United States Patent [
Ellis et al.

[S4] PROCEDURE STATE DESCRIPTOR SYSTEM

FOR DIGITAL DATA PROCESSORS

Inventors: John R. Ellis, Woodside, Calif.;
Charles G. Nylander, Nashua, N.H.;
R. Kim Peterson, Seattle, Wash.

[75]

[73] Assignee: Digital Equipment Corporation,

Maynard, Mass.
Appl. No.: 923,022
Filed: Jul. 30, 1992

[21]
[22]

Related U.S. Application Data

Continuation of Ser. No. 406,452, Sep. 13, 1989, aban-
doned.

(1L o KIS GOGF 3/00; GO6F 9/22
U.S. CL oo, 395/650; 364/264.6;

364/281.3; 364/DIG. 1
395/650, 700

[63]

[51]
[52]

[58]
[56]

Field of Search

References Cited
U.S. PATENT DOCUMENTS

4,493,027 1/1985 Katz et al.ccoevevvvnennnn.ee. 364/200
4,649,472 3/1987 Kim 364/200

OTHER PUBLICATIONS

Helvig et al., “IBM Technical Disclosure Bulletin-Ex-
ception Condition Sequencer,” pp. 1627-1634.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

lllllllllllllllllllllllllllllllllllll

Primary Examiner—Kevin A. Kriess
Assistant Examiner—John Q. Chavis

LEAD. ROCEAN Cocks 72,

RO CELURE S7RAC7 LD,
TT7ARCK PO/ TEL
LA 7Y LEACTA /‘/EZJ’{

SRAME T)FE ArdD

US005388263A
[11] Patent Number: 5,388,263
Feb. 7, 1995

[45] Date of Patent:

Attorney, Agent, or Firm—Christensen, O’Connor,
Johnson & Kindness

57} ABSTRACT

A procedure state descriptor system for generating state
reports of the progress of the invocation process for
procedures executed on a digital data processing system
1s disclosed. The procedure state descriptor system
includes a procedure descriptor generator process that
generates a procedure descriptor for each procedure.
Each procedure descriptor contains a number of offset
values that are offset addresses from the start of the
procedure to locations in the procedure that are the
demarcations between states of the invocation process
for the procedure. When a particular procedure is in-
voked for execution, a procedure state analyzation pro-
cess accesses the procedure descriptor offset values for
the procedure, the memory address of the start of the
procedure, and the address of the next instruction to be
executed in the procedure. The procedure state analy-
zation process then determines the difference between
the address of the instruction to be next executed and
the starting address of the procedure. The difference
between the two addresses is compared to the offset
values to determine the state of the invocation process
for the procedure. As the result of selected state deter-
minations, the procedure state analyzation process also
may review the next instruction to be executed by the
invoked procedure. The instruction is reviewed to de-
termine 1if 1t 1s a specific type of instruction indicating
that the procedure was in still another invocation state.

20 Claims, 4 Drawing Sheets

CALCUATE

YES | A3
: STATE
REAVLT

/4

o /7
/02
CEQD NEXT ~OLETH
, NSTRYCTI S747=
RERT
| I
//é : | /20 /.2
O : ,/\ \ L VAR YING
7
- e 7D
FRAME/ = — > STATE |~ /24
N ,{ CEE7
\(Y /28 |
| |
| |
L e R

7F L7 ON/SSPID TEXUNTD
r2

v 474 or
e - SYZLSI DY
e | |z | | oadrmza T ITNT D
T

S/ S0
NOLEED) 7 b

5,388,263

. 2
WNOLLEZA TNt

Sheet 1 of 4

TLELS
F PO ZF 2007

&
LNV D
Y RLA 12877

FXOTI0S

7
WZLSAS DUANDO8T7T
LIS FIIPT IO

\\.‘

Of AW.FLSAS
FN(8EF 0
GLAT
TEHLINT

LIN/
T700

Feb. 7, 1995

I TLSAS IN/ILrYTa D

U.S. Patent

Sheet 2 of 4

Feb. 7, 1995

U.S. Patent

5,388,263

24 .
NVOLLE ZA 70V _
LS _ s
R
oV oo/
LVOS LS
SNIIITLNY | | o205
NVCOLLA TN I

86 e WHWTLSAS
V74 OV L X Tr D

= OF bE ZE
S TN F70xS

774
L FFNTE

DL A 2ALTT
FX70T200

3
OLF P /A VO

U.S. Patent

CALLERS
CON7EXT

SAVE
/0

SNETRUL 770/
Y, 74 00(’

H

Feb. 7, 1995

Vo (Eﬂ(/x?é’ >

STACK
FPOINT EL
//Vﬁ:e/zczr/m/

7

RLSTORE ARAME

WSTRYCTION
77
RESTORE S7ACK

POINTER
INSTRYC 770N

78

RETY RN
INSTRULCTION

80

S

Sheet 3 of 4 5,388,263

RO CLLIURE
PESTRIP7TOR 42

FROCEDUMCE
/’/?6’.(06‘//:’

FROCEINRE

7Y
ALELDS

CES7897/ON
SEGYEACE

IS TR CT7OS
76

AT

5,388,263

Sheet 4 of 4

|
DON/ATVA |

oz/ _

LD 7OLULS NS

Feb. 7, 1995

LN
776’0

ON/AT A

O OIN/7”

-——<

N\

= RSP /77N

= INIOS

= LA PALLIVY

- NoLATIx7 | SH
. Tl TR

&2

-

T IVPT.
- O A7
FRO0 70>

N\

v

- — -
/

2o/

Oy FoAL TAC I

P OITNS PULINT 7 AILN
N FLN O VW IUULS
AT LVELS FINDTICHS

OTLUMPOD Wy YION S OUF

5,388,263

1

PROCEDURE STATE DESCRIPTOR SYSTEM FOR
DIGITAL DATA PROCESSORS

This application is a continuation application based
on prior copending application Ser. No. 07/406,452,
filed on Sep. 13, 1989, now abandoned.

FIELD OF THE INVENTION

This invention relates generally to the field of digital
data processing systems, and, more specifically, to a
system for providing an indication of the exact execu-
tion state of a procedure being executed by a digital data
processing system.

BACKGROUND OF THE INVENTION

A digital data processing system basically comprises
three components, a central processing unit, a memory,
and an input-output unit. The central processing unit
manipulates data supplied thereto in accordance with a
set of instructions contained in a program, often called
an application process. The memory is used to store the
data, the program imstructions, intermediate data and
system status information required t0 operate the sys-
tem, and the final output resulting from the manipula-
tion of the data. Each element of information, the in-
structions, the data and status information is stored in a
specific designated address of the memory. The input-
output unit provides a means for entering the data and
program instructions into the system and for receiving
output status messages and the final output of data ma-
nipulations therefrom. When the digital data processing
system is 1n operation, the central processing unit oper-
ates by retrieving, or fetching, information from the
memory, determining if the information is instructions
or data, manipulating the fetched data in accordance
with the instructions, and storing the results of the data
manipulations in the memory.

Any program run on a digital data processing system
is typically made up of a number of smaller entities,
referred to as procedures, each of which is designed to
accomplish a specific task and consists of a set of central
processing unit executable instructions. Some proce-
dures are based on higher-level instructions contained
in user supplied source code. For example, a user-
drafted instruction to add two numbers together may be
translated into a central processing unit executable pro-
cedure that includes instructions to: retrieve the num-
bers from selected memory address locations; add the
numbers together; and store the sum of numbers in a
memory address location. Still other central processing
unit executable procedures perform housekeeping func-
tions for the digital data processing system. For exam-
ple, some procedures load data instructions from an
input-output device into memory locations and other
procedures supply input-output devices with informa-
tion stored in memory locations. The housekeeping
procedures are typically part of an operating system
which emptiness a set of processes designed to control
execution of the application process by the digital data
processing system.

Typically, a procedure running on the digital data
processing system has the capability of invoking or
calling another procedure for execution on the system.
A call to another procedure may occur during the exe-
~-cution of a procedure in order to initiate the execution
of another procedure that is part of the process being
run. Further, a procedure being executed may call an-

10

15

20

25

30

35

45

30

35

60

65

2

other procedure for execution if the calling procedure
requires a particular subtask to be performed that the
called procedure is designed to perform. Thus, the ac-
tual running of a process on a digital data processing
system can be viewed as the selective, and sometimes
repetitive, execution of a number of individual proce-
dures by the system.

