

US005342444A

United States Patent [19]

Harnisch et al.

[11] Patent Number:

5,342,444

[45] Date of Patent:

Aug. 30, 1994

FOREIGN PATENT DOCUMENTS

2122663 11/1972 Fed. Rep. of Germany. 0027529 9/1980 Fed. Rep. of Germany. 3609804 9/1987 Fed. Rep. of Germany. 1386846 3/1975 United Kingdom.

OTHER PUBLICATIONS

153665t: Plastics Manuf., vol. 81, 1974.

Primary Examiner—Karl Group
Assistant Examiner—Scott L. Hertzog
Attorney, Agent, or Firm—Sprung Horn Kramer &
Woods

[57] ABSTRACT

Plastics are colored with at least one dyestuff of the following formula (I)

in which the substituents have the meaning given in the description.

11 Claims, No Drawings

DYESTUFFS AND THEIR USE FOR [54] MASS-COLORATION OF PLASTICS Inventors: Horst Harnisch, Much; Peter [75] Roschger, Cologne, both of Fed. Rep. of Germany Bayer Aktiengesellschaft, [73] Assignee: Leverkusen, Fed. Rep. of Germany Appl. No.: 919,657 Jul. 24, 1992 [22] Filed: [30] Foreign Application Priority Data Aug. 8, 1991 [DE] Fed. Rep. of Germany 4126244 U.S. Cl. 106/493; 106/20 R; 106/22 R; 106/22 H; 8/401; 8/528; 548/365.7; 548/364.4 [58] 106/493, 20 R, 22 R, 22 H; 8/401, 528 [56] References Cited U.S. PATENT DOCUMENTS

4/1972 Spietschka et al. 546/154

7/1977 Schwander 546/269

4,055,568 10/1977 Patsch et al. 548/136

4,260,776 4/1981 Harnisch 548/364.4

4,764,622 8/1988 Claussen et al. 548/159

DYESTUFFS AND THEIR USE FOR MASS-COLORATION OF PLASTICS

The present invention relates to a process for the 5 masscoloration of plastics and to new dyestuffs.

The mass-coloration of plastics, for example of thermoplastics, is known from, for example, DE 2,319,230, DE 3,609,804, EP 25,136, DE 2,529,434, DE 2,122,663, JP-A 7,343,181, FR 2,143,942, DE 2,132,681, DE 10 1,769,436.

The disadvantage of the known processes is that the dyestuffs used have only a limited area of application, since fluorescent hues (see DE 2,319,230, DE 3,609,804; EP 25,136; DE 2,529,434; DE 2,122,663, JP-A 15 7,343,181) or yellow hues of low colour strength (see FR 2,143,942, DE 2,132,681, DE 1,769,436) are obtained.

The object of the invention is to provide an improved process for mass-coloration and new dyestuffs. It is true 20 that German Auslegeschrift 2,844,606, 2,803,104 and U.S. Pat. No. 4,260,776 have already disclosed the use of benzopyranylidene dyestuffs for the dyeing and printing of fibre materials and as laser dyestuffs, but without reference to mass-coloration.

The present invention relates to a process for the masscoloration of plastics with a dyestuff, characterised in that the dyestuff has the following formula

$$R_{6}$$
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{8}
 R_{1}
 R_{1}

in which

R₁ denotes unsubstituted or in particular alkoxy-, aryloxy-, hydroxyl-, acyloxy-, halogen-, cyano-, alkoxycarbonyl-, dialkylaminocarbonyl-, dialkylaminosubstituted alkyl, unsubstituted or alkyl-, alkoxy-, aryloxy-, hydroxyl-, acyloxy-, halogen-, cyano-, alkoxycarbonyl-, dialkylaminocarbonyl-, alkylsulphonyl-, arylsulphonyl-, dialkylsulphamido-, dialkylamino-, aryl-substituted aralkyl, unsubstituted or alkyl-, aryl-, alkyloxy-, aryloxy-, hydroxyl-, halogen-, cyano-, nitro-, alkoxycarbonyl-, dialkylaminocarbonyl-, dialkylamino-, alkylsulphonyl-, arylsulphonyl- or sulphonamido(unsubstituted or alkyl- or aryl-mono- or -disubstituted)-substituted aryl or heterocyclyl such as pyridyl, pyrimidyl, quinolinyl, sulpholanyl,

R₂ denotes unsubstituted or in particular alkoxy-, 55 aryloxy-, hydroxyl-, acyloxy-, halogen-, cyano-, alkoxycarbonyl-, dialkylaminocarbonyl-, dialkylaminosubstituted alkyl, unsubstituted or alkyl-, alkoxy-, aryloxy-, hydroxyl-, acyloxy-, halogen-, cyano-, alkoxycarbonyl-, dialkylaminocarbonyl-, alkylsulpho- 60 nyl-, arylsulphonyl-, dialkylsulphamido-, dialkylamino-, aryl-substituted aralkyl, unsubstituted or alkyl-, aryl-, alkyloxy-, aryloxy-, hydroxyl-, halogen-, cyano-, nitro-, alkoxycarbonyl-, dialkylaminocarbonyl-, dialkylamino-, alkylsulphonyl-, arylsulphonyl- 65 or dialkylsulphamido-substituted aryl or heterocyclyl such as pyridyl, pyrimidyl, quinolinyl, chlorine, bromine, alkoxycarbonyl, dialkylcarbamoyl, cyano, hy-

droxyl, alkoxy, acyloxy or a radical of the formula $-NZ_1Z_2$, in which

Z₁ denotes hydrogen, alkyl, aralkyl, aryl, cycloalkyl or a heterocyclic radical and

Z₂ denotes an acyl radical or

Z₁ and Z₂ together with the joint N atom form the radical

L is 1,2-phenylene, 1,2-, 2,3- or 1,8-naphthylene, 1,2-cyclohex-1-enylene, ethylene or vinylene,

R₃ denotes hydrogen, alkyl, aryl, halogen, hydroxyl, alkoxy, cyano, alkoxycarbonyl, formyl, dialkylcarbamoyl, alkylsulphonyl, arylsulphonyl, dialkylaminosulphonyl,

R4 denotes hydrogen, alkyl, aryl, hydroxyl, alkoxy, halogen, cyano, alkoxycarbamoyl, alkylsulphonyl, arylsulphonyl,

R₅ to R₈, identical or different, denote hydrogen, alkyl, aryl, heterocyclyl, alkoxy, aryloxy, hydroxyl, amino, mono- or disubstituted amino, such as, for example, alkylamino, dialkylamino, alkylsulphonyl, arylsulphonyl, dialkylsulphonamido, halogen or together with an adjacent radical denote a fused-on aromatic or heterocyclic ring.

