United States Patent 9

Atchison

[54]

[75]
[73]

21]
[22]

[51]
[52]

158]

[56]

US005361336A
[11] Patent Number: 5,361,336

[45] Date of Patent: Nov. 1, 1994

METHOD FOR CONTROLLING AN
INSTRUMENT THROUGH A COMMON
INSTRUMENT PROGRAMMING
INTERFACE

Inventor: Lee A. Atchison, Ft. Collins, Colo.
Assignee: Hewlett-Packard Company, Palo
Alto, Calif.
Appl. No.: 796,094
Filed: Nov. 21, 1991 |
| 11t S O T GO6F 3/00
US. CL ottt cenvnnes 395/275; 364/579;
395/325
Field of Search 364/579, 580, 481, 200,
364/488, DIG. 1: 340/537; 374/181, 172;
324/73.1, 72.5; 395/500, 275, 114, 323
References Cited
U.S. PATENT DOCUMENTS
3,849,726 11/1974 JUSLICE .cureeerrcireeerecrracceeasenns 324/73.1
4,025,906 5/1977 Rilkonenceveierereennnnna 395/275
4,263,650 4/1981 Bennett et al. .ocoeeeeevreeeeenneen. 395/275
4,525,789 6/1985 Kemper et al.oeceeeeeecnnnn. 364/481
4,852,041 7/1989 Nakanoccccevveereneieennrnnnnas 395/500
4,855,905 8/1989 Estrada et al. ..cccceveereennrennen. 364/200
4,873,647 10/1989 Banhi et al.ccceervcereerennnen 364/488
5,111,423 5/1992 Kopec, Jr. et al. 364/DIG. 1
5,129,065 7/1992 Priem et al. ..coeeeeveeereenennennnn. 395/323
5,150,048 9/1992 McAuliffe et al. 324/73.1
5,167,021 11/1992 Needhamccceeemmeveeerevnnceens 395/2735
5,179,669 1/1093 PEters .ccceermirrercrerererveressonnses 395/325

5,191,655 3/1993 Sarkissianceecenee.. 364/DIG. 1
5,237,663 8/1993 Srinlvasaneeeieeeeens 395/325
OTHER PUBLICATIONS

NI-VXI DOS Software Reference Manual, National

Instruments Corp., 12109 Technology Blvd., Austin,
Tex. 78727-6204, Oct. 1989.

Primary Examiner—Jack B. Harvey
Assistant Examiner—Hal D. Wachsman

[57] ABSTRACT

A system that defines a programming interface between
a computer system and a test instrument independently
of the electronic interface or operating system being
used. This independence is accomplished by building a
data structure, from a configuration system, which con-
tains the operating system and electronic interface in-
formation that allows the system to perform different
commands to different electronic interfaces or different
operating systems. The system implements all com-
mands that will be used by all operating systems and
performs these commands even in operating systems
where they are not necessary. The system also provides
a formatted input/output capability for the instrument
control functions. In addition to commonly understood
formatting capability, such as conversion and printing
of integer numbers, the interface provides instrument
specific formatting capability, such as creating numbers
that are compatible with the IEEE 488 mterface.

14 Claims, 11 Drawing Sheets

.................................
...

iii

INSTRUMENT PROGRAMMING INTERFACE

OPERATING SYSTEM

|22

PROCESSING
ELEMENT 102
:l[| 04

| 18

120

o INSTRUMENT

RS/252
COMMUNICATION |,

INTERFACE

Lo [lm]]

l 114 16
m 15 | HPIB fe—i—s{INSTRUMENT

--

5,361,336
N
O
N~
L

INFWNYLSNT[e——] 8IdH | ¢ LN3WNYLSNI IvoaATy]!
- 91| i . Ol | 80 | 90| B
-
2 .
7 - SN9 W3LSAS
I -
JOV4YILNI e
3 INIWNYLSNT ¢ NOILYDINNWWOD ™ 81 | . 11 ONTSSI70ud
- 282/ Sy . _
. 0z | cc
= :
/ ”
m W3LSAS ONILVY¥3dO
24

mU(ummHzH ONIWWYYHYO0Hd LINJWNALSNI

SS300dd adS5MN

AHOWINW

...

U.S. Patent

5,361,336

Sheet 2 of 11

4!

Nov. 1, 1994

U.S. Patent_

'/

i

¢

WERD
/3L TYMI

i

¢

61 Of 1

T04LNOD
LdNYYILNI

A4 01

IT

c Ol

912 8712
(ISNT) E VIva >
vViva NOISS3S NOT LVIN9TANOD
A S1 o b
b1 "
9117 617 YINILIOI
4LNINOL3OI NIJdOI
LNOIWILLIOL| [UHOWYILL3OI 4ININOI
LNOIWILI | | yHOWy3LI L 6d J_vd
0T e

4 J L8
4 80C¢

OYSNOLIOI

97 LT OUSNOI
__0ld
90¢”
$5390dd A
JSh
el
|

8¢l

9,361,336

Sheet 3 of 11

Nov. 1, 1994

U.S. Patent

T0Y1LNOD

¢e€C-Sd

ed

g0¢
(LSNI) =
vLVQ NOT§S3S 021
91¢

90¢”

0%

017

IXA

TJOYLNOO
IXA

e

¢

J0YLNOD
NOISS3S
aNv 19373S
3OVAYILINT

o

¢ |

7 for3

il

14033

€

91

TO4LNOD
d1dH

| sd

61

U.S. Patent Nov. 1, 1994 Sheet 4 of 11 5,361,336 '

L2
302

P2

L2

402

216
iiISESSION DATALINST)

- GET
READ/WRITE
INFO

L20.1

L20

1L20.2

WHICH

INTERFACE?

