United States Patent [
F‘ehskens__et al. |

PR 0 0 A

| US005345587A
[11] Patent Number:

[45] Date of Patent:

5,345,587
Sep. 6, 1994

[54] EXTENSIBLE ENTITY MANAGEMENT
SYSTEM INCLUDING A DISPATCHING
KERNEL AND MODULES WHICH
INDEPENDENTLY INTERPRET AND
EXECUTE COMMANDS

[75] Inventors: Leonard G. Fehskens, Westboro:
Colin Strutt, Westford; Steven K.
Wong, Chelmsford; Jill F. Callander,
Hudson; Peter H. Burgess, Salisbury,
all of Mass.; Kathy J. Nelson,
Nashua, N.H.; Matthew J. Guertin,
Westford, Mass.; Mark W. Sylor,
Nashua, N.H.; Kenneth W. Chapman,
Nashua, N.H.; Robert C. Schuchard,
Ashburnham, Mass.; Stanley 1.
Goldfarb, Hudson, Mass.; Dennis O.
Rogers, Leominster, Mass.; Linsey B.
O’Brien, Wellesley, Mass.; Philip J.
Trasatti, Brookline, N.H.; Benjamin
M. England, Haverhill, Mass.; James
L. Lemmon, Jr., Leominster, Mass.;
Richard L. Rosenbaum, Pepperell,
Mass.; Ruth E. J. Kohls, Acton,
Mass.; David L. Aronson, Boston,
Mass.; Robert R. N. Ross, Mansfield,
Mass.; Danny L. Smith, Haverhill,
Mass.; William C. Adams, Jr.,
Topsfield, Mass.; G. Paul Koning,
Brookline, N.H.; Sheryl F. Namoglu,
Mount Vernon, N.H.; Mark J. Seger,
Harvard, Mass.; Timothy M. Dixon,
Woodcote Reading, United
Kingdom; Jeffrey R. Harrow,
Amherst, N.H.

Digital Equipment Corporation,
Maynard, Mass.

[73] Assignee:

211 Appl. No.: 402,391

[22] Filed: Sep. 7, 1989

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 244,114, Sep. 13, 1988,
abandoned, Ser. No. 244,495, Sep. 13, 1988, aban-
doned, Ser. No. 244,503, Sep. 13, 1988, abandoned,
Ser. No. 244,506, Sep. 13, 1988, abandoned, Ser. No.
244,691, Sep. 13, 1988, abandoned, Ser. No. 244,730,
Sep. 13, 1988, abandoned, Ser. No. 244,742, Sep. 13,
1988, abandoned, Ser. No. 244,834, Sep. 13, 1988,
abandoned, Ser. No. 244,845, Sep. 13, 1988, aban-
doned, Ser. No. 244,850, Sep. 13, 1988, abandoned,
Ser. No. 244,851, Sep. 13, 1988, abandoned, and Ser.
No. 244,919, Sep. 13, 1988, abandoned. |

29
[

I
r_"‘"'i':sm -

[51] Int. CLS oo GO6F 9/00; GO6F 15/40
[52] U.S. Cl oo, 395/650; 395/600:
364,/280; 364/280.9; 364/281.3; 364/282.1:

364/286; 364/DIG. 1

[58] Field of Search 395/200, 325, 600, 650
[56] References Cited
US. PATENT DOCUMENTS
4,0_64,392 1271977 Desaluuounvevreveveeeereennnen. 364/492

(List continued on next page.)

OTHER PUBLICATIONS
Brusil et al., “Toward A Unified Theory of Managing

arn

(List continued on next page.)

Primary Examiner—Robert B. Harrell
Assistant Examiner—Ayni Mohamed
Attorney, Agent, or Firm—Wood, Herron & Evans

[57] ABSTRACT

A system for managing an assemblage of entities. The
entities interface within the assemblage for control of
primary information handling functions and further
interface with the system to permit the carrying out of
management functions. The system includes manage-

- ment modules adapted to carry out management func-

tions by independently interpreting and executing com-
mands, a kernel including a table of dispatch pointers
for directing the commands to the respective modules in
which they are to be interpreted and executed, and an
enroller for enrolling new modules into the system by
adding further pointers to the table. In addition, the
system includes: a module adapted to independently
interpret and execute selected management-related

commands; stored records relating to accessed manage-
ment information, each record indicating an associated

time; an information manager, responsive to commands
having a time schedule, for retrieving information from
the records or accessing information from the entities,
including a scheduler for issuing subsidiary accesses or
retrievals at possibly multiple times according to the
schedule; storage containing domain information defin-
ing groups of entities, where the kernel may issue a
commands to a group by issuing individual commands
to appropriate modules; a common command syntax
including fields for identifying the entity and the opera-
tion to be performed; a module that stores rules identify-
ing alarm conditions, including a generator for generat-
ing rules and an alarm detector for detecting an alarm
condition in response to the rules; a module adapted to
carry out self-management functions by interpreting
and executing commands.

16 Claims, 21 Drawing Sheets

L a_—

N aAcT]
{ <50 2325 3
S | = COMPIC. /DOMAIM
15 .
,nrsn’:m L"EE : 2‘1 b 13
) aaLz = NIISTORICAL [
i ~a 241 DATA
S DISPATOER } .
1 DATA DICTICHARY
18 27 -
MM TALLT wEy— P, |
Lo, IHTGRMAT IO 2325 —.,

"~ -
24 | COWPIC./COMALN

(20 " ALARME DATA

14
] HISTCRICAL
25 DATA

M ENROLLYENT _
It Ol AT L OH — T

DISPAT ' ?ﬂ

71 BATA DICTICONARY

5,345,587

Page 2
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS

4,153,931 5/1979 Green et al. .crveeecerreeeene. 395/600 Large Networks”, IEEE Spectrum, Apr. 1939, pp.
4,162,520 7/1979 Cook et al. ..covvvverciicrriiennnnen, 395/275 3042,
4,387,427 6/1983 Coxetal. coiiiciirerevenenennnn. 385/650 SYIOI', “Maﬂaging Phase V DECnet Networks: the
4,394,727 1/1983 HOffmm Et a.l. 395/650 Entity MOde],” IEEE NetWOI'k MH.I‘ 1988 VO].. 2 NO-
4428 043 1/1984 Catilleretal.ccccoeeneneene 395/200 5 1036 ’ ’ ' ’ ’
4,430,699 2/1984 Segarra et al.cooeeereerenns 395/200 » PP- 2U=90- | | o
4,466,063 8/1984 Segarra et al.ccceeererenrenne. 395,200 Sylor, “The NMCC/DECnet Monitor Design”, Digital
4.475,156 10/1984 Federico et al.ceveecnnnne 395/700 Technical Journal, No. 3, Sep. 1986, pp. 129-141.
4,479,196 10/1984 Ferrer et al. ..eecevrrecennnnnnnn, 395/600 LaPelle et al., “The Evolution of Network Manage-
4,495,570 1/1985 Kitajima et al. ...oeveievecee. 395/650 ment Products”, Digital Technical Journal, No. 3, Sep.
4,509,851 4/1985 Ippolitoetal.covvenreeeneen. 3557206 ~_12%

1986, pp. 117-128.
4,530,051 7/1985 Johnson et al. . v : : : .
4,570,217 2/1986 Allen et al.ocooovvrremereere. 364188 Supnik, “Debugging Techniques in Large Systems’,
4,604,686 8/1986 Reiter et al. ..ccoocererrerecennnee. 395,500 Proc. Courant Computer Science Symposium 1, Jun.
4,628,508 12/1986 Sager et al.coceoveeeeceeunnee. 371/9.11 29-Jul. 1, 1970.
4,636,947 1/1987 Wardcvevverereemmmnccrssonsnens 395/650 Digital Equipment Corporation, Output Document
4,642,758 2/1987 Teng .cccocommcvevrciiviiniernncanennn. 395/600 X3T5.4/87-168 of the X3T5.4 ANSI standards group,
4,644,468 2/1987 Doster et al.ocevwrrremen 395/200 Gep 18, 1987
4,658,359 4/1987 Palatucci et al.oeeceennennene 364/424 - ' .
4,677,588 6/1987 Benjamin et al. . JISC, ISO/T f:97/ SC21/N2061, J.apan Secretariat,
4,698,766 10/1987 Entwistle et al. woeereurreuennes 364/468 Aug. 10, 1987, “Information Processing Systems-Open
4,714,995 12/1997 Materna et al.cccvnnee. 395/600 Systems Interconnection-Basic Reference Model Part
4,747,040 5/1988 Blanset et al. ..coeevvemevecienannns 395/650 4-OSI Management Framework”.
4,750,114 6/1988 HIrtleoccoveirvimiircennnniireannen. 3957250 JISC, I1SO/TC97/SC21/WG4/N397, Japan Secretar-
4,751,635 6/1988 Kuret . o+ ¥ 9. 1987. “Stat e o the Tdentif;
4,754,395 6/1988 Weisshaar et al.ocoo...... 395/650 4L Jul. 7, 2767, ement LOoNCCImng the acniilicd:
4.763,329 8/1988 GIEEN eoovvevrrererrvensessasnrens- 3717112 tion of Management Information™.
4,768,150 8/1988 Chang et al. . ANSI, ISO/TC9/SC21/N2066, US Secretariat for
4,769,772 9/1988 DWYEr ..covvreveirvrinnecnnieees 395/600 OSI, Jul. 1987, “Information Processing-Open Systems
j;g’ggi }i; }ggg IS{:(E";Z'” Bt Al e 395/64 Interconnection-Management Information Services—S-
4:791:558 12/1988 Chaitin et al. . tructure of Management Information™.
4,792,896 12/1988 Maclean et al. . Output Document X3T15.4/87-63, Draft IEEE Stan-
4,792,941 12/1988 Yanosy, Jr. et al.ccceeeeee. 370/58 dard 802.1, “Overview, Interworking and Systems
4,800,488 1/1989 Agrawal etal. ...ccocececeeeeee 395/300 Management”, Jan. 1987.
4,805,134 2/1989 Calo ot A | FUUU R 395/600 ANSI X3T5.4, Output Document X3T54/87—100,
4.811,207 3/1989 Hikita et al. . ‘e :

Draft, “Recommendation for User-Network Manage-
4,816,208 3/1989 Woods et al. ..conerrmerrvnnres 376/259 . -
4.817.092 3/1989 DENNY woovorooorrrroreereeemmmeeeeneen 371/11 ment and Maintenance Protocol-General Aspects”,
4,819,160 4/1989 Tanka et al. ..cooooovereesrecenennes 364/300 1987, |
4,823,34‘3 4/1989 TakahEShi 371/16 USA OSI S&Cf&taﬁat, O‘utput Document
4,827,423 5/1989 Beasley et al. ...cccoirrerenee 364/468 X3T5.4/87-149, “Structure of OSI Management Infor-
4,829,445 5/1939 Bumey 364/478 IIl&tiOIl” DEC 6 1984
4,835,674 5/1989 Collins et al. ..cccovurrerrerernens 395/275 ’ T ‘
4,835,699 5/1989 Mallardccoooomreremonrrceemseens 364470 ~ ANSI X3T5.4, Output Document X3T5.4/84-124,
4,345,658 7/1989 GIffOrdceovervrereeseveneemsesseces 395/275 Structure of OSI Management Information”, Oct. 5,
4,853,843 8/1989 Ecklundccceeiieiiinninnnnnns 395/600 1984.

(List continued on next page.) .

(List continued on next page.)

5,345,587

U.S. PATENT DOCUMENTS
4,868,733 9/1989 Fujisawa et al. .

4,870,610 9/1989 Belfer ...coocovvmrmvreerrincrinnenee. 364/419
4,881,166 11/1989 Thompson et al. .

4,884,217 11/1989 Skemrik et al. .oovvvevrinrvennennnnss 395/66
4,937,784 6/1990 Masat et al.cocveeirvevennnnenn 395/325
4,965,742 10/1990 Skeirik ..coovverevevvirimcnrinennnnn. 361/191
5,058,000 10/1991 Cox et al. .

5,089,954 2/1992 RaALZO .ccerrrrivecerrerennncnrenanenannn. 395/600

OTHER PUBLICATIONS

IEEE Task Group, “Layer-Specific Systems Manage-
ment Guidehines”, 802.1 Network Management Task
Group, Revision A, Sep. 2, 1987, X3T5.4/87-193.

ANSI X3T5.4, Output Document-X3T5.4/87-167,

Sep. 18, 1987, “A Model of Managed Objects-Opera-
tions and Informations”, X3 Secretanat.

Page 3

ANSI X3T5.4, Output Document X315.4/87-166, Sep.
18, 1987, “A Model of Managed Objecis~-Concepts™,
X3 Secretariat.

ISO, X3T5.4/87-70, Mar. 9, 1987, “Towards a Model
for the Structure of Management Information (SMI)”.
ANSI X3T5.4/84-101, Aug. 3, 1984, “Conceptual
Schema for OSI Management Information”.

ISO, Documents TC97/SC21/N2058-9595-1 Annex A,
Nov. 1987: TC97/SC21/N2058-9595-1, Dec. 16, 1987,
and TC97/SC21/N2058-9595-2, Dec. 16, 1987.

Teorey et al.; “A Logical Design Methodology for

Relational Databases Using the Extended Entity-Rela-

tionship Model,” Computer Surveys, 18: 198-222, 1986.

Chen; “The Entity—-Relationship Model-Toward a Uni-
fied View of Data,” ACM Transactions on Database
System, 1: 9-36, 1976.

U.S. Patent Sep. 6, 1994 Sheet 1 of 21 5,345,587

PRESENTATION
~10A 10B ESENTAT 10K
10
FX PM o EN
¢ | K

15 INFO
13 MGR S 9__,17

16 DISPATCHER

FUNCTIONAL

11 A MODULES 11 M
11
FM FM "o
¢
NFO
20 IMGR e 8’ 22

ACCESS

MODULES

12
12A 12B o 12N

o l N

FIG. 1A

U.S. Patent Sep. 6, 1994 Sheet 2 of 21 5,345,587

17,22

CONFIGURATION
DATABASE

25

24

BASE

HISTORICAL
DATABASE

27

DATA
DICTIONARY

DISPATCH
TABLE

FIG. 1B

U.S. Patent Sep. 6, 1994 Sheet 3 of 21 5,345,587

OPERATOR
PRESENTATION
10 MODULES
13.
DIRECTOR 35
11 FUNCTIONAL
MODULES
14
12
ACCESS
MODULES
ENTITY 36
31
SERVICE SERVICE

ELEMENT INTERFACE 23

FIG. 2A

U.S. Patent Sep. 6, 1994 Sheet 4 of 21 5,345,587

38
EXCUTABLE
CODE

s
\

SERVICE
DISPATCH
ENTRIES

SELF

MANAGEMENT
DISPATCH
ENTRIES

U.S. Patent Sep. 6, 1994 Sheet 5 of 21 5,345,587

A/(MANAGEMENT SPECIFICATION">::= a1
48 MANAGEMENT SPECIFICATION <SPEC. NAME>.

40 (VERSION> — 42
(FACILITY>—— 43
(TYPE.DECLARATION>~
(SPEC.BODY>— 49

END SPECIFICATION [<SPEC.NAME>].

45
XSPEC.BODY>: :=

45A
{¢GLOBAL.ENTITY.DEF>}—

{ ¢SUBORDINATE. ENTITY .DEF> }- 49C

46

\N¢ENTITY.DEF>: :=<GLOBAL|SUBORDINATE> a7

ENTITY<CLASS .NAME>=<CODE> :~
50 “~{SUPERIOR = <CLASS.NAME>{<CLASS.NAME>;]
S1 _IDENTIFIER = (<ATTRIBUTE.LIST>),
92 —[SYMBOL = <STRING>:]
53— (ENTITY.BODY>

END ENTITY <CLASS.NAME);

FIG. 3A

U.S. Patent Sep. 6, 1994 Sheet 6 of 21 5,345,587

O3 —<ENTITY.BODY>: : =

<ATTRIBUTE.DEF>}~ 4

¢(AGGREGATION.DEF> }” 95
DIRECTIVE.DEF>} — 56
(SUB.ENTITY.DEF> }—---.57

>

CATTRIBUTE.DEF>: :=

SO KIND.NAME> ATTRIBUTE
60 —{ «<DEFAULT.POLLING.RATE>]
61 — [<(MAX.POLLING.RATE>] _68
g2 —7{ (ATTRIBUTE . NAME>=<CODE> : DATA TYPE” ~ -
63 <ATTRIBUTE. BODY)})

END ATTRIBUTE 64

64 <ATTRIBUTE.BODY>: :=

65 <[(ACCESS INFO]
66— [DISPLAY=(TRUE |FALSE>]
67 — [«<DEFAULT.VALUE>]

70 —{ <SYMBOL)>]
71— [<CATEGORIES>]
72 ~[<(MAX.POLLING.RATE>]
- S [<DEFAULT.POLLING.RATE>]
73~ [<PRIVATE.DATA>]

74

“CAGGREGATION.DEF>: : = ve

6 \E AGGREGATION<AGGREGATION . NAME {=<CODE>

7
77 _ L <DIRECTIVES, SUPPORTED.LIST>]
T 1 <SYMBOL>]

80 — (CATEGORIES>]
84— <ATTRIBUTE.LIST>
_—[<PRIVATE.DATA>]

82 END AGGREGATION <AGGREGATION.NAME>:)

FIG. 3B

U.S. Patent

Sep. 6, 1994 Sheet 7 of 21

96 ~(DIRECTIVE.DEF)::= /33

90

91 — [ARGUMENTS 92

{DIRECTIVE<DIRECTIVE.NAME>=<CODE>

84 — [ACTION-DIRECTIVE=<TRUE|FALSE>,]
85 —{DISPLAY=<TRUE |FALSE>,]
86 — [<SYMBOL> |

87 —{ <CATEGORIES)>]
90 —«REQUEST . DEF>
91 ™(RESPONSE . DEF>

92 ™ EXCEPTION.DEF>

END DIRECTIVE <DIRECTIVE.NAME>;}

XREQUEST.DEF>: : =

REQUEST

{<ARG.NAME;=<CODE>
93 — [DISPLAY=<TRUE | FALSE>]
Q4 —[<REQUIRED>]
Q5 — [<UNITS>]

Q96 —{ <DEFAULT)>]

97 — [«<SYMBOL>]

100 ~((prIVATE.DATA>]
) }]

END REQUEST;

FIG. 3C

5,345,587

U.S. Patent Sep. 6, 1994 Sheet 8 of 21 5,345,587

91 —<RESPONSE.DEF)>::= 101

103 SEVERITY=<SUCCESS | INFORMATIONAL>]
104 TEXT=¢TEXT.STRING>

N\ [ARGUMENTS 105
{(ARG.NAME)?C’ODD :

106 ~~[(UNITS>]
107 — [¢<SYMBOL>]

s 1]
END RESPONSE<RESPONSE.NAME>; }

102 ¥ RESPONSE <RESPONSE.NAME :2 =¢CODE> :
\[

92
‘¢EXCEPTION.DEF>::= 111
/

1 12\[{Ex_cEPT IONC<EXCEPTION.NAME=<CODE> :
SEVERITY=<WARNING|ERROR|FATAL>,

113 — TEXT=<TEXT.STRING>

144 — [ARGUMENTS _—115
{ (ARG .NAME >=<CODE>

116 — [<UNITS>]
117 —[<SYMBOL>]