Mass-coloration is understood here to mean in particular processes in which the dyestuff is incorporated in the melted plastic composition, for example with the aid of an extruder, or in which the dyestuff is already added to starting components for production of the plastic, for example to monomers before polymerisation.

In a preferred embodiment, the substituents R₃ to R₈ denote hydrogen.

In a further preferred embodiment, R₅ and R₆ together denote the radical of an aromatic or heterocyclic ring fused onto ring A, in particular a benzene ring.

In a particularly preferred embodiment,

R7denotes alkoxy, in particular C1-C4-alkoxy, and especially NR10R11, in which

R₁₀ and R₁₁ denote hydrogen, alkyl, aryl, aralkyl each of which is unsubstituted or substituted by alkoxy, aryloxy, acyloxy, cyano, hydroxyl, dialkylamino, halogen, or together with the joint N atom denote a heterocyclic radical, in particular a triazole radical, or a ring bond to ring A.

R₂ denotes C₁-C₄-alkyl, in particular methyl and tert.butyl, phenyl,

R₁ denotes phenyl, naphthyl, it being possible for the substituents to be substituted in turn by methyl, alkylsulphonyl, arylsulphonyl, dialkylsulphamido and halogen, in particular chlorine, or sulpholanyl.

Very particular preference is given to those compounds in which

R₁₀, R₁₁, identical or different, denote C₁-C₄-alkyl or together with the nitrogen atom denote a 5- or 6-membered heterocycle, in particular a triazole.

Some of the dyestuffs to be used according to the invention are known, for example German Auslegeschrift 2,844,606, U.S. Pat. No. 4,260,776 and German Auslegeschrift 2,803,104.

Furthermore, the invention relates to new compounds of the formula (II)

$$R_{6}$$
 R_{7}
 R_{8}
 R_{8}
 R_{1}
 R_{2}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{2}
 R_{3}
 R_{4}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{1}

in which

R₁ denotes alkyl, aralkyl, aryl or heterocyclyl, it being possible for these radicals to be substituted or unsubstituted,

R₂ denotes alkyl, aralkyl, aryl, heterocyclyl, alkoxy-carbonyl, dialkylcarbamoyl, alkoxyacyloxy, it being 20 possible for these radicals to be substituted or unsubstituted, or denotes a radical of the formula —NZ₁Z₂ or chlorine, bromine, cyano, hydroxyl,

Z₁ denotes hydrogen, alkyl, aralkyl, aryl, cycloalkyl or a heterocyclic radical and

Z₂ denotes an acyl radical or

 Z_1 and Z_2 together with the joint N atom form the radical

L is 1,2-phenylene, 1,2-, 2,3- or 1,8-naphthylene, 1,2-cyclohex-1-enylene, ethylene or vinylene,

R₃ denotes hydrogen, alkyl, aryl, halogen, hydroxyl, 40 alkoxy, cyano, alkoxycarbonyl, formyl, dialkylcarbamoyl, alkylsulphonyl, arylsulphonyl, dialkylaminosulphonyl,

R₄ denotes hydrogen, alkyl, aryl, hydroxyl, alkoxy, halogen, cyano, alkoxycarbamoyl, alkylsulphonyl, 45 arylsulphonyl,

R₅, R₆, R₈, identical or different, denote hydrogen, alkyl, aryl, heterocyclyl, alkoxy, aryloxy, hydroxyl, amino, alkylamino, dialkylamino, alkylsulphonyl, arylsulphonyl, dialkylsulphonamido, halogen, or together with an adjacent radical denote a fused-on aromatic or heterocyclic ring,

R7 denotes hydrogen, alkyl, aryl, heterocyclyl, alkoxy, aryloxy, hydroxyl, halogen, arylsulphonyl, dialkylsulphamido or together with an adjacent radical de- 55 notes a fused-on aromatic or heterocyclic radical.

The compounds of the formula (II) can be prepared by the following steps by condensation of

$$\begin{array}{c|c}
R_5 & R_4 \\
\hline
R_6 & C = X \\
\hline
R_7 & OH
\end{array}$$
60

 R_4 - R_8 have the meaning given in formula II, X represents \Longrightarrow 0, \Longrightarrow N-C₆H₅ or N \oplus (CH₃)₂An \ominus and An \ominus represents an anion, with

 CH_2-R_3 R_2 N N R_1

in which

R₁-R₃ have the meaning given and

D represents —O—W¹, —S—W¹, —N(W²W³) or halogen

W¹ represents hydrogen or C₁-C₃-alkyl and

 W^2 and W^3 represent C_1 - C_4 -alkyl or together represent — $(CH_2)_4$ —, — $(CH_2)_5$ — or — $(CH_2)_2$ —O— $(CH_2)_2$,

in an inert solvent at 60°-180° C., if appropriate with the addition of an acid or preferably alkaline catalyst (for example piperidine, pyrrolidine, morpholine) with elimination of XH₂ and DH.