L3 L3

L3

FIG. 4

U.S. Patent Nov. 1, 1994 Sheet 5 of 11 5,361,336

L9 3
500
P3
LS
L9 502
216
5 | SESSION | L3
6lAoow Tyves
L9
or
. DEVICE COMMANDER
e
Lo h INTERFACE
— MYSTB
510
L6

FIG. 5

U.S. Patent Nov. 1, 1994 Sheet 6 of 11 5,361,336

L11
112
P6
111
. 602 604
6.2
USER GROUND
-9 | REQUEST '

CONTROL? REQUEST

SESSION DATA(INST)
216 '

L10 LS

F1G.

US. Patent Nov. 1, 1994 Sheet 7 of 11 5,361,336

128

LSO USER L9l
|IPROCESS

710 |100f-L99

BUFFER
FLUSH
—L100 A
704 [__P99
L99
ISETBUF " IPRINTF
.96
101 714
710 712
PO7 PQS
oansg | L98 ara | 503 SUFFER
IPRINTF CORMATTER PROCESS
FORMAT WRITE
197 L94 oo

/18

720
FMT I/0 FLAGS FMT 1/0 BUFFER

FIG. 7

U.S. Patent Nov. 1, 1994 Sheet 8 of 11 5,361,336

L9S L96
/714

PUT BYTE

IN BUFFER

L3S BUFFER
EMPTY
?
806 N
' 720
P95.1 || g4 Lol

FMT 1/0 BUFFER

FLUSH FMT
1/0 BUFFER

L92

L92

FIG. &

U.S. Patent Nov. 1, 1994 Sheet 9 of 11 5,361,336

128
USER
PROCESS
164 | L70
904

IPROMPTF

L69 L68 L |

6/ L66 | 65

IFLUSH IPRINTF tFLUSH ISCANF
(READ) - (WRITE)

708 /706 708 1004

FIG. 9

U.S. Patent Nov. 1, 1994 Sheet 10 of 11 5,361,336

128
180 [jser | L82
|IPROCESS
716
. 75
BUFFER L 76
ELUSH
75
P90} .4, P94 P98
Loo |
ISETBUF ISCANE 1FLUSH
(READ)
' L 81
1010
' PO1

BUFFER
PROCESS
READ

ISCANF
FORMAT

/18

720

, IREAD/
FMT 1/0 FLAGS |DS|FMT 1/0 BUFFER | qwriTe

FIG. 10

U.S. Patent Nov. 1, 1994 Sheet 11 of 11 5,361,336

88 81
1010
PO1
1102 L 88 106
{
PO1 .1 81
BUFFER 1108
EMPTY Gel POl .3
2 DATA
TV TE FLUSH
READ
BUFFER
PO1 .2
720
GET
BUFFER FMT 1/0 BUFFER

4

IWRITE/
IREAD

FIG. 11

5,361,336

1

METHOD FOR CONTROLLING AN INSTRUMENT
THROUGH A COMMON INSTRUMENT
PROGRAMMING INTERFACE

FIELD OF THE INVENTION

This invention relates to electronic test and measure-
ment instruments and more particularly to such instru-
ments which are controllable from a computer system.
Even more particularly, this invention relates to a
method for controlling such instruments with a com-
mon programming language interface.

BACKGROUND OF THE INVENTION

There are several methods used to connect an elec-
tronic instrument to a computer system, and three are
very commonly used. The first is to connect the instru-
ment to a computer over an IEEE 488 bus, also called
the Hewlett Packard Interface Bus or the General Pur-
pose Interface Bus. Another commonly used interface is
the RS-232 serial communications interface. A third
commonly used interface is the direct connection of the
instrument to the computer system internal memory
bus. An example of this third interface is the interface
definition for an instrument connected to the VXI bus,
as provided by National Instruments Corporation.

These three interfaces use considerably different
commands to control an electronic instrument. Because
of the variety of commands, if a program running in a
computer system wishes to control an instrument, the
programmer must decide which of the interfaces the
instrument will use for connection, so that the correct
programming commands can be used. This significantly
reduces the portability of the program used to control

10

15

20

23

30

the instrument, since the program must be rewritten if 35

the instrument is connected via a different interface
from the one originally programmed. This rewriting
takes significant amounts of programmer time. It also
means that three different sets of software must be
shipped to access the instrument, one for each of the
instrument interfaces.

Another problem exists when multiple computer
systems, using different operating systems, are involved.
The commands necessary to access the instrument over
the various interfaces are often different for each oper-
ating system used. For example, the commands neces-
sary to access an instrument over an RS-232 interface in
the MS-DOS operating system (MS-DOS is a registered
trademark of MicroSoft Corporation) are different from
the commands necessary to access an instrument over
an RS-232 interface in the Unix operating system (Unix
1s a registered trademark of AT & T). Therefore, not
only must there be a separate program for each inter-
face, there must be a separate program for each inter-
face with each operating system to which the instru-
ment may be connected.

Another problem caused by connecting through mul-
tiple interfaces and multiple operating systems is the
need for the program to have the interface address
defined within the program. Thus, only one address can
conventently be used with each combination of inter-
face and operating system. If an instrument is not lo-
cated at the address anticipated by the software, a dif-
ferent version of the software must be created and sent
to the instrument user, causing considerable expense
and delay.

One prior art instrument interface, the Hewlett Pack-
ard Device 1/0 Library (DIL), provides an input/out-

40

45

50

33

65

2

put library of functions that can be used to access an
instrument only with the Hewlett-Packard HPUX oper-
ating system environment. As an example of the prob-
lems identified above, the Device 1/0 Library has sepa-
rate sets of commands for each of the interfaces.

Some of the interface commands could not be imple-
mented in certain operating systems. For example, in
the Unix operating system a user process issues a lock
command to obtain exclusive control of a device such as
an instrument. In the MS-DOS operating system, how-
ever, every process always has exclusive control of all
input/output devices, therefore, the lock command is
not only unnecessary, it is not implemented.