;)]
END EXCEPTION [<EXCEPTION.NAME>];}]

FIG. 3D

U.S. Patent

Sep. 6, 1994 Sheet 9 of 21 5,345,587

DISPATCH SPECIFICATION
200

\ .
START .DISPATCH. TABLEKTABLE.NAME>

DISPATCH.ENTRY

203\ VERB < 3

207
202 ENTITY<CLASS, INSTANCE>
204

210
SUBENTITY<CLASS . INSTANCEY

205 ATTRIBUTE< >
e

201 zos’PROCEDURE .PTR < 5

\“END .DISPATCH.TABLE

FIG. 3E

5,345,587

lEC
. monaHem\ﬁ mm«/ Jmm l2¢
o~ (
d1L1LNI-ENS SNOILYS cte |EC
....m 0zs ..n....ﬂN HAOHOY \ £EZ f (OWN
< // wmbHBUWmHQ\mmB:m TJLLY .Uxm./. d _mv. OHY QNN
D '8NS—__(N)ALILNI-80NS~ 'dnNS '€0S . . 7
2 p. ﬁ A m/E, Aw_wﬁn owﬁ 3 % o\oa
G SHILILNI-80S 272 SAAILOHA I wonEommow.a\
vez” g2z / 22z’
<+
A
|
"
a3,
D ALIINA TYHO'1D
&) 0ce —

XAUYNOILOId Yivd

U.S. Patent

¥ Ol

d¥ 4dv
™\ \

d¥ dV

]
SNOILIIYVA \
6L — SLNGTHLLY

\vm«%h),

R-AMA

N

.mea¢ MLLY
/

mmabm R AMA \
A

"HLLY

U.S. Patent Sep. 6, 1994 Sheet 11 of 21 5,345,587
29
INTERFACE E

1INFO

23,25
15 2af mames
24

IDISPATCHI 28 13
TABLFE p— HISTORICAL
___________ 26 DATA
DISPATCHER
DATA DICTIONARY

27

el

FMM ENROLLMENT
INFORMAT ION

E 23,25
.- 24

14
HISTORICAL
- DATA
DATA DICTIONARY

DISPATCH
TABLE

28

] INFORMATION IIE;I

U.S. Patent Sep. 6, 1994 Sheet 12 of 21 5,345,587

PROCESS/NODE 1 PROCESS/NODE 2 PROCESS/NQDE 3

DISPATCHER
16(1)
20(3
20(2)
21(2) 21(3)

FIG. 6

U.S. Patent

Sep. 6, 1994 Sheet 13 of 21

REQUEST/SUBSIDIARY
REQUEST PARAMETER:

VERB
" Tveor viiT sic
Ao orow
T reor T seee
T ot A

OUTPUT ENTITY SPEC

il S Jal Sl S N S A N S S S S v s e sl sy linins cges s amiy bl il

OUTPUT TIME SPEC

el S— S s — A Y A S A A S S e iy ey sl— e Slinke N . A S

OPTIONAL DATA DESC

120

122
123

124
125
126
127

5,345,587

U.S. Patent Sep. 6, 1994 Sheet 14 of 21 5,345,587

171 171
1
10 (170 15 / : [
REQUEST REQUEST REQUEST
|
173
176 STACK
| SCHEDULE

177

179

CONTEXT CONTEXT

STATE 178 174

HANDLE "\ CONTEXT
) 175 " 173
172 VARIABLE
176 STACK
177 179 onTExT
178 _
oo 174 Chock
172
175
i

FIG. 7B o

172

U.S. Patent Sep. 6, 199 Sheet 15 of 21 5,345,587

FIG. 8A

DISPATCH TREE

ENTITY NODE 130

CHILD PTR
NULL PTR 143

DISPATCH PTR

NEXT ENTRY PTIR

teeoceceesseases s urans . cecene CODED
CODE/NAME VAL ENTRY 131

CHILD PTR

WILDCARD PTR 142
DISPATCH PTR

CHILD PTR
______________________ ELLIPSIS PTR 142

DISPATCH PTR

U.S. Patent Sep. 6, 1994 Sheet 16 of 21 5,345,587

FIG. 8B

DISPATCH ENTRY 134

NXT ENTRY PTR 160
“““““““ MODULE ID | 161
 DROCEDURE PTR 162
_______ PROCESS ID |-163

COUNT 167

5,345,587

Sheet 17 of 21

Sep. 6, 1994

U.S. Patent

v6 Old

(dNOYD ALNIINLLYV) <SOILLSIYALOVUVHO>L8I

(AONV.LISNI) <dWVN LINOUIO ODNILNOY>-981
(HONVISNI ON HLIM SSVT0O) HDNILNOY-¥81 [~081

€61
ddlS

(SSV11D) LINODYID-98I

(IONVLSNI) <dNVN JdON>-£81
(SSVTIO) FAON-T8I
(AHFTA) MOHS 18I

G61
ddLS

LNNOO

el S

SOILLSIMALOVIVHO
=CdLNEIYLLY

MOHS=HHJA

dl JJON

dl §§d004dd

dld dANAAIOUd

dl 3 TNAOoN

dLd AYLNH LXN

AdILNAd HOLVJ4SIA Pol

dlLd SISdI'TTd

dld Ayvodiim
dLd dTIHO

LINOYIO =
TVA ANVN/EAO0D

dLd AHLNA LXN

dLd TIIN
SSVYVITO=DVI1d

HAON ALILNHA

o6l

JALS

dld SISdITIA

JdLd AQUYvOdiim

dILd dTIHO

ONILNOY =
TVA AWNVN/3QAOD

S e, 0O a0 O Emam ew SR R e

dLlLd AHLNA LXN

dLlLd HOLVJdSIA

d.Ld dTIHO

SSVTO=DV'IA

AQON A.LILNY

161

dd.LS

dLd SISdI'TTA

dld QAdvOodIIim

dLlLd d1IHO

<dAVN dAON>
=TVA dNVN/AAOD

dLd AULNI LXN

dlLd TINN

LSNI=DV14d

JJON ALILNA

dd.1lS

dLd SISdI'TTd

dLd AdvOodllm

dId ATIHO
<HWNVN

JINOHIO ONILNAOYU-
=1VA ENVN/AAOD

YLd AYLNA LXN

S

dLld TINN

LSNI=DV1d

HAOON ALILNY

061
dd.LS

dlLd SISdITTA

dLd QUavodailim

dLld dTIHO

JAOON =
TVA GNVN/EAOD

dLd AdLNA LXN

ALd TIN
SSVITIO=DVI14d

dAON ALILNA

9,345,587

Sheet 18 of 21

Sep. 6, 1994

U.S. Patent

LNNOD

SOILSIHILOVUVYHD

wSHALNHIALLY

g6 ©id

MOHS=HYHJA

dl dAdON

==y e

dal ss4d00dd

wiblieir

dld 3YNAd00dd

al d'INaon

661 HLd AYLNA LXN
dALS
AYLNA HOLVdSId

dld J'IIHO dld d1IHO

qoq Al11ey
= ITVA ANVN/AQO0D = IVA ANVN/ZA0D

dld XAHLNY LXN dld AHdLNA LXN

AdLNH qddOO AdILNA addoo

dLld SI1SdI'TId

d1ld QIdvVOUdTIMm

d1Ld ATIHO

P hEe
=TVA ANWVN/AAOD

HLd AYLNY LXN

dLd TINN

LSNI=OV1d

i

861 ddJLS

. Rl Py’ S il o " il il o .

il A A

dlLd dTIHO

LINOHUIO™

TVA ANVYN/AAOD

dLd TINN

SEVI0=0V 14

L61 dd.LS

d.Ld AIIHO

FE T

wif
wIVA ANWNVN/ACOD

[[il ey ek SR

dLld AYLNYA LXN

dld SISdINTTd

-

dld AUavoallm

o —

dALlLd dTIHO
dld d1IHO
DNILNOU™
TVA ANVYN/ZAO0D sof

=TVA FNVN/H3AO0D

 ¥ld AYLNA LXN — e —
S dld XULNHZ LXN

¥Ld TINN
—— ¥ld TINN
SSVI10=DV 14 .
961 dALlS LSNI=DV1d
dLd dIIHO 161 d4.LS

(e
=TVA AWNVN/AAOD

L o

Y1ld AY.LNHA LXN

AdLNE dA4dOO

AYJILNA dddo0

ULd AEAVOATIM

ALd dTIHO

ddON =
TVA dNVN/3d0D

—— . - ——

HlLd AHYLNA LXN

dld TIIN

SSVIO=DV14d

061 d4LS

U.S. Patent Sep. 6, 1994 Sheet 19 of 21 5,345,587

DOMAINS DATABASE

Qm-n

o [t o
¢
¢

CONFIGURATION DATABASE

34
‘ NODE [*"foo"

! NODE ROUTING CIRCUIT

NODE “jlm"

BRIDGE u

234

FIG. 9C

U.S. Patent

Sep. 6, 1994 Sheet 20 of 21 5,345,587

FIG. 10A

ALARMS FUNCTIONAL MODULE

200

201 202
-
CONDITION DETECTOR HMODULE RULE
DATA 504 | MAINTENANCE
ALARM
RULE BASE

203

U.S. Patent Sep. 6, 1994 Sheet 21 of 21 5,345,587

FIG. 10B

<13 216

212 —_ALARM RULE STRUCTURE /—214

IF [<EXPRESSION> (REL.OP) <EXP.VAL><TIME>]

212
CEXPRESSION>

CENTITY> <ATTRIBUTE>

E—————————— ——
215

216X TIMECLAUSE> :: = AT <TIME.ARG> {,<TIME.ARG>}

J,345,587

1

EXTENSIBLE ENTITY MANAGEMENT SYSTEM
INCLUDING A DISPATCHING KERNEL AND
MODULES WHICH INDEPENDENTLY
INTERPRET AND EXECUTE COMMANDS

This application is a continuation-in-part of applica-
tion Ser. No. 244,114 now abandoned and application
Ser. No. 244,495 now abandoned and application Ser.

No. 244,503 now abandoned and application Ser. No.
244,506 now abandomed and application Ser. No.
244,691 now abandoned and application Ser. No.
244,730 now abandoned and application Ser. No.
244,742 now abandoned and application Ser. No.
244,834 now abandoned and application Ser. No.
244,845 now abandoned and application Ser. No.
244,850 now abandoned and application Ser. No.
244,851 now abandoned and application Ser. No.

244,919, now abandoned all having a filing date of Sep.
13, 1988.

BACKGROUND OF THE INVENTION

The invention relates generally to the field of man-
agement of complex systems, and more particularly to
arrangements for managing complex systems such as
distributed digital data processing systems.

As digital data processing systems, or computers,
have become smaller and less expensive, individual
computers are being used by individuals and small
groups. To enhance sharing of data, communications
among users and economy in connection with resources
which may be infrequently used by an individual, com-
puters have been connected into networks which com-
municate by means of messages transmitted over com-
munications links, which include, in addition to the
computers used directly by the various users, servers
which, for example, store large amounts of data which
may be accessed, used and updated by a number of users
in the system, thereby facilitating sharing of data. Serv-
ers may also control printers, telecommunications links,
and so forth. In addition, servers may provide special-
ized computational services, such as database searching
and sorting, and so forth. The various computers, which
are termed clients, and servers are interconnected by a
communications link to permit messages to be trans-
ferred among the various computers and servers com-
prising the distributed system.

SUMMARY OF THE INVENTION

The invention provides a new and improved control
arrangement for controlling and monitoring a complex
system, such as a distributed digital data processing
system in which a plurality of computers communicate
over, for example, a local area network.

In brief summary, the control arrangement includes
one Or more presentation modules, functional modules
and access modules that communicate through kernel
means to process requests generated in response to com-
mands from an operator, and to display responses to the
operator. The presentation modules handle operator
interface functions, including receipt of commands
from an operator and presentation of responses thereto.
In response to a command from an operator, the presen-
tation module generates a request. The kernel means
receives a request and may route it to a functional mod-
ule for further processing. The functional modules han-
die general functional operations in connection with
processing a request. In response to a request, a func-

S

10

15

20

25

30

33

43

50

33

635

2

tional module generates one or more requests (some-
times for convenience called subsidiary requests in what
follows) that it transfers to the kernel means or to other
tunctional modules for processing. The kernel means
routes subsidiary requests which it receives to an access
module for processing. The access modules handle
primitive operations in connection with the entities
comprising the complex system.

In general, in one aspect, the invention features a
system for controlling and carrying out management
functions over an assemblage of entities, wherein the
entities interface within the assemblage for control of
primary information handling functions and the entities
further interface with the system to permit the carrying
out of the management functions. The system includes
stored management modules adapted to carry out the
management functions by independently interpreting
and executing selected management-related commands,
a kernel comprising a table of dispatch pointers for
directing the commands to the respective modules in
which they are to be interpreted and executed, and an
enroller for enrolling new management modules into
the system by adding further pointers to the table.

Preferred embodiments of this aspect include the
following features. The management modules are
adapted for one or more of requesting status informa-
tion from the entities, modifying management parame-
ters of the entities, or enabling self-test modes of the
entities. The system also includes stored management
specification information listing, in compliance with a
untversal specification language having a common syn-
tax for representing the attributes and operations of any
arbitrary manageable entity, the attributes which relate
to the entities’ functioning and control, and the manage-
ment functions of the entities. The management specifi-
cation information may further list the attributes and
operations of entities which are subordinate to other
entities. The management specification information
includes polling information in predetermined fields of
the common syntax. The polling information includes
fields for specifying a default rate and a maximum pol-
ling rate at which the values of attributes should be
requested from the entities. The management specifica-
tion information may also include partition information
in predetermined fields of the common syntax, the parti-
tion information representing groups of attributes hav-
Ing common data types. The management specification
information may also include aggregation information
in predetermined fields of the common syntax. The
aggregation information represents groups of attributes
having related functions in the management of the en-
tity.

The management specification information may also
include command information in predetermined fields
of the common syntax, the command information lists
the management functions which the entities are
adapted to perform, the structure of the commands to
be 1ssued to the entities, and the structure of the replies
to be received. The structure of the requests to be issued
includes fields for listing arguments to a command. The
structure of the replies to be received includes fields
used for indicating the successful completion of the
requested operation. The structure of the replies to be
recelved includes fields used for indicating error condi-
tions causing unsuccessful completion of the requested
operation.

At least one management module includes an access
module implementing protocols for communicating

5,345,587

3

with one or more entities. The protocols are consistent
with Ethernet standards or DECnet Phase IV stan-
dards, or DECnet Phase V standards.

Each command includes fields listing at least a related
entity and operation, and the kernel includes a dis-
patcher for receiving and forwarding commands based
at least 1n part on the entity and operation listed therein.
The table of dispatch pointers comprises a directed
graph of data structures, successive data structures in
the graph corresponding to fields of the commands. The
dispatcher includes a parser for parsing the directed
graph in accordance with the entity and operation listed
in a command to locate a terminal data structure having
a dispatch pointer. The directed graph includes wild-
card flags and successive data structures which may
correspond to any value in a particular field of a com-
mand. The directed graph includes ellipsis flags and
successive data structures which may correspond to any
number of values in fields of commands. The parser
includes a best-match unit for determining the most
exact match for fields of a command, by searching first
for exact matches for fields and then for wildcard
matches for fields, or by searching first for exact
matches for fields, then for ellipsis matches for fields.

The system includes a presentation device for dis-
playing information to a user and receiving commands
from a user, the commands and information being in
specific predetermined formats. A presentation module
receives commands from the presentation device and
forwards information to the presentation device, the
presentation module including conversion code to con-
vert information received from an entity into a prede-
termined format for the presentation device, and for-
warding code for forwarding commands from the pre-
sentation device to the dispatcher. The presentation
module includes user interface information defining
modes 1in which users interact with the system. The user
interface information includes help information for pro-
viding mformation to the user on how to use the system.
The user interface information includes graphic mode
information defining pop-up menu contents and com-
mand line parse tables.

‘The kernel also includes a class database defining the
different management information available from the
respective entities. The presentation module includes
menu generation routines for extracting data from the
class database and generating menus of valid commands
for display to the user. The menu generation routines
are adapted to determine information relating to the

10

15

20

235

30

35

435

configuration of said assemblage and generate menus of 50

available entities for display to the user.

In general, 1n another aspect, the invention features a
management module adapted to be stored for carrying
out management functions by independently interpret-
ing and executing selected management-related com-
mands, for use in a system for controlling and carrying
out management functions over an assemblage of enti-
ties. In preferred embodiments, the module includes
dispatch pointers pointing to the module and associated
with commands which are interpreted and executed by
the module.

In general, in another aspect, the invention features a
system for retrieving management information about an
assemblage of entities in response to commands specify-
ing a time schedule, wherein the entities interface
within the assemblage for control of primary informa-
tion handling functions and the entities further interface
with the system to permit the accessing of the manage-

S

65

4

ment information. The system includes storage contain-
Ing records relating to the management information,
each record including an indication of an associated
time, and an information manager for retrieving man-
agement information contained in the records or access-
ing management information from the entities in re-
sponse to a command, comprising a scheduler for possi-
bly 1ssuing a succession of subsidiary accesses or re-
trievals corresponding to the command at possibly mul-
tiple times according to the time schedule.

Preferred embodiments of this aspect include the
following features.

A historical data recorder periodically accesses and
stores new management information in the records in
response to a predetermined schedule. The system is
adapted to respond to a command specifying at least
one desired time range, the time range possibly includ-
ing past, present and future times, and the information
manager includes means for satisfying the command by
retrieving management information contained in the
records, if possible, and otherwise accessing informa-
tion relating to the specified time range from the enti-
ties. The information manager is configured to satisfy a
command having a time range which includes all times
prior to a specified time, by retrieving any record which
18 stored 1n the records during the time range, or other-
wise accessing the information from the entities. The
information manager is configured to satisfy a com-
mand by immediately accessing management informa-
tion from the entities. Events occurring within the net-
work are treated as a component of the state of the
network and are stored in the records.

In general, in another aspect, the invention features a
system for controlling and carrying out management
functions over an assemblage of entities, wherein the
entities imnterface within the assemblage for control of
primary information handling functions and the entities
further interface with the system to permit the carrying
out of the management functions. The system includes
stored management modules adapted to carry out the
management functions by independently interpreting
and executing selected management-related commands,
storage containing domain specification information
defining groups of entities, and a kernel adapted to issue
commands to all entities of one the group by issuing
individual commands to appropriate management mod-
ules.

Preferred embodiments of this aspect include the
following features. The domain specification informa-
tion complies with a universal specification language
having a common syntax for representing any arbitrary
group of entities. The common syntax provides for the
incorporation of entities from a first domain into a sec-
ond domain by reference to the first domain. The com-
mon syntax provides for the creation of subdomains of
entities wholly contained within other domains. At least
one management module comprises a domain manage-
ment module for establishing and maintaining the do-
main specification information. The domain manage-
ment module 1S responsive to commands for one or
more of adding or deleting entities from groups, creat-
Ing groups, or deleting groups. The domain manage-
ment module is responsive to commands having filter
procedures selecting entities of one or more particular
domains. The filter procedures may select entities of
subdomains wholly contained within other domains.