Furthermore also by condensation of

$$R_6$$
 R_7
 R_8
 R_8
 R_8

in which

30

R₃-R₈ have the meaning given in formula II and M represents = S or = N-W and

W represents hydrogen, C₁-C₄-alkyl, benzyl, cyclohexyl, phenyl, toluyl, chlorophenyl, methoxyphenyl, C₁-C₃-alkylcarbonyl, C₁-C₂-alkoxycarbonyl or ben-

zoyl, with

in which

R₁ and R₂ have the meaning given in formula II, in an inert solvent at 80°-200° C. with elimination of MH₂.

Instead of compound V, it is also possible to react

$$\begin{bmatrix} R_{5} & R_{4} \\ R_{7} & A & C \end{bmatrix} \xrightarrow{R_{3}} \begin{bmatrix} \mathbb{R}_{3} \\ \mathbb{R}_{3} \\ \mathbb{R}_{8} \end{bmatrix}_{An} \oplus$$

in which

in which

R₃-R₈ and An⊖ have the abovementioned meaning and E represents —S—alkyl or —O—alkyl,

with compound VI in an analogous manner, preferably with the addition of an acid-binding agent.

Dyestuffs of the formulae (I) and (II) to be used according to the invention are the compounds listed in Tables 1-IV.

$$R_2$$
 N
 R_1

 R_1

 R_2

 CH_3

CH₃

60

$$R_2$$

 R_1

phenyl

 $C(CH_3)_3$

TABLE II-continued

TABLE III

TABLE IV

$$R_{10}R_{11}N$$
 O
 N
 R_{1}
 R_{2}

	I R	-1	
R_1	\mathbb{R}_2	R ₁₀	R ₁₁
phenyl	CH ₃	C_2H_5	C ₂ H ₅
CH ₃ —	CH ₃	↓	1
CH ₃	CH ₃		↓ .
PhO	CH ₃	1	↓
β-naphthyl	CH ₃	1	1

TABLE IV-continued

CH₃

TABLE IV-continued

$$R_{10}R_{11}N \longrightarrow R_{2} \qquad R_{10} \qquad R_{11}$$

$$R_{1} \qquad R_{2} \qquad R_{10} \qquad R_{11}$$

$$CH_{3} \qquad \downarrow \qquad \downarrow$$

$$phenyl \qquad CH_{3} \qquad \downarrow \qquad \downarrow$$

$$phenyl \qquad phenyl \qquad \downarrow \qquad \downarrow$$

$$phenyl \qquad CH_{3} \qquad \downarrow \qquad \downarrow$$

$$phenyl \qquad \downarrow \qquad \downarrow$$

$$CH_{3} \qquad phenyl \qquad \downarrow \qquad \downarrow$$

$$CH_{4} \qquad phenyl \qquad \downarrow \qquad \downarrow$$

$$CH_{5} \qquad phenyl \qquad \downarrow$$

$$CH_{7} \qquad phenyl \qquad \downarrow$$

$$CH_{7} \qquad phenyl \qquad \downarrow$$

$$CH_{7} \qquad phenyl \qquad \downarrow$$

The dyestuffs to be used according to the invention can readily be used for the mass-coloration of all plas- 60 tics. Particularly preferred plastics are thermoplastics, for example vinyl polymers and polyesters.

Suitable vinyl polymers are polystyrene, styrene/acrylonitrile copolymers, styrene/butadiene copolymers, styrene/butadiene/acrylonitrile terpolymers, poly- 65 to use dispersants. methacrylate, and the like.

The dyestuffs acception of the dyestuff acceptio

Further suitable polyesters are: polyethylene terephthalates, polycarbonates and cellulose esters. Preference is given to polystyrene, styrene blended polymers, polycarbonates and polymethacrylate. Particular preference is given to polystyrene.

The high-molecular-weight compounds mentioned can be present individually or in mixtures, as plastic compositions or melts.

The dyestuffs according to the invention are used in finely divided form, it being possible but not necessary to use dispersants.

If the dyestuffs (I) are used after polymerisation, they are mixed or milled with the plastic granules while dry, and this mixture is plasticised and homogenised, for

example, in mixing rolls or in screws. However, the dyestuffs can also be added to the molten composition and this composition can be homogeneously distributed by stirring. The material precoloured in this manner is then further processed as usual, for example by spin- 5 ning, to give bristles, filaments and the like, or by extrusion or injection moulding to give moulded articles.

Since the dyestuffs of the formula (I) are resistant to polymerisation catalysts, in particular peroxides, it is also possible to add the dyestuffs to the monomeric 10 starting materials for the plastics and then carrying out the polymerisation in the presence of polymerisation catalysts. This makes it necessary to dissolve the dyestuffs in the monomeric components or to mix them intimately therewith.

The dyestuffs of the formula (I) are preferably used for the coloration of the polymers mentioned in amounts of 0.0001% to 1%, in particular 0.01% to 0.5%, relative to the amount of polymer.

The addition of pigments which are insoluble in the polymers, such as, for example, titanium dioxide, makes it possible to obtain analogous valuable colourings of high hiding power.

Titanium dioxide can preferably be used in an amount of 0.1% -2%, relative to the amount of polymer.

The process according to the invention gives transparent, brilliant orange to red dyeings having good heat resistance and good light and weather fastness. The dyestuffs are furthermore distinguished by high colour strength.

It is also possible to use mixtures of different dyestuffs of the formula (I) and/or mixtures of dyestuffs of the formula (I) with other dyestuffs and/or inorganic or organic pigments in the process according to the invention.

The invention is illustrated by, but is not restricted to, the examples which follow, in which the parts given are by weight.

EXAMPLE 1

100 parts of polystyrene granules and 0.02 part of a dyestuff of the formula

$$(C_2H_5)_2N$$
 O
 C_2H_5
 C_4H_5

are thoroughly mixed in a drum mixer for 15 minutes. The dry-coloured granules are processed at 240° C. in a 55 ture content of 0.5%. It is melted in a mixer (hot rolls), screw injection-moulding machine, giving transparent red sheets of very good light fastness. Instead of the polystyrene polymer, it is also possible to use blended polymers of butadiene and acrylonitrile. If, in addition, 0.5 part of titanium dioxide is added, dyeings of high 60 colour strength and high hiding power are obtained.

