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[57] ABSTRACT

An indexed record locating and counting mechanism
quickly returns time critical information to query mech-
anisms. The amount of time required to return time
critical information is linearly bounded by the length of
the sequences of symbols or records requested by the
query, allowing massively scaled databases to be manip-
ulated quickly and efficiently on a record by record
basis.
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INDEXED RECORD LOCATING AND COUNTING
MECHANISM

BACKGROUND OF THE INVENTION

The mvention relates to improvements of access to
data 1n the general form of TRIE tree indexed records.
TRIE tree indexes are described in Knuth: The Art of
Computer Programming, “Searching and Sorting” (pp.
431-505) (1973), in Aho, Hopcroft, and Ullman: Data

5

10

Structures and Algorithms (pp. 163-169)(1983), in -

Kruse: Data Structures and Program Design (pp.
377-382)(1984), and as radix search trees in Sedgewick:
Algorithms (pp. 213-223)(1983).

The use of such a tree for a multi-user database sys-
tem with enhancements to concurrent access features is

described in U.S. Pat. No. 4,914,569 to Levine and
Mohan describing a means to traverse a B-Tree or

TRIE tree mm an orderly fashion while checking and

updating the multi-user-access system on a node-by-
node basis.

A design to improve query access to records indexed
by TRIE trees is described in U.S. Pat. No. 4,774,657 to
Anderson et al. describing a means to reduce the num-
ber of pages accessed to count the subtree leafs corre-
sponding to a given query. -

The quality of access to records can be described in
general by the amount of time required to repaint the
query screen. In other words, a figure of merit can be
based on the perceived delay presented to the user issu-
ing a database query.

Often a broadly stated query to a large database will
return far more information than can be displayed si-
multaneously on a screen. In such circumstances the
user 1s often given a scrollable partial listing of records.
In such a user interface only a small subset of the re-
cords requested needs to be retrieved for display on the
screen along with the record number range and the
maximum number of records returned by the query.
When the user scrolls to a different part of the listing,
only another small subset of the records needs to be
retrieved and displayed on the screen.

Typical relational database systems provide this in-
formation after building temporary tables which are
arrays of records retrieved in record number order.
Although such arrays are easy to access by record num-
ber, such arrays can be time consuming to build. Often
the entire query i1s executed to build them. This can
result in a lengthy delay before any information about
the first subset of records and the total number of re-
cords can be retrieved for the user.

The quality of access to records can be improved by
eliminating the construction of temporary tables, and
retrieving the first subset of records and the total num-
ber of records via a system of indirect references de-
scribed in this invention. Other subsets of the records
can also be retrieved via the same system of indirect
references.

The user can then decide to alter the query slightly to
better describe the information sought, without invok-
ing the overhead of fully executing a query.

SUMMARY OF THE INVENTION

The 1nvention avoids having to retrieve all records
corresponding to a query, while retrieving the neces-
sary information for browsing or making a database
traversal decision. Each node of the TRIE tree contains
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a subleaf count of the number of leafs branching out-
ward from that node.

A subleaf count is never less than one, since even a
leaf node has itself as a leaf. A node close to the root
node of the tree may have a subleaf count close to the
leaf count for the entire tree.

A subleaf count stored in each node provides the
necessary information to traverse the TRIE tree only
once from top to bottom to retrieve both the nth record
In a simple query and the maximum number of records
In a simple query. Since a TRIE tree is bounded in
length from top to bottom by the longest record in-
dexed by the tree, the search time for the nth record is
linearly bounded by this length, along with the time to
return the maximum number of records in a query. The
advantage of such bounding is obvious considering that
a TRIE tree can store 26” alphabetic records of length
of n. For a length of only five characters, this corre-
sponds to over 11 million records.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a node by node example of a small TRIE
iree.

FIG. 2 1s a procedure flow chart of the functions
performed to count the maximum number of records
retrieved by a simple query.

FIG. 3 is a procedure flow chart of the functions
performed to retrieve the nth record of a simple query.

FIG. 4 is a Venn diagram of the sets of records in-
volved in a compound query.

FIG. § i1s a procedure flow chart of the functions
performed to count the maximum number of records of
a compound query.