In general, in another aspect, the invention features a
system for controlling and carrying out management

3,345,587

S

functions over an assemblage of entities, wherein the
entities interface within the assemblage for control of

primary information handling functions and the entities
further interface with the system to permit the carrying
out of the management functions. The system includes
stored management modules adapted to carry out the
management functions by independently interpreting
and executing selected management-related commands
and 1ssuing other commands to other modules, each
command listing, in conformance with a common com-
mand syntax, the 1dentity of the related entity and the
operation to be performed, and a kernel comprising a
table of dispatch pointers for directing the commands to
the respective modules in which they are to be inter-
preted and executed.

Preferred embodiments of this aspect include the
following features. The common command syntax pro-
vides fields for specifying subordinate entities, attri-
butes, and operations. A first category of the manage-
ment modules includes functional modules adapted to
provide functional manipulation of data provided by the
entities, and a second category of the management mod-
ules includes access modules adapted to implement the
protocols for communication with the entities. The
table of dispatch pointers includes a functional-access

aspect facilitating communication between modules of

the first category and other modules of the first cate-
gory or modules of the second category. The system
includes presentation modules adapted to receive com-
mands from and forward information to the user using
the primary information handling functions of the enti-
ties. The table of dispatch pointers includes a presenta-
tion-functional aspect facilitating communication be-
tween the presentation modules and modules of the first
category. One module of the first category comprises a
control functional module for communicating received
commands directly to modules of the second category.

In general, in another aspect, the invention features a
system for controlling and carrying out management
functions over an assemblage of entities, wherein the

entities interface within the assemblage for control of

primary information handling functions and the entities
further interface with the system to permit the carrying
out of the management functions. The system includes
stored management modules adapted to carry out the
management functions by executing selected manage-
ment-related commands, and at least one module stor-
ing rules identifying selected alarm conditions and com-
prising a rule generator for generating rules for storage
and an alarm condition detector for detecting an alarm
condition in response to the contents of the rules.

Preferred embodiments of this aspect include the
following features. The management modules are
adapted to carry out the management functions by inde-
pendently interpreting and executing selected manage-
ment-related commands. At least some management
functions generate management information indicating
the status of the primary information handling functions
of one or more entities. The rules specify values for the
management information at one or more times. The
system includes storage containing records of the man-
agement information, each record including an indica-
tion of an associated time. The system includes an his-
torical data recorder for periodically accessing and
storing new management information in the records in
response to a predetermined schedule.

In general, in another aspect, the invention features a
system for controlling and carrying out entity manage-

10

15

20

25

30

35

4{) .

45

50

35

65

6

ment functions over an assemblage of entities and also
controlling and carrying out self-management functions
over itself, wherein the entities interface within the
assemblage for control of primary information handling
functions and the entities further interface with the
system to permit the carrying out of management func-
tions. The system includes at least one stored manage-
ment module adapted to carry out the entity manage-
ment functions by independently interpreting and exe-
cuting selected commands, and further adapted to carry
out the self-management functions on itself by interpret-
ing and executing other commands, and a kernel com-
prising a table of dispatch pointers for directing the
entity and self management commands to the respective
moduies in which they are to be interpreted and exe-
cuted.

Preferred embodiments of this aspect include the
following features. Each entity management command
hists, in conformance with a common command syntax,
the identity of the related entity and the operation to be
performed, and each self-management command lists, in
conformance with the common command syntax, the
identity of the related module and the operation to be
performed. The kernel includes a dispatcher for receiv-
ing and forwarding commands based at least in part on
the operation and entity or module listed therein.

BRIEF DESCRIPTION OF THE DRAWINGS

This invention is pointed out with particularity in the
appended claims. The above and further advantages of
this mnvention may be better understood by referring to
the following description taken in conjunction with the
accompanying drawings, in which:

FIG. 1A 1s a functional block diagram of a control
arrangement constructed 1n accordance with the inven-
fion;

FIG. 1B is a block diagram of the information stored
in the storage element of FIG. 1A;

FIG. 2A 1s a functional block diagram of a portion of
the control arrangement depicted in FIG. 1A, particu-
larly defining an entity comprising the control arrange-
ment;

FI1G. 2B illustrates the structure of a management
module.

FIGS. 3A through 3D define the management speci-
fications defining the management view provided by
functional modules and access modules comprising the
control arrangement depicted in FIG. 1A, and FIG. 3E
defines the dispatch specifications for the functional
modules and access modules;

FI1G. 4 depicts the structure of a data dictionary
which includes information defined by the management
specifications shown in FIGS. 3A through 3D;

FIGS. § and 6 are functional block diagrams depict-
ing various modules and data structures in the control
arrangement depicted in FIG. 1A;

FIG. 7TA depicts the parameters used in requests gen-
erated by the presentation modules and functional mod-
ules in the control arrangement depicted in FIG. 1A;

FIG. 7B depicts the structure of time context handles
and context blocks used by the request of FIG. 7A;

FIGS. 8A and 8B depict data structures in dispatch
tables used by a dispatcher as depicted in FIGS. 5 and 6
in connection with processing of requests from the pre-
sentation modules and functional modules in the control
arrangement depicted in FIG. 1A;

FIGS. 9A and 9B depict the operations of a dis-
patcher in connection with its associated dispatch table

3,345,587

7

In processing a request from a presentation module or a
functional module;

FIG. 9C depicts the format of a configuration and
domains database;

FIG. 10A depicts the structure of a functional mod-
ule used in establishing and detecting alarm conditions,
and FIG. 10B depicts the structure of rules used in
establishing alarm conditions.

GENERAL DESCRIPTION

FIG. 1A depicts a functional block diagram of an
arrangement constructed 1n accordance with the inven-
tion for controlling and monitoring the status and con-
dition of a complex system. (The complex system itself
is not shown.) Preliminarily, one example of a complex
system controlled by the arrangement depicted in FIG.
1A includes a distributed digital data processing system,
comprising a plurality of nodes, including individual
computers, terminals, terminal servers and other com-
ponents, which communicate by means of messages
transmitted over a network. One example of such a
digital data processing system is described in U.S. pa-
tent application Ser. No. 06/616,553, filed on Jun. 1,
1984 and now abandoned. It will be appreciated, how-
ever, that the control arrangement depicted in FIG. 1A
is not limited to the control of a distributed digital data
processing system, but may be used to control a number
of diverse types of complex systems.

Such complex systems are challenging to manage,
particularly because the status and capabilities of the
complex system are constantly changing. Therefore, the
management arrangement and the management func-
tions it provides must also change to adapt to new man-
agement requirements of the system. As will be dis-
cussed in detail later, the arrangement of FIG. 1A fea-
tures extensibility, which allows the arrangement to
adapt efficiently to changes in the complex system.

For the purposes of this document, the components
of the complex system will be called entities. Entities
are discussed in terms of classes and instances. An entity
class defines entities of a particular type, e.g. one class
would include all local area network bridges from a
given vendor. Each entity is a member of a class, and
forms an instance of that class.

With reference to FIG. 1A, the control arrangement
includes several types of control modules, including
presentation modules 10A through 10K (generally iden-
tified by reference numeral 10), functional modules 11A
through 11M (generally identified by reference numeral
11) and access modules 12A through 12N (generally
identified by reference numeral 12). The presentation
modules 10 generally provide the user interface for the
operators providing control for the complex system,
including control of terminals used by the system opera-
tors. Each functional module 11 generally provides
management control and monitoring in connection with
a class of functions. Each access module 12 generally
provides management control for a particular type of
controllable entity, in a set belonging to a class of con-
trollable entities, in the complex system. The presenta-
tion modules 10 communicate with functional modules
11 through a presentation-function aspect of a kernel 13,
14, hereafter called simply the presentation-function
kernel 13, and the functional modules 11 communicate
with the access modules through a function-access as-
pect of the kernel 13, 14, hereafter called simply the
function-access kernel 14.

10

15

20

25

30

35

45

50

53

60

65

8

The functions that are required from control modules
10, 11, 12 may vary widely depending upon the topol-
ogy of the complex system being managed. Therefore,
to provide the arrangement with adaptability and exten-
sibility, control modules 10, 11, 12 may be dynamically
added or removed from the arrangement to adapt the
arrangement to the topology of a particular complex
system, and to the changes in that topology.

To further the goals of adaptability and extensibility,
the control modules 10, 11, 12 form a “division of labor™
for the tasks to be performed in management of the
complex system. In this way, the tasks associated with,
e.g., the management proiocols of a distributed data
processing system, may be separated from the tasks
associated with, e.g., the display of management infor-
mation to the user.

A. Presentation Modules

More specifically, the presentation modules 10 pro-
vide presentation services, which may comprise, for
example, support for a user interface such as a video
display terminal, personal computer or computer work-
station, which may be used by a system operator to
control the operation of the various functional modules
11 and access modules 12, thus controlling and monitor-
ing various entities in the complex system. The presen-
tation services are required independently of the man-
agement functions or the entities which are managed by
the system depicted in FIG. 1A, and thus are provided
regardless of the nature of the management functions or
entities. Each operator interface or terminal may be
controlled by a plurality of presentation modules 10.
The various presentation modules 10 control diverse
aspects of the operator interface, including such details
as, for example, icons, menus, graphics and support for
displaying and parsing a command line. Other presenta-
tion modules 10 provide specific output support for
various types of graphical displays, for example, histo-
grams, bar charts, pie charts, or other types of pictorial
representations to be displayed on a terminal screen for
an operator. Still other presentation modules 10 provide
transfer of management requests, which may be noted
by means of icons, menus, graphics or commands which
the operator entered on the command line, to the pre-
sentation-function kernel 13, and of management infor-
mation from the presentation-function kernel 13 for
display on the video display terminal used by an opera-
tor. |

B. Functional Modules

The functional modules 11 are associated with, and
generally support, the specific management applications
provided by the control arrangement depicted in FIG.
1A. The management applications exist independently
of the presentation services provided by the presenta-
tton modules 10 (other than to the extent that the pre-
sentation modules 10 notify an operator of the manage-
ment applications that are provided by the control ar-
rangement) and the particular entities comprising the
complex system that are being managed by the control
arrangement.

A management application which could be provided
by a functional module 11 would, for example, analyze
the communications load in a distributed data routing
system. To perform such an analysis, a functional mod-
ule would access communications data, such as the
number of packets sent and the number of bytes sent,
from several of the entities of the distributed routing

5,345,587

9

system. The functional module would then collate the
information into higher-level information, such as the
average packet size and the percent utilization of the
commumnications resources of the routing system. This
information would then be forwarded to the user or
made available to other functional modules in the exe-
cution of other management applications.

As seen 1n the above example, a functional module
“adds value”, in the form of data collation or correla-
tion services, to management information that is avail-
able from the complex system. In addition, functional
modules may make use of data produced by other func-
tional modules to perform high-level services for man-
agement of the complex system.

In one specific control arrangement for controlling a
distributed digital data processing system, one func-

tional module 11, for example, manages the topology of

the network and shows the topology to an operator
through a presentation module 10.

Another functional module 11 may comprise a con-
figuration functional module that, for example, defines
the configuration, that is, the various entity instances
and their inter-relationships, of the distributed digital
data processing System, permits an operator to control
the configuration of the network, by enabling nodes and
other entity instances to be added to or deleted from the
network, changes access rights by the various users of
the nodes, and also maintains a configuration (or in-
stance) database by which the operator can determine
the changes to the configuration of the network over
time.

Another functional module 11 in the control arrange-
ment may, for example, control various alarms indicat-
ing occurrence of selected events in the distributed
digital data processing system; this alarm functional
module 11 monitors the status and condition of various
entities in the distributed digital data processing system
and generates an alarm indication to an operator,
through the appropriate presentation module 10, in
response to the status or conditions having selected
values to advise the operator thereof.

Yet another functional module 11 may, for example,
establish domains of entities in the distributed digital
data processing system, to limit the purview of control
or monitoring by an operator or to simplify control or
monitoring by the operator.

Another functional module 11 may, for example,
function as a historical data recorder functional module
11 to periodically poll various entities in the complex
system to determine their values at specific times and
establish and maintain a database of the times and values
to facilitate generation of usage statistics.

Yet another functional module 11 may not control
any specific aspect of the complex system, instead oper-
ating as a pass-through to permit an operator to control
or monitor primitive functions of the complex systems
directly through the access modules 12.

A management application may require the services
and operation, in particular sequences, of a number of

access modules 12, and the functional module 11 which 60

supports the management application coordinates the
sequencing of the operations by the various access mod-
ules 12 that are required to accomplish the management
application. In addition, a management application pro-
vided by one functional module 11 may require the
application of additional functional modules 11 in the
control arrangement, which the one functional module
may also coordinate.

10

15

20

25

30

35

45

30

335

65

10

The functional modules 11 are invoked, initially, by
the presentation-functional kernel 13 in response to
management requests entered by an operator obtained
by a presentation module 10. A functional module 11
may also be invoked by a request directly received from
another functional module 11. In addition, a functional
module 11 may generate a request for processing by an
access module 12.

C. Access Modules

The access modules 12 are associated with, and sup-
port, the various primitive management operations pro-
vided by the control arrangement in connection with
the various entities comprising the complex system
managed by the control arrangement depicted in FIG.
1A. For example, in a distributed digital data processing
system, the entities may comprise, not only the various
hardware components of the system, including various
computers, disk and tape storage units, routers, and so
forth, which may comprise nodes in the distributed
digital data processing system, but also software com-
ponents including virtual circuits, databases, and so
forth. The access modules 12 are invoked by the func-
tional-access kernel 14 in response to requests from a
functional module 11.

Access modules 12 for controlling and monitoring a
distributed digital data processing system may control
several different types of nodes or different levels in the
message transfer protocols used by the nodes to gener-
ate and transfer messages. One access module 12 may,
for example, control and monitor the status of various
portions of a bridge that links two local-area networks
together, permitting messages to be passed between
nodes on the two local area networks. Such an access
module 12 may, for example, initialize the bridge and
enable it to start operating, disable the bridge, monitor
its end-to-end operation, determine the number of mes-
sage passing buffers it has and determine whether it has
sufficient buffers to operate effectively in the system.

Another access module 12 may control and monitor
the operation of the message generation and decoding
portions of the various nodes of the distributed digital
data processing system, the virtual circuits, sessions and
other links established between nodes, various timers
and counters indicating activity or inactivity thereover
and so forth. Similarly, another access module 12 may
control and monitor the operation of the nodes’ net-
work layer portions, which control the actual transmis-
sion and reception of messages over the network, in-
cluding various message transmission and reception
counters, transmission and reception timers, and so
forth. Access modules 12 controlling both of these may
also be used, in addition to monitoring the values of the
various timers and counters, to establish limits on the
number of concurrent virtual circuits and sessions that a
node may maintain and establish other default and oper-
ational parameters.

In specific embodiments, access modules may pro-
vide for access to management functions at ETHER-
NET LAN bridges, connectivity test or IEEE 802
functions ETHERNET stations, port segmenting con-
trol and check functions at ETHERNET repeaters, or
management functions at FDDI entities. In addition,
access modules may provide for access to management
support at DECaet Phase IV or Phase V nodes, or
DEC Terminal Servers, as promulgated by Digital
Equipment Co., Maynard, Mass.

5,345,587

11

D. Requests

The control modules 10, 11, 12 interact with each
other and with the user through requests. Requests are
of two general types. A request may, for example, en-
able something to occur in the complex system, that is,
1t may cause the state or condition of the complex sys-
tem to be changed. In processing such a request, one or
more access modules 12 perform predetermined opera-
tions that change the state or condition of one or more
entities in the complex system being managed. The
access modules 12 that process such a request generate
status mformation indicating the status of the request,
which they return to the functional-access kemel 14.

Alternatively, a request may solicit information as to
the status or condition of one or more entities in the
system, the entities being identified in the request. In
processing such a request, one or more access modules
12 may determine the status or condition of the entities,
and return an identification thereof to the functional-
access kernel 14. In other cases, information stored in
the control arrangement (such as by a historical data
recorder functional module) may be used to satisfy the
request.

In addition, a request may be of both types, that is, it
may change the state or condition of one or more enti-
ties, and may also request information as to the states or
conditions of the entities after the change. In processing
such a request, the access modules 12 cause the change
to occur, if possible, and return status information as to
the status of the request, as well as information as to the
states or conditions of the entities.

10

15

20

25

30

Requests may be generated in response to an operator

action at a terminal presentation device. In that case, the
presentation module 10 controlling the terminal gener-
ates a request, which it transmits to the presentation-
functional kernel 13. In addition, requests may be gener-
ated directly by appropriate functional modules 11. For
example, a functional module 11 operating as a histori-
cal data recorder may generate requests to periodically
determine the status or conditions of the respective
entities in the complex system for storage in a historical
database for use in later processing if required by an
operator.

E. Kemel

The kernel 13, 14 includes several elements, including
an information manager 15, 20 (hereafter referred to
simply as mnformation manager 15 or information man-
ager 20, which form one and the same information man-
ager), a dispatcher 16, 21 (hereafter referred to simply
as dispatcher 16 or dispatcher 21, which form one and
the same dispatcher) and a data storage element 17, 22
(hereafter referred to simply as data storage element 17
or data storage element 22, which form one and the
same data storage element, as described below.

F. Data Storage

The data storage element 17, 22 may comprise one or
more high speed RAM’s containing dispatch data struc-
tures, or one or more fixed disk drives or other storage
means, according to the types and amount of data
stored therein. In addition, data of different types may
be stored in various storage means for later use by the
kernel, all of these means being represented diagram-
matically by the single data storage element 17, 22.

Referring to FIG. 1B, in one embodiment, the data
storage element 17, 22 maintains information as to the

35

45

20

55

65

12

existence and condition of the various entities compris-
ing a complex system at various points in time, in partic-
ular, selected information as to the status and conditions
of various entities controlled by the access modules 10
as obtained by the historical data recorder functional
module 11. This is stored in a historical database 26.

Other information may also be stored in data storage
element 17, 22. In particular, as discussed above, a con-
figuration module may form a configuration database 23
indicating the presence of entity instances in the com-
plex system. A domains module may store a database 25
describing domains of entities for use in limiting the
user’s scope of control. Alternatively, the domain infor-
mation may be stored as an element of the configuration
database 23. Also, an alarms module may use an alarm
rule base 24 to verify alarm conditions within the com-
plex system.

Other information, which relates to the individual
modules 1n the control arrangement may also be main-
tained in storage element 17, 22. For example, as will be
detailed below, a dispatch table 28 for use by the dis-
patcher 16, 21 may store the locations of the modules
and the operations, entities, and attributes which they
service. In addition, the control arrangement may main-
tain a data dictionary 27 storing the attributes, direc-
tives and sub-entities of each of the various classes of
entities in the complex system. This latter information
may be used to, e.g., process requests from the user
and/or to create menus to prompt user requests.

G. Information Manager

Referring to FIG. 1A, as described in detail later, if
the information manager 15 receives a request from a
presentation module 10 to which it can respond using
the information in the data storage element 17, it inter-
cepts the request and generates a response to the re-
quest, which it transmits to an appropriate presentation
module 10 for display to the operator which provided
the request. If the information manager 15 is unable to
respond to the request, it then determines whether the
request relates to the current time or a time in the fu-
ture; that is, the information manager 15 determines
whether the request should be processed immediately
or scheduled for a specified time in the future. At the
appropriate time, whether immediately or at the sched-
uled time, the information manager 15 transfers the
request to the dispatcher 16. From the nature of the
request, the dispatcher 16 identifies a functional module
11 to process the request, and transfers the request to
that functional module 11.