When a digital data processing system is in operation,
events may occur that the procedure currently running
on the system may not be designed to resolve. These
events, referred to as exceptions, may be either internal
or external to the process running on the system. Exam-
ples of external exceptions include the failure of input-
output devices, or a system user entering a command to
itentionally stop the running of the process. Internal
exceptions occur as a result of the execution of a partic-
ular instruction that disrupts the execution of the proce-
dure being executed. An example of an internal excep-
tion is an instruction in a procedure to divide a number
by zero.

The operating systems of many data processing sys-
tems are provided with exception services which are
processes designed to resolve exceptions that can occur
during the operation of digital data processing systems.
An exception service comprises a number of proce-
dures, which respond to exceptions by invoking other
procedures for execution, known as exception handlers,
that are designed to resolve the exceptions. Depending,
on the particulars of the procedures being executed
when an exception occurs, and the nature of the specific
exception, the exception service may invoke an excep-
tion handler or set of exception handlers which: at-
tempts to cure the exception; ignores the exception;
“unwinds” the current process running on the system
by returning to a suspended procedure, which either
directly or indirectly called the interrupted procedure,
where the exception can be resolved; or, may undertake
a combination of these actions.

Problems arise in digital data processing systems
when exceptions occur while one procedure is invoking
another procedure for execution. In some digital data
processing systems there is a period during the proce-
dure 1nvocation process wherein the exception service
is unable to accurately establish whether an exception
occurred during the running of the calling procedure or
during the running of the called procedure. Conse-
quently, the exception service may fail to invoke a cor-
rect exception handler. This can occur if the exception
service either invokes an incorrect exception handler or
invokes the correct exception handler with incorrect
information. Moreover, if the exception service cannot
promptly determine the specific procedure being exe-
cuted when the exception occurred, the exception ser-
vice may be unable to properly save data and instruc-
tions relating to the procedure being executed.

SUMMARY OF THE INVENTION

This invention provides a new and useful system for
and method of detecting the execution state of a data
processing system. A primary feature of the invention is
the capability of determining the execution state of a
procedure that is in the process of being invoked or
called for execution on the system. For example, the
procedure state descriptor system is able to provide a
state report indicating that a called procedure is: in an
Initial, or preparatory, state of invocation; being exe-
cuted by the system; or, 1s in a return, or restoration,
state wherein the called procedure has been executed

),388,263

3

and 1s in the process of returning control of the system
to the calling procedure. The procedure state descriptor
system thus provides an exception service with an indi-
cation of the invocation state of the procedure being

executed by the system at any time so that the exception 5
service can in turn invoke an appropriate handler.

The procedure state descriptor system of this inven-
tion reltes on two complementary processes to produce
procedure state reports when exceptions occur. The
first process is a procedure descriptor generation pro- 10
cess, which preferably is part of a compilation process,
and which produces procedure descriptors for each of
the procedures that are executed by the system. In-
cluded i1n each procedure descriptor are offset values
that are representative of specific points of execution of 15
the procedures. These specific points of execution de-
fine the boundaries between different states of execution
of the procedure.

The second process is a procedure state analyzation
process that is run as part of the exception service. 20
Whenever an exception occurs, the procedure state
analyzation process compares the procedure descriptor
offset values for the procedure descriptor for the proce-
dure that was being executed when the exception oc-
curred with state information from the central process- 25
ing unit to determine the extent to which the central
processing unit has executed the procedure. More spe-
cifically, the procedure state analyzation process com-
pares the address, or value, of the next instruction to be
executed with the procedure descriptor offset values to 30
determine which instructions have been executed. The
indication of whether the particular instruction repre-
sented by an offset value has been executed is an indica-
tion of the state of execution of the procedure. Thus, the
procedure state analyzation process determines 35
whether execution of the procedure has gone beyond
the boundaries between different states of execution,
and therefore the invocation state of the procedure.

The procedure state analyzation process also reviews
the next procedure instruction to be executed by the 40
central processing unit. If the next instruction is a cer-
tain type of instruction, the procedure state analyzation
process may make still another procedure invocation
state determination. For example, if the next procedure
instruction to be executed is a restoration sequence 45
instruction for restoring the called procedure, the pro-
cedure state analyzation process may make a determina-
tion that the procedure being executed was in the resto-
ration state when the exception occurred. Depending
on the mvocation state of the procedure, the procedure 50
state analyzation process then generates an appropriate
state report message to the exception service.

‘The procedure state descriptor system provides a
prompt indication of the state of execution of a proce-
dure being executed by the digital data processing sys- 55
tem whenever an exception occurs. The procedure state
descriptor system thus provides the exception service
with an indication of the extent to which a called proce-
dure has been invoked. Using that indication the excep-
tion service can take the appropriate responsive action. 60
This increases the overall speed of the digital data pro-
cessing system in response to exceptions, since there is
no delay waiting for a procedure running on the system
to be completely invoked before exceptions occurring
during the invocation process can be resolved. The 65
-speed of the system is also increased in the execution of
procedures since the need to provide extra instructions
or hardware support to disable and reenable exceptions

4

during calling and restoring procedures is eliminated.
Moreover, the invention essentially eliminates the possi-
bility that delayed exception processing will cause a loss
of process instructions or data that could cause malfunc-
tion of the digital data processing system.

BRIEF DESCRIPTION OF THE DRAWINGS

This invention is pointed out with particularity in the
appended claims. The above and further advantages of
this invention may be better understood by reference to
the following description taken in conjunction with the
accompanying drawings in which: |

FIG. 1 depicts, in block diagram form, a digital data
processing system that is configured and arranged to
incorporate a procedure state descriptor system that is
in accordance with this invention; |

FIG. 2 diagrammatically depicts as separate modules
the procedure state descriptor processes of this inven-
tion;

FIG. 3 depicts the format of a procedure loaded into
the memory of a digital data processing system of this
invention for execution by the system:

FIG. 4 depicts the format of a procedure descriptor
constructed according to this invention; and

FIG. § is a sequence diagram or flow chart that illus-
trates a sequence that can be utilized in accordance with
this invention to perform a state analysis on a procedure
being executed by the digital data processing system.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 diagrammatically depicts a portion of a digital
data processing system 10 wherein the processes that
comprise a procedure state descriptor system 12 con-
structed 1n accordance with this invention are run. The
digital data processing system 10 includes a central
processing unit 14 on which an application process 16,
comprising a set of central processing unit-executable
instructions and data 18 to be executed in accordance
therewith, is run. A memory unit 20 is provided for
temporarily and permanently storing the process in-
structions and data 18, and the intermediate and final
output resulting from the running of the process 16.
Each instruction and item of data 18 in the memory 20
1s written into, and subsequently read from a specific,
individual, memory address location. Not illustrated in
FIG. 1 is an input-output unit designed to load instruc-
tions and data into the digital data processing system 10
and to receive status reports and output results there-
from. An address and data bus 22 provides the neces-
sary communications link between the central process-
ing unit 14, the memory unit 20 and the input-output
unit attached thereto.

When the digital data processing system 10 is in oper-
ation, the central processing unit 14 accesses, or fetches,
information from the memory 20, determines if the
information is an instruction or data 18, and selectively
mantpulates the data 18 in accordance with the instruc-
tions. In the depicted arrangement, the central process-
ing unit 14 includes a set of general registers 24 that
serve as temporary storage locations for imformation
about to be, or just, processed by the central processing
unit 14. The central processing unit 14 also includes a
temporary storage register referred to as a program
counter 26 that contains the memory address of the next
central processing unit-executable instruction to be
fetched. In some central processing units 14, program
counter 26 may be a selected general register 24.

5,388,263

S

The instruction portion of the application process 16
1s 1nitially in the form of a user drafted source code file
28. At the source code level, the instructions are in the
form of a high-level computer language such as FOR-
TRAN, PASCAL or the like. Prior to loading and
execution of the process 16, the system converts the
source code file 28 into sets of instructions that can be
executed by central processing unit 14. In FIG. 1, this
conversion of the source code file 28 is effected by a
complier 30. The sets of instructions are loaded into the
memory 20 and are identified in FIG. 1 as procedures
32, 34 and 36, each of which is designed to accomplish
a specific task.

