.
* X * X %

	Front Page
	Drawings
	Specification
	Claims