In response to the receipt of a request from the dis-
patcher 16, the functional module 11 proceeds to pro-
cess the request. It may, in response to the request,
initiate one or more operations, each represented by a
request, hereafter called a subordinate request, which it
directs to another functional module 11 or to the func-
tional-access kernel 14. Upon receiving responses to all
of the subordinate requests, the functional module 11
generates a response which it transmits to the dis-
patcher 16. The dispatcher 16 then formulates a re-
sponse that it transmits, through the information man-
ager 15, to the appropriate presentation module 10 for
display to an operator.

The functional-access aspect of kernel 14 includes the
information manager 20, the dispatcher 21 and the data
storage element 21. A subordinate request from a func-
tion module 11, directed to the function-access kernel
14, 1s received initially by the information manager 20.

5,345,587

13

‘The data storage element 22 also contains information,
as provided by the historical data recorder functional
module 11, as to the condition of the complex system at
various points in time, in particular, selected informa-
tion as to the status and conditions of the various entities
controlled by the access modules 10.

If the information manager 20 receives a subordinate
request from a function module 11 to which it can re-
spond using the information in the data storage element
22, it intercepts the request and generates a response to
the subordinate request, which it transmits to the func-
tion module 11 from which it received the subordinate
request. If the information manager 20 is unable to re-
spond to a subordinate request from a functional mod-
ule 11, 1t then determines whether the request relates to
the current time or a time in the future; that is, the
information manager 20 determines whether the request
should be processed immediately or scheduled for a
specified time in the future. At the appropriate time,
whether immediately or at the scheduled time, the in-
formation manager 20 transfers the subordinate request
to the dispatcher 21. In response to the receipt of a
subordinate request from the information manager 20,
the dispatcher 21 identifies an access module 12 to pro-
cess the subordinate request and transfers the subordi-
nate request to that access module 12.

In response to the receipt of a subordinate request
from the dispatcher 21, the access module 12 proceeds
to process the request. It may, in response to the subor-
dinate request, initiate one or more operations in con-
nection with the entity of the complex system con-
trolled thereby. If the subordinate request requires the
access module 12 to change the state or condition of the
entity, it attempts to do so and generates a respomse
containing status information indicating the status of the
attempt, that 1s, for example, whether the change was
successful, unsuccessful, or partially successful. On the
other hand, if the subordinate request requires the ac-
cess module 12 to identify the state or condition of the
entity, i1t generates a response indicating the entity’s
state or condition. Finally, if the subordinate request
requires the access module 12 to do both, it attempts to
change the state or condition of the entity and generates
a response indicating the status of the attempt and also
the entity’s new state or condition. In any case, the
access module 12 transmits the response to the dis-
patcher 21, which transfers it to the functional module
11 which generated the request. The functional module
11 uses the response from the access module 12 in for-
mulating its response to a request from the dispatcher 16
or to a subordinate request from another functional
module 11, as appropriate.

A functional module 11, upon receiving a subordinate
request from other functional modules 11, processes it
in the same manner as it processes a request from the
dispatcher 21.

H. Advantages

The control arrangement depicted in FIG. 1A pro-
vides a number of advantages. The control arrangement
essentially forms a processing chain, with each element
along the chain attempting to process a request before
passing it along to the next element. Thus, if the infor-
mation manager 13, 20 can process the request, based on
the contents of associated data storage element 17, 22,
without requiring further processing by another ele-
ment further down the chain, it does so.

3

10

15

20

25

30

35

45

50

33

65

14

Furthermore, the control arrangement is extensible,
so that additional presentation modules 10, functional
modules 11 and access modules 12 can be easily added,
as described below, without changing the architecture
of the control arrangement. Addition of functional
modules 11 and access modules 12 is by way of an en-
rolilment procedure, which is described below in con-
nection with FIG. 5. Additions or deletions of modules
10, 11 or 12 can be made merely by modifying, as de-
scribed below, the contents of certain data structures in
the data storage element 17, 22, and other data struc-
tures maintained by the presentation modules 10, as
depicted in FIG. 5.

Additionally, the modular, extensible nature of the
control arrangement facilitates management of the con-
trol arrangement itself. The same dispatch and request
paradigms which are used to issue management direc-
tives to the complex system may also be used to issue
commands to the management modules themselves.
This eliminates the need for an additional management
application to manage the control arrangement itself.

Also, as the functions of the modules are specified in
a standard format and available to the control arrange-
ment as a whole, the control arrangement can provide
full user interface support for the modules, thus freeing
module designers from the burden of supporting a user
interface to each module. This type of “automatic” user
mterface support also guarantees a uniform look and
feel to the user interface regardless of the source or
nature of the management modules being used.

It will be appreciated that, if the control arrangement
is used to control a distributed digital data processing

system, 1t, including its various elements, may comprise
a plurality of routines processed by the various nodes
and computers comprising the distributed digital data
processing system; that is, computer facilities, in addi-
tion to those comprising the distributed digital data
processing system being controlled, are not required to
process the modules comprising the control arrange-
ment to control the distributed digital data processing
system. Conventional procedure call mechanisms, inter-
process communication mechanisms and inter-nodal
communications mechanisms may be used to transfer
communications, including requests, subsidiary requests
and responses, between the various portions of the con-
trol arrangement which may reside in different parts of
the same process, in different processes in the same
node, and in different nodes. If the modules reside in
different processes in the same node or in different
nodes, interprocess and internode communications
mechanisms as depicted in FIG. 6, described below, are
used to transfer requests and subsidiary requests, as well
as responses, among the various processes and nodes.

1. Entity Model

Before proceeding further, it will be helpful to de-
scribe further the relationship between the control ar-
rangement depicted in FIG. 1A, and the complex sys-:
tem being controlled. Specifically, referring to FIG.
2A, the control arrangement comprises a director 35,
which includes all of the presentation modules 10, the
functional modules 11, and the access modules 12, along
with the kernel 13, 14. The complex system includes
one or more entities 36. Each entity 36 includes a ser-
vice element 31, a management interface 30 and a ser-
vice Interface 33. The management interface controls
and monitors the service element through an agent 34.
The service element is the actual managed portion of

5,345,587

15

the entity 36 and provides the entity’s primary function
or function. That is, the service element 31 performs the
function of the entity required within the context of the
distributed digital data processing system. If, for exam-
ple, the entity performs communications over a net-
work for a node, the service element 31 performs the
communications.

As noted above, the service element 31 is managed
through an agent, which communicates with the direc-
tor, specifically, with the access modules 12, through
the management interface 30 and the service interface
33. The communications through the management in-
terface 30 facilitates turning the service element 31 on
or off and its initialization, and also permits the director
35 to determine the operational status of the entity 36.
Communications through the service interface 33 per-
mits the director 35 to control and monitor service
element 31 otherwise, by, for example, establishing
conditions of selected attributes, such as communica-
tions parameters in the case of an entity 36 which per-
forms communications, in context of controlling the
entity 36, or determining the values of counters, in the
context of monitoring the entity 36.

The management of an entity is characterized by the
directives it supports, and its attributes, which are,
broadly, those parameters which relate to its function-
ing and control and are associated with directives. For
example, 1f the entity is a router which communicates
data packets through a distributed data processing net-
work, the attributes of the router may include the num-
ber of packets transmitted, and the number of bytes
transmitted. If the entity is a modem, the attributes may
include the counters and status registers which relate to
the modem operation. Examples of directives include
SHOW, which will retrieve attribute values, and SET,
which modifies attribute values.

The service interface relates to the function of the
entity, and the management interface relates to opera-
tion of the agent. The directives and attributes which
are accessed through the service interface characterize
the function of the entity, whereas the directives and
attributes which are accessed through the management
interface characterize the control and monitoring of the
entity.

To clarify the roles of the two interfaces, and to pro-
vide an example of how the above model applies to a
particular entity, consider a controllable entity which is
a modem. The modem may have several functional

10

13

20

25

30

35

45

attributes, such as the baud rate, line selection, and

power switch setting. In addition, the modem may have
several management attributes, such as its the percent
utilization of its lines and the time elapsed since the last
self-test. The baud rate, line selection, and power switch
setting relate to the immediate operation of the modem,
and as such would be accessed through the service
interface. The percent line utilization and time elapsed
since the last self-test to the general operation of the
modem, and as such would be accessed through the
management interface.

To elaborate on the above example, note that the
presentation modules, during presentation of manage-
ment information on a presentation device, use the ser-
vice interface of the presentation device, because the
presentation of information is the main service of the
presentation device. However, an access module in the
control arrangement may also manage the presentation
device, for example by polling it to determine if it is
turned on. |

50

23

65

16

In addition to the attributes discussed above, there are
other “pseudo-attributes” which relate to the entity but
are not stored by the entity as such. Pseudo-attributes
generally are attributes which are required by the entity
model description but not supplied by the entity. An
example 1s the attribute IMPLEMENTATION, which
may be the synthesis of the attributes IMPLEMENTA -
TION TYPE and VERSION supplied by the entity,
and the CREATION TIME of the entity. Pseudo-
attributes are maintained by the access module which is
responsible for accessing the entity.

It is worth noting at this point that the entity model is
a generalized method for describing directives and attri-
butes of an entity, and does not imply any structure
within the entity itself. The entity model is a tool which
allows the control arrangement to refer to the opera-
tions and attributes of any arbitrary entity in a consis-
tent fashion. Any arbitrary entity may be “plugged
into” and managed by the control arrangement of FIG.
1A by (1) describing it consistent with the entity model,
(2) mplementing an appropriate access module, and (3)
plugging (enrolling) the access module into the control
arrangement.

J. Management of Management Modules

As noted above, in a control arrangement which
controls a distributed digital data processing system, the
various presentation modules 10, functional modules 11,
access modules 12 and kernel 13, 14 are processed by
the various nodes comprising the distributed digital data
processing system. In that case, the various modules 10,
11 and 12 and kernel 13, 14 form entities in the complex
system, and may be controlled in the same manner as |
other entities, as described above.

The dispatch and request paradigms which are used
to issue management directives to the complex system
are also used to issue commands to the management
modules themselves. As will be seen in the dispatch
specifications below, in addition to management rou-
tines for managing the complex system, each module
contains self-management routines which manipulate
the internal attributes of the module. Both the external
and mternal routines may be accessed by requests using
the request syntax. Therefore, as the capabilities for
management of the complex system are increased by
addition of new control modules, the capabilities for
management of the control arrangement are similarly
increased. -

SPECIFIC DESCRIPTION
A. Management Modules Structure

1. Overview |

Referring to FIG. 2B, in one particular embodiment,
the structure of a management module includes execut-
able code 38 that implements the management functions
provided by the module. In particular, for an access
module, the executable code includes the access proto-
cols for the entity classes which are serviced by the
access module. For a functional module, the executable
code includes instructions for computing the higher-
level functions provided by the module. For a presenta-
tion module, the executable code includes the interface
protocols for the presentation devices supported by the
presentation module.

The module may require private memory to store
various read-only or read/write variables relating to the
module’s function. This storage is provided to the mod-

15,345,587

17

‘ule as an allocated region 32. This storage may be used,
for example, by a presentation module to store parse
tables or presentation forms data, or by an access mod-
ule to store password information in a wildcarded re-
quest (see below).

The access points of the various procedures provided
by the access moduiles are indicated by pointers in the
dispatch entries 39A and 39B. As will be more fully
discussed later, the dispatch entries are merged into the
dispatch table stored in the kernel storage 17, 22, and
are used to locate the various procedures which the
module supports. As shown in FIG. 2B, dispatch point-
ers 39A relate to the procedures in the module which
provide management services to the complex system,
whereas dispatch pointers 39B relate to the procedures
in the module which provide management services to
the module itself. As discussed above, when the module
1s enrolled into the control arrangement both sets of
pointers are loaded into the kernel memory for use in
managing the complex system or the modules which
comprise the control arrangement.

In addition to the above structure, the module is
assoclated with a management specification 48 which
describes the classes of entities and attributes which are
serviced by the module, as well as the directive and
response structure for requesting services from the
module. The management specification also specifies
the management of the module itself. During the enroll-
ment of 2 module, the related management specification

1s loaded into the data dictionary.
2. Management Specification

The properties, composition and structure of the
service element 31 and service interface 33 of the enti-
ties of the complex system being managed by the con-
trol arrangement (FIG. 1A), as well as the various enti-
ties comprising the control arrangement, are defined by
a management specification and dispatch specification.
FI1GS. 3A through 3D detail the management specifica-
tion for an entity, and FIG. 3E defines a dispatch speci-
fication which 1s used in initiating a particular operation
in connection with the entity. With reference initially to
FIG. 3A, the management specification for an entity
includes a header portion 40 and a body portion 45. The
header portion 40 includes certain identification infor-
mation such as a name field 41 which contains a name
that identifies the entity, a version field 42 which con-
tains a version identification, a facility field 43 contain-
ing location information indicating the location of the
entity within the complex system (for example, the
identification of the node if the complex system is a
distributed digital data processing system), and a type
declaration field 44 which indicates selected data type
information.

In an alternative embodiment, the header portion
may also include a symbol-prefix field which is used in
conjunction with the symbol field 52, discussed below.

The body portion 45 of the management specification
contains the actual management specification for the
entity. The body portion 45 is further defined in FIG.
3A. Preliminarily, the control arrangement includes
two general types of entities, namely, a global entity,
and a subordinate entity. The control arrangement facil-
itates a hierarchy of entities, as defined above, with the
global entity identifying a top level entity in a hierarchy
and a subordinate entity identifying a entity that is sub-
ordinate to another entity in the hierarchy. The body
portion 45 of a management specification includes one
of two types of entity definitions, that is, a definition

10

15

20

25

30

35

45

50

35

60

65

18
43A to a global entity or a definition 45C to a subordi-
nate entity.

A management module may provide services to a
global class of entities, or to a class of subentities within
a global entity class. A particular example occurs in the
DECnet Phase IV, as promulgated by Digital Equip-
ment Corporation, Maynard, Mass.: in DECnet Phase
IV, Adjacent_Node is a subordinate entity class, whose
superior entity class is Node4__Circuit. If a management
module provides services specifically to the Adjacen-
t_Node subordinate entity class, the management speci-
fication must provide a mechanism to indicate that the
management specification for the global class resides in
the management specification for another module (that
which manages the Noded__Circuit class).

The definitions 45A and 45C to a global and subordi-
nate entity, respectively, are further defined in FIGS.
3A through 3D. An entity definition 46 includes a name
field 47 that includes a name and a code by which the
entity can be identified. In addition, the name field 47
identifies the entity as a global or subordinate entity and
identifies a class name for the entity. If the entity defini-
tion 1s for a subordinate entity, it has a superior field 50
which identifies the superior entities in the hierarchy.
An 1dentifier field 51 includes a list of attribute names
for attributes which are defined later in an entity body
portion 53. Finally, a symbol field 52 includes a symbol
that is used to generate a specific compiler constants file

which contains consistent names for use by an entity
developer.

In an alternative embodiment, a DYNAMIC field
may be 1ncluded in the entity definition. This field may
have the values TRUE or FALSE., and indicates
whether the management specification for the entity
should be stored in the configuration database (FIG.
1B). This provides the management module developer a
way to indicate precisely which subordinate entity in-
stances are to be stored 1n the configuration database. In
this way, entities such as connections between nodes
which are highly dynamic do not need to be stored in
the configuration of the system. This eliminates the
overhead caused by repeatedly adding and deleting
dynamic instances. The boolean wvalue of the DY-
NAMIC field indicates if the entity class is dynamic in
nature; if TRUE, instances of the entity class will not be
stored 1n the configuration, if FALSE, instances of the
entity class will be stored in the configuration.

As noted above, an entity definition 46 for an entity
includes a body portion 53. The body portion 53 is
defined in detail in FIG. 3B. With reference to FIG. 3B,
the body portion 53 of 2 management specification in-
cludes four portions, namely, an attribute partition defi-
nition list 54, an aggregation definition list 55, a direc-
tive definition list 56 and a subordinate entity list 57, if
the entity class contains any subordinate entities. If the
body portion 53 includes a subordinate entity list 57,
each item in the subordinate entity list 57 comprises an
entity definition 46 (FIG. 3A), with the name field 47
including “SUBORDINATE”.

As mentioned above, the entity body contains an
attribute partition list 54 and an attribute aggregation
list 535. It 1s useful at this point to explain the distinction
between these lists. Each list takes the entity’s full set of
attributes and associates each attribute with one or more
groups; the groupings set forth by the partition list 54
are independent from those set forth by the aggregation
list—each list is an independent characterization of the
entity’s attributes.

5,345,587

19

The partition list 54 identifies and groups all attri-
butes having similar form; for example, an attribute
partition may include all counters or all status attributes
(flags). The word “partition” is used to indicate that the
groups formed by attribute partitions are true partitions
of the attributes—no attribute may be a member of two
partitions, and each attribute must be a member of ex-
actly one partition.

The aggregation list 55 identifies and groups all attri-
butes having similar function. For example, an access
module for a NODE4 global entity class may define an
attribute aggregation called “SQUERGE”. The
SQUERGE attribute aggregation may include all attri-
butes relating to the current operational performance of
a NODES4 class entity, e.g., a counter type attribute
indicating the number of bytes sent, and characteristic
type attribute indicating the pipeline quota. In this ex-
ample, a user could then view these statistics together
by a command such as:

SHOW NODE <instance> ALL SQUERGE

The word “aggregation” is used to indicate that aggre-
gations contain attributes with like function, but do not
necessarily form partitions of the attributes. One attri-
bute may be a member of more than one aggregation,
and all attributes do not need to be a member of an
aggregation. |

The attribute partition definition list 54 includes one
or more attribute definitions 64 as further defined on
F1G. 3B. Each attribute partition definition 64 includes
a kind field 56 which identifies the attribute as being of
a particular type, including an identifier type attribute, a
status type attribute, a counter type attribute, a charac-
teristic type attribute, a reference type attribute or a
statistic type attribute. For each type of attribute, the
data type is provided by an appended field 68. The
attribute partition definition 54 may also include fields
60 and 61 which indicate, respectively, a default polling
rate and a maximum polling rate for the entity. As noted
above, a historical data recorder functional module 11
may periodically obtain status and condition informa-
tion for storage in the data storage element 17, 22 in
connection with the various entities comprising the
complex system. The contents of the polling rate fields
identify the default and maximum rates at which the
respective entities will provide status and condition
information. In addition, an attribute definition includes
one or more attribute fields 62 each including an attri-
bute name 63, which includes a code by which the
attribute may be accessed, and an associated attribute
body 64.

All definitions for attributes which are members of a
partition reside within one partition definition 54 as set
forth above. The independent aspects of the attributes
are set forth by one of more attribute body definitions
64. FIG. 3B further describes the information contained
in an attribute body 64 in an attribute field in an attri-
bute partition definition 55. An attribute body 64 may
include a number of fields, including an access informa-
tion field 65 which indicates whether the attribute can
be read or written and a display field 66 which indicates
whether the attribute should be displayed to an opera-
tor, by means of a presentation module 10. A default
value field 67 identifies a default or initial value for the
attribute. A symbol field 70 contains a symbol that is
used to generate a specific compiler constants file which

5

10

15

20

25

30

35

45

50

3

60

65

20

contains consistent names for use by an entity devel-
Oper.