EXAMPLE 2

0.015 part of the dyestuff from Example 1 and 100 parts of polymethyl methacrylate are mixed while dry 65 and homogenised at 230° C. in a single-screw extruder. The material leaving the extruder in rope-form is granulated. It can then be moulded into shaped articles. A

transparently red-coloured plastic having good light and wet fastness is obtained.

EXAMPLE 3

100 parts of a commercially available polycarbonate are mixed in the form of granules with 0.03 part of the dyestuff from Example 1 while dry. The granules thus sprayed are homogenised at 290° C. in a twin-screw extruder. A transparent red coloration having good light fastness is obtained. The coloured polycarbonate is extruded in rope-form and processed to give granules. The granules can be processed by the customary finishing methods of thermoplastic compositions.

If the procedure as described above is repeated, ex-15 cept that 1% of titanium dioxide is added, a red coloration of high hiding power is obtained.

EXAMPLE 4

0.04 part of the dyestuff from Example 1 is mixed while dry with 100 parts of styrene/acrylonitrile copolymer, and the mixture is homogenised at 190° C. in a twin-screw extruder, granulated and then moulded into shaped articles in the usual manner. A transparent red plastic having good light fastness is obtained.

EXAMPLE 5

0.025 part of the dyestuff from Example 1 is mixed with 100 parts of polyethylene terephthalate of the transparent type, and the mixture is homogenised at 30 280° C. in a twin-screw extruder. A transparent red coloration having good light fastness is obtained. After subsequent granulation, the coloured plastic can also be processed by the customary methods of thermoplastic moulding. If the example is repeated using 1% of tita-35 nium dioxide, a coloration of high hiding power is obtained.

EXAMPLE 6

0.05 part of tert.-dodecanethiol and 0.05 part of the 40 dyestuff from Example 1 are dissolved in 98.9 parts of styrene. This solution is dispersed in a solution of 200 parts of deionised water, 0.3 part of partially hydrolysed polyvinyl acetate (for example Moviol 50/88 from Hoechst) and 0.05 part of dodecylbenzenesulphonate. 45 After addition of 0.1 part of dibenzoyl peroxide in 1 part of styrene, the dispersion is heated to 80° C. with vigorous stirring, and polymerisation is started. Use of the following polymerisation conditions:

4 h at 80° C., 2 h at 90° C., 3 h at 110° C., 2 h at 130° 50 C. gives the polymer in a yield of 98% of theory. The polymer is obtained in the form of beads which, depending on the stirring conditions, have a diameter of 0.1–1.5 mm (d₅₀ value). The polymer is separated from the serum by filtration, dried at 110° C. to a residual mois-0.5% of zinc stearate and 0.2% of Ionol are admixed and the polymer is granulated.

The polymer can be processed by the customary methods of thermoplastic moulding, for example by injection moulding, to give red, transparent moulded articles.

EXAMPLE 7

0.2 part of tert.-dodecanethiol and 0.01 part of the dyestuff from Example 1 are dissolved in 74.8 parts of styrene, and the solution is then dispersed in a solution of 200 parts of fully deionised water and 0.2 part of a styrene/maleic anhydride copolymer neutralised with

sodium hydroxide. After addition of 0.1 part of dibenzoyl peroxide dissolved in one part of styrene, the dispersion is heated to 80° C. with vigorous stirring, and polymerisation is started. After polymerisation as in Example 1, work-up is carried out in the same manner 5 as described there. 0.5% of zinc stearate as a lubricant and 0.5% of Ionol as an anti-ageing agent are incorporated on the hot roll. The granulated polymer can be injection moulded to give transparent red articles.

EXAMPLE 8

A solution of 99.95 parts of styrene, 0.04 part of the dyestuff from Example 1 and 0.01 part of di-tert.-butyl peroxide are introduced into a continuous primary reactor operated in the flooded mode, and polymerisation is 15 methacrylate sheets are obtained. started at a temperature of 75° C. The partially polymerised solution (polystyrene content 20%) leaving the primary reactor is introduced into a twin-screw extruder. The two screws run in the opposite direction at 20 rpm. The four heatable or coolable segments of the 20 screw extruder are maintained in the order product inlet product outlet at 110° C., 130° C., 160° C., 180° C. The polymer leaves the screw extruder at a solids concentration of 80%. In a downstream extruder, 3 parts by weight of Ionol and 5 parts by weight of octyl alcohol 25 are metered in per 1000 parts by weight of polymer solution, the polymer is degassed and then granulated. The red granules can be processed to give moulded articles.

EXAMPLE 9

0.02 part of the dyestuff from Example 1 is dissolved in 74.97 parts of styrene and 25 parts of acrylonitrile or methacrylonitrile. After addition of 0.01 part of ditert.butyl peroxide, the solution thus obtained is fed into a 35 continuous primary reactor operated in the flooded

mode. Polymerisation and work-up are carried out as described in Example 3. The transparent, red granules can be further processed by the customary methods of processing thermoplastic materials to give profiles and sheets.

EXAMPLE 10

0.03 part of the dyestuff from Example 1 is dissolved in 99.97 parts of methyl methacrylate. After addition of 10 0.1 part of dibenzoyl peroxide, the solution is heated to 120° C., and polymerisation is started. After 30 minutes, polymerisation of the partially polymerised methyl methacrylate is completed at 80° C. between two glass sheets within ten hours. Red, transparent polymethyl

EXAMPLE 11

100 parts of nylon-6 chips, obtained by polymerisation of ϵ -caprolactam, are intimately mixed with 0.05 part of the dyestuff from Example 1 in a shaker. The powder-coated chips thus obtained are melted at 260° C. in an extruder, the melt obtained is extruded through a single-hole die of diameter 0.5 mm, and the exiting filament is taken off at a rate of about 25 m/min. The filament can be stretched in hot water to four times its length. A transparently red-coloured filament having excellent light fastness is obtained. If it is desired to obtain a colouring of high hiding power, 0.5 part of titanium dioxide is added.