As will be described in more detail hereinafter, the
compiler 30 supports and contributes to the invention
by generating a procedure descriptor 40, 42 and 44 for
each of the procedures 32, 34 and 36. Specifically, in the
arrangement shown in FIG. 1: procedure descriptor 40
describes attributes of procedure 32; procedure descrip-
tor 42 describes attributes of procedure 34; and proce-
dure descriptor 44 describes attributes of procedure 36.
As also is indicated in FIG. 1, the procedures 32, 34 and
36, the procedure descriptors 49, 42 and 44 and the data
18 to be manipulated in accordance with the procedures
form an image 46, which is the entity processed by
central processing unit 14.

As indicated by a call instruction 48 in procedure 32,
at any point in a procedure, the central processing unit

14 can be directed to invoke and begin execution of

another procedure, for example procedure 34. A proce-
dure 32 calls, or invokes, another procedure 34 for
execution when the calling procedure 32 requires com-
putations or data processing that the called procedure
34 is designed to perform. A call instruction 48 may
appear 1n the middle or at the end of any given proce-
dure 32, 34 or 36. One procedure 32, 34 or 36 may call
one or more other procedures, call the same procedure
more than one time, and may, in some circumstances
call itself through a recursive process.

Shown in FIG. 1 is an operating system 50, which is
a set of services that control the running of the image 46
on the digital data processing system 10. As is indicated
by lines 32, the functions provided by the operating
system 50 include: loading the procedures 32, 34 and 36
and the procedure descriptors 40, 42 and 44 into the
memory 20; loading the data 18 from an input device
into the memory 20; and, reading information from the
system 10 to an output device. |

The operating system 50 also includes an exception
service 54, which is a process for responding to excep-
tions that occur during the operation of the digital data
processing system 10. An exception is an event that the
procedure being executed is not designed to resolve and
such an event may be related or unrelated to the run-
ning of the application process 16. An exception unre-
lated to the application process 16 may be the failure of
an input-output device. Examples of exceptions related
to the running of the application process 16 can be an
mstruction to divide by zero, or encountering an incor-
rect memory address when the procedure instructs the
central processing unit 14 to access either data 18 or
another procedure 32, 34 or 36.

As 1s known in the art, an exception service such as
exception service 54 responds to an exception by saving
the current procedure being executed by the system 10
-and by invoking an appropriate exception handler (not
shown in FIG. 1) to resolve the exception. As also is
known 1n the art, exception handlers are procedures

10

15

20

25

30

35

40

435

50

35

60

65

6

that are designed to resolve specific exceptions by, for
example, directing the central Processing unit 14 to take
steps to explicitly cure the exception; instructing the
central processing unit 14 to ignore the exception; un-
winding the procedure 32, 34 and 36 to a suspended
procedure, which either directly or indirectly called the
interrupted procedure, where the exception can be re-
solved; or by undertaking various combinations of these
steps.

Also included in the memory 20 of FIGURE 1 is a
stack 56 which temporarily stores data that is used dur-
ing the execution of the procedures 32, 34 or 36. The
stack 56 also 1s used to store information. During execu-
tion of a procedure that is called or invoked by another
procedure, information relating to both the called pro-
cedure and the calling procedure is stored in separate
call frames 58 and 60. Each call frame 58 and 60 may be
partially stored in the stack 56 as depicted, and in other
portions of the system 10 not illustrated. For example,
when procedure 34 is being executed by the system 10
in response to the call instruction 48 in procedure 32,
call frame 58 will contain information relating to the
executton of procedure 32. Call frame 60 would contain
mformation pertaining to the execution of procedure 34.

The call frames 58 and 60 may have a fixed size that
is determined during compilation of the source code
that resulted in procedures 32, 34, and 36. Alternatively,
call frames 58 and 60 may be of a ‘““variable” size that is
not determined until the procedures are executed. The
central processing unit 14 includes a temporary register
identified as a stack pointer 62 that contains the address
of the last item placed on the stack 56 during the execu-
tion of a procedure 32, 34 or 36 by the system 10. Cen-
tral processing unit 14 also has a temporary register
referred to as a frame pointer 64 that contains the start-
ing address of the last call frame 58 or 60 placed on the
stack 56. In some central processing units 14, stack
pointer 62 and frame pointer 64 may be specific general
registers 24.

When loaded into memory, each procedure 32, 34
and 36 is in a specific format as shown in FIG. 3 for
procedure 34. Each instruction or data item, forming
the parts of the procedure 34, is stored at a specific
address location in the memory 20. Further, the instruc-
tions and data items are arranged in the order in which
they are sequentially fetched by the central processing
unit 14 of FIG. 1. As is indicated in FIG. 3, each proce-
dure 34 may include a procedure prologue 66 which
consists of an entry prologue 68 followed by a caller’s
context save block 70.

The entry prologue 68 is a block of instructions exe-
cuted when the procedure 34 is first invoked in response

-to a call instruction 48. Included in the entry prologue

68 is a stack pointer instruction 72. Typically, when a
procedure such as procedure 34 is called for execution,
space 1s required for storage of information in stack 56.
When the required space is allocated during the invoca-
tion of procedure 34, stack pointer instruction 72 causes
stack poimnter 62 (FIG. 1) to be reset to a value that
provides the required stack space for procedure 34.
The caller’s context save block 70 is a block of in-
structions executed after the entry prologue 68. The
caller’s context save block 70 may, for example, com-
prise a set of instructions that cause the contents of
selected general registers 24 to be saved prior to the
execution of instructions in the procedure 34 that will
write new values into those registers. At the end of the
caller’s context save block 70 for procedures having a

5,388,263

7

varying size call frame 58 and 60 is a frame pointer
instruction 73. Frame pointer instruction 73 causes
frame pointer 64 to be reset to the address of the call
frame for the called procedure 34.

Following the procedure prologue 66 is an instruc-
tion block 74 that contains the sequence of executable
instructions that will cause execution of procedure 34
by the data processing system 10. In procedure 34 of
FIG. 3, the last set of instructions is a set of restoration
sequence Instructions 76 that instruct the central pro-
cessing unit 14 to return to the execution of the proce-
dure (procedure 32 in the example being considered). In
FIG. 3, the depicted restoration sequence instruction 76
includes a restore frame pointer instruction 77 that re-
stores the call frame address of procedure 32 that calied
procedure 34. Following the restore frame pointer in-
struction 77 is a restore stack pointer instruction 78 that
will cause the stack pointer address of the calling proce-
dure 32 to be loaded into the stack pointer 62. Follow-

ing the restore stack pointer instruction 78 is a return

instruction 80 that will cause the central processing unit
to return to the calling procedure 32. In some digital
data processing systems 10 the return instruction 80
may implicitly include a restore stack pointer instruc-
tion 78. In FIG. 3 a single set of restoration sequence
instructions 76 are depicted at the end of the procedure
34. In other procedures 32 or 36 there may be other
restoration sequence instructions 76 located throughout
the instruction block 74 for the procedure 32 or 36.

During the processing of the image 46 by the system
10, any procedure, such as procedure 32, may require
execution of a call instruction 48 that invokes another
procedure 34. When an exception occurs, the procedure
state analyzation process of this invention (12 in FIG. 1)
provides the exception service 54 with an invocation
state report of the called procedure which is used by
exception service 54 to determine if an exception that
occurred during the execution of a called procedure 34
should be processed as occurring during the called
procedure 34 or as occurring during the calling proce-
dure 32.

In the currently preferred embodiments of the inven-
tion, the determination of which procedure should be
associated with an exception is based on four invocation
states that a particular procedure 32, 34, or 36 may be in
when executed. The four possible invocation states are:

First State; the stack pointer 62 has not been modi-
fied, 1.e., execution of the entry prologue 68 is not yet
complete,

Second State; execution of the entry prologue 68 has
been completed, but execution of the instruction block
74 has not commenced,

Third State; execution of procedure prologue 66 has
been completed and the system 10 1s ready to, or in the
process of, executing the instruction block 74 instruc-
tions (execution of the restoration sequence 76 instruc-
tions has not begun), and,

Fourih State; execution of the instructions included
in instruction block 74 has been completed and the
system 10 i1s in the process of returning to execute the
calling procedure 32.