FIG. 6 is a procedure flow chart of the functions
performed to retrieve the nth record of a compound
query.

FIG. 7 is a procedure flow chart to estimate the num-
ber of records in 2 compound query.

FIG. 8 is a table showing the record numbers sam-
pled by the procedures of FIG. 7 and FIG. 9 for a small
number of records.

FIG. 9 is a procedure flow chart to count the number
of records for a compound query after that number has
been estimated by the procedure in FIG. 7.

FIG. 10 is a diagram of a distributed database archi-
tecture.

DETAILED DESCRIPTIONS OF THE
PREFERRED EMBODIMENTS

FIG. 1 is a representation of a TRIE tree which will
be used to demonstrate operation of the preferred em-
bodiments of this invention. Nodes connected by lines |
indicate the data structure of the tree. Each node con-
sists of a text string which is the node’s sub-sequence of
symbols, and a boldface number which is the subleaf
count for the node. The upper left-hand corner small

- black circle of the tree is the root node. The right side

60

65

of the tree is made up of leaf nodes. |

Each record represented by the TRIE tree can be
read from left to right following the nodes from the root
of the tree to the leaf, concatenating the sub-sequence of
symbols in each node along the path. Each path from
root to leaf stores a single record.

Leaf nodes of a TRIE tree can be used to point to
structures outside the tree such as picture or sound data
structures, or other TRIE trees. For simplicity in de-
scribing this invention, the examples given will focus on
the ability of the TRIE tree to store within itself any
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unique symbol sequence of data. For instance, a text file
containing sentences could be stored on a one sequence
per sentence basis. To preserve sentence ordering each
sentence could be prefixed by a sentence number.
Alternatively, a data base structured around tables 5
with fields containing database values could be stored
within a TRIE tree, where the table names would prefix

the field names, and the field names would prefix the
field values. For instance, in FIG. 1 “Acme company”
could be a table name and “certified accountants in- 10

clude:” could be a field name and “employees include:”
could be another field name.

In order to store duplicate field values in a TRIE tree
one might for example put a distinguishing number in
parenthesis after the value, to indicate that two of that
value existed. In FIG. 1, if another employee named
John Mayer was to be added, the leaf node Mayer could
be amended to point to “(1)” and “(2)” which would
become the new leaf nodes. The numbers in parenthesis
would be not be considered the actual name itself when
matching names in one part of the TRIE tree to names
in other parts. For consistency, the numbers in paren-
thesis might be social security numbers unique to indi-
vidual people.

RETRIEVING A SIMPLE QUERY COUNT:

For example, to find the number of unique sequences
beginning with “Acme company employees include:”
represented in the data structure of FIG. 1, it is suffi-
cient to find the node with the sub-sequence “employ- 30
ees include:” and the subleaf count of 10. A straightfor-
ward TRIE tree traversal can find this node using the
procedure outlined in FIG. 2. The desired symbol se-
quence would be “Acme company employees in-
clude:”. This would become the PREFIX. Each char- 35
acter of the PREFIX from left to right would be sought
In turn while traversing the tree, until all the characters
of the PREFIX were matched and the subleaf count
number returned. -

- RETRIEVING A SIMPLE QUERY NTH RE- 40
CORD:

Once a subleaf count is returned, the range of valid
record numbers for the query is known and individual
records can be requested by number. A direct traversal
of the TRIE tree using the procedure of FIG. 3 can be 45
used to return the nth record of the query, since each
node has a subleaf count which allows the correct
branch of the TRIE tree to be chosen. This is calculated
using a RECNUM variable carrying the desired record
number relative to the subleaf count number for each s
child node branching to the right of each node in the
tree.

For example, to find the fifth record of “Acme com-
pany employees include:” the RECNUM would ini-
tially be assigned a value of 5. Since 5 is between 1 and 55
10, this would be within range. The node selected by
the procedure of FIG. 2 contains the sub-sequence “em-
ployees include:” and has four child nodes with subleaf
counts of 3, 2, 4, and 1. Summing 0+3=3, 3+2=>5 until
the SUM reaches 5, the second child node is selected. 0
The new RECNUM is assigned 5—5+2=2, while the
newly selected node contains “John” which has two
children with subleaf counts of 1 and 1. Summing
O+ 1=1, 14+ 1=2 until the SUM reaches 2, the second
node 1s selected and has no children. The unique se- 65
quence for the record is assigned form the path of sub-
sequences from the root node of the TRIE through this
selected leaf node. Concatenation of these path nodes
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sub-sequences forms the record sequence “Acme com-
pany employees include: John Mayer”.