One of the most significant features of higher level
programming languages is the ability to format data
automatically before sending that data to an input/out-
put device. For example, format statements originated
with the Fortran language in the late 1950’s. Typically,
format statements convert integer numbers and floating
point numbers in various formats into a displayable or
printable format that can easily be understood by peo-
ple. Thus formatted input/output has been typically
used for printing information on a printer or displaying
information on a terminal. In prior art systems, this
capability can only be made available with instrument
data by first formatting the data into a memory buffer
and then sending the memory buffer contents to the
mstrument. Furthermore, current formatting capability
cannot create numbers in special formats as required by
the IEEE 488 interface standard.

It 1s thus apparent there is need in the art for an im-
proved instrument programming interface that is inde-
pendent of the particular electrical interface used to
connect the mstrument to the computer system. There
is further need in the art for such a system that is also
independent of the particular operating system being
used to execute the program. A still further need is for
such an interface that has formatted 1/O capability,
including the special formats of IEEE 488. The present
invention meets these and other needs.

SUMMARY OF THE INVENTION

It 1s an aspect of the present invention to provide a
common programming interface for computer control-
lable electronic instruments.

It 1s another aspect of the invention to provide such a
common interface that is independent of the interface
used to access the instrument.

Yet another aspect of the invention is to provide such
a common interface that is independent of the operating
system used by the controlling computer system.

A further aspect is to provide formatted I/O capabil-
ity for exchanging data with the instrument.

A still further aspect is to provide an interface address
independent method of accessing an instrument.

The above and other aspects of the invention are
accomplished in a system that defines the instrument
interface independently of the electronic interface or
operating system being used. This independence is ac-
complished by building a data structure which contains
the operating system and electronic interface informa-
tion that allows the system to perform different com-
mands to different electronic interfaces or different
operating systems. This data structure is built from
configuration information that is dynamically set up by
each instrument user.

5,361,336

3

The system implements all commands that will be
used by all operating systems and performs these com-
mands even in operating systems where they are not
needed. Thus, the user process performs the command
and receives a return indicating that the command was
successful even if the command was not needed to per-
form a function in the operating system.

The system also provides a formatted input/output
capability for the instrument control functions. This
formatted I/0 capability allows the user process to read
or write information from or to the instrument in a

manner that is well understood by programmers. In

addition to commonly understood formatting capabil-
ity, such as conversion and printing of integer numbers,
the interface provides instrument specific formatting

capability, such as creating numbers that are compatible
with the IEEE 488 interface.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features, and advan-
tages of the invention will be better understood by read-
ing the following more particular description of the
invention, presented in conjunction with the following
drawings, wherein:

F1G. 1 shows a block diagram of a computer system
that incorporates the present invention;

FI1GS. 2 and 3 show a high level data flow diagram of
the functions of the present invention;

FIG. 4 shows a data flow diagram of the interface
select and session control process of FIG. 3;

FIG. 3 shows a data flow diagram of the device con-
trol process of FIG. 3;

F1G. 6 shows a data flow diagram of the interrupt
control process of FIG. 2;

F1G. 7 shows a data flow diagram of the formatted
output process of the invention;

FIG. 8 shows a data flow diagram of the buffer pro-
cess write process of FIG. 7; and

FIG. 9 shows a data flow diagram of the formatted
prompt process of the invention;

FIG. 10 shows a data flow diagram of the formatted
input data scan process of the invention;

FIG. 11 shows a data flow diagram of the buffer
process read process of FIG. 10.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The following description is of the best presently
contemplated mode of carrying out the present inven-
tion. This description is not to be taken in a limiting
sense but is made merely for the purpose of describing
the general principles of the invention. The scope of the
invention should be determined by referencing the ap-
pended claims.

The following description of the invention is supple-
mented by the Standard Instrument Control Library
Specification, attached hereto as Appendix A and incor-
porated herein by reference.

F1G. 1 shows a block diagram of a computer system
that incorporates the instrument programming interface
of the present invention. Referring now to FIG. 1, a
computer system 100 contains a processing element 102
which executes the instructions of a user process 128,
the instructions of an instrument programming interface
126 of the present invention, and the instructions of an
operating system 124. The processing element 102 com-
municates with other elements of the system over a
system bus 104. A keyboard 106 allows a user of the

10

15

20

235

30

35

45

50

35

60

65

4

system to input information and a display 108 allows the
system to output information to the user. A disk 112
stores the software of the system, the data of the user
process 128, and other data for the system.

The present mmvention is designed to provide a com-
mon interface between the user process 128 and a vari-
ety of electronic instruments, independent of how those
instruments are connected to the system. An instrument
110 1s connected directly to the system bus 104. A sec-
ond instrument 116 is connected through an IEEE 488
interface 114, also called an HPIB interface, and a third
instrument 120 is connected through an RS-232 commu-
nications interface 118. Using the present invention, the
user process 128 will use the same software calls and
calling mechanism regardless of whether the instrument
1s a bus connected instrument, such as instrument 110,
and HPIB connected instrument, such as instrument
116, or an RS-232 connected instrument, such as instru-
ment 120.

FIGS. 2 and 3 show the user process 128 and the top
level interface of the instrument programming interface -
126 of the present invention comprising processes 202,
204, 206, 208, 210, 212, and 214. Other top-level pro-
cesses will be described below. Referring now to FIGS.

2 and 3, when the user process 128 desires to access an

electronic instrument, it calls an IOPEN process 202
which determines where the instrument is located, that
1S, on a bus such as instrument 110 (FIG. 1), through
RS-232 , or through an IEEE 488 (HPIB) interface.
This determination is made by accessing configuration
data 218 through dataflow L4. A complete list of data-
flows and their contents is shown in Table 1. The con-
figuration data is created by the user of the system,
which allows the mnstrument address to be dynamically
determined.

Once the IOPEN routine 202 determines where the
instrument is located, it fills information into the session
data 216 through dataflow L5. The session data 216 is
used by many other processes of the system to access
the actual instrument, and is more fully described in
Table 2. After setting up the SESSION DATA 216,
IOPEN 202 returns an INST ID, which is a pointer to
the session data 216, to the user process over dataflow
L1.