The first, second, and fourth procedure invocation
states are viewed by the exception service 54 as transi-

10

15

20

25

30

35

40

45

50

25

tory states in which the called procedure is not being

executed (or has already been executed). Thus, excep-
-tions occurring during these states are resolved with
reference to the calling procedure 32. When an excep-
tion occurs during the third state of the procedure invo-

65

8

cation process, the called procedure 34 is actually ready
for, or being executed by, the central processing unit 14.
Accordingly, the exception service 54 resolves excep-
tions occurring during the third state of the invocation
process with respect to the called procedure 34.

The procedure state descriptor system 12 relies on a
procedure descriptor generation process (indicated in
FI1G. 1) represented by block 82 and a procedure state
analyzation process (represented by block 84) to deter-
mine the state of execution of the called procedure 34.
The procedure descriptor generation process 82 pro-
duces the procedure descriptors 40, 42 and 44 for each
of the procedures 32, 34 and 36 respectively. When an
exception occurs, the procedure state analyzation pro-
cess 84 uses information in procedure descriptor 40, 42
or 44 along with information from the central process-
ing unit 14 to determine the state of execution of any
called procedure 32, 34 or 36.

Although the procedure state descriptor system 12 is
illustrated in FIG. 1 in the form of distinct entities, it
should be recognized that this is for purpose of illustra-
tion and that the invention preferably is practiced as
processes that are executed in conjunction with pro-
cesses that are executed by the data processing system
10 in compiling, loading and executing the process 16.
In the current practice of the invention, procedure de-
scriptor generator process 82 is performed during Com-
pilation of the compiler 30. Alternatively, the process of
generating the procedure descriptors may be performed
by any other process responsible for generating the
procedures 32, 34 and 36. For example, the process
descriptor generation process 82 may be performed by
an assembler, not Hllustrated, or a run time code generat-
ing procedure, not illustrated, that is part of the applica-
tion process 16. The run time code generating proce-
dure can be used to generate procedures 32, 34 and 36
and stores same in memory 18 or stack 56 for later
execution by central processing unit 14. As is indicated
by arrow 88 i FIG. 1, the analysis process represented
by procedure state analyzation block 84 preferably is
performed by the operating system S0 as a portion of
the exception service 54.

The operation of a procedure state descriptor system
that 1s in accordance with the invention may be more
fully understood by reference to FIG. 2 which, like
FIG. 1, depicts the invention as distinct modules. As is
indicated by arrow 87, when the compiler 30 generates
the central processing unit 14 executable procedures 32,
34 and 36, it also performs the process represented by
the procedure descriptor generator 82. As previously
noted, this process generates procedure descriptors 40,
42 and 44 for the procedures 32, 34 and 36 (represented
by arrow 89 in FIG. 2). FIG. 4 illustrates the arrange-
ment of the descriptor 42 for procedure 34, which is
exemplary of each procedure descriptor 40, 42, and 44
of FIGS. 1 and 2. As is shown in FIG. 4 procedure
descriptor 42 includes a number of procedure descriptor
fields 90q, b, ¢, . . . n, each of which contains information
describing some aspect of the associated procedure 32,
34 or 36 respectively.

In the depicted procedure descriptor, the first de-
scriptor field 1s a procedure type field 90z that contains
an indication of whether the call frame that will be
generated for the associated procedure (e.g., call frames
58 and 60 in FIG. 1) is of fixed or varying size. Follow-
ing the procedure type field 90z is a stack pointer offset
field 90b that contains the offset location of the stack
pointer instruction 72 relative to the starting address of

5,388,263

9

procedure 32, 34 or 36 in memory 20. The next proce-
dure descriptor field is an entry length field 90c that
contains the offset value of the address location for the
first instruction in the instruction block 74 (relative to
the starting address of the procedure 34). The proce-
dure descriptor entry length field 90¢ may also be set
with a flag value (typically 00000000) if no procedure
prologue 66 is included in procedure 32. When there is
no procedure prologue 66, the procedure descriptor
stack pointer offset field 9056 also is set to 00000000.

In addition to procedure fields 90q, b, and ¢, the pro-
cedure descriptors 40, 42, and 44 may include additional
procedure descriptor fields (fields 904, £ g. .. » in FIG.
4). These additional procedure descriptor fields may be
used for other environmental information that is useful
in controlling the execution of the procedures 32, 34,
and 36. One additional field may be a procedure de-
scriptor passed address field 90d containing the identity
of a general register 24 that contains the return address
to the called procedure 32. Specifically, the return ad-
dress 1s the address of the next instruction after the call
instruction 48. A procedure descriptor stored address

10

15

20

field 90¢ may also be included. The stored address field

contains the location in the call frame 58 for the proce-
dure 34 that, like the above-identified general register
24, contains the return address to the called procedure
32. Other environmental information may include, for
example: a register mask indicating whether specific
registers of general registers 24 are to be saved or over-
written; the size of the procedure 38; an identification of
the exception handler to be invoked if an exception
occurs during the execution of the associated proce-
dure; and, a prologue flag field to indicate whether the
procedure 1s an entry point or nonentry point proce-
dure.

It will be recognized by those skilled in the art that
the procedure descriptors 40, 42, and 44 may be readily
formulated during the system compilation process. For
example, during compilation it can be determined
whether a procedure 32, 34, or 36 will contain a proce-
dure prologue 66. If a procedure 32, 34, or 36 does not
include a procedure prologue 66, instructions proce-
dure descriptor stack pointer offset and procedure de-
scriptor entry length fields 905 and 90c are set to the
flag value indicating the absence of a procedure pro-
logue. If a procedure 32, 34 or 36 contains a procedure
prologue 66, the number of instructions to be included
between the start of a procedure and the stack pointer
instruction 72 is determined. This value is then stored in
the descriptor stack pointer offset field 905 for the pro-
cedure 34. The value to be filled in to the procedure
descriptor entry length field 90c is then determined by
counting the number of instructions from the start of the
procedure to the first number of instructions in the
instruction block 74. The procedure descriptor genera-
tion process 82 determines whether the call frame 58 or
60 to be associated with a specific procedure will be of
fixed or varying size by determining if all data that the
procedure 34 stores on the stack is fixed size; the pro-
cess 82 then generates the appropriate type of value for
the procedure type field 90z so that the field indicates
the type of call frame associated with the procedure 32,
34 or 36.

As previously noted, when the application process 16
is run on the digital data processing system 10, the oper-
-ating system 50 controls the execution of the procedures
32, 34 and 36 that are part of the image 46 forming the
application process 16. The exception service 54 re-

25

30

35

45

30

55

60

65

10

sponds to exceptions that occur while the application
process 16, or any other process, is running. When an
exception occurs, the exception service 54 initially lo-
cates the procedure 32, 34 or 36 currently being exe-
cuted by the system 10, as represented by arrow 92
(FIG. 2), and the procedure descriptor 40, 42 or 44 for
the procedure, as represented by arrow 94. The excep-
tion service 54 then invokes a procedure state analyza-
tion process 84 to determine the state of execution of the
procedure, for example, procedure 36.

The procedure state analyzation process 84 deter-
mines the invocation state of a particular procedure, for
example, procedure 34, by determining the portion of
the procedure that was about to be executed when the
exception occurred. The procedure state analyzation
process 84 makes the state evaluations based on the
address in the program counter 26, and the procedure
descriptor values in the procedure descriptor 42 for the
procedure 34. The procedure state analyzation process
84 also makes state evaluations with reference to a pro-
cedure start field 98 the process 84 has access to, as
indicated by arrow 100. The procedure start field 98
contains the starting address in the memory 20 of the
procedure 34 that was being executed on the system 10
when the exception occurred. The address in the proce-
dure start field 98 are supplied by other elements of the
operating system 30.