An attribute body 64 further includes a categories
field 71 which identifies one or more categories with
which the attribute may be associated. If the complex
system 1s a distributed digital data processing system,
the categories may include but need not be restricted to
categories defined by the 74-98-4 Open Systems Inter-
connect (OSI) standard, including CONFIGURA-
TION, FAULT, PERFORMANCE, SECURITY or
ACCOUNTING. In addition, the attribute body 64
may include polling rate information in fields 72 and 73
if the polling rates for the particular attribute defined by
the attribute body 64 are different than the polling rates
defined in fields 60 and 61 in the attribute partition
definition 54. Finally, the attribute body 64 may include
a private variable field 74 which identifies private vari-
ables that are used in the management module in pro-
cessing relating to the attribute.

In an alternative embodiment, the polling rate infor-
mation may be omitted entirely from the attribute defi-
nitions, owing to the implementation-specific nature of
this data. In addition, in alternative embodiments, a
UNITS field may be included in the attribute body 64.
Where a UNITS field is included, numeric data types
can (and should) have their units defined.

Attributes can be aggregated to simplify management
of the complex system. The aggregation definition por-
tion §5 of the entity body 53 identifies one or more
aggregations which the entity includes. The contents of
an aggregation definition portion 55 are defined in detail
on FIG. 3B. An aggregation definition portion 55 in-
cludes an aggregation name field 75 which identifies the
aggregation and an attribute list 81 identifying the attri-
butes included in the aggregation. An aggregation defi-
nition portion §5 may also include a list of directives,
that 1s, requests which may be processed by reference to
the aggregation. An aggregation definition portion 55
may include a symbol field 77 similar to the symbol field
described above, a categories field 80 that may contain
but is not limited to OSI category information, and a
private variables field 82 that identifies private variables
used in processing relating to the attributes included in
the aggregation identified by the aggregation name in
field 75.

An entity processes directives which are generated
by the control arrangement in response to the requests
and subordinate requests from a presentation module 10
and a functional module 11, respectively. Each direc-
tive includes a directive request, which defines an oper-
ation to be performed, and may include a response and
an exception which define responses that the entity may
make in connection with the operation. Each directive
1s defined by a directive definition 56. FIGS. 3C and 3D
detail the structures of a directive definition 56. With
reference to FIG. 3C, a directive definition 56 includes
a name field 83, which includes a code by which the
directive can be identified and accessed. A directive
includes a request definition field 90, which identifies
the structure of a request or subordinate request, a re-
sponse definition field 91 which defines the structure of
a response, and an exception definition field 92 which
defines the structure of an exception which may be
generated during processing of the directive. The de-
tails of the fields 90, 91 and 92 will be described below.

A directive definition 56 may also include a field 84
which indicates whether the directive is an action direc-
tive, that is, whether it enables a change in the condition

9,345,587

21

or status of one or more entities in the complex system,
or whether it merely initiates return of status or condi-
tion information. In an alternative embodiment, the
action field 84 may be replaced by a DIREC-
TIVE_TYPE field which indicates whether the direc-
tive 1s of the EXAMINE, MODIFY, or ACTION type.
An EXAMINE directive operates on attributes only
and does not modify; examples include SHOW or DI-
RECTORY directives. A MODIFY directive operates
on attributes only and does modify; examples include
SET, ADD, or REMOVE directives. An ACTION
directive does not operate on attributes, rather, AC-
TION directives operate on the entity itself; examples
include CREATE and TEST directives.

A field 85 may be provided to indicate whether the
directive 1s accessible by a presentation module 10. An
identifying text string may be provided in a symbol field
86. In addition, a categories field 87 may define, but
need not be limited to, one or more OSI categories, as
defined above in connection with field 71 (FIG. 3B).

The structure of the request definition field 90 in a
directive definition 56 is defined in FIG. 3C. In addition
to the word “REQUEST”, the request definition field
90 may include zero or more arguments 91, each identi-
fied by a name field 92 including an access code. In
addition, an argument may include a display field 93
that indicates whether the argument is to be displayed
by a presentation module 10 to an operator. The argu-

ment may also include field 94 which indicates whether
an operator must provide a value for the argument, a

default field 96 including a default value, a symbol field
97 including an identifying text string, and a units field
95 which identifies the units of measurement of the
argument values. In addition, the argument 91 may
include a private variable field 100 identifying the pri-
vate variables used in processing in connection with the
argument.

The structures of a response definition field 91 and an
exception definition field 92 are depicted in FIG. 3D.
With reference to FIG. 3D, a response definition field
91 includes a response name field 101, which also in-
cludes a code by which the response can be accessed. A
severity field identifies whether the response indicates
SUCCESS in performing the request defined by the
request field 90, or whether the response is INFORMA -
TIONAL. A text field 103 indicates a text string which
the presentation module 10 can display to an operator to
indicate the response. In addition, a response definition
field can include one or more argument fields 104, each
including a name field 105, a units field 106 and a sym-
bol field 107.

In alternative embodiments, the SEVERITY field
102 may be replaced with a SYMBOL field containing
an identifying text string for the response, and the AR-
GUMENTS field 104 may include a boolean DIS-
PLAY field for indicating whether the response should
be displayed to the user.

The structure of the exception definition field 92 is
stmilar to that of the response definition field 91, includ-
ing fields 111 through 117, which are similar to fields
101 through 107 of the response definition field 21. The
severity field 112, however, can contain three values,
including WARNING, ERROR and FATAL, indicat-
ing the severity of the error giving rise to the exception.

As in the response definition 91, in alternative em-
bodiments, the SEVERITY field 112 may be replaced
with a SYMBOL field containing an identifying text
string for the response, and the ARGUMENTS field

10

15

20

25

30

35

45

50

33

65

22
114 may include a boolean DISPLAY field for indicat-
ing whether the response should be displayed to the
user.

3. Dispatch Specification

FIG. 3E defines a dispatch specification 39A (FIG.
2B) which 1s used in defining initiation of particular
operations by an entity. The information in the dispatch
specifications for an entity are used to generate pointers
to procedures to perform the operations. With refer-
ence to FIG. 3E, the dispatch specification includes a
header 200 which defines the beginning of the dispatch
specification and contains a table name, and a footer 201
that defines the end of the dispatch specification. Be-
tween the header 200 and footer 201, the dispatch speci-
fication includes one or more dispatch entries 202 each
of which defines an operation in connection with one or
more entities and attributes.

The dispatch entry includes a verb portion 203 and an
entity entry 204, which together identify an operation.
Effectively, the verb portion 203 and the entity portion
204 of the dispatch entry corresponds to a directive
defined by the management. Directives may either op-
erate on entities, or on attributes defined by an attribute
portion 2035 of the entity defined by an entity entry 204.
The contents of the entity entry 204 correspond to an
entity or sub-entity identified by an entity class and
instance name in the name fields 47 and 50 of the entity

definition 46. Similarly, the contents of the attribute
portion 205 correspond to attributes that are defined by

the name field 62 of the attribute definitions 54 of the
entity body 53 of the entity definition 46.

The dispatch entry 202 also includes a procedure
poimnter portion 206, which contains a pointer to an
entry point to a procedure in an access module which
processes a directive 1n connection with the entity and
attributes 1dentified m portions 203, 204 and 205 of the
dispatch entry 202. As will be described below in con-
nection with FIGS. 5, 7A and 8B, the dispatch specifi-
cation 1S used in formulating data structures, specifically
dispatch entries 134 (FIG. 8B) of dispatch tables 28
(FI1G. §5) that are used by the kernel 13, 14 to transfer
requests to the proper functional module 11 or access
module 12 for processing. A request or subsidiary re-
quest essentially defines a verb, an entity and an attri-
bute partition, and the kernel compares the verb, entity
and attribute partition defined by a request to the con-
tents of the portions of the data structures defined by
portions 203, 204 and 205, respectively, of the dispatch
specification. If the respective portions of the verb
match the contents of the corresponding portions of the
data structures (FIG. 8B), the kernel 13, 14 initiates the
procedure defined in the dispatch entry 134, which is
taken from the portion 206 of the dispatch specification
(F1G. 3E)

B. Data Files and Use

1. Data Dictionary

When a management module is enrolled, its manage-
ment specification may define new global entity classes,
subentity classes or attributes, directives or events of
global or subentities. The management specification
(FIGS. 3A through 3D) is used to construct a data
dictionary, which, in turn, is used in constructing other
data structures, which are described below in connec-
tion with FIGS. 5, 8A and used as depicted in FIG. 9.
The data dictionary comprises a hierarchical database
having the general schema or structure shown in FIG.

J,345,587

23

4. With reference to FIG. 4, the schema has a relative
root node 220 which is associated with a global entity as
defined in the management specification (FIG. 3A).
The global entity node points to a plurality of subsidiary
nodes in the hierarchical schema, including a subsidiary
node 221 listing all attributes, subsidiary node 219 listing
attribute partitions, a subsidiary node 222 listing attri-
bute aggregations, a subsidiary node 223 listing direc-
tives, and a subsidiary node 224 listing subentities, of the
entity body S3 in the entity definition 46 of the manage-
ment specification.

Each of the subsidiary nodes 219 through 224, in turn,
points to the respective elements defined in the entity
body. That is, the attribute node 221 points to attribute
definition nodes 225 each of which contains the defini-
tion of an attribute defined in an attribute definition 54
in the entity body 53, the attribute partition node 219
points to attribute partition nodes each of which con-
tains an attribute partition defined in a partition defini-
tion 56 in the attribute definition 54 of the entity body
53, the aggregations node 222 points to aggregation
definition nodes 226 each containing the definition of an
aggregation defined in an aggregation definition 55 in
the entity body 53, the directives node 223 points to
directive definition nodes 227 each containing the defi-
nition of a directive defined in directive definition 56 in
the entity body 53, and the subentities node 224 points
to subentities definition nodes 228 each containing the
definition of a subentity defined in a subentity definition
ST in the entity body 53. Each of the directive nodes
227, in turn, points to a request node 230, a response
node 231 and an exception node 232, each of which, in
turn, contains the definition of a request, response and
exception as taken from the request definition 90, re-
sponse defimition 91 and exception definition 92 (FIG.
3C) of the management specification. In addition, each
subentity node 228 forms the root node of a sub-schema
having a structure similar to that depicted for a global
entity shown in FIG. 4, including a subsidiary node 233
for attributes, a subsidiary node 234 for aggregations, a
subsidiary node 235 for directives, a subsidiary node 237
for partitions and a subsidiary node 236 for subentities.
The schema depicted in FIG. 4 is repeated for all suben-
tities and their subentities as defined in the management
specification depicted in FIGS. 3A through 3D.

The mformation in the management specification is
merged into the respective nodes of the data dictionary
and 1s used to create the user interface information file
29 used by a presentation module 10 in connection with
display of entity information, including entity identifica-
tion information and response information, to an opera-
tor and generation of requests for processing by the
other portions of the control arrangement and the enti-
ties of the complex system, as described below. The
diverse nodes of the data dictionary receive the infor-
mation from the elements of the management specifica-
tion to form the complete database comprising the data
dictionary. The information in the dispatch specifica-
tion (FIG. 3E) is used to create the dispatch tables 28, as
described below in connection with FIGS. 8B and 9.

With this background, FIG. 5 depicts a single presen-
tation module 10, functional module 11 and access mod-
ule 12, the kernel 13, 14 including information manager
15, 20 and dispatcher 16, 21. In addition, FIG. 5 depicts
various portions of the data storage element 17, 22.
Specifically, the data storage element 17, 22 includes a
configuration and domains database 23, 25, an alarms

10

15

20

235

30

35

45

30

35

65

24
database 24, a historical data file 26, a data dictionary 27
and a dispatch table 28.

2. Historical Data File

The historical data file 26 contains information re-
garding the status and condition of entities, in the case
of the presentation-functional aspect of kernel 13, and
entities, in the case of the functional-access aspect of
kernel 14. In file 26 the status and condition information
also includes timing information, to identify the time at
which the status and condition information was gener-
ated. When the information manager 15, 20 receives a
request, or a subordinate request, regarding status or
condition at a specific time, it determines whether the
information is in the file 26, if the time indicated in the
request or subordinate request is in the past, and re-
sponds using the contents of the file.

On the other hand, if the time indicated in the request
or subordinate request is a future time, the information
manager 15, 20 effectively schedules the request to be
processed at the time indicated. That is, the information
manager retains the request or subordinate request until
the indicated time is reached, and at that point processes
the request either using responses directly from the
access module 12 or functional module 11, as appropri-
ate, or using the contents of file 26 as appropriate.

These functions will be fully described below under
the heading “Scheduling”.

3. Dispatch Table

The dispatch table 28 is used by dispatcher 16, 21 to
determine how to transfer a request or subordinate
request to the appropriate functional module 11 or ac-
cess module 12. The contents of the dispatch table 28
identify the locations, in the distributed digital data
processing system, of the entry points of the routines
comprising each of the functional modules 11 which
may be called in response to requests from a presenta-
tion module 10. More specifically, the dispatch table 28
contains calling information which facilitate initiation
of the various operations by the respective functional
modules 11. Similarly, the contents of the dispatch table
28 1dentify the locations, in the distributed digital data
processing system, of the entry points of the routines in
the access modules 12 which are used to process subor-
dinate requests from a functional module 11, that is, the
calling information defining the various operations by
the respective entities.

4. User Interface Information

The control arrangement further includes a user in-
terface information file 29 that contains information as
to the various functions provided by the functional
modules 11 and the entities controlled by the access
modules 12. The user interface information file 29 con-
tains information derived from the management specifi-
cations of the respective entities. The presentation mod-
ules 10 use the contents of the user interface information
file 29 in displaying menus and other objects on the
operators’ termiunals to facilitate control of the complex

- system. The information in the user interface informa-

tion file 29 facilitates display of the various functions
and operations in connection with the complex system’s
entities.

5. Configuration Database

As discussed above, a configuration functional mod-
ule may create and maintain a configuration database,
which lists all of the entity instances in the current
configuration of the complex system (and also past
configurations, if desired). This information may be
used, e.g., by a presentation module to create parse

5,345,587

23

tables or user menus listing available entity instances.
'The configuration database may also include a domain
database for limiting the scope of control of a user, to
facilitate use of the complex system, as discussed below.

In addition to the above features, in one embodiment,
the configuration database may be used in conjunction
with presentation modules to support wildcarding in
user commands. When a user command containing a
wildcard is received by a presentation module, the pre-
sentation module i1ssues a request to the configuration
functional module, requesting an enumeration of all
entities in the configuration that match the wildcard
request. The configuration functional modules then uses
the information in the configuration database (along
with domain information) to produce the list. After
recetving the list, the presentation module expands the
user request mto all of the possible subsidiary requests
which match the wildcarding.

For example, the request

SHOW NODE * IN DOMAIN SITE!1

(where SHOW 1s the directive, DOMAIN is the do-
main entity class, SITE1 is a domain instance, NODE is
a global entity class, and , is the wildcard) would be
interpreted as a command to show all instances of nodes
within the domain named SITE1l. The presentation
module would thus expand the request into several
requests, each of the form

SHOW NODE <instance>

(where <instance>> is the instance name), one corre-

sponding to each instance of the NODE class in domain
SITEL.

Partial Wildcarding may also be supported. In this
case, the group of target entities with instance names
that match the pattern specified by the partial wild-
carded name are issued directives. For example,
“NODE *0O0” would match “NODE FQOO” and
“NODE MAGOO?”, but not “NODE BAR?”. Partial
wildcarding may not be used in fields having identifiers
with certain datatypes, e.g., identifiers which do not use
text or digit strings.

In preferred embodiments, wildcard expansion is not
allowed in the global entity class field of a user direc-
tive. Global class specifications are not wildcarded
because doing so would result in insufficient control on
the scope of a command. This may create errors if di-
rective names supported by one entity class are not
supported by another. Even where a directive name is
supported by multiple classes, the directive name may
correspond to unrelated functions in different classes,
causing undesired side-effects (e.g. a “DELETE *”
directive). In addition, global entity wildcarding may
simply produce more information than the user intends
(e.g. a “SHOW *” directive). Note that wildcarding
may be safely allowed in subentity classes.

Embodiments of wildcarding may also delegate some
or all of the wildcard expansion duties to access mod-
ules. This is particularly the case where no configura-
tion functional module is used. In the absence of a con-
figuration functional module, the access modules (ordi-
narily associated with accessing all modules of a class or
subclass) may store instance data as part of their private
storage 32 (FI1G. 2B). In this case, the access modules
would use the instance data to expand wildcards in
received requests. If wildcarding is not supported by a

3

10

15

20

25

30

35

45

50

35

65

26

particular access module, an exception indicating this
condition would be returned to the user.

C. Data Filed Management and Enrollment

When a management module is added to the control
arrangement, or when new information relating to man-
agement of the entities becomes available, the control
arrangement must adapt. The control arrangement is
data driven, and thus adapting the system to new mod-
ules or information involves modification of the rele-
vant data files. In general, this process is known as data
file management. The particular procedure by which
the control arrangement adapts to a new module is
known as enrollment.

1. Historical Data File Management

In one specific embodiment, the contents of the his-
torical data file 26 are provided and maintained in part
by a functional module 11 which serves as a historical
data recorder functional module. In that embodiment,
the historical data recorder functional module is con-
trolled by an operator through requests presented to a
presentation module 10. Initially, a such request, which
identifies an entity and one or more attributes, along
with a polling rate, establishes a record in the historical
data file for the identified entity and attributes and ena-
bles the historical data recorder functional module to
1ssue, at the polling rate specified in the request, subor-
dinate requests to the entity enabling it to respond with
value(s) representing the condition(s) of the entities of
the complex system specified by the entity and at-
tribute(s) specified in the request. In addition, other
types of requests permit an operator to initiate other
operations in connection with the historical data re-
corder functional module, including changing the pol-
ling rate, temporarily enabling and disabling the polling,
and showing the last value in a response.

2. Dispatch Table

The contents of the dispatch table 28 and of the user
interface information file 29, comprise enrollment infor-
mation, and are provided by the various functional
modules 11 and access modules 12 during an enrollment
procedure. During an enrollment procedure in which a
module enrolils 1n the control arrangement, it loads the
display information, including name and code informa-
tion from its name fields into the data dictionary. In
addition, the module loads the code information and
other information as defined by the management specifi-
cation from the data dictionary (FIG. 4), and the dis-
patch information from its dispatch specification (FIG.
3E) into the dispatch table 24.

3. User Interface Information

The presentation modules 10 use the display informa-
tion in the user interface information file 29 to deter-
mine, first, whether to display an entity, attribute, direc-
tive, and so forth, and, second, what to display. The
user interface information file 29 forms a parse table
that, in response to a command by an operator at a
terminal, enables the presentation module 10 receiving
the command to parse the command using the parse
table to derive codes, corresponding to the codes for
the request, entity and attributes defined in 2 manage-
ment specification, which it transmits as a request to the
kernel 13.

Note that functional and access modules do not need
to have any user interface code. All user interface sup-
port 1s provided to these modules, and the module de-
signer need not concern himself with the user interface.
‘This simplifies module design tremendously, and guar-

5,345,587

27

antees that the system will have a uniform look and feel
to the user, regardless of the actual modules in use.

Upon receiving a request from a presentation module,
the dispatcher 16 calls the functional module 11 using
the dispatch information in the dispatch table 28. The
dispatch table 28 also forms a parse table, which the
dispatcher 16 uses to dispatch to the proper procedure
to process the request, as described below in connection
with FIG. 9. |

It will be appreciated that the use of codes in the
parse table and in the dispatch table 28, while presenta-
tion specific information is being used in the user inter-
face information file 29, essentially separates the identi-
fications of the entities, attributes, and so forth, as used
by the dispatcher 16, from the identifications displayed
to the operators by the presentation modules 10. The
display generated by the presentation modules 10 may;,
therefore, be in diverse languages, while the requests
generated by the presentation modules 10 contain the
same identifications of the entities, attributes, and so
forth.