The residence time in the extruder can be up to 30 minutes without impairment of the hue.

EXAMPLE 12

The procedure as described in Example 1 is repeated, using the dyestuffs listed in Tables V-IX, giving the hues listed there.

TABLE V

Example R₁ R₂ R₁₀ R₁₁ Hue

12
$$CH_3$$
 C_2H_5 C_2H_5 red

14 phenyl-O CH_3 \downarrow \downarrow red

15 β -naphthyl CH_3 \downarrow \downarrow red

TABLE V-continued

$$R_{10}R_{11}N$$
 O
 N
 R_{1}
 R_{1}

Example	$\mathbf{R_1}$	\mathbb{R}_2	R ₁₀	R ₁₁	Hue
16	Cl	CH ₃			red
17	Cl	CH ₃			red
18	Cl	CH ₃			red
19	Cl	CH ₃	1	1	red
20	Cl	CH ₃		↓	red
21	O_2N	CH ₃	↓	1	red
22	(CH ₃) ₂ NO ₂ S	CH ₃	C_2H_5	C ₂ H ₅	red
23	SO ₂ phenyl	CH ₃		↓	red
24	phenyl SO ₂ —	CH ₃	1	·	red
25	CH ₃	CH ₃	↓	\	red-brown

TABLE V-continued

$$R_{10}R_{11}N$$
 O
 N
 R_{1}

Example	R ₁	\mathbb{R}_2	R ₁₀	R ₁₁	Hue
26	SO_2	CH ₃	↓	1	red
27	phenyl	t-butyl	↓	↓	red
28	phenyl	CF ₃	↓	↓	bluish red
29	phenyl	phenyl	↓	↓	bluish red
30	phenyl	CH ₃	↓		bluish red
31	phenyl	MeO—	.	↓	bluish red
32	CI	phenyl	↓	↓	bluish red
33	CH ₃	phenyl		1	reddish bordeaux
34	Cl	CO—CH ₃ —N phenyl	1	↓	bluish red
35	phenyl	Cl $N CO-CH_3$	↓	\	bluish red
36	phenyl	CH ₃	N C ₂ H ₅	\ N - CH ₃	brown

TABLE VI

TABLE VII	\mathbf{T}_{A}	ABI	E	VII
-----------	------------------	-----	---	-----