The steps by which the procedure state analyzation
process 84 makes the state determinations is illustrated
by the flow chart shown in FIG. 5. As depicted by
block 102, the procedure state analyzation process 84
initially reads the address of the next instruction to be
executed 1n the procedure 34 from the program counter
26, the starting address of the procedure 34 from the
procedure start field 98, the procedure descriptor pro-
cedure type field 90z, the procedure descriptor stack
pointer offset field 905, and the procedure descriptor
entry length field 90c. The procedure state descriptor
then determines if the procedure descriptor entry length
field 90c¢ contains a flag indicating that the procedure 34
does not contain procedure prologue 66, as represented
by decision block 104. If procedure 34 does not have a
procedure prologue 66, the procedure state analyzer 84
proceeds to make a third state-fourth state determina-
tion. |

If the procedure 34 contains procedure prologue 66,

the procedure state analyzer 84 performs the following
calculation:

Program Counter Address—Procedure Start
Address

indicated by block 106. This calculation vields the ex-
ception interrupt point, in other words, the point of
execution of the procedure 34 where the exception
occurred. The result of the calculation is stored in an
exception interrupt point field 108 (FIG. 2) where it can
be accessed by the procedure state analyzer 84, as indi-
cated by arrow 110 so that the first and second state
determinations can be made. |

The procedure state analyzation process 84 then de-
termines if the procedure was in the first state of the
procedure 1nvocation process, as depicted by decision
block 112. This determination is made by comparing the
exception interrupt value from the exception interrupt
point field 108 with the stack pointer offset value from
the procedure descriptor stack pointer offset field 905.
If the exception interrupt value is less than or equal to

J,388,263

11

the stack pointer offset value, then the stack pointer
instruction 72 at the end of the entry prologue 68 had
not yet been executed when the exception occurred. In
other words, when the exception occurred, the central
processing unit 14 was still processing the entry pro-
logue 68 and the contents of the stack pointer 62 had not
yet been changed. If this is the case, the procedure state
analyzation process 84 then makes a report to the excep-
tion service 54 that the procedure 34 was in the first
state of the procedure invocation process as represented
by block 114.

If the exception interrupt value is greater than the
stack pointer offset value, the procedure state analyza-
tion process 84 then proceeds to make a second state
determination, as represented by decision block 116.
The exception interrupt value is compared to the ad-
dress of the first instruction in the instruction block 74
for the procedure 34, as represented by the value from
the procedure descriptor entry length field 90e. If the
exception interrupt value is less than the entry length
value, the exception occurred after the stack pointer 62
had been changed, but before the data and instruction
loading required by the caller’s context save block 70
had been fully performed. In a procedure having a
varying size call frame 58 or 60, this is means the excep-
tion occurred before frame pointer instruction 73 causes
frame pointer 64 to be reset was executed. In proce-
dures having a fixed size call frame 58 or 60 this means
the exception occurred before the instruction that com-
pletes the saving of the callers context was executed.
Thus, the exception occurred during the second state of
the procedure invocation process and is so reported to
the exception service 54, as represented by block 118.

‘The third state-fourth state determination of the pro-
cedure invocation process of the procedure 34 is made
after determining that there is no procedure prologue
66, or after the second state determination. The first step
In the determination is a reading of the instruction at the
address contained in the program counter 26, as repre-
sented by block 120. The procedure state analyzation
process 84 then determines if the procedure is in the
fourth state, by determining if the instruction is a resto-
ration sequence instruction 76, as represented by deci-
sion block 122. For a procedure with a fixed size call
frame 60, the next instruction is a restoration sequence
nstruction 76 if it is a return instruction 80. For a proce-
dure with a varying size call frame 60, the instruction is
considered a restoration sequence instruction 76 if it is
part of a sequence of restore stack pointer instruction 78
followed by a return instruction 80.

If the next instruction is a restoration sequence in-
struction 76, then the system 10 had completed execu-
tion of the called procedure 34 and was in the process of
returning to execute the calling procedure 32 when the
exception occurred. In other words, the system 10 was
in the fourth state of the procedure invocation process
for the called procedure 34 when the exception oc-
curred. The procedure state analyzation process 84 then
proceeds to make a fourth state report to the exception
service, as represented by block 124.

If the procedure was not in the fourth state of execu-
tion, the procedure state analyzation process 84 then
makes a default determination that the procedure 34
was in the third state of the procedure invocation pro-
-cess. The procedure state analyzation process 84 then
makes a third state report to the exception service 54, as
represented by block 126. |

10

15

20

25

30

35

40

45

20

35

65

12

The exception service 54 uses the state report 114,
118, 124 or 126 from the procedure state analyzation
process 84 to determine which exception handler to
invoke for the exception. When the procedure state
analyzation process 84 reports that the exception oc-
curred during the first, second or fourth states of the
invocation process called procedure 34, the exception
service 54 processes the exception as if occurring during
execution of the calling procedure 32. When the proce-
dure state analyzation process 84 reports that the excep-
tion occurred during the third state of invocation pro-
cess for the called procedure 34, the exception service
54 processes the exception as occurring during the exe-
cution of the called procedure 34. The exception service
54 then accesses the procedure descriptor 42 for proce-
dure 34 so as to obtain the address of the appropriate
exception handler to be invoked. If the exception ser-
vice 54 determines it is appropriate to process the ex-
ception as occurring during the calling procedure 32,
the procedure descriptor 40 for that procedure is ac-
cessed by the exception service 54 so as to obtain the
address of the appropriate exception handler to be in-
voked.

If the exception occurred during the second state of
execution of the called procedure 34, the exception
service 54 may invoke a stack pointer restoration proce-
dure, not illustrated, to insure that the contents of the
stack pointer 56 are rewritten to include the proper
stack address for the calling procedure 32. This insures
that each set of instructions and data that are preserved
while the exception is resolved are the true instructions
and data associated with the procedure 32 being exe-
cuted when the exception occurred.

Moreover, the specific process by which the excep-
tion service determines the return address of the calling
procedure 32 may depend on the invocation state of the
called procedure 34. If the exception occurred during
the first or second invocation states, the exception ser-
vice 54 will determine the return address of the calling
procedure by reference to the contents of the general
register 24 identified in the procedure descriptor passed
address field 904. If the exception occurred during the
third or fourth invocation states, the exception service
54 will determine the return address of the calling pro-
cedure 32 by reference to the call frame 58 location
identified in the procedure descriptor stored return
address field 90g.

The procedure state descriptor system 12 of this in-
vention 1s capable of generating procedure state reports
at any time that describe the invocation state of any
procedure 32, 34 or 36 that is being executed by the
digital data processing system 10. Thus, when an excep-
tion occurs and the execution of a particular procedure
32, 34 or 36 must be interrupted, the procedure state
descriptor system 12 makes it possible to know how far
along in the execution of the procedure the digital data
processing system 10 was, so that the exception service
54 can either resolve the procedure with respect to the
procedure being executed, or the procedure that called
the procedure being executed. Thus, the exception ser-
vice 54 can immediately respond to any exception oc-
curring during the running of the digital data processing
system 10 since the exception service can, at any mo-
ment during the execution of a procedure 32, 34 or 36,
be informed of the state of execution of the procedure.
This eliminates error associated with exception services
54 that are unable to respond to exceptions that occur
until a particular called procedure is fully invoked and

5,388,263

13

being executed. Moreover, since there is no error or
delay associated in the handling of exceptions, there is
essentially no possibility that the exception service 54
can cause the digital data processing system 10 to lose
either the current data or the instructions that are being
processed by the system.

Still another advantage of the procedure state de-
scriptor system 12 is that the system 12 operates inde-
pendently of the language of the source code file 28 that
was the source of the procedures 32, 34 and 36. All that
1S necessary is to provide a procedure descriptor gener-
ation process 82 for producing the necessary procedure
descriptors 40, 42 and 44. Regardless of the source code
language that the procedures 32, 34 or 36 originated
from, the procedure state ana;lyzation process 84 can
then access the procedure descriptors 40, 42 and 44 to
determine the state of execution of the procedures as the
exceptions occur.

Alternative embodiments of the procedure state de-
scriptor system 12 are, of course, possible. The actual
states of procedure invocation and steps comprising the
processes of the procedure state descriptor system 12
may vary from what has been described. For instance,
the procedure descriptor generator 82 process does not
necessarily have to be associated with the compiler 30
and may, for instance, be associated with a linker, or
loader or other process that is part of the operating
system S50 whereby the procedure descriptors 40, 42 and
44 are formed and loaded into the memory 20 as part of
the formation of the image 46. Alternatively, procedure
descriptor generator 82 may be part of another applica-
tion process 16 that generates procedures 32, 34 and 36.
The state determinations performed by the procedure
state analyzation process 84 may not be totally per-
formed by the exception service 54 but may be a distinct
process that is part of the operating system 50 and that
is accessed by other portions of the operating system
including the exception service 54.