COMPOUND QUERY SETS:

Often a simple query must be joined with another
simple query to define a compound query. The informa-
tion which returns from a compound query can be de-
fined by set notation. For instance, from the example of
FIG. 1, a simple query might be “Acme company em-
ployees include:”” which would return the ten company
employees. Another simple query might be “certified
accountants include:” which would return the five ac-
countants from the lower subtree. A compound query
might return any of the three Venn diagram regions
shown in FIG. 4: The set of certified accountants which
are not Acme company employees, the set of Acme
company employees which are not certified accoun-
tants, and the intersection set of Tara Klein and Ted
Fisher, who are both employees and accountants.

Note that a separate branch of the Acme company
subtree exists to define the intersection set, in case it
needs to be accessed by a simple query. For retrieval
speed many separate branches of the Acme company
subtree could be generated for various set intersections.
For query flexibility, however, it is important that char-
acteristics of set intersection can be quickly determined
on the fly without pre-stored set intersections. Using the
procedures outlined in FIG. 2 and FIG. 3 on the data
structure of FIG. 1 such on the fly querying can be
greatly improved.

MAXIMUM NUMBER OF RECORDS RETURN-
ING FROM A COMPOUND QUERY:

An important characteristic of a compound query is
the maximum number of records which might return
form the query. In FIG. 5 a procedure determines this
number by using the procedure of FIG. 2 applied twice,
once to €ach of the component sub-queries, retrieving
one record count for each sub-query and returning the
minimum of the two record counts. The primary query
1s chosen to minimize the number of records to be
probed in determining the set intersection.

RETRIEVING A COMPOUND QUERY NTH
RECORD:

Once the maximum number of records is known, a
particular record can be retrieved by record number
using the procedure of FIG. 6. Unlike typical relational
database which retrieve only set intersection records, in
FIG. 6 the set complement records are retrieved as null
records, in case such records are needed. Using the
procedure of FIG. 6, each record can be quickly ac-
cessed since any particular record is accessed by re-
trieving a record from the primary query and parsing to
form the secondary query.

For example, to find the third record of the intersec-
tion between “certified accountants include:” and
“Acme company employees include:” MAXCOUNT
would be set to 5, the A-QUERY would be set to “certi-
fied accountants include:”, and the RECNUM would
be set to 3. Since RECNUM is within 1 and MAX-
COUNT, the RECNUM would be within range. Then
A-RECORD would be set to “certified accountants
include: Tara Klein”. The intersection substring would
be parsed from this by removing the prefix from the
record, setting A-SHARED to “Tara Klein”. (In some
implementations it may be more useful to parse using a
delimiter character, for instance the colon, or a se-
quence of delimiter characters.) Then B-PREFIX
would be set to “Acme company employees include:”
B-QUERY would then be set to “Acme company ems-
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ployees include: Tara Klein”. This simple query would
return a record count of 1, and set the record to
“ACME company employees include: Tara Klein”. If
the simple query had returned a count of 0, the record
would have been set to null.

RETRIEVING A COMPOUND QUERY ESTI-
MATE:

When the maximum number of records is potentially
large, 1t 1s important to be able to estimate the size of
this intersection when making data base query traversal
decisions. Such information can be used to decide if the
intersection is important enough to pursue or if some
alternative intersection be pursued. Using the proce-
dure of FIG. 7, a sequence of nearly evenly distributed
probes into the potential intersection records can be
made, as time permits. The procedure generates the
numbers in FIG. 8. Each column of numbers under
MAXCOUNT for rows with STEPS less than or equal
to MAXCOUNT shows the record by record probes

made into the potential intersection. The probes are

almost evenly scattered from record numbers 1 to
MAXCOUNT. For MAXCOUNT equal to 1, 2, 4, 8
and any other power of 2 the procedure reaches each
record exactly once with time permitting. For MAX-

COUNT 3, 5, 6,7, 9, and any other MAXCOUNT not

a power of 2, there will be some record or records

remaining. These will be probed by the procedure in
FIG. 9.