Example R ₁ R ₂ Hue									R_2
Example R ₁ R ₂ Hue 37 phenyl CH ₃ orange 15 38 CH ₃ CH ₃ yellow-brown 39 CH ₃ CH ₃ orange 25 CH ₃ Orange 30 CH ₃ CH ₃ orange 30 All CH ₃ CH ₃ orange 45 CH ₃ CH ₃ orange 45 CH ₃ CH ₃ orange 45 CH ₃ orange 46 CH ₃ orange 47 CH ₃ orange 47 CH ₃ orange 48 CH ₃ CH ₃ brown CH ₃ brown CH ₃ brown CH ₃ red-brown CH ₃ red-brown CH ₃ orange 60 CH ₃ red-brown		0*			10		•		NT.
Example R ₁ R ₂ Hue 37 phenyl CH ₃ orange 15 47 phenyl CH ₃ brown 38 CH ₃ CH ₃ yellow-brown CH ₃ CH ₃ Orange 20 49 phenyl-O CH ₃ brown 40 Cl CH ₃ orange 40 Si CH ₃ Orange 41 CH ₃ Orange 42 CH ₃ Orange 45 CH ₃ Orange 46 CH ₃ Orange 56 CH ₃ Orange 60 CH ₃ red-brown 46 Orange 47 CH ₃ Orange 60 CH ₃ red-brown 65 CH ₃ red-brown 65 CH ₃ red-brown			Ř ₁		10				14
27 phenyl CH3 orange 15 47 phenyl CH3 brown 38 CH3 yellow-brown 48 CH3 brown 20 49 phenyl-O CH3 brown 40 Cl CH3 orange 30 51 CH3 brown 41 Cl CH3 orange 30 51 CH3 brown 42 Cl CH3 orange 45 CH3 brown 43 (CH3)2NO2S CH3 red-brown 44 CH3 CH3 orange 45 Cl CH3 red-brown 45 Cl CH3 red-brown 46 cl CH3 orange 56 (CH3)2NO2S CH3 red-brown 47 CH3 red-brown 48 CH3 brown 49 phenyl-O CH3 brown CH3 brown CH3 brown CH3 red-brown CH3 red-brown CH4 CH3 red-brown CH5 red-brown CH5 red-brown CH6 orange 60 CH5 red-brown	Example	\mathbf{R}_{1}	\mathbf{R}_{2}	Hue				Ř	
20 CH ₃ brown 20 CH ₃ brown 20 CH ₃ brown 21 CH ₃ brown 22 CH ₃ brown 23 CH ₃ cH ₃ brown 25 CH ₃ brown 26 CH ₃ brown 27 CH ₃ brown 28 CH ₃ brown 29 phenyl-O CH ₃ brown 20 CH ₃ brown 20 CH ₃ brown 21 CH ₃ crange 32 CI CH ₃ brown 40 CH ₃ crange 40 S ₃ S ₂ CI CH ₃ brown 41 CI CH ₃ crange 42 CI CH ₃ crange 45 CI CH ₃ red-brown 46 CH ₃ CH ₃ crange 57 CI CH ₃ red-brown 48 CH ₃ CH ₃ crange 60 CH ₃ crange 60 CH ₃ red-brown 65 CH ₃ red-brown 66 CH ₃ crange 67 CH ₃ red-brown 68 CH ₃ crange 69 CH ₃ crange 60 CH ₃ red-brown	37	phenyl	CH ₃	orange	- 15		 .		
CH ₃ Dennyl O Dennyl O CH ₃ Dennyl O Dennyl O CH ₃ Dennyl O Denn	20		OY*	•			brienar		
20 49 phenyl-O CH ₃ brown 25 50 β-naphthyl CH ₃ brown 40 Cl CH ₃ orange 30 51 CH ₃ red-brown 41 CH ₃ crange 45 CH ₄ CH ₅ red-brown 42 Cl CH ₃ orange 45 Cl CH ₃ red-brown 43 (CH ₃) ₂ NO ₂ S CH ₃ orange 55 Cl CH ₃ red-brown 44 CH ₃ CH ₃ orange 60 CH ₃ red-brown 45 Cl CH ₃ red-brown 46 phenyl phenyl orange 60 CH ₃ red-brown	38		СН3	yellow-brown		70		CII3	biown
39 CH ₃ orange 25 50 β-naphthyl CH ₃ brown 40 Cl CH ₃ crange 30 51 CH ₃ red-brown 41 Cl CH ₃ orange 45 Cl CH ₃ red-brown 42 Cl CH ₃ crange 45 Cl CH ₃ red-brown 43 (CH ₃) ₂ NO ₂ S CH ₃ crange 55 Cl CH ₃ red-brown 44 CH ₃ CH ₃ orange 60 Cl CH ₃ red-brown 45 So ₂ Cl CH ₃ red-brown 46 phenyl phenyl orange 60 Cl CH ₃ red-brown		CH ₃ —			20		CH ₃ —		
25 CI CH ₃ orange 25 50 β-naphthyl CH ₃ brown 40 CI CH ₃ orange 35 52 CI CH ₃ brown 41 CI CH ₃ orange 40 Si CI CH ₃ red-brown 41 CI CH ₃ orange 45 Si CI CH ₃ red-brown 42 CI CH ₃ orange 45 Si CI CH ₃ red-brown 47 CI CH ₃ red-brown 48 CH ₃ orange 49 CI CH ₃ orange 40 CI CH ₃ red-brown 50 CI CH ₃ red-brown 50 CI CH ₃ red-brown 60 CI CH ₃ red-brown 60 CI CH ₃ red-brown 60 CI CH ₃ red-brown					20	49	phenyl-O	CH₂	brown
25 50	39	/──	CH ₃	orange			 \		
CI CH3 brown 40 CI CH3 orange 30 51 CH3 red-brown 41 CI CH3 orange 45 CI CH3 red-brown 42 CI CH3 orange 45 S4 CI CH3 red-brown 43 (CH3)22NO2S CH3 orange 55 CI CH3 red-brown 44 CH3 CH3 orange 60 CI CH3 red-brown 45 S5 S5 CI CH3 red-brown 46 phenyl orange 60 CH3 red-brown		()—			25		· ()—		
40 Cl CH3 orange 30 51 CH3 red-brown 41 Cl CH3 orange 40 53 Cl CH3 red-brown 42 Cl CH3 orange 45 54 Cl CH3 red-brown 43 (CH3)2NO28 CH3 orange 55 55 Cl CH3 red-brown 44 CH3 CH3 orange 60 Cl CH3 red-brown 45 Cl CH3 red-brown 46 phenyl phenyl orange 60 CH3)NO28 CH3 red-brown					2.2				
41		Cì				50	eta-naphthyl	CH ₃	brown
35 52 Cl CH ₃ brown 40 53 Cl CH ₃ red-brown 42 Cl CH ₃ orange 45 54 Cl CH ₃ red-brown 46 CH ₃ orange 60 Cl CH ₃ orange 60 Cl CH ₃ red-brown 65 Cl CH ₃ red-brown 66 Cl CH ₃ red-brown 67 Cl CH ₃ red-brown 68 Cl CH ₃ red-brown 69 Cl CH ₃ red-brown	40	Cl _.	CH ₃		30	51	<u>/—</u>	CH ₃	red-brown
35 52 Cl CH ₃ brown 40 53 Cl CH ₃ red-brown 42 Cl CH ₃ orange 45 Cl CH ₃ orange 45 44 CH ₃ CH ₃ orange 60 CH ₃ red-brown 45 Cl CH ₃ red-brown 46 phenyl orange 60 CH ₃ orange 60 CH ₃ orange 60 CH ₃ orange 60 CH ₃ red-brown		<u></u>			50		<u></u>		
35 52 Cl CH ₃ brown 40 53 Cl CH ₃ red-brown 42 Cl CH ₃ orange 45 Cl CH ₃ orange 45 44 CH ₃ CH ₃ orange 60 CH ₃ red-brown 45 Cl CH ₃ red-brown 46 phenyl orange 60 CH ₃ orange 60 CH ₃ orange 60 CH ₃ orange 60 CH ₃ red-brown		\					\		
41					35				
Cl CH ₃ orange 45 Cl CH ₃ red-brown 53 Cl CH ₃ red-brown 54 Cl CH ₃ red-brown 55 Cl CH ₃ red-brown 55 Cl CH ₃ red-brown 45 Cl CH ₃ red-brown 46 Cl CH ₃ red-brown 55 Cl CH ₃ red-brown 60 Cl CH ₃ red-brown	41	,CI	CH ₃	orange	55	52	C1	CH ₃	brown
Cl CH ₃ orange 45 Cl CH ₃ red-brown 53 Cl CH ₃ red-brown 54 Cl CH ₃ red-brown 55 Cl CH ₃ red-brown 55 Cl CH ₃ red-brown 45 Cl CH ₃ red-brown 46 Cl CH ₃ red-brown 55 Cl CH ₃ red-brown 60 Cl CH ₃ red-brown									
Cl CH ₃ orange 45 Cl CH ₃ red-brown 53 Cl CH ₃ red-brown 54 Cl CH ₃ red-brown 55 Cl CH ₃ red-brown 55 Cl CH ₃ red-brown 45 Cl CH ₃ red-brown 46 Cl CH ₃ red-brown 55 Cl CH ₃ red-brown 60 Cl CH ₃ red-brown					40				
42 Cl CH ₃ orange 45 54 Cl CH ₃ red-brown 43 (CH ₃) ₂ NO ₂ S CH ₃ orange 55 Cl CH ₃ red-brown 44 CH ₃ CH ₃ orange 60 Cl 45 Cl CH ₃ red-brown 65 Cl CH ₃ red-brown 65 CH ₃ red-brown		<u></u>		-		53	Cl	CH ₃	red-brown
45 Cl CH ₃ red-brown 50 43 (CH ₃) ₂ NO ₂ S CH ₃ orange Cl CH ₃ red-brown 55 Cl CH ₃ red-brown 44 CH ₃ CH ₃ orange 60 Cl CH ₃ red-brown 65 Cl CH ₃ red-brown 65									
CI 50 43 (CH ₃) ₂ NO ₂ S CH ₃ orange 55 CI CH ₃ red-brown 55 CI CH ₃ red-brown 44 CH ₃ CH ₃ orange 60 CI 45 CH ₃ orange 60 CH ₃ red-brown 65 CH ₃ red-brown	42	C1	CH ₃	orange	45		Cl		
CI 50 43 (CH ₃) ₂ NO ₂ S CH ₃ orange 55 CI CH ₃ red-brown 55 CI CH ₃ red-brown 44 CH ₃ CH ₃ orange 60 CI 45 CH ₃ orange 60 CH ₃ red-brown 65 CH ₃ red-brown						54		CH ₂	red-brown
43 (CH ₃) ₂ NO ₂ S CH ₃ orange 55 Cl CH ₃ red-brown 55 Cl CH ₃ red-brown 44 CH ₃ CH ₃ orange 60 Cl 45 CH ₃ orange 60 CH ₃ red-brown 65 CH ₃ red-brown						7 **	/ 	O11 3	104-010 WII
55 Cl CH ₃ red-brown 44 CH ₃ CH ₃ orange 60 Cl 45 CH ₃ orange 56 (CH ₃) ₂ NO ₂ S CH ₃ red-brown 65 65		Cl			50		\		_
55 Cl CH ₃ red-brown 44 CH ₃ CH ₃ orange 60 Cl 45 CH ₃ orange 56 (CH ₃) ₂ NO ₂ S CH ₃ red-brown 65 65	43	(CH2)2NO2S	CH2	Огапое			} //		
44 CH ₃ CH ₃ orange 60 CH ₃ orange 55 CI CH ₃ red-brown 65 46 phenyl phenyl orange	, -	\	5	V1					
44 CH ₃ CH ₃ orange 60 CH ₃ orange 56 (CH ₃) ₂ NO ₂ S CH ₃ red-brown 65 46 phenyl phenyl orange		/			55	22	C1	CH ₃	red-brown
45 CH ₃ orange 56 (CH ₃) ₂ NO ₂ S CH ₃ red-brown SO ₂ 65 46 phenyl phenyl orange		\/		•			C1—(\)—		
45 CH ₃ orange 56 (CH ₃) ₂ NO ₂ S CH ₃ red-brown SO ₂ 65 46 phenyl phenyl orange	44	CH ₃	CH ₃	orange					
SO ₂ 65 Phenyl phenyl orange					60		`Cl		
65 henvl phenvl orange	45		CH ₃	orange		56	(CH ₃) ₂ NO ₂ S	CH ₃	red-brown
65 henvl phenvl orange		502				•			
46 phenyl phenyl orange 57 phenyl t-butyl brown		302			65				
	46	phenyl	phenyl	огange	~	57	phenyl	t-butyl	brown