After IOPEN 202 returns to the user process, the user
process reads or writes data from or to the instrument
by calling the IWRITE/IREAD process 214 and pass-
ing data over the data flow L2. The data flow L2 con-
tains the INST ID, which was returned to the user
process by the IOPEN function, a pointer to the data to
be sent or received, a length indicator defining the
length of the data to be sent or received, a flag indicat-
ing whether an end indicator should be sent on an
IWRITE operation, and a pointer to two data parame-
ters which will be filled in by the IREAD or IWRITE
process 214. The first of these data parameters is a count
value which will be the actual number of data bytes that
was sent or received by the IWRITE or IREAD opera-
tion. The second parameter that is filled in is a reason
indicator which shows the reason why a read operation
was terminated. The IWRITE/IREAD process 214
calls the interface select and session control process 302
shown in FIG. 3 and passes the data flow L2 during the
call.

The interface select process 302 is shown in more
detail in FIG. 4. Referring now to FIG. 4, the process
contains two subprocesses GET READ/WRITE infor-
mation process 402 and WHICH INTERFACE pro-

5,361,336

S

cess 404. The GET READ/WRITE information pro-
cess 402 obtains a time out value and a READ/WRITE
termination character from the session data 216 over a
data flow L20.1. This information is then passed to the
WHICH INTERFACE process 404 over data flow L3.
WHICH INTERFACE process 404 retrieves the in-
strument interface information from the session data 216
over a data flow 20.2 and uses this information to deter-
mine whether the instrument is directly connected to
the system bus, is connected via an HPIB interface, or
whether the instrument is connected via an RS-232
interface. The invention is not limited to these three
electronic interfaces, however, but can be used with a
variety of different interfaces. WHICH INTERFACE
process 404 then calls the appropriate specific interface
control process 304, 306, or 308 shown in FIG. 3.

The process performed by the specific interface con-
trol processes 304, 306, or 308 is identical even though
the interface used to access the instrument is different.
A dataflow diagram for these three processes is shown
in FIG. 5. Referring now to FIG. 5, the SESSION
- TYPE process 502 uses the data contained in data flow
L3 to determine whether the I/0 operation will be to a
device or to another computer system acting as a
commander. A commander, also called a controller, is a

computer used to control one or more instruments. If

the session type is a commander session, session type
process 502 calls the COMMANDER process 508 to

perform the input/output operation.

If the session type is directly to a device, session type
process 502 calls the DEVICE process 504 to perform
the operation. Several DEVICE processes 504 are
shown, since several instruments can be connected to a
single bus, such as the IEEE 488 bus, and the USER
PROCESS may communicate with all of them. If the
USER PROCESS wishes to communicate directly to
the interface bus, SESSION TYPE process 502 calls the
INTERFACE process 506 to directly interface to the
instrument and perform the input/output operation.
The COMMANDER process 508 and the DEVICE
process 504 also use the INTERFACE process 506 to
send and receive data to the instruments.

The DEVICE process 504, the COMMANDER
process 508, and the INTERFACE process 506 may
receive an interrupt from the instrument being con-
trolled. When an interrupt does occur, the process re-
ceiving the interrupt calls the INTERRUPT CON-
TROL process 212 (FIG. 2) and passes the data flow L9
to the INTERRUPT CONTROL process 212.

The interrupt control process 212 is better shown in
FIG. 6. Referring now to FIG. 6, USER REQUEST
CONTROL process 602 recetves the data identifying
which mterrupt occurred over data flow L9 and it ob-
tains a user mask from the session data 216 over data
flow L10. This mask identifies what type of interrupts
are being accepted by the USER PROCESS. USER
REQUEST CONTROL process 602 compares the type
of interrupt received to the mask and determines
whether the USER PROCESS is accepting this type of
interrupt. If the USER PROCESS 128 is accepting the
type of mterrupt that occurred, USER REQUEST
CONTROL process 602 calls the USER PROCESS
128 and passes data flow 110 to the USER PROCESS.
Data flow L10 identifies which type of interrupt oc-
curred, and i1t also contains the INST ID identifying
which instrument is involved. If USER REQUEST
CONTROL process 602 determines that the USER
PROCESS 1s not accepting the type of interrupt that

10

15

20

25

30

35

45

50

35

60

65

6
occurred, it calls GROUND REQUEST process 604
which ignores the interrupt.

Several other processes shown in FIG. 2 may be
called by the user process. USER PROCESS 128 may
call the IONINTR process 204 to provide the USER
PROCESS the ability to set up interrupt information.
The USER PROCESS passes the INST ID, an inter-
rupt handler function pointer, or a reference variable to
be set, over a data flow L13. The IONINTR routine 204
then sets up the mformation which is used by the IN-
TERRUPT CONTROL process 212 when an interrupt
does occur.

The USER PROCESS may also call the IONSRQ
process 206 to set up access to service request handlers.
When this call occurs, the USER PROCESS passes the
INST ID, a pointer to the service request handler, and
a reference variable to be set. The IONSRQ process 206
then stores this data into the session data 216 over a data
flow L14.

- USER PROCESS 128 may also call the
ITERMCHR process 208 to obtain the current termina-
tion character, or to set the termination character that
will be used in input/output operations. Data flow L17
contains the INST ID, the termination character, or a
pointer to a reference variable where the current termi-

nation character will be stored by the ITERMCHR
process 208.

In a similar manner, the USER PROCESS 128 may
also call the ITIMEOUT process 210 to access or set
the time out value. When called, data flow L16 contains
the instrument ID, a time out value, or a pointer to a
reference variable where the current time out value will
be stored by the ITIMEOUT routine to 110.