The locations of the offset values that distinguish
between the procedure invocation states may be simi-
larly different than those described above. For instance,
other embodiments of the invention may have more or
less offset values to describe a fewer or larger number of
states in invocation process. Thus, in some embodi-
ments of the invention, the first and second states of the
procedure execution of the described invention may be
a single state. In other embodiments of the invention,
there may be an additional state indicating that only the
selected general registers 22 have been loaded with the
new information required by a particular called proce-
dure.

In stil other embodiments of the invention, if the
structure of the particular procedures 32, 34 and 36
which are formed prior to their execution on the system
10 varies from the described version, the contents of the
procedure descriptor fields 90 and the state determina-
tions made by the procedure state analyzer 84 may
similarly vary. Other instructions besides, or in addition
to, the restore frame pointer instruction 77, the restore
stack pointer instruction 78 or the return instruction 80
may be a part of the restoration sequence instructions 76
that mark the fourth or final state of the execution for
the procedures. Accordingly, for each of these differ-
ences, the procedure descriptor fields generated by the
procedure descriptor generator 82, and the subsequent
-read and decision steps performed by the procedure

state analyzation process 84 must be appropriately mod-
ified.

10

15

20

25

30

35

45

>0

33

65

14

Moreover, it should also be noted that for some digi-
tal data processing systems 10, the third state-fourth
state determination may not be needed. If the digital
data processing system 10 can restore the value of the
stack pointer 62, the frame pointer 64 and the program
counter 26 to that required by the calling procedure in
a single, atomic step, there may be no restoration, or
fourth, state of the procedure invocation process. This
eliminates the need to have the procedure state analyza-
tion process 84 perform the third state-fourth state de-
termination sequence. There is also no need to have the
procedure state analyzation process 84 perform the
third state-fourth state determination sequence for pro-
cedures with fixed size call frames 58 that are executed
on systems 10 that can restore the stack pointer 62 and
the program counter 26 alone in a single, atomic step.
Accordingly, for such a digital data processing system
10, the analysis performed by the procedure state analy-
zer 84 is arranged so that the third state-fourth state
determination is only performed for procedures 32, 34
and 36 with varying size call frames 60. For example,
the depicted process of FIG. 5 could be modified by
placing a fixed call frame-varying call frame decision
block 128, shown in phantom, before the read instruc-
tion in program counter block 120. If the procedure has
a fixed call frame, as indicated by the contents of the
procedure descriptor procedure type field 90q, then the
procedure inherently is in the third state of execution,
and the procedure state analyzer 84 makes the appropri-
ate report. If the procedure has a variable sized call
frame 58, then the procedure state analyzer 84 goes
through the third state-fourth state determination se-
quence.

Similarly, the sequence described relative to FIG. 5§
may be altered in various ways. For example, in an
alternative embodiment, the procedure state analyza-
tion process 84 may first read all necessary data to make
each and every state determination before making a
single state determination. In another embodiment of
the invention, the procedure state analyzation process
84 may only read the necessary data for each state de-
termination, immediately prior to that state determina-
tion. Further, the steps described in FIG. 5 can be exe-
cuted in a different sequence to make the same state
determinations. Therefore, it is intended that all matter
contained i the above description or shown in the
accompanying drawings be interpreted as illustrative
and not 1n a limiting sense. Thus, it is the object of the
appended claims to cover all such modifications and
variations that come within the true spirit and scope of
the invention.

The embodiments of the invention in which an exclu-
sive property or privilege is claimed are defined as
follows:

1. A method of procedure state reporting for use in a
digital data processing system of the type including an
input-output unit for entry of data and program instruc-
tions, an addressable memory for storage of data and
program instructions, and a central processing unit for
accessing program instructions and data from the ad-
dressable memory and for execution of program in-
structions, said digital data processing system being
programmable for executing a set of program instruc-
tions that consists of procedures, each procedure being
invoked by the central processing unit in response to
one or more of the program instructions, each proce-
dure having at least two potential invocation states and
including a set of program instructions, said at least two

5,388,263

15

invocation states being separately present after invoca-

tion of a procedure is initiated by the central processing
unit with an invoked procedure being in a particular one
of said at least two invocation states when a selected set
of instructions is executed by the system, said method
reporting the invocation state of a procedure invoked
for execution by the digital data processing system, said
method comprising

(a) a procedure descriptor generator process for con-

trolling the digital data processing system, said
procedure descriptor generator process for gener-
ating a procedure descriptor for each procedure
that is to be invoked for execution by the digital
data processing system, said procedure descriptor
including at least one procedure descriptor offset
value representative of a point of execution of the
procedure, each said point of execution represent-
ing a boundary between two invocation states of
the procedure; and

(b) a procedure state analyzation process implementa-

ble by the digital data processing system, said pro-
cedure state analyzation process including the steps
of determining the portion of the invoked proce-
dure that has been executed by the digital data
processing system, comparing the portion of the
invoked procedure that has been executed by the
digital data processing system to one of said proce-
dure descriptor offset values, accessing the next
program instruction to be executed in said invoked
procedure, reviewing said next program instruc-
tion to determine if said next program instructions
1s from said selected set of instructions, reporting
the invocation state of the invoked procedure as a
first one of said at least two invocation states if said
next program instruction is not from said selected
set of instructions, and reporting the invocation
state of the invoked procedure as a second one of
said at least two invocation states if said next pro-
gram instruction 1s from said selected set of instruc-
tions.

2. A method of procedure state reporting for use in a
digital data processing system of the type including an
input-output unit for entry of data and program instruc-
tions, an addressable memory for storage of data and
program instructions, and a central processing unit for
accessing program instructions and data from the ad-
dressable memory and for execution of program in-
structions, said digital data processing system being
programmable for executing a set of program instruc-

tions that consists of procedures, each procedure being 50

invoked by the central processing unit in response to
one or more of the program instructions, each proce-
dure having at least three potential invocation states and
including a set of program instructions, said at least
three invocation states being separately present after
invocation of a procedure is initiated by the central
processing unit, with the invoked procedure being in an
identifiable invocation state when a selected set of in-
structions is executed by the system, said method re-
porting the invocation state of a procedure invoked for
execution by the digital data processing system, said
method comprising

(a) a procedure descriptor generator process for con-

trolling the digital data processing system, said:

procedure descriptor generator process for gener-
ating a procedure descriptor for each procedure
that 1s to be invoked for execution by the digital
data processing system, said procedure descriptor

10

15

20

235

30

335

45

93

60

65

16

including at least two procedure descriptor offset
values, each said procedure descriptor offset value
being representative of a point of execution of the
procedure, each said point of execution represent-
ing a separate boundary between invocation states
of the procedure; and

(b) a procedure state analyzation process implementa-

ble by the digital data processing system, said pro-
cedure state analyzation process including the steps
of determining the portion of the invoked proce-
dure that has been executed by the digital data
processing system, comparing the portion of the
invoked procedure that has been executed by the
digital data processing system to one of said proce-
dure descriptor offset values to determine whether
the procedure being invoked is in a first invocation
state, and 1n the event the procedure being invoked
is not in said first invocation state, comparing the
portion of the invoked procedure that has been
executed to the second one of said procedure de-
scriptor offset values to determine whether the
procedure being invoked is in a second invocation
state and, 1n the further event the procedure being
invoked 1s not 1n said second invocation state, mak-
ing an additional state determination by accessing
the next instruction to be executed, and determin-
ing whether said next instruction is from said se-
lected set of instructions.