10

20

25

30

35

65

Hue

orange

TABLE VII-continued

$$R_2$$

Example	\mathbf{R}_1	R_2	Hue
58	phenyl		red-brown
59	phenyl	phenyl	brown
60	CH ₃	CH ₃	violet-brown
61	SO_2	CH ₃	orange

TABLE VIII

 Example	R_1	R ₂	Hue	
62	phenyl	CH ₃	orange	
63	CI	CH ₃	orange	45
	Cl	<u></u>		50

TABLE IX

 \mathbf{R}_1

phenyl

Example

64

MeO
$$R_2$$
 R_1 R_2 R_1

 R_2

 CH_3

TABLE IX-continued

We claim:

1. Process for the mass-coloration of plastics comprising incorporating a dyestuff a) in the starting materials for production of the plastic, or b) in the melted plastic composition, characterised in that the dyestuff has the following formula

$$R_{6}$$
 R_{7}
 R_{8}
 R_{7}
 R_{8}
 R_{1}
 R_{1}

in which

R₁ denotes alkyl, aralkyl, aryl or heterocyclyl, it being possible for these radicals to be substituted or unsubstituted,

R₂ denotes alkyl, aralkyl, aryl, heterocyclyl, alkoxycarbonyl, dialkylcarbamoyl, alkoxyacyloxy, or a radical of the formula —NZ₁Z₂, it being possible for these radicals to be substituted or unsubstituted, or denotes chlorine, bromine, cyano, hydroxyl,

Z₁ denotes hydrogen, alkyl, aralkyl, aryl, cycloalkyl or a heterocyclic radical and

Z₂ denotes an acyl radical or

Z₁ and Z₂ together with the joint N atom form the radical

L is 1,2-phenylene, 1,2-, 2,3- or 1,8-naphthylene, 1,2-cyclohex-1-enylene, ethylene or vinylene,

R₃ denotes hydrogen, alkyl, aryl, halogen, hydroxyl, alkoxy, cyano, alkoxycarbonyl, formyl, dialkylcarbamoyl, alkylsulphonyl, arylsulphonyl, dialkylaminosulphonyl,

R₄ denotes hydrogen, alkyl, aryl, hydroxyl, alkoxy, halogen, cyano, alkoxycarbamoyl, alkylsulphonyl, arylsulphonyl,

R₅ to R₈, identical or different, denote hydrogen, alkyl, aryl, heterocyclyl, alkoxy, aryloxy, hydroxyl, amino, mono- or disubstituted amino, such as, for example, alkylamino, dialkylamino, alkylsulphonyl, arylsulphonyl, dialkylsulphonamido, halogen, or together with an adjacent radical denote a fused-on aromatic or heterocyclic ring.