One of the most significant features of higher level
programming languages is the ability to format data
automatically before sending that data to an input/out-
put device. Typically, format statements convert inte-
ger numbers, and floating point numbers in various
formats into a displayable or printable format that can
easily be read by people, thus formatted input/output
has been typically used for printing information or dis-
playing information on a terminal. The present inven-
tion provides these capabilities for data being sent to or
received from an electronic test instrument, however,
the invention extends these capabilities to special num-
ber formats that are unique to instrumentation. For
example, IEEE standard 488 defines several different
number formats which are used in interchanging data
with electronic instruments. The present invention pro-
vides the ability to create these number formats within
the formatted 1/0 capability.

The IEEE 488 formats used by the invention are a

series of flags, which modify the meaning of the conver-

sion specification within the format string. The flags are
shown in Table 3.

FIG. 7 shows a data flow diagram of the formatted
output process of the invention. Referring now to FIG.
7, the USER PROCESS 128 (also shown in FIG. 1) has
three functions available for performing formatted out-
put to an instrument. ISETBUF process 704 provides
the USER PROCESS 128 access to control the format-
ted mput/output buffers. When the USER PROCESS
128 calls the ISETBUF process 704 it passes data flow
.90 which includes the INST ID, a mask indication for
the read or write buffer, and the size of the buffer.
ISETBUF process 704 stores this information into the

FMT 1/0 BUFFER data store 720 through data flow
L101.

5,361,336

7
The USER PROCESS 128 can also flush the output
buffer, that is, empty it of all its contents, by calling the

IFLUSH process 708. When the IFLUSH process 708

is called, data flow 191 contains the INST ID and a
buffer mask which indicates which of the formatted

input/output buffers are to be flushed. IFLLUSH process
708 then calls BUFFER PROCESS WRITE 714 to

write the data to the instrument. BUFFER PROCESS
WRITE 714 in turn calls the IWRITE/IREAD process
214 (FIG. 2) to perform the output operation.

USER PROCESS 128 calls the IPRINTF process
706 to perform a formatted output operation. When
IPRINTF 706 1s called, data flow 1.99 contains the
INST ID, the format string containing the format speci-

d

10

fications for how the data should be formatted, and a 15

series of arguments which contain the data that is being
output. IPRINTF process 706 calls the PARSE

IPRINTYF FORMAT process 710 which analyzes the

format string and converts the format parameters into
information to be used by the DATA FORMATTER
process 712, PARSE IPRINTF format 710 stores infor-
mation in the FMT I/0 FLAGS data store 718 through
a data flow L97. The data flow 1.97 contains an end
character, field width information, the precision indi-
cating the number of digits to the right of a decimal
place for number formats or a maximum width for
string formats, a justify flag, a number format flag, and
a prefix character. PARSE IPRINTF format process
710 then calls DATA FORMATTER process 712. The

DATA FORMATTER process 712 takes the con-
verted conversion parameters and the formatted 1/0

flags from the FMT 1/0 FLAGS data store 718 and |

converts the user’s arguments into the desired output
data. DATA FORMATTER process 712 then calls
BUFFER PROCESS WRITE 714 and passes the data
flow L95, which contains the data to be sent to the
instrument. BUFFER PROCESS WRITE then calis
IWRITE/IREAD 214 to perform the output operation
to the instrument.

After the data has been written to the instrument,
control returns to IPRINTF 706 which reads the buffer
flush flag over data flow L1100 and determines whether
the buffer shouid be flushed after the data has been
output. If the flag indicates that the buffer should be
tflushed, IPRINTF process 706 calls IFLUSH process
708 to tlush the WRITE buffers. Control then returns to
the USER PROCESS 128.

FIG. 8 shows a data flow diagram of the BUFFER
PROCESS WRITE 714. Referring now to FIG. 8,
when BUFFER PROCESS WRITE 714 is called from
the IFLUSH process 708 using data flow 1.91, control
goes to block 808 which determines whether the buffer
1s empty. If the buffer is empty, block 808 calls block
810 which performs a NOOP operation and returns to
IFLUSH process 708 since there is no need to flush an
empty buffer. If the buffer is not empty, block 808 trans-
fers to block 806 which gets the buffer size from the
FMT 1/0 BUFFER data store 720 over data flow 1.94
and calls the IWRITE/IREAD process 214 (FIG. 2)
passing data flow 1.92 to write the contents of the buffer
to the instrument.

If the BUFFER PROCESS WRITE 714 is called
with data flow L95 from the data formatter process 712,
block 802 determines whether the buffer is full. If the
buffer 1s full, control goes to block 806 which retrieves
the buffer contents from the FMT 1/0 BUFFER 720
over data flow L94 and sends these contents to the
IWRITE/TREAD process 214 to write the contents to

20

25

30

35

45

50

35

60

65

8
the instrument. If the buffer is not full, block 802 trans-
fers to block 804 which puts the data into the FMT 1/0
BUFFER 720 through data flow L93.
FI1G. 9 shows a data flow diagram of the formatted
prompt process of the invention. Prompt provides a

means for the computer to send information to an in-
strument and then immediately receive information

back from the instrument, thus prompt is a combination -
of IPRINTF described above and ISCANF described
below. Referring now to FIG. 9, the USER PROCESS
128 calls the IPROMPTF process 904 sending the data
flow L70 during the call. The data flow L70 contains
the INST ID, a format string to be used for writing data
to the instrument, a format string to be used for reading
data back from the instrument, and the arguments used
for both the write and the read formats. The
IPROMPTF process 904 provides the user level access
to an atomic output and input with an instrument. This
atomic output and input means that all interrupts are
held off until the IPROMPTF process 904 is completed.
IPROMPTF 904 first calls IFLUSH process 708 using
data flow L67 to flush the write buffer before sending
data to the mstrument. The data flow L67 comprises an
INST ID and a buffer mask to define the buffer being
flushed. IPROMPTF 904 then calls IPRINTF 706 de-
scribed above with respect to FIG. 7, to send formatted
data to the instrument. IPROMPTTF then calls IFL.USH
process 708 to flush the read buffers and sends data flow
L.69 to the IFLUSH process 708. Data flow L69 con-
tains the INST ID and a buffer mask to identify the read
buffer to be flushed. IPROMPTF 904 then calls IS-
CANTF process 1004 sending data flow 1L.66 to perform
the read from the instrument. Data flow L66 contains
the INST ID and the read format string. When IS-
CANEF process 1004 returns to IPROMPTEF, it returns
data flow .65 which contains the data that was read
from the instrument. IPROMPTF then returns the data
to the USER PROCESS in data flow L64.