3. A method of procedure state reporting for use in a
digital data processing system of the type including an
input-output unit for entry of data and program instruc-
tions, an addressable memory for storage of data and
program instructions, and a central processing unit for
accessing program instructions and data from the ad-
dressable memory and for execution of program in-
structions, said digital data processing system being
programmable for executing a set of program instruc-
tions that consists of procedures, each procedure being
stored in the addressable memory with each part of a
procedure being stored in sequential, ascending address
locations in the addressable memory, each procedure
being invoked by the central processing unit in response
to one or more of the program instructions, each proce-
dure having at least two potential invocation states and
including at least one program instruction, said at least
two invocation states being separately present after
invocation of a procedure is initiated by the central
processing unit, said method reporting the invocation
state of a procedure invoked for execution by the digital
data processing system, said method comprising

(a) a procedure descriptor generator process for con-

trolling the digital data processing system, said
procedure descriptor generator process for gener-
ating a procedure descriptor for each procedure
that 1s to be invoked for execution by the digital
data processing system, said procedure descriptor
including at least one procedure descriptor offset
value representative of the location of a specific
part of the associated procedure relative to the start
of the procedure, each said point of execution rep-
resenting a boundary between two invocation
states of the procedure; and

(b) a procedure state analyzation process implementa-

ble by the digital data processing system, said pro-
cedure state analyzation process including the steps
of determining the portion of the invoked proce-
dure that has been executed by the digital data
processing system, comparing the portion of the

5,388,263

17

invoked procedure that has been executed by the
digital data processing system to one of said proce-
dure descriptor offset values to determine the invo-
cation state of the invoked procedure, and report-
ing the invocation state of the invoked procedure,
said step of determining the portion of the invoked
procedure that has been executed including the
substeps of determining a starting memory address
for the invoked procedure, determining the mem-
ory address for the next part of the invoked proce-
dure to be executed and determining the portion of
the invoked procedure that has been executed by
determining the difference between the procedure
starting memory address and the memory address
of the next invoked procedure part.

4. A method of procedure state reporting for use in a
digital data processing system of the type including an
input-output unit for entry of data and program instruc-
tions, an addressable memory for storage of data and
program instructions, and a central processing unit for
accessing program instructions and data from the ad-
dressable memory and for execution of program in-
structions, said digital data processing system being
programmable for executing a set of program instruc-
tions that consists of procedures, each procedure being
invoked by the central processing unit in response to
one or more of the program instructions, each proce-
dure having at least two potential invocation states and
including at least one program instruction, said at least
two 1nvocation states being separately present after
invocation of a procedure 1s initiated by the central
processing unif, saild method reporting the invocation
state of a procedure invoked for execution by the digital
data processing system, said method comprising

(a) a procedure descriptor generator process for con-

trolling the digital data processing system, said
procedure descriptor generator process for gener-
ating a procedure descriptor for each procedure
that is to be invoked for execution by the digital
data processing system, said procedure descriptor
including at least one procedure descriptor offset
value representative of a point of execution of the
procedure, each said point of execution represent-
ing a boundary between two invocation states of

10

15

20

25

30

35

the procedure, said procedure descriptor generator 45

process also determining whether a particular in-
vocation state will be absent from the procedure
when the procedure is executed, and if a particular
invocation state will be absent, generating a flag
value for one of said procedure descriptor offset
values; and
(b) a procedure state analyzation process implementa-
ble by the digital data processing system, said pro-
cedure state analyzation process including the step
of making a state determination based on whether
sald procedure descriptor offset value is set to said
flag value; said procedure state analyzation process
further includes the steps of determining the por-
tion of the invoked procedure that has been exe-
cuted by the digital data processing system, com-
paring the portion of the invoked procedure that
has been executed by the digital data processing
system to one of said procedure descriptor offset
values to determine the invocation state of the
invoked procedure, and reporting the invocation
state of the invoked procedure.
S. A method of procedure state reporting for use in a
digital data processing system of the type including an

20

3y

60

65

18

Input-output unit for entry of data and program instruc-
tions, an addressable memory for storage of data and
program instructions, and a central processing unit for
accessing program instructions and data from the ad-
dressable memory and for execution of program in-
structions, said digital data processing system being
programmable for executing a set of program instruc-
tions that consists of procedures, each procedure being
stored in the addressable memory with each part of a
procedure being stored in sequential, ascending address
locations in the memory, each said procedure poten-
tially including a procedure prologue comprising an
entry prologue with a stack pointer modify instruction
at the end thereof, and a caller’s context save block, the
procedure prologue being followed in the procedure by
an instruction block, the instruction block having at the
end thereof zero, one, or more sets of restoration se-
quence instructions, each said procedure being invoked
by the central processing unit in response to one or
more of the program instructions, each procedure hav-
ing at least two potential invocation states and including
at least one program instruction, said at least two invo-
cation states being separately present after invocation of
a procedure is initiated by the central processing unit,
said method reporting the invocation state of a proce-
dure invoked for execution by the digital data process-
ing system, said method comprising
(a) a procedure descriptor generator process for con-
trolling the digital data processing system, said
procedure descriptor generator process for gener-
ating a procedure descriptor for each procedure
that 1s to be invoked for execution by the digital
data processing system, said procedure descriptor
including at least one procedure descriptor offset
value representative of the location of a specific
part of the associated procedure relative to the start
of the procedure, each said point of execution rep-
resenting a boundary between two invocation
states of the procedure, said procedure descriptor
generating process for each said procedure that has
a procedure prologue including the steps of: deter-
mining the location of said stack pointer modify
instruction relative to the start of the procedure
and supplying said location of said stack pointer as
a first procedure descriptor offset value; and, deter-
mining the location of a first instruction in said
instruction block relative to the start of the proce-
dure and supplying said location of said first in-
struction as a second procedure descriptor offset
value; and
(b) a procedure state analyzation process implementa-
ble by the digital data processing system, said pro-
cedure state analyzation process including the steps
of determining the portion of the invoked proce-
dure that has been executed by the digital data
processing system, comparing the portion of the
invoked procedure that has been executed by the
digital data processing system to at least one of said
procedure descriptor offset values to determine the
invocation state of the invoked procedure, and
reporting the invocation state of the invoked pro-
cedure said procedure state analyzation process
including the following additional steps for each
procedure that has a procedure prologue:
determining said portion of the invoked procedure
that has been executed by determining a starting
memory address for the invoked procedure, deter-
mining a memory address for the next part of the

5,388,263

19

invoked procedure to be executed and determining
the difference between said procedure starting
memory address and said memory address of the
next procedure part;

comparing the portion of the invoked procedure that

has been executed by the digital data processing
system to at least one of said procedure descriptor
offset values by the steps of comparing said portion
of the invoked procedure that has been executed to
‘said first procedure descriptor offset value to deter-
mine 1if said stack pointer modify instruction has
been executed and if said stack pointer modify
mstruction has not been executed, reporting that
the invoked procedure is in a first invocation state:;
if said stack pointer modify instruction has been exe-
cuted, comparing said portion of the invoked pro-
cedure executed to said second procedure descrip-
tor offset value to determine if said instruction
block first instruction has not been executed; and if
said instruction block first instruction has not been
executed, reporting that the invoked procedure is
in a second invocation state; and

if said instruction block first instruction has been

executed, determining if the next part of the in-
voked procedure to be executed is a restoration
sequence instruction, and, if so, reporting that the
invoked procedure is in a fourth invocation state,
and if not, reporting that the invoked procedure is
in a third invocation state.

6. The method of procedure state reporting of claim
> wherein associated with each procedure is a stack call
frame of fixed or varying size; and

said procedure descriptor generation process further

includes the steps of: determining whether the call

3

10

15

20

25

30

20

invoked procedure is in said third invocation state; and,
if said invoked procedure has a variable sized stack call
frame, proceeding to make said determination whether
the next procedure part to be executed is a restoration
sequence instruction.

9. The procedure state analyzation process of claim 4
wherein said step of determining whether said proce-
dure descriptor offset value is set to said flag value is
made prior to said comparison of the portion of the
invoked procedure that has been executed to one of said
procedure descriptor values.

10. The procedure state analyzation process of claim
5 wherein

(a) said procedure generator process determines

- whether the procedure prologue will be absent
from the procedure when the procedure is exe-
cuted, and 1f the procedure prologue will be absent
generating a flag value for one said particular pro-
cedure descriptor offset value; and |

(b) said procedure state analyzation process, prior to

comparing the portion of the invoked procedure
that has been executed to said first procedure de-
scriptor offset value further includes the step of
determining from said particular procedure de-
scriptor offset value is set to said flag; if said flag
value 1s set, proceeding to said step of determining
whether the next part of the invoked procedure to
be executed is a restoration sequence instruction,
and 1f said flag value is not set, making said com-
parison of the portion of the procedure that has
been invoked to said first procedure descriptor
value.