2. Process according to claim 1, characterised in that R₃ to R₈ denote hydrogen.

15

25

40

50

60

65

3. Process according to claim 1, characterised in that R₅ and R₆ together denote the radical of an aromatic or heterocyclic ring fused onto ring A.

4. Process according to claim 1, characterised in that R₇ denotes alkoxy, oxy, or NR₁₀R₁₁, in which

R₁₀ and R₁₁ denote hydrogen, alkyl, aryl, aralkyl, each of which is unsubstituted or substituted by alkoxy, aryloxy, acyloxy, cyano, hydroxyl, dialkylamino, halogen, or together with the joint N atom denote a heterocyclic radical, or a ring bond to ring A.

5. Process according to claim 1, characterised in that R¹ denotes phenyl, naphthyl, it being possible for the substituents in turn to be substituted,

R² denotes C₁-C₄-alkyl, phenyl.

6. Process according to claim 4, characterised in that R₁₀, R₁₁, identical or different, denote C₁-C₄-alkyl or together with the joint N atom denote the radical of a 5-or 6-membered heterocycle.

7. Process according to claim 1, characterised in that at least one of the following dyestuffs is used:

$$(C_2H_5)_2N$$
 O O N N C_6H_5

-continued

8. Process according to claim 1, characterised in that the plastic is a thermoplastic.

9. Process according to claim 1, characterised in that the plastic to be coloured is a vinyl polymer or a polyester.

10. A dyestuff of the formula (II)

$$R_{6}$$
 R_{7}
 R_{8}
 R_{8}
 R_{1}
 R_{1}
 R_{2}
 R_{1}

45 in which

R₁ denotes alkyl, aralkyl, aryl or heterocyclyl, it being possible for these radicals to be substituted or unsubstituted,

R₂denotes alkyl, aralkyl, aryl, heterocyclyl, alkoxycarbonyl, dialkylcarbamoyl, alkoxyacyloxy, or a radical of the formula —NZ₁Z₂, it being possible for these radicals to be substituted or unsubstituted, or denotes chlorine, bromine, cyano, hydroxyl,

Z₁ denotes hydrogen, alkyl, aralkyl, aryl, cycloalkyl or a heterocyclic radical and

Z₂ denotes an acyl radical or

Z₁ and Z₂ together with the joint N atom form the radical

L is 1,2-phenylene, 1,2-, 2,3- or 1,8-naphthylene, 1,2-cyclohex- 1-enylene, ethylene or vinylene,

R₃ denotes hydrogen, alkyl, aryl, halogen, hydroxyl, alkoxy, cyano, alkoxycarbonyl, formyl, dialkylcarbamoyl, alkylsulphonyl, arylsulphonyl, dialkylaminosulphonyl,

R₄ denotes hydrogen, alkyl, aryl, hydroxyl, alkoxy, halogen, cyano, alkoxycarbamoyl, alkylsulphonyl, arylsulphonyl,

R₅, R₆, R₈, identical or different, denote hydrogen, alkyl, aryl, heterocyclyl, alkoxy, aryloxy, hydroxyl, amino, alkylamino, dialkylamino, halogen, alkylsulphonyl, arylsulphonyl, dialkylsul- 15 phonamido, or together with an adjacent radical denote a fused-on aromatic or heterocyclic ring,

R₇ denotes hydrogen, alkyl, aryl, heterocyclyl, alkoxy, aryloxy, hydroxyl, halogen, alkylsulphonyl, arylsulphonyl, dialkylsulphamido or together with ²⁰ an adjacent radical denotes a fused-on aromatic or heterocyclic ring.

11. Non-fibrous coloured plastic compositions, characterised in that they have been coloured using a dye- 25 stuff of the following formula

$$R_6$$
 R_7
 R_8
 R_8

in which

R₁ denotes alkyl, aralkyl, aryl or heterocyclyl, it being possible for these radicals to be substituted or unsubstituted,

R₂ denotes alkyl, aralkyl, aryl, heterocyclyl, alkoxycarbonyl, dialkylcarbamoyl, alkoxyacyloxy, or a radical of the formula —NZ₁Z₂, it being possible for these radicals to be substituted or unsubstituted, or denotes chlorine, bromine, cyano, hydroxyl,

Z₁ denotes hydrogen, alkyl, aralkyl, aryl, cycloalkyl or a heterocyclic radical and

Z₂ denotes an acyl radical or

Z₁ and Z₂ together with the joint N atom form the radical

L is 1,2-phenylene, 1,2-, 2,3- or 1,8-naphthylene, 1,2-cyclohex- 1-enylene, ethylene or vinylene,

R₃ denotes hydrogen, alkyl, aryl, halogen, hydroxyl, alkoxy, cyano, alkoxycarbonyl, formyl, dialkylcarbamoyl, alkylsulphonyl, arylsulphonyl, dialkylaminosulphonyl,

R4 denotes hydrogen, alkyl, aryl, hydroxyl, alkoxy, halogen, cyano, alkoxycarbamoyl, alkylsulphonyl, arylsulphonyl,

R₅ to R₈, identical or different, denote hydrogen, alkyl, aryl, heterocyclyl, alkoxy, aryloxy, hydroxyl, amino, mono- or disubstituted amino, such as, for example, alkylamino, dialkylamino, alkylsulphonyl, arylsulphonyl, dialkylsulphonamido, halogen, or together with an adjacent radical denote a fused-on aromatic or heterocyclic ring.

40

45

50

55

60