When the elapsed tinge is greater than the allowable
response time, an estimate of HITS and TRIES is re-
turned as an estimate of the fraction of non-null records
in the set intersection.

If this estimate has been returned, and there is more
time available to compute a higher accuracy estimate,
the procedures of FIG. 7 and FIG. 9 could be continued
from where STEP, STEPS, HITS, and TRIES were
left off.

RETRIEVING A COMPOUND QUERY COUNT

When the procedure of FIG. 7 has completed sam-
pling potentially intersecting records, there may be time
left to actually get a precise count. Using the procedure
in FIG. 9, these records can be probed, as time permits.

This procedure generates the rows of FIG. 8 where
STEPS i1s greater than MAXCOUNT in columns
headed by MAXCOUNT 3, 5, 6, 7, 9. The records in
these groups which were unprobed by the procedure in
FIG. 7 are indicated by the number followed by a check
mark . The procedure of FIG. 9 generates and identifies
the check marked numbers by first calculating the num-
ber of records remaining to probe, then starting back-
wards from the MAXCOUNT and examining triplets of
record numbers on a finer basis of fractions of MAX-
COUNT. Since the intervals from fraction to fraction
are half the width of the prior fractions generated by the
procedure in FIG. 7, each record number previously
unprobed is definitely generated, along with each re-
cord number previously generated. By generating new
candidate record numbers, and testing them to see if
they overlap with prior record numbers, all unprobed
record numbers can be generated algorithmically with-
out storing a table of prior record numbers.

For example, to produce the RECNUMS for MAX-
COUNT equal to 6, the procedure of FIG. 7 begins
STEPS=1, STEP=1, HITS=0, TRIES=0, and REC-
NUM initially (1*6)/1=6. The 6th record is probed and
HITS and TRIES are logged. Elapsed time is checked.
Since STEPS is less than 24 STEP, and MAXCOUNT
1s greater than 2% STEPS, STEPS is multiplied up to 2.
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RECNUM is then set to (1¥6)/2 which yields the inte-
ger 3. The 3rd record is probed. Again, STEPS is less
than 2+STEP, and MAXCOUNT is greater than
2*STEPS. So STEPS is multiplied up to 4. RECNUM
is then set to (1¥6)4 which yields the integer 1 after
integer truncation. The 1st record is probed. Since
STEPS is now greater than 2-+-STEP, STEP is incre-
mented to 3, and RECNUM is then set to (3*6)/4 which
yields the integer 4 after truncation. The 4th record is
probed. Since STEPS is now equal to STEP+2, and
MAXCOUNT is less than 2* STEPS, the procedure in
FIG. 9 is now invoked.

Following FIG. 9, MORE is set to 6 minus 4 which
equals 2. STEPS is multiplied up to 8, STEP is set to 8,
and RECNUM-0 is set to (8*%6)/8=6. Then RECNUM-
1 1s set to (7*6)/8 which yields the integer 5 after trun-
catton, and RECNUM-2 is set to (6*6)/8 which yields
the integer 4 after truncation. Since RECNUM-1 is
distinct from both RECNUM-0 and RECNUM-2, it is
an unprobed record number. RECNUM-1 is probed
and MORE is decremented. Since there MORE is still
1, another record number to probe is sought. A bounds
check is made on STEP just prior to decrementing it to
prevent a division error. STEP is set to 6. RECNUM-0
is assigned the value of RECNUM-2 which is 4 to save
this from being recomputed. Then RECNUM-1 is set to
(5*6)/8 which yields 3 after truncation. RECNUM-2 is
set to (4%6)/8 which is 3. Since RECNUM-1 equals
RECNUM-2, RECNUM-1 has been probed before and
so must be skipped. STEP is still greater than 5, so
STEP is decremented to 4 and RECNUM-0 gets the
RECNUM-2 value of 4. RECNUM-1 is set to (3*6)/8
which yields 2 after truncation, and RECNUM-2 is set
to (2*6)/8 which yields 1 after truncation. Since REC-
NUM-1 is distinct from both RECNUM-0 and REC-
NUM-2, RECNUM-1 is probed and MORE is decre-
mented. Since MORE is now zero, the exact count of
HITS and TRIES is now.returned.