11. A procedure state analyzation process for use in a

frame associated with the procedure will have a 35 digital data processing system of the type having an

fixed size call frame or a variable size call frame;
and, generating a procedure descriptor procedure
type field indicative of whether the stack call frame
associated with the procedure will be of fixed or
varying size.
7. The method of procedure state reporting of claim
6 wherein each procedure having a fixed size call frame
associated therewith has a first set of restoration se-
quence instructions and each procedure having a vary-
ing size call frame associated therewith has a second set
of restoration sequence instructions; and said procedure
state analyzation process determination of whether the
next part of the invoked procedure to be executed is a
restoration sequence instruction further includes the
steps of: determining from said procedure descriptor
procedure type field whether the invoked procedure
has a fixed size or a varying size call frame; if said in-
voked procedure has a fixed size call frame, making said
restoration sequence instruction determination with
respect to the first set of restoration sequence instruc-
tions; and, if said invoked procedure has a varying size
call frame, making said restoration sequence instruction
determination with respect to the second set of restora-
tion sequence instructions.
8. The method of procedure state reporting of claim
6 wherein prior to making said determination of
whether the next procedure part to be executed is a
restoration sequence instruction, said procedure state
analyzation process further includes the steps of: deter-
mining from said procedure descriptor procedure type
-field whether the invoked procedure has a fixed size or
varying size stack call frame; and if said invoked proce-
dure has a fixed size stack call frame, reporting that the

45

20

55

60

65

addressable memory for storing program instructions
and data and having a central processor unit for access-
ing and executing the stored program instructions, said
process for determining the invocation state of a proce-
dure stored in the memory of said digital data process-
ing system at times including while a procedure is in the
process of being invoked for execution by the central
processor unit of the digital data processing system, the
procedure including a set of program instructions and
having at least three invocation states that are present at
times after the process for invoking the procedure is
initiated, said procedure state analyzation process com-
prising the steps of determining the portion of the in-
voked procedure that has been executed by the digital
data processing system; and, comparing the portion of
the invoked procedure that has been executed to at least
two procedure descriptor offset values for the proce-
dure, each said procedure offset value being determined
by the central processor unit prior to the time at which
the procedure is invoked for execution and being repre-
sentative of a separate point of execution of the proce-
dure, each said point of execution representing a sepa-
rate boundary between invocation states of the proce-
dure, said comparison determining the invocation state
of the procedure and including the steps of comparing
the portion of the invoked procedure that has been
executed to a first one of said procedure descriptor
offset values to make a first state determination that
indicates whether the invoked procedure is in a first
invocation state; and, if the invoked procedure is not in
said first invocation state, comparing the portion of the
invoked procedure that has been executed to a second
one of said procedure descriptor offset values to make a

5,388,263

21

second state determination that indicates whether the
invoked procedure is in a second invocation state.

12. The procedure state analyzation process of claim
11 wherein when a selected set of instructions of the
invoked procedure is executed by the system the proce- «
dure is in an identifiable invocation state and wherein
said process further includes the step of: making a third
state determination in the event said second state deter-
mination does not indicate that the invoked procedure is
in said second invocation state, said third state determi-
nation indicating whether the procedure being invoked
is in said third mvocation state and being made by ac-
cessing the next mstruction to be executed; and, deter-
mining whether said next instruction is from said se-
lected set of instructions.

13. The procedure state analyzation process of claim
11 wherein in the event a particular invocation state is
absent from the invoked procedure, the procedure de-
scriptor offset value for the procedure is set to a flag
value, and said process further includes the step of de-
termining whether the procedure descriptor offset
value 1s set to the flag value.

14. The procedure state analyzation process of claim
13 wherein said determination of whether the proce-
dure descriptor offset value contains the flag value is
made prior to making said comparison of the portion of
the invoked procedure that has been executed to the
procedure descriptor value.

15. The procedure state analyzation process of claim
11 wherein in the event a particular invocation state is
absent from the mvoked procedure, a selected one of
the procedure descriptor offset values for the procedure 30
is set to a flag value, and wherein said process further
includes the step of determining whether the selected
procedure descriptor offset value is set to said flag
value.

16. The procedure state analyzation process of claim 35
15 wherein said determination of whether the selected
procedure descriptor offset value is set to the flag value
is made prior to making said comparison of the portion
of the invoked procedure that has been executed to said
selected one of said procedure descriptor values.

17. The procedure state analyzation process of claim
16 wherein in the event a particular invocation state is
absent from the invoked procedure, a selected one of
the procedure descriptor offset values 1s set to a flag
value; and wherein, prior to said comparison of the
portion of the mmvoked procedure that has been exe-
cuted to one of the procedure descriptor values, said
process further includes the step of determining
whether the selected procedure descriptor offset value
is set to the flag value.

18. The procedure state analyzation process of claim
17 wherein, when a selected set of instructions in the
immvoked procedure is executed by the system, the proce-
dure 1s 1n an identifiable invocation state, and in re-
sponse to the result of at least one comparison of the
portion of the invoked procedure. that has been exe-
cuted to one of the procedure descriptor offset values,
said process further includes the steps of selectively
making an additional invocation state determination by
accessing the next instruction to be executed, and deter-
mining whether said next instruction is within said se-
lected set of instructions.

19. A procedure state analyzation process for use in a
digital data processing system of the type having an
addressable memory for storing program instructions
and data and having a central processor unit for access-
ing and executing the stored program instructions, said
- process for determining the invocation state of a proce-
dure stored in the memory of said digital data process-
ing system at times including while a procedure is in the

10

15

20

25

40

45

50

35

65

22

process of being invoked for execution by the central
processor unit of the digital data processing system, the
procedure including a set of program instructions and
having at least two invocation states that are present at
times after the process for invoking the procedure is
initiated, said procedure being in an identifiable invoca-
tion state when a selected set of instructions in the in-
voked procedure is executed by the system, said proce-
dure state analyzation process comprising the steps of
making a first state determination by determining the
portion of the invoked procedure that has been exe-
cuted by the digital data processing system; comparing
the portion of the invoked procedure that has been
executed to at least one procedure descriptor offset
value for the procedure, each said procedure offset
value being determined by the central processor umit
prior to the time at which the procedure is invoked for
execution and being representative of a point of execu-
tion of the procedure, each said point of execution rep-
resenting a boundary between two invocation states of
the procedure, said comparison for determining the
invocation state of the procedure, said procedure state
analyzation process further including the steps of mak-
ing a second state determination by accessing the next
procedure instruction to be executed and, determining
whether the next instruction is in said selected set of
instructions.

20. A procedure state analyzation process for usein a
digital data processing system of the type having an
addressable memory for storing program instructions
and data and having a central processor unit for access-
ing and executing the stored program instructions, said
process for determining the invocation state of a proce-
dure stored in the memory of said digital data process-
ing system at times including while a procedure is in the
process of being invoked for execution by the central
processor unit of the digital data processing system, said
procedure being stored in the memory of said digital
data processing system with each part of the procedure
being stored in sequential address locations in the mem-
ory, the procedure including a set of program instruc-
tions and having at least two invocation states that are
present at times after the process for invoking the pro-
cedure is initiated, said procedure state analyzation
process comprising the steps of determining the portion
of the invoked procedure that has been executed by the
digital data processing system; and, comparing the por-
tion of the invoked procedure that has been executed to
at least one procedure descriptor offset value for the
procedure, each said procedure offset value being deter-
mined by the central processor unit prior to the time at
which the procedure is invoked for execution and being
a value representative of the location of a specific part
of the procedure relative to the start of the procedure,
each said point of execution representing a boundary
between two invocation states of the procedure, said
step of determining the portion of the invoked proce-
dure that has been executed by the digital data process-
mg system being performed through the steps of: deter-
mining a starting memory address of the invoked proce-
dure; determining the memory address for the next part
of the invoked procedure to be executed; and determin-
ing the difference between the starting memory address
and the memory address of the next invoked procedure
part with said difference being representative of said
portion of the invoked procedure that has been exe-
cuted; said comparison of said portion of said procedure
that has been executed with said at least one procedure
descriptor offset value determining the invocation state

of the procedure.
*¥ ¥ x ¥ %

	Front Page
	Drawings
	Specification
	Claims