In addition, the user interface information file 29 may
store information which is already available from the
configuration database and data dictionary in a more
convenient format.

For example, the class data in the data dictionary
(FIG. 4) indicates all of the directives 223 supported by
entities in the complex system. However, the directives
223 are stored in a hierarchical format, and are subordi-
nate to the entity classes 220. Although this format is
logical for representing entity class information, it is less
useful for a parse table. A user request typically lists the
directive first (e.g. “SHOW” in “SHOW NODE
FOQ”), thus a parse table should have directives as the
first level of a hierarchical structure. As can also be seen
by the above example, a parse table may need to parse
a command where class names (e.g. “NODE”) are
mixed with instance names (e.g. the identifier FOO in
“NODE FOO”). Therefore, after a listing of the avail-
able directives, the parse table should list the class
names which support those directives, and then the data
types of instances of those classes. Although the class
and data type information is available from a reorgani-
zation of the Data Dictionary, for expansion of wild-
cards, instance data can be obtained from the Configu-
ration Database. Thus the parse tables in the user inter-
face information file can consolidate directive and en-
tity class, making the parsing of user input computation-
ally more efficient.

The above example also applies to a graphical or
menu-driven interface. However, in this type of inter-
face, the user may wish to set a context for his com-
mands, by graphically selecting a particular entity or
domain of entities for the subsequent operations, and the
OSI category (as listed in the category field 87 of the
directive definitions) of the directives to be made. Next,
a menu could be generated which listed all of the sup-
ported directives. The user could request a directive for
one or more mstances (e.g., by clicking on the directive
and instance) or an entire domain or entity class (e.g., by
clicking on the directive alone) using the pre-formed
menus. On a EXAMINE or CATEGORY type direc-
tive, further menus may prompt the user to select attri-
bute partitions or aggregations.

To mmplement this type of interface, a listing of all of

the domain and entity instances and a listing of all of the

instances in a domain must be fetched from the configu--

10

15

20

25

30

35

45

50

d3

60

65

28

ration database. In addition, a forms database may store
the directives supported by the class or domain.

The user interface information file may also store
default value information. Default values for instances
or ciasses may be provided by the user or by the Man-
agement Specification for the relevant entity class. This
allows the user to save typing time by specifying a
default value in a command. For example, the user may
be most concerned with NODE FOO, and may specify
“NODE FOO” as the default node. Later, the user can
type a command such as “SHOW ROUTING”, which
would be interpreted as “SHOW NODE FOO ROUT-
ING”. Similar uses of default values can be used in a
graphical environment.

Another example of user interface information is an
on-line help file which is available to the user through
presentation modules. The help file contains help infor-
mation for using the existing set of management mod-
ules. In preferred embodiments, the help file is con-
structed from help information supplied by the modules
when they are enrolled. The supplied help information
may include a text description of the entity and suben-
tity classes supported by the module, and the directives
to those classes supported by the module. In addition,
tutorial information can be supplied to educate a first-
time user on the use of the module and its directives.
The above information may also be determined from
the management specification for the module, however,
the help information file translates the management
specification information into English sentences, reduc-
ing the need for a user to learn the syntax of the man-
agement specification.

4. Historical Data Recorder

The historical data recorder functional module 11
may use the entities’ polling information from its por-
tion of the data dictionary, including the portions relat-
ing to the maximum polling rate field and the default
polling rate field, to initiate and control polling in con-
nection with the entity’s various attributes as defined in
the attribute definitions 54, the responses to which the
historical data recorder functional module 11 stores in
its historical data file 26. |

3. Module Enrollment

With reference to FIG. 5, An access module 12, for
example, while it is engaged in an enrollment proce-
dure, loads display information, including the name and
code information defined in the name and code informa-
tion from its name fields and information from the por-
tion of its data dictionary related to the display fields in
its management specification into the user interface
information file 29. Similarly, a functional module 11
loads the code information and other information as
defined by the management specification from the data
dictionary (FIG. 4), and the dispatch information from
the dispatch specification (FIG. 3E) into the dispatch
table 28.

D. Intermodule and Inter-Nodal Communications

1. Control Functional Module

In one specific embodiment the operator may control
an access module 12 directly, through a control func-
tional module 11 that essentially generates subsidiary
requests which are copies of requests which it receives
from the dispatcher 16. In that embodiment, the presen-
tation module 10 that receives the command, parses the
command using the parse table in the user interface
mformation file 29 to derive codes corresponding to the
codes for the request, entity and attributes of the access

5,345,587

29

module 12 defined in a management specification,
which 1t transmits as a request to the presentation-func-
tional kernel 13. The control functional module 11
passes the request as a subsidiary request to the func-
tional-access kernel 14, where it is treated in the same
manner as any other subsidiary request.

Upon receipt of a subsidiary request from a functional
module 11, the dispatcher 21 calls the access module 12
using the dispatch information in the dispatch table 28.
The dispatch table 28 also forms a parse table, which the
dispatcher 21 uses to dispatch to the proper procedure
to process the request, as described below in connection
with FIGS. 9A and 9B.

2. Inter-Nodal Communications

If the control arrangement controls a complex system
comprising a distributed digital data processing system,
FIG. 5 generally depicts elements, including a presenta-
tion module 10, a functional module 11 and an access
module 12, including kernel 13, 14 comprising informa-
tion manager 15, 20 and dispatcher 16, 21 and associated
data files 23, 24, 25, 26, 27, dispatch table 28, user inter-
face information file 29, all included in a single process
In a single node of a distributed digital data processing
system. If the distributed digital data processing system
includes a presentation module 10, a functional module
11 and an access module 12 in different processes or
nodes, the control arrangement includes a dispatcher
16, 21 in all processes and nodes. With reference to
FIG. 6, when a dispatcher 16(1) in one process in a node
receives a request from a presentation module 10(1)
which must be processed by a functional module 11(2)
in a second process or node, it transmits the request, by
an Interprocess communication mechanism, if the func-
tional module 11(2) is in another process on the same
node, or an iternode communication mechanism to a
process on the other node, to a dispatcher 16(2) in the
other process or node. The dispatcher 16(2) then selects
a functional module 11(2) to process the request. The
dispatcher 16(2) receives the response generated by the
tunctional module 11(2) and transmits it, by means of
the interprocess communication mechanism or inter-
node communication mechanism, to the dispatcher
16(1), which, in turn, enables a presentation module
10(1) to display the response to the operator.

Simuilarly, when a dispatcher 21(2) receives a subsid-
iary request from a functional module 11(2) to be pro-
cessed by an access module 12(3) in another process or
node, it transmits the subsidiary request to a dispatcher
21(3) 1n the other process or node by means of the inter-
process communications mechanism or internode com-
munication mechanism, respectively. The dispatcher
21(3) then transmits the subsidiary request to the access
module 12(3) for processing. The dispatcher 21(3) re-
ceives the response from the access module 12(3) and
transmits it, by means of the interprocess communica-
tion mechanism or internode communication mecha-
nism, to the dispatcher 21(2), which, in turn, couples it
to the functional module 11(2).

3. Request and Subsidiary Request Structure

The structure of a request, and specifically the param-
eters that are included with the request, is depicted in
FI1G. 7A. The structure and contents of dispatch table
24 (which are similar to the structure and contents of
dispatch table 26) will be described in connection with
FIGS. 8A and 8B. Thereafter, the process performed by
the information manager 15, 20 and dispatcher 16, 21 in
connection with parsing of a request will be described
in connection with FIG. 9.

5

10

15

20

25

30

35

40

45

30

35

65

30

With reference to FIG. 7A, a request, which may be
generated by a presentation module 10 in response to
operations by an operator in connection with the con-
tents of user interface information file 27, or which may
be generated by information manager 15 during polling
in connection with the various entities of the complex
system being controlled, includes a plurality of parame-
ters. All requests have the same structure, including an
initial call identification, which is not shown, followed
by parameters, which are depicted in FIG. 7A. As dis-
cussed above, the kernel 13, 14 has a single dispatcher
16, 21 having a presentation-functional aspect 16 and a
functional-access aspect 21. Which of these aspects are
respectively enabled by a request is determined by the
initial call identifier. The initial call identifier may indi-
cate a call to a functional module or an access module,
and 1s respectively routed to the corresponding aspect
of the dispatcher. A presentation or functional module
may call a functional module, and a functional module
or access module may call an access module, but a pre-
sentation module may only call an access module
through a “control” functional module, as discussed
above.

The parameters include a verb field 120 whose con-
tents identify the type of request, that is, an operation to
be pertformed in processing the request. As noted above,
a request may cause a functional module 11 or access
module 12 to initiate a change in the status or condition
of an entity in the complex system being controlled, it
may initiate a return of information as to the status or
condition of such an entity, or both. The contents of
verb field 120 indicates the operation to be performed
by the functional module 11 or access module 12.

In addition, a request includes an input entity specifi-
cation field 121, which identifies the entity in the com-
plex system being controlled. If the verb is a non-action
verb, for example, if it requests a response indicating the
values of one or more attributes, the request includes an
attribute pointer field 122 which contains a pointer to
one or more attributes in connection with which the
operation, defined by the verb and entity class, is to be
performed. If the verb is an action verb, that is, if it
causes a change 1n the specified entity, the request does
not have an attribute pointer field 122.

In addition, a request includes an input time specifier
field 123 that contains a pointer which points to a time
data structure that contains certain timing information,
including the absolute system time, time interval defini-
tion, and the time accuracy specification, and an indica-
tion as to the time range of interest in the request, for
scheduling purposes. An input/output context handle
field 124 contains a value which identifies the request in
the context of a multiple-part operation, each part of
which requires a separate request. An output entity
specifier field 126 contains a pointer to a data buffer
which can be used by the dispatcher 15 (or dispatcher
21, if the parameters form part of a subsidiary request)
in connection with identification of the entity.

A request also includes an output time specification
field 126 that contains a pointer to a time stamp specifi-
cation which is to be used by the functional module 11
(or access module 12 in the case of a subsidiary request)
in connection with formation of the response. Finally,
an optional data descriptor field 127 contains descrip-
tors to buffers containing data which is to be used in
processing the request and in which the entity is to store
data comprising a response, respectively. Each descrip-
tor includes a pointer to the starting location of the

5,345,587

31

respective buffer and a length specifier indicating the
length of the buffer. |

In alternative embodiments of the invention, the re-
quest may also include qualifier fields, as a separate
parameter or as an additional element of the parameter
fields discussed above.

A WITH qualifier can be associated with the Entity
field to, for example, filter the entity list produced by a
wildcard. For example, “BRIDGE * WITH STA-
TUS=‘ON’ AND FILTERING=‘OFF’” refers to
every bridge class entity with its status flag set to ON
and filtering flag set to OFF. (This example also illus-
trates the use of boolean functions such as AND, OR,
NOT and XOR with qualifiers.) In preferred embodi-
ments, to implement the WITH qualifier, all modules
and the information manager are configured to check
for the presence of a WITH clause at each level (i.e.
global entity, sub-entity, sub-sub-entity) of the Entity
parameter.

Other qualifiers may be used as a distinct parameter
of the request. For example, communications qualifiers
include: a “TO < filename > qualifier which sends the
response of a request to a file named <filename>; a
“FROM <filename > qualifier which retrieves other
request parameters from a file named <filename>: a
“VIA PATH” qualifier which specifies a series of
“hops™ along a path, through a hierarchy of manage-
ment modules (uvseful in specifying, e.g., the precise
management module among several arrangements that
will perform the operation); and a “VIA PORT” quali-
fier which specifies a particular network path a manage-
ment module uses when performing the operation (use-
ful, e.g., to specify that an access module will perform a
diagnostic test using a specific EtherNet port.)

Similarly, distinct parameter qualifiers may specify a
group of entities of interest. The “IN DOMAIN <do-
main name>" qualifier filters the directive to apply
only to members of the domain named <domain
name >.

Also, distinct parameter qualifiers may authenticate
or authorize the requestor of management services
which have limited access privileges The “BY AC-
COUNT™, “BY PASSWORD?”, and “BY USER” qual-
ifiers are examples which specify the account name,
password, or user ID of the requestor for these pur-
poses.

In addition to the above, qualifiers specify the time
that a directive should be executed. Generally, this is
accomplished with an AT clause. For a show com-
mand, the syntax of an AT clause is:

<AT-clause> :=“AT” <time-arg> {*”
<time-arg > }

where the time argument <time-arg> may, e.g., indi-
cate the start time (“START = < time >), the end time
(“END=<time>") or duration (“DURATION-
= <time-length>"), the period of repetition (“RE-
PEAT EVERY [=]<«time-length>"), the time accu-
racy (“CONFIDENCE [=]<time-length>), or the
sampling rate (“SAMPLE RATE [=] <time-length>).
These arguments may interact with one another to cre-
ate a general schedule and scope of interest for a re-
quest. In particular, in one particular embodiment, the
three time arguments, START, END and DURA-
TION are related such that any two of them define a
period. Thus when a time-normalized entity statistic is

5

10

15

20

25

32

displayed, at least two of these qualifier arguments must
be specified. |

Other time qualifiers may also be used. For example,
a time qualifier of AT OR BEFORE <time> can be
interpreted as a request for any information with a time
stamp at or before the time given by <time>. Upon
recelving a request with such a qualifier, an manage-
ment module will contmuously check for actions which
produce the requested information. If the information is
produced, for example by the actions of another party,
it will be returned to the requestor. Otherwise, the man-
agement module will continue to check for the informa-
tion until time <time>> arrives. If the information is
produced, then 1t will be returned to the requestor.
Otherwise, at time <time>, the management module
will force a poll of the information from access modules
or the entities, and return the information to the re-
questor.

To complement the AT OR BEFORE time qualifier,
a NOW time qualifier can also be implemented. This
qualifier would immediately force a poll of the re-
quested information.

E. Time

As discussed above, the request structure includes a
time specifier field 123. In addition, a field 124 contains
a handle pointer to a context data structure, which is a

~ dedicated segment of memory for storing processing

30

35

45

20

35

65

context information. The handle is used as a “notepad”
for communication of, for example, context information
between modules and the information manager.

1. Timestamps

Each item of data contains a timestamp value. In the
case of data returned to the user or a management mod-
ule, the timestamp indicates: the instant of time at which
an event described by a data item happened, the instant
of time that applies to the data value(s) returned for a
directive, or the instant of time when a requested action
was actually performed. In the case of historical data
stored in the historical data file, the timestamp indicates
the instant of time at which a given data item had a
particular value. For the purposes of the historical data
file, a timestamp can be considered as a key or index. A
scope of interest time specification 123 may be used to
request the retrieval of a particular piece of stored infor-
mation with a given key or index.

2. Scope of Interest

Scope of interest time specifications are supplied by
requests using the time specifier field 123. Using a time
specifier, other values of data than ‘“‘the value it has
right now” can be displayed and processed, and statis-
tics can be computed over some time period. In one
particular embodiment, a time “scope of interest” is
expressed by prepositional phrases in the time specifier
of a request. Generally, a time specifier is used with a
SHOW command, but time contexts may also apply to
MODIFY type requests and actions.

Time scopes of interest can be indicated by either an
absolute instant, a sequence of absolute instants, an in-
terval (start time “START” and duration “DUR”), a
repetition of instants, or a repetition of an interval.

Any of these may have associated with them a rela-
tive time period (“EVERY”) that specifies the periodic-
ity with which the instant, instants, or interval, is re-
peated. When a period is specified, the original instant,
or sequence of istants or interval is treated as a base to
which the period is added, repetitively. For example,
the time specification “5:00 EVERY 0:15” is equivalent

5,345,587

33

to 2:00, 5:15, 5:30, 5:45, An absolute time instant
(“UNTIL”) can be specified to indicate when the repe-
tition is to terminate. For example, the time specifica-
tion “5:00 EVERY 0:15 UNTIL 6:00” is equivalent to
5:00, 5:15, 5:30, 5:45, 6:00. Repeating intervals may be 5
specified in the same way. “START 35:00 DUR :05
EVERY 1:00” is equivalent to the intervals 5:00-5:05,
6:00-6:05, 7:00-7:05,

3. Scheduling

Scheduling information is also provided by time spec- 10
ifier field 123. Specific scheduling times can be indi-
cated by either an absolute instant, or a sequence of
absolute instants. Unlike scopes of interest, scheduling
times may not include an interval. Intervals whose
begin and end points are equal resolve into instants (e.g. 1°
(TODAY, TODAY)).

A few rules apply to intervals. Intervals in the past
may have begin points denoted by the keyword YES-
TERDAY, or an absolute time in the past. Similarly,
intervals in the future may have a begin point denoted
by the keyword TOMORROW, or an absolute time in
the future. Also, the start time of an interval must be
earlier than its end time.

4. Time Context Handle Structure

As discussed above, the scheduling and scope of in-
terest information may be supplemented in a request
with an associated context handle. The handle is created
by the module which executes the request, and is subse-
quently used in communication with the service pro-
vider. When a call is received by the service provider,
e.g. the Information Manager, a context block is created
as a local reference to the reguest’s time context.

Generally, context blocks and handles are used as
references to the status of a request. As the initial re- 35
quest can generate many subsidiary requests, it is possi-
ble that many handles and context blocks can be created
by a single request. The context blocks are the reference
used by a service provider, whereas the handles are the
reference used by the service requestor. Each process 40
(i.e. module or information manager) in a request/sub-
sidiary request chain knows only about the context
block and handles relating to its local part of the chain.

Referring to FIG. 7B, in one particular embodiment,

a time context handle 172 created by a requestor, e.g., a 45
presentation module 10, includes a scope field 175 and
schedule field 176 which relate to the time specification
123 of the initial request. These fields supplement the
data in the time specifier of the request, and are used to
determine the current status where multiple requests sq
and responses exist for a single operation. The handle
172 also includes a context pointer 177 and a state vari-
able 178. These data items provide the status and refer-
ence functions of the handle, and are created and stored
with the scope and schedule fields 175, 176 when the 55
request 1s made.

Where multiple requests and responses exist for a
single operation, the context field 177 will eventually
contain a pointer to an additional data structure 174,
known as a context block, which is created and main- &0
tained by the service provider, e.g., the presentation-
functional aspect 15 of the Information Manager (func-
tional or access modules may also create and maintain
context blocks in response to requests), in response to an
initial request requiring multiple responses. 65

The state field 178 of the handle contains one of three
values: “FIRST”, “MORE”, or “CANCEL” which are
used as flags to indicate further actions that should be

20

25

30

34
undertaken. When first created, the handle state is set to
“FIRST”.

As discussed above, if a request can be satisfied by a
single response, the response is generated and returned
to the requestor. In the more general case, the service
provider, e.g., a functional module, information man-
ager, or an access module, cannot satisfy the request in
one reply. For example, the requestor may have used
wildcarding in the input entity parameter 121, to specify
a group of entities. As each reply can only incorporate
information from a single entity, several replies are
required, one for each entity. In another case, a request
to a single entity may have a time specifier with several
different time values. As each reply can only incorpo-
rate information for a single time value, several replies
are required, one for each time. A request that requires
multiple replies can be for any type of operation, includ-
Ing obtaining attribute data about an entity or entities,
modifying attributes of several entities, and modifying
the state of several entities.