APPLICATIONS:

The decreasing size and corresponding increase in
speed of micro-processors has created a trend towards
distributed databases, where self-contained computer
systems linked across a network cooperate to store data.

The reliability and speed of this cooperative process-
ing is dependent upon the simplicity and speed of the
underlymng data base operations. The common use of
queries whose response times vary greatly from query
to query for differing datasets both reduces the speed
and creates ambiguity for the query requestor which
cannot know which of a number of causes such as page
faulting or memory allocation for temporary tables has
caused the delay, thereby making fallback logic difficult
to implement and reducing reliability.

The procedures in FIG. 2, FIG. 3, FIG. 5, FIG. 6,
FIG. 7, and FIG. 9 show that a linearly bounded re-
sponse time is possible, even for large complex queries.
In a networked database system, bounded response time
is crucial to maintaining a good user interface, since the
cost of accessing data across a network must be in-
cluded in the design. It is highly important not to move
data across the network when equivalent functionality
1s possible without moving the data.

In FIG. 10, a simple networked database architecture
is shown. The data structure of FIG. 1 is split across
two networked computer systems. All data prefixed by
“certified accountants include:” resides on the left-hand
computer and all data prefixed by “Acme company
employees include:” resides on the right-hand com-
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puter. The third networked computer indicated by the
rectangular box originating the query for the set inter-
section between the two prefixes is distinct from the
other two computers, and so it must conserve the num-
ber of symbols transmitted back and forth on the net-
work in making this query. It can do this for each possi-
ble intersection record in four steps indicated by the
circled numbers in FIG. 10:

STEP 1 requests the nth record of “certified accoun-
tants include:” from the left hand computer.

STEP 2 receives the nth record of “certified accoun-
tants include:” from the left hand computer.

STEP 3 requests the corresponding record of “Acme
company employees include:” from the right-hand
computer.

I claim:

1. A computer implemented method for searching an
information tree of record keys with a search key to
locate and retrieve a plurality of data records of a data-
base held in the memory of a data processing system,
wherein:

each of said record keys represents one of said data

records and comprises a string of a plurality (“‘s”
of characters, the number s of said characters dif-
fering for different ones of said record keys;

said search key comprises a string of a plurality (“k”")

of characters; said tree comprises a plurality of

linked information nodes held in said memory,

wherein each of at least some of said nodes com-

prises: .

(1) a field holding a string of the i-th through p-th
successive characters common to all of the re-
cord keys represented by all of at least one sub-
tree of said each of at least some of said nodes:

(ii) a second field holding either a null pointer or
containing a pointer to another of said nodes for

which said i-th through p-th successive char-
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acters represent an initial portion of the respec-

tive key;

(1i1) a third field containing the total number of 40

record keys represented by said field (i); and
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(1v) a fourth field containing either a null pointer or
containing a pointer to another of said nodes
which contains filed (i) similarly having j-th
through n-the successive characters common to
all of the record keys represented by all of at
least one subtree of said each of at least some of
said nodes, said j-th character greater than said
ith character in some alphabetical ordering;

sald method characterized by:

(step zero)

for each one of said nodes, comparing the string of
the i-th through p-th successive characters of
saild search key with the record key character
string held in the first field of said node, and

(1) if said search key string does not match said re-
cord key string, then

(a) if the fourth field of said node does not contain
said null pointer then jumping to (step zero)
using said node pointed to by said fourth field,
but

(b) if the fourth field of said node contains a null
then immediately terminating search and return-
Ing a message signifying NOT FOUND from the
search, but

(2) if said search key string matches said record key
string, then
(@) if k=p, then immediately terminating search
and returning the number stored in the third field
of said node with a message signifying FOUND
from the search, but
(b) if k>p, then
(1) 1if said second field contains a pointer to an-
other of said nodes, then removing the first k
successive characters from said search key and
jumping to (step zero) using the node pointed
to by said second field, but

(1) if said second field contains a null pointer
then immediately terminating search and re-
turning a message signifying NOT FOUND

from the search.
* * * 4¢ *
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