FIG. 10 shows a data flow diagram of the formatted
input process of the invention. Referring now to FIG.
10, the USER PROCESS 128 (also shown in FIG. 1)
has three functions available for performing formatted
input to an instrument. ISETBUF process 704 provides
the USER PROCESS 128 access to control the format-
ted input/output buffers. When the USER PROCESS
128 calls the ISETBUF process 704 it passes data flow
L.80 which includes the INST ID, a mask indication for
the buffer, and the size of the buffer. ISETBUF process
704 stores this information into the FMT I/0 BUFFER
data store 720 through data flow L77.

‘The USER PROCESS 128 can also flush the input
buffer, that is, empty it of all its contents, by calling the
IFLUSH process 708. When the IFLUSH process 708
is called, data flow L82 contains the INST ID and a

buffer mask which indicates which of the formatted

input/output buffers are to be flushed. IFLUSH process
708 then calls BUFFER PROCESS READ 1010 to
read any remaining data from the instrument. BUFFER
PROCESS READ 1010 in turn calls the IWRITE/I-
READ process 214 (FIG. 2) to perform the input opera-
tion. After the data is read from the instrument, it is
removed from the buffer and discarded.

USER PROCESS 128 calls the ISCANF process
1004 to perform a formatted input operation. When
ISCANF 1004 is called, data flow L90 contains the
INST ID, the format string containing the format speci-
fications for how the data should be formatted, and a
series of arguments which will contain the data that is

5,361,336

9

being input. ISCANF process 1004 calls the PARSE
ISCANF FORMAT process 1006 which analyzes the
format string and converts the format parameters into
information to be used by the DATA PARSER process
1008. PARSE ISCANF FORMAT 1006 stores infor-
mation in the FMT 1I/0 FLAGS data store 718 through
a data flow L79. The data flow L79 contains an end
character, field width information, the precision indi-
cating the number of digits to the right of a decimal
place for number formats or a maximum width for
string formats, a justify flag, a number format flag, and
a prefix character. PARSE ISCANF FORMAT pro-
cess 1006 then calls DATA PARSER process 1008.
DATA PARSER process 1008 then calls BUFFER
PROCESS READ 1010 and passes the data flow L88,
which will contain the data to be received from the
mstrument. BUFFER PROCESS READ 1010 then
calls IWRITE/IREAD 214 to perform the input opera-
tion from the instrument. After the read is performed,
control returns to the DATA PARSER 1008. The
DATA PARSER process 1008 takes the converted
conversion parameters and the formatted I/0 flags
from the FMT 1/0 FLAGS data store 718 and con-
verts, or unformats, the data read by BUFFER PRO-
CESS READ 1010 into the desired input data.

After the data has been read from the instrument,
control returns to ISCANF 1004 which reads the buffer
flush flag over data flow L75 and determines whether
the buffer should be flushed after the data has been
input. If the flag indicates that the buffer should be
flushed, ISCANF process 1004 calls IFLUSH process
708 to flush the read buffers. Control then returns to the
USER PROCESS 128.

FIG. 11 shows a data flow diagram of the BUFFER
PROCESS READ 1010. Referring now to FIG. 11,
when BUFFER PROCESS READ 1010 is called from
the IFILUSH process 708 using data flow 181, control
goes to block 1108 which CALLS IWRITE/IREAD
process 214 which reads data until the buffer is empty.
When BUFFER PROCESS READ 101 is called. from
the DATA PARSER process 1008 using data flow 188,
block 1102 determines if the buffer is empty. If the
buffer 1s not empty, block 1102 transfers to block 1106
which gets the buffer size from the FMT 1/0 BUFFER
data store 720 and gets data from the FMT 1/0
BUFFER 720 which it returns over data flow L88. If
the buffer is empty, block 1102 calls block 1104 to read
data 1nto the buffer. Block 1104 calls IWRITE/IREAD
process 214 to read the data, then GET BUFFER 1104

calls block 1106 to send the data back to the caller on
dataflow LS8S.

Having thus described a presently preferred embodi-
ment of the present invention, it will now be appreci-
ated that the aspects of the invention have been fully
achieved, and it will be understood by those skilled in
the art that many changes in construction and circuitry
and widely differing embodiments and applications of
the invention will suggest themselves without departing
from the spirit and scope of the present invention. The
disclosures and the description herein are intended to be
illustrative and are not in any sense limiting of the in-
vention, more preferably defined in scope by the fol-
lowing claims.

TABLE 1
Data Flow Descriptions
1.1 Data returned from IOPEN
INST ID instrument data structure identification