When the service provider processes the request and
determines that it has additional replies, it is responsible
for indicating this to the requestor. Thenceforth, the
requestor 1s responsible for querying the service pro-
vider for the additional replies. To implement this, in-
termediary processes, e.g., the Information Manager,
must save the information relevant to the request that it
has generated.

The latter function is accomplished by creating a
context block 174, which may contain relevant private
variables 173 that have been generated in responding to
the request, such as a pointer to the dispatch entry of the
service provider (see discussion under Dispatch Table,
below), as well as a context pointer(s) 179 to any han-
dles that relate to subsidiary requests to, e.g. a func-
tional module.

The handles and context blocks are used as follows.
The service provider notifies the requestor that it has
additional replies by using the appropriate handle modi-
fication routines to: (1) save a pointer 177 to its context
block 174 in the requestor’s handle 172, and (2) set the
state field 178 in the requestor’s handle 172 to a value of
“MORE”. When the reply is returned to the requestor,
the requestor sees the “MORE?” state in its handle state
field and thus knows that the service provider has addi-
tional replies for this request. If the requestor does not
want these additional replies, it must cancel the request
(see below). If the requestor wants the additional re-
plies, the request must be repeated, without changing
any parameters.

When the service provider receives these repeated
requests (which will have a handle state field 178 equal
to “MORE”), it searches for and detects the “MORE”
state using the appropriate handle access routine. Then
the service provider knows that the calls are part of a
previously established request. (Note that a handle with
a state of “FIRST” indicates to the service provider
that the associated call is the first call of the request.)
For each call with a “MORE?” handle state, the service
provider retrieves the context block 174 pointed to by
the handie context field 177, and uses the context block
to continue its execution to provide the additional re-
plies. There is only a single reply for each call made to
the service provider. As long as the service provider
maintains the handle parameter in the “MORE?” state, it
has more replies for the request.

When the service provider is returning to the re-
questor with 1ts last reply (determined by, e.g., the

335
scope and schedule fields 175, 176 in the requestor’s
handle), the requestor’s handle state field 178 is set back
to a value of “FIRST” (the initialized state). When the
return 1s made to the requestor with this last reply, the
requestor sees its handle parameter state set to
“FIRST” and knows that its request has been fully
satisfied. Note that if the request is satisfied with a single
reply, the service provider retains no context and never
causes the state of the handle parameter to become the
“MORE” state. The requestor’s handle stays at its ini-
tialized “FIRST” state, indicating to the requestor that
the request i1s completed.

When a service provider returns the handle parame-
ter in a “MORE” state, the request must be repeated or
cancelled. If the request is otherwise abandoned, system
resources will be lost, owing to the memory allocated to
the handle and context block.

Note that for the above discussion, if the service
provider did not 1ssue subsidiary requests, a single han-
dle would suffice for communications between the ser-
vice requestor and provider. However, if the service
provider did issue subsidiary requests there would be
more than one separate handle—the initial requestor’s
handle, which is provided by the requestor for the call,
and different handles created by, e.g., the Information
Manager and forwarded to, e.g., an access module.

Where multiple requests and responses exist for a
single operation, scheduling subsidiary requests to the
service provider is performed by the Information Man-
ager, and 1s controlled by the schedule time component
of the time specification parameter 123. For each sched-
ule time specified in the time specification, the Informa-
tion Manager will create a request which causes the
service provider to perform the requested operation and
issue responses.

When the service provider has completed the re-
quested operation, it issues a response. When the Infor-
mation Manager sees that the service provider has com-
pleted the requested operation, it then examines the
schedule time context that it keeps for the initial re-
quest. If there are further times for which the requested
operation 1S scheduled, the Information Manager does
not set the requestor’s handle state to “FIRST” but
leaves it in the “MORE?” state. The requestor sees its
handie parameter still in the “MORE” state, and knows
that the full request has not been completed, and asks
for the remainder. The Information Manager then
causes a wait until the specified schedule time, then
allows the Dispatcher to perform another call to the
service provider. Note that the service provider cannot
distinguish this next call from that of a completely new
request, as it has retained no context after returning
with its handle state set to “FIRST”. Also, the re-
questor does not distinguish between a handle state of
“MORE” caused by the service provider having more
replies to a request and the Information Manager pre-
paring for a new schedule time instant.

In other embodiments, the handle access routines
would be enhanced to permit the client to determine the
cause of the “MORE” state of the handle parameter.

If, during a request with muitiple replies or multiple
schedule times, the requestor decides that it does not
want any further replies from the service provider for
this request, it must cancel the request. Possible reasons
for wishing to cancel the request include receiving an
exception reply that indicates that further data will not
be useful, or receiving an error condition that indicates
that the desired operation is not performing properly.

10

15

20

25

30

35

45

50

35

65

5,345,587

36

The reasons for canceling are the responsibility of the
requestor. A cancel terminates all activities of the re-
quest, including any scheduling and scope of interest
operations.

A cancel can be done when the service provider
returns to the requestor with a handle parameter state of
“MORE”. The requestor performs the cancel by using
the appropriate handle modification routine to change
the handle parameter state to a value of “CANCEL”
and re-issuing the call. The requestor must not change
any other parameters for this call. When the service
provider receives this call, it sees the handle parameter
in a state of “CANCEL” instead of the expected
“MORE?” state. It retrieves its context from the handle
parameter and uses that context to perform any cleanup
required. This cleanup includes canceling lower level
requests that it 1s making, terminating any processing,
and returning any system resources. When the service
provider has completed its cleanup, it uses the appropri-
ate handle modification routine to re-initialize the han-
dle parameter back to the “FIRST” state. It then re-
turns with the special condition value return code of
CANCELED to indicate a successful cancel of the
request.

The requestor cannot cancel a request after the ser-
vice provider has returned with a handle parameter
state of “FIRST”. The request is already completed,
and no service provider context exists to cancel. There-
fore, the cancel routine described above will return an
error if the handle state is not “MORE”.

F. Dispatch

The dispatch tables 28 include a plurality of data
structures, one of which is shown in FIG. 8A, and one
or more dispatch lists including dispatch entries, one of
which is depicted in FIG. 8B. The dispatch tree and
dispatch lists essentially form parse tables which are
used in parsing a request, as described below in connec-
tion with FIG. 9. With reference to FIG. 8A, a dispatch
tree includes a plurality of entity nodes 130. The entity
nodes 130 are organized in a tree structure to assist in
parsing, but they may be organized into other data
structures. The entity nodes identify the various entities
in the complex system in connection with which a re-
quest may be issued. The entity nodes 130 include point-
ers which point to dispatch entries 134 (FIG. 8B) in the
dispatch lists maintained in respective dispatch tables
28.

The term “entity node” is used to describe the data
structure 130 because 1t satisfies the entity model set
forth above. Generally, data structure 130 satisfies the
entity model because it has a hierarchical structure and
its child structures resemble it. The term “‘entity node”
as 1t 1s used to describe data structure 130 should not be
confused with the term “entity” used to describe ele-
ments of the complex system.

An entity node 130 includes several fields, including
a class/instance flag field 140 which indicates whether
the entity node 130 relates to an entity class or an in-
stance within a class. Each entity may be an instance of
a class, the class being defined by a class name identified
in the entity’s entity definition 46 (FIG. 3A), and the
dispatch table 24 includes separate entity nodes 130
associated with the class and the instance, as described
below 1n connection with FIG. 9.

While parsing a request, the class names and instance
names of an entity and its subentities are parsed using
data structures of the type shown in FIG. 8A, although

3,345,587

37

the structure is used differently in parsing the class
names or instance names. The class or instance case is
indicated by the class/instance flag.

The entity node 130 also contains tree link pointers
that identify various other elements in the dispatch table
28. A module which services requests relating to several

entities of the same class may be identified by means of

a wildcard or an ellipsis. If so, an entity node associated
therewith has a wildcard pointer in a field 141 or an
ellipsts pointer in a field 142. Each wildcard pointer and
ellipsis pointer comprises a tree link entry, as described
below. If the entity node relates to a class which has no
instances, an example of which is described below in
connection with FIG. 9, a field 143 contains a null
pointer comprising a tree link entry to another entity
node. Finally, a field 131 contains a coded entry, which
contains the code identifying the class or the name of an
instance of the entity associated with the entity node as
well as a link pointer.

The coded entry field 131, depicted in the entity node
130 on FIG. 8A, is one entry in a coded list. (The re-
mainder of the list is not shown.) The coded list is a
linked list which contains names of classes of entities
defined by the management specifications of the entities
(see FIGS. 3A through 3D), when referring to classes
or names of instances of entities. Each coded entry 131
includes a pointer 150 to the next coded entry in the list,
a class code/instance name value field 151, and a field
152 which contains a links entry 133 which includes a
pointer to an entity node 130 or to a dispatch entry 134.

The class code/instance value field 151 in the coded
entry 131 contains either a class code or an instance
name. The contents of field 151 comprise a class code if
the class/instance flag field 140 of the entity node 130 is
cond1tioned to identify the entity node as being related
to a class. Alternatively, the contents of field 151 com-
prise an instance name if the class/instance flag field 140
of the entity node 130 is conditioned to identify the
entity node as being related to an instance.

Referring to FIG. 8B, the dispatch entries 134 in a
dispatch list are used to identify the particular proce-
dure to process a request. A dispatch list is a linked list

10

15

20

23

30

35

of one or more dispatch entries 134, each entry 134

containing information useful in transferring a request

or subsidiary request to an appropriate functional mod- 45

ule 11 or access module 12. More specifically, a dis-
patch entry 134 includes a pointer 160 to a next dispatch
entry 134 in the list. A field 161 includes an identifica-
tion of the functional module 11 or access module 12
during whose enrollment the dispatch entry 134 was
generated. A dispatch entry 134 also includes a series of
fields 162 through 164 which point to a procedure,
process and node in the complex system for processing
a request. A field 165 identifies the verb with which the
dispatch entry is associated and an attribute field 166
identifies a set of attributes, as identified by attributes
defined by an attribute definition field 54 of the manage-
ment specification (FIG. 3B). Finally, a count field 167
identifies the number of times the dispatcher has used
the dispatch entry 134 in connection with processing a
request or subsidiary request.

With this background, the process performed by
dispatcher 16 in parsing and dispatching a request from
a presentation module 10 will be described in connec-
tion with FIG. 9. It will be appreciated that the dis-
patcher 21 performs a similar process in connection
with a subsidiary request from a functional module 11.
With reference to FIG. 9, a request 180 as follows:

50

33

60

63

38
SHOW
NODE <node name>
ROUTING
CIRCUIT <routing circuit name >
CHARACTERISTICS

which 1s used in connection with a distributed digital
data processing system. The request 180 includes a num-
ber of sections, including a verb section 181, namely
SHOW, an entity section comprising a plurality of en-
tity class codes and instance names 182 through 186,
and an attribute section 187 comprising a plurality of
attributes. In this example, the verb SHOW initiates
generation of a response from the entity named in the
request, relating to the named characteristics.

In the request 180, the entity section, namely, ele-
ments 182 through 186, includes a number of class/in-
stance pairs. In particular, element 182, NODE, is a
class code, and element 183, namely, <node name>,
identifies, by instance name < node name> an instance
of the entity class NODE. In the distributed digital data
processing system, <node name> identifies a node in
the distributed digital data processing system.

In addition, the request 180 further includes, in the
entity section, an entity class code 184, ROUTING,
which has no instances. In addition, the request 180 has
a further entity class code, CIRCUIT, which has an
instance identified by <ROUTING CIRCUIT
NAME >.

With reference to FIGS. 3A through 3D, which
depict a management specification, various elements of
a request 1In connection with an entity are specified by
the management specification. Specifically, the contents
of the verb section 181 of a request are taken from the
directives defined by the directive definitions 56, the
entity class and sub-entity class names 182, 184, 185 are
taken from the entity class code field 47, and the attri-
butes section 187 is taken from the attribute definitions
34 of the management specification for the entity.

The entity and sub-entity instance names are taken
from instance data known to the user (for example, by
reterence to the configuration database or through auto-
matically generated menus).

In response to the receipt of a request, the dispatcher
16 first begins parsing the request in the entity section,
beginning with global entity class code element 182,
using entity nodes 130 (FIG. 8A). In particular, with
reference to FIG. 9A, the dispatcher 16 first (step 190)
begins at a root entity node 130, which has a class/in-
stance flag 140 which identifies the entity node as being
associated with class codes, and searches for an entry of
its coded list 131 which contains a coded entry 131 that,
in turn, has a class code field 151 which contains a class
code of NODE. If the dispatcher 16 is unable to find
such an entry in the dispatch table 28, it searches for a
wildcard or ellipsis pointer (see below). (If no wildcard
or ellipsis pointers are found, it responds with an error
to the module 10 from which it received the request.)

If the dispatcher 16 locates such an entity node 130 in
dispatch table 28, it sequences to the next step (step 191)
in the parsing operation, in which attempts to locate an
entity node 130 which is associated with instance
<node name>, as specified in the entity element 183.
In that operation, the dispatcher 16 uses the contents of
pointer field 152 in the coded entry 131 to locate an
entity node with a class/instance flag 140 which identi-
fies the entity node as being associated with instance

5,345,587

39

names and whose coded list includes 2 coded entry 131
whose instance name entry 132 corresponds to the
<node name> In entity element 183 of the request 180.
Again, if the dispatcher 16 is unable to locate such a
node 130 1n the dispatch table 28, it searches for a wild-
card or ellipsis pointer (see below).

On the other hand, if the dispatcher 16 locates an
entity node associated with element 183 in dispatch
table 28 in step 191, it sequences to the next step (step
192), in which 1t attempts to locate an entity node asso-
ciated with class code 184, ROUTING. In that opera-
tion, the dispatcher 16 uses the pointer in field 152 of
coded entry 131 and the entity element ROUTING
from the request to locate an entity node 130 which
includes a class/instance flag 140 which identifies the
entity node as being associated with class codes, and
whose coded entry list includes a coded entry 131
which has a class code field 151 that contains ROUT-
ING. In that situation, since the entity class ROUTING
is an entity class with no instances, the pointer field 152
in the coded entry 131 is null. In this case, the null
pointer field 143 in the entity node 130 points to a sec-
ond entity node 130 associated with the class entity
CIRCUIT.

In step 192, the dispatcher 16 uses the null pointer in
the entity node 130 associated with the ROUTING
class entity located in step 192 to locate a second entity
node 130 whose class/instance flag 140 indicates that it
i1s associated with class codes, and a coded list which
contains a coded entry 131 whose class code field 151
contains CIRCUIT (step 193). If the dispatcher is un-
able to locate such an entity node, it searches for a
wildcard or ellipsis pointer (see below).

If, on the other hand, the dispatcher 16 locates an
entity node 130 in step 193, it sequences to step 194, in
which it attempts to locate an entity node 130 identify-
ing the instance entity element <ROUTING CIR-
CUIT NAME >. In that operation, it uses the pointer in
field 152 of the coded entry 131 to locate an entity node

5

10

15

20

25

30

335

130 whose class/instance flag 140 identifies it as being 40

associated with instance names and whose coded list
includes a coded entry 132 whose instance name field
151 contains <ROUTING CIRCUIT NAME>, as
specified in instance entity 186 of the request 180. If the
dispatcher 16 is umable to locate such an entry, it
searches for a wildcard or ellipsis pointer (see below).
On the other hand, if the dispatcher, in step 194,
locates an instance entity node 130 which identifies the
instance entity element 186, it has successfully parsed
the entity section 182 through 186 of the request 180.
Thereatfter, the dispatcher 16 uses the pointer in field
152 of the coded entry 131 located in step 194, the verb
in verb element 181 and the attributes in characteristics
element 187 of the request to identify a dispatch entry
134 (F1G. 8B) to be used in processing the request. In
particular, following step 194, the dispatcher 16 uses the
pointer in field 152 of coded entry 131 to identify a list
of dispatch entries 134. Thereafter, the dispatcher 16
attempts to locate a dispatch entry 134 the contents of
whose verb field 165 corresponds to the verb element
181 of the request 180, in this case SHOW, and the
contents of whose attribute field 166 corresponds to the
attributes iIn the CHARACTERISTICS element 187.
If the dispatcher 16 locates, in step 195, such a dis-
patch entry 134, it uses the contents of the procedure
identification field 162, process identification field 163,
and node 1dentification field 164 to call the procedure to
process the request. In this operation, the dispatcher 16

45

50

55

60

65

40

effectively transters the request to the entity for pro-
cessing. It will be appreciated that, as described above
in connection with FIG. 6, if the process 1dentification
in field 163 and node identification in field 164 identify
another process or node than contain the dispatcher, the
dispatcher transfers the request to the dispatcher in the
other process or node, as identified in the respective
fields 163 and 164, for processing.

The above describes the use of the coded entries of
the dispatch table. The wildcard and ellipsis pointers
offer an additional functionality to the table. For exam-
ple, one management module may handle all requests
for modules of a particular global or subordinate entity
class. Without wildcard and ellipsis pointers, all of the
instances of the class and instances of any subclasses
would have to be enumerated in the dispatch table. To
avoid this, wildcard and ellipsis pointers are provided,
and may be used in a dispatch specification 39A (FIG.
2B) to indicate in a general fashion which entity classes
and instances a management module services.

One example of such a dispatch specification is:

NODE * ROUTING CIRCUIT . ..

which indicates that the module can handle, for any
instance of a NODE class global entity, all instances of
the subentity class CIRCUIT as well as all subentities of
CIRCUIT class subentities. The asterisk (*) matches
any instance name, and the ellipsis (. . .) matches any
instances of the subentity or class/instance pairs of
subentities which may follow. For example, the expres-
S10M

NODE foo ROUTING CIRCUIT bar LINK fred

would match the dispatch specification because “*”
would match “foo”, and *. . . ” would match *“bar
LINK fred”.

Referring to FIG. 9B, to enter a wildcarded dispatch
specification in the dispatch table 28, the entity node
130 at step 191 (FIG. 9A), which corresponds to In-
stance names of NODE class entities, would be modi-
fied. The wildcard pointer 141 would be changed to
point t0 a new entity node 130 (step 196) which con-
tained class codes, one of which was the class code
ROUTING. The child pointer related to class code
ROUTING would be null (as in step 192, FIG. 9A) and
the null pointer would point to another new entity node
130 (step 197), which would have a child pointer corre-
sponding to the class name CIRCUIT. This child
pointer would point to another new entity node 130
(step 198), whose ellipsis pointer would point to the
dispatch entry for the module (step 199).

Parsing of the modified table would be similar to that
described by FIG. 9A, until step 191. At step 191, the
dispatcher 16 would search for an instance of the
NODE class with name, e.g., “foo”. If this name was
found in the coded entries (three being shown for illus-
trative purposes) then the dispatcher would proceed
according to the child pointers in the coded entries.
However, if the name “foo” was not found in the coded
entries (indicated by a null NEXT ENTRY pointer in
the last coded entry), then the dispatcher would search
for a non-null wildcard pointer at step 191. After locat-
ing the wildcard pointer, the dispatcher would then
proceed to step 196.

Steps 196 and 197 are similar to steps 192 and 193 of
FIG. 9A. The dispatcher uses the null pointer in step

5,345,587

41
196 (corresponding to the class code “ROUTING”) to
move to step 197, and then uses the child pointer corre-
sponding to the class code “CIRCUIT” to move to step
198.

At step 198, the dispatcher will search the linked list 5
of coded entries (three being shown for illustrative
purposes) to locate an instance name of “bar”. If this
name is not found in the coded entries, the dispatcher
then searches for a non-null wildcard pointer. If this is
not found, the dispatcher searches for a non-null ellipsis
pomnter. This will be located, and used to traverse to the
dispatch entry (step 199). The contents of the dispatch
entry would then be used to call the appropriate mod-
ule.

Note that the wildcard and ellipsis pointers allow
general matching of entity class codes and instance
names, but only after the coded entries of the dispatch
table are checked. In this way, the dispatcher searches
for the “most specific match” of the entity name. There-
tfore, for example, a first module can have a dispatch 20
specification:

10

15

NODE * ROUTING CIRCUIT ...

which indicates that the module can handle, for all 2°
instances of a NODE class global entity, all instances of
the CIRCUIT class subentity of a ROUTING class
subentity. A second module can have a dispatch specifi-

cation
30

NODE joe ROUTING CIRCUIT . . .

which indicates that the module can handle, for instance
“joe” of the NODE class global entity, all instances of
the CIRCUIT class subentity of a ROUTING class 33
subentity.

To be consistent with the “most specific match” rule,
all directives to NODE joe ROUTING CIRCUIT
subentities should be sent to the second module. This is
accomplished with the dispatch table schema because
the instance name “joe” will appear in the coded entries
at step 191, and therefore if “joe” is the instance name in
a request to a ROUTING CIRCUIT, the “joe” coded
entry will be used (because it is checked first), and the
wildcard pointer will not be used.

'To properly parse the dispatch tree, a stack must also
be used by the dispatcher. A simple example will ex-
plain why this is necessary. Consider a new module
having the dispatch specification

435

50
NODE jim DISKDRIVE . . .

which indicates the module can handle, for instance
“jim” of the NODE class global entity, all instances of
DISKDRIVE class subentities. This specification 77
would be entered in the tree by adding a coded entry at
step 191 with the instance name ““jim”, and adding sub-
sequent new entity nodes, in similar fashion to FIG. 9B.
Subsequently, when dispatching requests with global
entity class and instance names:

NODE jim

the dispatcher would travel to the new entity nodes.
However, a request with an entity name starting with 65

NODE jim ROUTING CIRCUIT

42

could not be serviced by the new module, since the new
module only supports DISKDRIVE class subentities
for NODE instance ““jim”. Therefore, once the dis-
patcher determines that the class name ROUTING
CIRCUIT is not supported by the new module, it must
have a mechanism for returning to step 191, and poten-
tially using other coded entries or the wildcard or ellip-
sis pointers to find a module which will service the
“NODE jim ROUTING CIRCUIT” request. There-
fore, as the dispatcher traverses the dispatch table, it
maintains a stack of pointers to all of the entity nodes
130 which 1t has traversed from the root node. Pointers
are pushed onto and popped off of this stack as the
dispatcher moves up and down through the dispatch
table tree structure attempting to find the appropriate
dispatch entry.

If no matching dispatch entry is found, an error is
returned to the requestor (i.e. presentation or functional
module).

As discussed above, a control functional module may
serve as a pass-through from the presentation modules
directly to the access modules. To implement such a
passthrough, the ellipsis pointer for the root node of the
presentation-function aspect of the dispatch table
(which will match any entity name in any request)
should point to the dispatch entry for the control func-
tional module. Whenever it receives a request, the con-
trol functional module will simply issue an identical
request to the function-access aspect of the dispatcher.
In this way, all requests which do not match dispatch
specifications in the presentation-function dispatch
table will also be routed for matching in the function-
access dispatch table. This allows presentation module
requests to access primitive functions available from the
access modules.

In an alternative embodiment of the dispatch table, to
allow more than one class code which doesn’t have
imstances, the null pointer field 143 may contain the first
element of a linked list similar in structure to the list of
coded entries 131. The second, “null” list would contain
code values of class codes which have no instances. The
null list would be parsed after the coded list, but before
checking for a wildcard pointer.

G. Domains and Configuration

As described above, a configuration functional mod-
ule 11 maintains a configuration database defining the
entities comprising the complex system. By means of
appropriate commands from an operator, the configura-
tion functional module 11 can add instances of entities,
as defined in the data dictionary, to the configuration
database, delete them from the configuration database,
and change the definitions in the configuration data-
base. As also described above, a domain functional
module 11 establishes a domain entity in the configura-
tion database which refers to a subset of the entities
already defined in the configuration database. An oper-
ator, through a presentation module 10, can control and
monitor the entities comprising a specific domain, with-
out regard to the possibly myriad other entities com-
prising the complex system. In addition, an operator can
initiate a control or monitoring operation in connection
with entities only in the domain, without having to
initiate generation of a request by a presentation module
10 for each entity, thereby simplifying control and mon-
itoring of the complex system.

The domain functional module 11 establishes, within
or in addition to the configuration database, a domain

5,345,587

43

database for each domain entity, identifying the entities
comprising the domain entity. Upon receipt of an ap-
propriate request, the domain functional module 11 will
add an entity to a domain database, thereby adding the
entity to the domain, delete an entity from a domain
database, thereby deleting the entity from the domain,
generate a response identifying the entities comprising a
domain as identified in the domain database, and delete
a domain database, thereby effectively deleting the
domain.

Referring to FIG. 9C, the format of the configuration
and domain databases (which may be incorporated in a
single database) includes a field for each entity instance
in the configuration, and similarly, each entity instance
in the domain.

The domain database includes an entry 230 for each
member of a domain, listing the domain name and the
instance name of the entity or subentity member. In
addition, the domain database includes an entry 232 for
each entity which is a member of any domain, listing the
instance name and the domains which it is a member.
The domatn functional module updates this information
as the domains are modified, and can use the informa-
tion to quickly determine the members of a domain, or,
alternatively, to quickly determine the domain member-
ship of an entity. |

In alternative embodiments, a first domain may incor-
porate the members of a second domain by reference to
the second domain, thus reducing the size of the do-
mains database. In other embodiments, the domains
database may establish a hierarchy of domains similar to
the hierarchy of entities and subentities, and commands
may be directed similarly to domains and subdomains.

The configuration database includes an entry 234 for
each entity and subentity, organized hierarchically in
the database. The full name for each entity and suben-
tity instance is provided. This information can be used
by the configuration functional module to quickly de-
termine the configuration, for example, to display (via a
presentation module) to the user a map of the configura-
tion or menus of entity instance names.

H. Alarms

As described above in connection with FIG. 1B, one
functional module 11 comprises an alarms functional
module 11, which can establish alarm conditions, in
response to requests from a presentation module 10,
and, using the various conditions of the entities of the
complex system, as, for example, recorded in the user

10

15

20

25

30

35

45

interface information file 29, detect the occurrence of 50

an alarm condition.

FIG. 10A depicts the functional organization of the
alarms functional module 11. With reference to FIG.
10A, the alarms functional module 11 includes a general
alarms module 200 that receives requests from the mod-
ule, interprets them and enables one or more detector
modules 201 or one or more rule maintenance modules
202 to operate in response thereto. As indicated above,
the alarms functional module 11 performs two general
types of operations, namely, maintenance of alarm con-
ditions and detection of alarm conditions.

The maintenance of alarm conditions operation of the
alarm functional module 11 is performed by the rule
maintenance module 202, which maintains, in an alarm
rule base 203, rules which identify each of the alarm
conditions. Each rule represents the set of conditions
which must be evaluated to determine the existence of
an alarm condition. Specifically, the rule maintenance

35

65

44

module 202 generates, in response to requests from a
presentation module 10, rules, as described below in
connection with FIG. 10B, which are stored in the
alarm rule base 203. In addition, the rule maintenance
module 202, in response to corresponding requests from
a presentation module 10, may modify the rules in the
alarm rule base 203, which thereby results in modifica-
tion of the conditions under which an alarm condition,
as represented by the rule, will exist.

Similarly, the operation of detection of alarm condi-
tions is performed by the detector module 201, which
uses e.g., the condition information in the historical data
file (FIG. 5) and the alarm rules in the alarm rule base
203. As described below in connection with FIG. 10B,
each rule includes a condition portion, which identifies
the conditions. The detector module 201, to detect an
alarm condition, determines whether e.g., the contents
of the historical data file match the conditions of the
various rules. If so, the detector module 201 generates
an alarm indication, for transfer by the general alarms
module 200 via a notification module 204 to, e.g., pre-
sentation module 10 for display to the operator.

The general form of an alarm rule, as generated by
the rule maintenance module 202, is depicted in FIG.
10B. With reference to FIG. 10B, an alarm rule includes
a condition portion 210, which sets forth the set of
condition(s) required for the indication of the alarm.
The condition portion includes an expression portion
212, a relational operator 213 and an expression value
portion 214. The relational operator 213 relates the
expression portion 212 to the expression value portion
214, so that the condition portion 210 evaluates to either
a logical TRUE or a logical FALSE. It will be appreci-
ated that, if the expression portion 212 itself evaluates to
logical TRUE or logical FALSE, the relational opera-
tor 213 and expression value portion 214 of the condi-
tion portion 210 are not needed. In either case, if the
condition portion evaluates to a logical TRUE, an
alarm condition exists. |

The rule includes an entity and attribute portion 212
and a time value portion 216. The rel-op value portion
213 relates values of one attribute to one value portion
214. The time value portion 216 establishes a time func-
tion, and may indicate the times or time intervals at
which the condition portion 210 is to be used by the
alarm detector module 201.

Providing an alarms functional module 11 permits an
operator to establish alarm conditions on a dynamic or
as-needed basis. Since the alarm conditions do not have
to be pre-established in the control arrangement, the
control arrangement can be used in controlling and
monitoring a wide variety of diverse complex systems.
For example, if the control arrangement is being used to
control and monitor distributed digital data processing
systems, which may have diverse configurations of
nodes communicating over a network, the alarm condi-
tions can be established by an operator based on the
particular configuration. In addition, alarm conditions
can be added by addition of rules to the alarm rule base
203, if a new alarm condition is discovered during oper-
ation of the complex system.

I. Other Embodiments

The foregoing description has been limited to a spe-
cific embodiment of this invention. It will be apparent,
however, that variations and modifications may be
made to the invention, with the attainment of some or
all of the advantages of the invention. Therefore, it is

5,345,587

45

the object of the appended claims to cover all such
vanations and modifications as come within the true
spirit and scope of the invention.

What is claimed as new and desired to be secured by
Letters Patent of the United States is:

1. A system for controlling and carrying out manage-
ment functions over an assemblage of entities, wherein
said entities interface within said assemblage for control
of primary information handling functions and said
entities further interface with said system to permit the
carrying out of said management functions, comprising:

stored management modules adapted to carry out
said management functions by independently inter-
preting and executing selected management-related
commands,

a kernel comprising a table of dispatch pointers for
directing said commands to the respective modules
in which they are to be interpreted and executed,

an enroller for enrolling new management modules
into said system by adding further pointers to said
table, and

stored management specification information listing,
in compliance with a universal specification lan-
guage having a common syntax for representing
the attnibutes and operations of any arbitrary man-
ageable entity, the attributes which relate to the
entities’ functioning and control said the manage-
ment functions of said entities, wherein

said management specification information comprises
polling information in predetermined fields of said
common syntax, said polling information including
fields for specifying a default rate and a maximum
polling rate at which the values of attributes should
be requested from said entities.

2. A system for controlling and carrying out manage-
ment functions over an assemblage of entities, wherein
said entities interface within said assemblage for control
of primary information handling functions and said
entities further interface with said system to permit the
carrying out of said management functions, comprising:

stored management modules adapted to carry out
said management functions by independently inter-
preting and executing selected management-related
commands.

a kernel comprising a table of dispatch pointers for
directing said commands to the respective modules
in which they are to be interpreted and executed,

an enroller for enrolling new management modules
into said system by adding further pointers to said
table, and

stored management specification information listing,
iIn compliance with a universal specification lan-
guage having a common syntax for representing
the attnibutes and operations of any arbitrary man-
ageable entity, the attributes which relate to the
entities’ functioning and control., and the manage-
ment functions of said entities, wherein

said management specification information comprises
partition information in predetermined fields of
saild common syntax, said partition information
representing groups of attributes having common
data types.

3. A system for controlling and carrying out manage-
ment functions over an assemblage of entities, wherein
said entities interface within said assemblage for control
of primary information handling functions and said
entities further interface with said system to permit the
carrying out of said management functions, comprising:

5

10

15

20

25

30

35

45

50

35

60

65

46

stored management modules adapted to carry out
said management functions by independently inter-
preting and executing selected management-related
commands,

a kernel comprising a table of dispatch pointers for
directing said commands to the respective modules
in which they are to be interpreted and executed,

an enroller for enrolling new management modules

Into said system by adding further pointers to said

table, and

stored management specification information listing,
in compliance with a universal specification lan-
guage having a common syntax for representing
the attributes and operations of any arbitrary man-
ageable entity, the attributes which relate to the
entities’ functioning and control, and the manage-
ment functions of said entities, wherein

said management specification information comprises
aggregation information in predetermined fields of
said common syntax, said aggregation information
representing groups of attributes having related
functions in the management of said entity.

4. A system for controlling and carrying out manage-

ment functions over an assemblage of entities, wherein

said entities interface within said assemblage for control
of primary information handling functions and said
entities further interface with said system to permit the
carrying out of said management functions, comprising:
stored management modules adapted to carry out
said management functions by independently inter-
preting and executing selected management-related
commands,

a kernel comprising a table of dispatch pointers for
directing said commands to the respective modules
in which they are to be interpreted and executed,

an enroller for enrolling new management modules
into said system by adding further pointers to said
table, and

stored management specification information listing,
in compliance with a universal specification lan-
guage having a common syntax for representing
the attributes and operations of any arbitrary man-
ageable entity, the attributes which relate to the
entities’ functioning and control, and the manage-
ment functions of said entities, wherein

said management specification information comprises
command information in predetermined fields of
said common syntax, said command information
isting the management functions which the entities
are adapted to perform, the structure of the com-
mands to be 1ssued to the entities, and the structure
of the replies to be received.

3. The system of claim 4 wherein the structure of the

requests to be issued includes fields for listing argu-

ments to a command.

6. The system of claim 4 wherein the structure of the
replies to be received includes fields used for indicating
the successful completion of the requested operation.

7. The system of claim 4 wherein the structure of the
replies to be received includes fields used for indicating
error conditions causing unsuccessful completion of the
requested operation.

8. A system for controlling and carrying out manage-
ment functions over an assemblage of entities, wherein
said entities interface within said assemblage for control
of primary information handling functions and said
entities further interface with said system to permit the

5,345,587

47

carrying out of said management functions, said system
comprising:

stored management modules adapted to carry out
said management functions by independently inter-
preting and executing selected management-related
commands,

a kernel comprising a table of dispatch pointers for
directing said commands to the respective modules
in which they are to be interpreted and executed,
and a dispatcher for receiving and forwarding
commands based at least in part on the entity and
operation listed therein and

an enroller for enrolling new management modules
into said system by adding further pointers to said
table, wherein

each said command includes fields listing at least a
related entity and operation in accordance with a
common command syntax, and

said table of dispatch pointers comprises a directed
graph of data structures, successive data structures
in said graph corresponding to fields of said com-
mands. -

9. The system of claim 8, wherein

said dispatcher includes a parser for parsing said di-
rected graph in accordance with the entity and
operation listed in a command to locate a terminal
data structure having a dispatch pointer.

10. The system of claim 9, wherein

said directed graph includes wildcard flags and suc-
cessive data structures which may correspond to
any value in a particular field of a command.

11. The system of claim 9 wherein

said directed graph includes ellipsis flags and succes-
sive data structures which may correspond to any
number of values in fields of commands.

12. The system of claim 10 wherein

sald parser includes a best-match unit for determining
the most exact match for fields of a command, by
searching first for exact matches for fields and then
for wildcard matches for fields.

13. The system of claim 11 wherein

sald parser includes a best-match unit for determining
the most exact match for fields of a command, by
searching first for exact matches for fields, then for
ellipsis matches for fields.

14. The system of claim 9 wherein

said directed graph includes wildcard flags and suc-
cessive data structures which may correspond to
any value 1n a particular field of a command and
ellipsis flags and successive data structures which
may correspond to any number of values in fields
of commands, and

said parser includes a best-match unit for determining
the most exact match for fields of a command, by
searching first for exact matches for fields, then for
wildcard matches for fields, then for -ellipsis
matches for fields.

15. A system for controlling and carrying out man-
agement functions over an assemblage of entities,
wherein said entities interface within said assemblage
for control of primary information handling functions
and said entities further interface with said system to
permit the carrying out of said management functions,
comprising:

stored management modules adapted to carry out
said management functions by independently inter-
preting and executing selected management-related
commands,

a kernel comprising a table of dispatch pointers for
directing said commands to the respective modules

10

15

20

25

30

35

45

30

39

65

48

in which they are to be interpreted and executed,

and a class database defining the different manage-

ment mnformation available from the respective
entities,

an enroller for enrolling new management modules
into said system by adding further pointers to said
table,

stored management specification information listing,
in compliance with a universal specification lan-
guage having a common syntax for representing
the attributes and operations of any arbitrary man-
ageable entity, the attributes which relate the enti-
ties’ functioning and control, and the management
functions of said entities,

a presentation device for displaying information to a
user and receiving commands from a user, said
commands and information being in specific prede-
termined formats,

a presentation module for receiving commands from
sald presentation device and forwarding informa-
tion to said presentation device, said presentation
module including conversion code to convert in-
formation received from an entity into a predeter-
mined format for said presentation device, for-
warding code for forwarding commands from said
presentation device to said dispatcher, and menu
generation routines for extracting data from said
class database and generating menus of valid com-
mands for display to the user, wherein

saild menu generation routines are adapted to deter-
mine information relating to the configuration of
said assemblage and generate menus of available
entities for display to the user.

16. A system for controlling and carrying out man-
agement functions over an assemblage of entities,
wherein said entities interface within said assemblage
for control of primary information handling functions
and said entities further interface with said system to
permit the carrying out of said management functions,
comprising: -

stored management modules adapted to carry out

 said management functions by independently inter-
preting and executing selected management-related
commands,

a kernel comprising a table of dispatch pointers for
directing said commands to the respective modules
in which they are to be interpreted and executed,

an enroller for enrolling new management modules
into said system by adding further pointers to satd
table, and

stored management specification information listing,
in compliance with a universal specification lan-
guage having a common syntax for representing
the attributes and operations of any arbitrary man-
ageable entity, the attributes which relate to the
entities’ functioning and control, and the manage-
ment functions of said entities, wherein

said management specification comprises partition
information in predetermined fields of said com-
mon syntax, said partition information representing
groups of attributes which may be modified by one
said module,

each said command includes fields listing at least a
related entity, operation and partition in accor-
dance with a common command syntax, and

said kernel includes a dispatcher for receiving and
forwarding commands based at least in part on the

entity, operation, and partition listed therein.
* - x %

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,345,587
DATED . September 6, 1994
INVENTOR(S) : Fehskens et al.

It is certified that error appears in the above-identified patent and that said Letters
Patent 1s hereby corrected as shown below:

Column 12, Line 66, please delete "element 21" and insert
--element 22--.

Column 25, line 25, please delete "and, is" and insert
--and * 1s--,

Signed and Sealed this
Eighteenth Day of April, 1995

A ttest: 6M W

BRUCE LEHMAN

Commissioner of Patents and Trademarks

Attesting Officer

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