10

15

20

25

30

35

45

30

33

65

10

TABIE 1-continued
Data Flow Descriptions

L2 User Supplied Data for iread () and iwrite()
INST ID INST ID returned by iopen()
Data buffer pointer to data to be sent/received
Data length length in bytes of data to be sent/received
End flag none zero if END indicator should be sent
(write() only)
Actual count actual number of data bytes sent/received
Reason reason why read terminated (iread()
only)
L3 Data to/from Bus
L2 Data all data associated with L2
Timeout read/write timeout value
‘Termchar read termination char
RW__flags read/write flags (block/non-block)
L4 Configuration Data
Address Instrument bus address
InfType Interface Type
InstType Instrument Type
L5 Instrument Data
Address Instrument bus address
InfType Interface Type
InstType Instrument Type
L6 Output to/from bus
Data data read/written to/from register
accesses
1.9 Interrupt Data
Interrupt data telling which mterrupts
have occurred
L10 Users Interrupt Data
Users mask the users interrupt mask
L1l User Interrupt Data
Masked Intr data telling which (of those the user has
requested) have occurred
INST ID INST ID setup by iopen()
L12 Service Request Information
INST ID INST ID retumed by iopen()
Function addr Address of function to use to install as
the service request or reference variable
for the address of the last function
install to handle service request
L13 Interrupt Information
INST ID INST ID returned by iopen()
Function addr Address of function to use to install
as the interrupt handler or reference
variable for the address of the last
function install to handle interrupts
Interrupt num List of interrupts that have occurred
.14 SRQ Data
Function addr Address of function to use to install as the
service request or reference variable
for the address of the last function
install to handle service request
L15 Interrupt Data
Function addr Address of function to use to install as the
interrupt handler or reference variable
for the address of the last function
installed to handle interrupts
Interrupt num List of interrupts that have occurred
L16 Timeout
INST ID INST ID returned by iopen()
Msecs Value of timeout in milliseconds
L17 Termination Character
INST ID INST ID returned by iopen()
Char Character to used for read/write
termination
.18 Timeout
Msecs Value of timeout in milliseconds
L19 Termination Character
Char Character to used for read/write
termination
L20 Control Information
Msecs (1) Value of timeout in milliseconds
Char (.1) Character to used for read/write
termination
Interface (.2) Which interface
L65 User Supplied Arguments
argim+ 1,n] argument(s) used to satisfy flags and/or
conversion commands (no arguments are
required)
L66 iscanf() Arguments
INST ID INST ID returned by iopen()

L.67

1.68

L69

L70

L74
L75

L.76

L77

L80

.81
L82
.34

L8386

L83

139

L90

190

1.91]

194

1.95
1.96

L.97

5,361,336

11

TABIE 1-continued
Data Flow Descriptions

Format read format string

Arguments for iflush()

INST ID INST ID returned by iopen()

Buffer Mask Buffer mask for write buffer

iprintf() Arguments

INST 1D INST ID returned by iopen()

Format write format string

arg[1l,m] argument(s) used to satisfy flags and/or
conversion commands (no arguments are
required)

Arguments for iflush()

INST ID INST ID returned by iopen()

Buffer Mask Buffer mask for read buffer

User Supplied Data for ipromptf()

INST ID INST ID returned by iopen()
Write Format format string

Read Format format string

arg[1,n] argument(s) used to satisfy flags and/or
conversion commands (no arguments are
requured)

Instrument ID

INST ID INST ID setup by iopen()

- Buffer Flush Flag

Flush Flag flush I/0 buffer at end of iscanf()

User Supplied Arguments

arg[1 -—-n] argument(s) used to satisfy flags and/or
conversion commands (no arguments are
required)

Buffer Size

Buffer Size size of Formatted I/0 buffer

- User Supplied Data for isetbuf()

INST ID INST ID returned by iopen()
Buffer Mask indicates which Formatted 1/0 buffer
Size buffer size (The size can cause several

different behaviors depending on its size.
Instrument ID

INST ID INST ID setup by iopen()

~ User Supplied Data for iflush()

INST ID
Buffer Mask

INST ID returned by iopen()
Indicates which Formatted 1/0 buffer
to flush

Buffered Data

Data bytes of data in raw format from an
iread()

Formatted 1/0 Flags

Width field width

Precision number of digits to the right of the
decimal for number formats or maximum
width for string formats

Justify right or left justify?

Number 1.e. NR1, etc.

Format

Prefix prefix character

Data

Raw Data bytes of data as they are needed by Data

parser
Converted Conversion Command Data

Conversion conversion commands converted
to computer
Data readable information

User Supplied Data for iscanf()

INST ID INST ID returned by topen()
Format format string

User Supplied Data for userbuf()

INST ID INST ID returned by iopen()
Buffer Mask indicates which formatted 1/0 buffer
Size buffer size (The size can cause several

different behaviors depending on its size.
User Supplied Data for iflush()
INST ID INST ID returned by iopen()
Buffer Mask Indicates which formatted 1/0 buffer
to flush
Final Formatted Data
Buffered Data data put into the buffer or sent to iwrite()
(only sent to iwrite() on a flush)
Formatted Data

Data bytes of data as they are formatted
Instrument ID

INST ID INST ID setup by iopen()
Formatted 1/0 Flags

END Char append an end character to end

12
TABLE 1-continued

Data Flow Descriptions

of formatted data

5 Width field width
Precision number of digits to the right of the
decimal for number formats or max-
imum width for string formats
Justify right or left justify?
Number Le. NRI, etc.
Format
10 Prefix prefix character
L98 Converted Conversion Command Data
Conversion conversion commands converted to
Data computer readable information
1.99 User Supplied Data for iprintf()
INST ID INST ID returned by iopen()
15 Format format string
arg{1—n] argument(s) used to satisfy flags and/or
conversion commands (no arguments are
required) |
1.100 Buffer Flush Flag
Flush Fiag flush I/0 buffer at end of iprintf()
20 L1101 Buffer Size
Buffer Size size of formatted 1/0 buffer
TABLE 2
25 ‘The data fields in the session data (INST) are:
Interface Type
Session Type
Interface Address
Device Address
User’s Data Pointer
30 Termination Character
Read Buffer Size/Mode
Write Buffer Size/Mode
Thint Value
SRQ Handler Address
Interrupt Handler Address
35 Session Interrupt Mask (User)
Lock Wait Flag
Timeout Value
TABLE 3
40

@2

45 @3
@H
@B

55
Il+ ”»”

60
(blank)

@1 ”Speciﬁes that the conversion is to create and NR1

compatible number, as defined in the IEEE 488.2
standard.

Specifies that the conversion is to create an NR2
compatable number, as defined in the IEEE 488.2
standard.

Specifies that the conversion is to create an NR3
compatible number, as defined in the IEEE 488.2
standard.

Specifies that the conversion is to create an IEEE 488.2
hexadecimal numeric response data number of the form
“#H ...” where “.” is replaced by a valid hex digit.
specifies that the conversion is to create and IEEE 488.2
octal numeric response data number of the form

“#Q . ..” where “.” is replaced by a

valid octal digit.

specifies that the conversion is to create and IEEE 488.2
binary numeric response data number of the form

“#B ...” where “.38 is replaced by a

valid binary digit.

Left justify the result within the given field width
(assumes that a field width has been specified).

Prefix the output value with a sign (+ or —) if the
output value is of a signed type/ This is only valid for
numeric conversions using NR1, NR2, or NR3 formats.
Prefix the output value with a space character,

if the output value is signed and positive; the blank is
ignored if both the bank and + flags appear.

65 What is claimed is:
1. A method of performing input and output opera-
tions between an electronic instrument and a computer
system, said computer system comprising a plurality of

5,361,336

13

types of interfaces, wherein said method is independent
of the type of interfaces used to connect said instrument
to said computer system, said method comprising the
steps of:

(a) retrieving an interface type and interface address
of said instrument from a configuration means,
wherein said configuration means 1s separate and
independent from said instrument;

(b) using information from said configuration means
to create an instrument identification data struc-
ture;

(c) receiving all mput and output operation subrou-
tine calls from a user program through an instru-
ment programming interface means;

(d) creating a plurality of interface module means,
one of said plurality of interface module means
being created for each of said types of interfaces;

(e) using said instrument identification data structure
to select one of said plurality of interface module
means;

(f) performing said input and output operations using
said selected interface module means; and

(g) performing said input and output operations
through a commander interface means and through
a second computer system acting as a commander.

2. The method of claim 1 wherein step (f) further

comprises the steps of:

(f1) formatting any output data before sending said
data to said instrument using formatted data types
defined by said type of interface conneciing said
instrument and said computer system; and

(f2) unformatting any data received from said instru-
ment using formatted data types defined by said
type of interface connecting said instrument and
said computer system.

3. The method of claim 1 further comprising the step

of:

(h) performing a second set of input and output oper-
ations within said instrument programming inter-
face means, said second set being identical to the
input and output operations performed in step (f), a
subset of the second set may include operations
which are unnecessary in some of said types of
interfaces, whereby said user program uses a same

set of operations regardless of said type of inter-
face.

4. The method of claim 1 wherein step (f) further
comprises the step of:

(f1) if said user program requests a combined output
and input operation, performing both said output
and 1nput operations without allowing interrupts
between said output and said input operations.

5. A system for performing input and output opera-
tions between an electronic instrument and a computer
system through one of a plurality of types of interfaces
used to connect said instrument to said computer sys-
tem, wherein said method is independent of said plural-
ity of types of interfaces, said system comprising:

immstrument programming interface means for receiv-
ing all input and output operation subroutine calls
from a user program;

a plurality of interface module means, one for each of
said plurality of interface types;

configuration means, separate and independent from
said instrument, for providing an interface type and
interface address of said instrument;

means for accessing said configuration means and for
creating an instrument identification data structure;

10

15

20

25

30

35

45

50

23

60

65

14

means within said instrument programming interface
means for using said instrument identification data
structure to select one of said plurality of interface
module means; and |

means for performing said input and output opera-
tions using said selected interface module means.

6. The system of claim § wherein said instrument
programming Interface means further comprises
commander interface means for performing input and
output operations through a second computer system
acting as a commander.

7. The system of claim 5 wherein said instrument
programming interface means further comprises means
for performing a second set of input and output opera-
tions within said instrument programming interface,
said second set being identical to the input and output
operations performed by said means for performing said
input and output operations, a subset of the second set
may include operations which are unnecessary in some
of said types of interfaces, whereby said user program
uses a same set of operations regardless of said type of
interface.

8. The system of claim § wherein said means for per-
forming said input and output operations further com-
prises:

means for performing both said output and input
operations without allowing interrupts between
said output and said input operations, if said user
program requests a combined output and input
operation.

9. The system of claim 5 wherein said instrument
programming interface means further comprises for-
matted mmput and output operation means for converting
internal data to a format usable by said instrument.

10. The system of claim 9 wherein said format usable
by said mstrument comprises number formats unique to
at least one of said interface types.

11. A method of accessing an electronic instrument
from a computer system, said computer system com-
prising a plurality of types of interfaces, wherein said
method 1s independent of the type of operating system
used within said computer system, said method com-
prising the steps of:

(a) retrieving an interface type and interface address
of said instrument from a configuration means,
wherein said configuration means is separate and
independent from said instrument;

(b) accessing said configuration means and creating

- an instrument identification data structure;

(c) receiving all input and output subroutine calls
from a user program through an instrument pro-
gramming interface means;

(d) creating a plurality of interface module means,
one of said plurality of interface module means
being created for each of said types of interfaces;

(e) using said instrument identification data structure
to select one of said plurality of interface module
means; and

(f) performing said input and output subroutine calls
using said selected interface module means; and

(g) performing a second set of input and output func-
tions within said instrument programming interface
means, said second set being identical to the input
and output operations performed in step (f), a sub-
set of the second set may include functions which
are unnecessary in some of said types of operating
systems, whereby said user program uses a same set

5,361,336

15

of functions regardless of said type of operating
system.

12. The method of claim 11 further comprising the

step of:

(h) performing said input and output through a
commander interface means and through a second
computer system acting as a commander.

13. The method of claim 11 wherein step () further

comprises the steps of:

(f1) formatting any output data before sending said
data to said instrument using formatted data types

d

10

15

20

25

30

35

40

45

50

35

60

65

16

defined by said type of interface connecting said
instrument and said computer system; and

(f2) unformatting any data received from said instru-
ment using formatted data types defined by said
type of interface connecting said instrument and
said computer system.

14. The method of claim 11 wherein step (f) further

comprises the step of:

(f1) if said user program requests a combined output
and input operation, performing both said output
and input operation without allowing interrupts

between said output and input operation.
% * % %k Xk

	Front Page
	Drawings
	Specification
	Claims

