United States Patent o
Seki

AR OO RS R

US005333320A
11] Patent Number:

451 Date of Patent:

5,333,320
Jul. 26, 1994

[54] ELECTRONIC COMPUTER SYSTEM AND
PROCESSOR ELEMENT USED WITH THE
COMPUTER SYSTEM

[76] Inventor: Hajime Seki, 4-38, Kita-machi,

Dougo, Matsuyama-shi, Ehime-ken,

790, Japan
[21] Appl. No.: 923,928
[22] PCT Filed: Jun. 4, 1990
[86] PCT No.: PCT/JP90/00724
§ 371 Date: Sep. 8, 1992
§ 102(e) Date:  Sep. 8, 1992
187] PCT Pub. No.: WO91/10967

PCT Pub. Date: Jul. 23, 1991

[30] Foreign Application Priority Data
Jan. 9, 1990 [JP] Japan ...viirviicnnccicccnennnns 2-2146
Apr. 2, 1990 [JP]  Japan ..., 2-88980
[S1T Int. CL3 e, GO6F 15/16
CI52)] US.Cl e 3985/650; 395/800;

364/DIG. 1; 364/228.3; 364/229.2; 364/230.3

CONTROL :
PROCESSOR — o1

[58] Field of Search .................. 364/D1G. 1 MS File,
364/DIG. 2 MS File; 395/650, 325, 375, 800

[56] References Cited
U.S. PATENT DOCUMENTS

4.916,657 4/1990 MOTton ..ccceevevrevvenennnen 364/D1G. 2
5,099.418 3/1992 Pian et al. ....ceeevvrrnnenns 364/D1G. 1

Primary Examiner—Thomas M. Heckler
Attorney, Agent, or Firm—1Jones, Tullar & Cooper

[57] ABSTRACT

A data-driven electronic computer system and proces-
sor element used for the same system. The present data-
driven computer system comprises a control processor,
a plurality of processor elements, and a plurality of
memory devices each of which 1s directly accessed by
its corresponding processor element, wherein data
transfers can be performed in packet transmission
among all the processor elements. Each processor ele-
ment has an operation control unit which performs
arithmetic/logic operations in a data-driven manner,
and a communication control unit which performs data
transfers between the processor elements.

5 Claims, 9 Drawing Sheets

'" | a2
PACKET SWITCHED NETWORK i
31;

33 COMMUNICATION CONTROL UNIT |
™ TRANSFER :
|
| CONTROL MEMORY || CONTROL
| UNT
|

32;

MEMORY DEVICES

NON-STORED
VARIABLE
UST

39;




U.S. Patent July 26, 1994 Sheet 1 of 9 5,333,320

CONTROL d
PROCESSOR 99

PACKET SWITCHED | NETWORK
o 3
33 |
PROCESSOR L -
ELEMENT
DEVICE

FIG. 1



U.S. Patent July 26, 1994 Sheet 2 of 9 5,333,320

CONTROL :
PROCESSOR - —
- i)
* PACKET SWITCHED NETWORK _|

33; COMMUNICATION CONTROL UNIT
~ DATA
TRANSFER
CONTROL MEMORY COlImOL

INSTRUCTION STACK DATA
MEMORY MEMORY MEMORY

OPERATION 39i
UNIT

i 4; |
| MEMORY DEVICES

FIG. <

NON—-STORED

VARIABLE
LIST

|

I

|

I

|

I
_{
OPERATION CONTROL UNIT |
|

|

|

|

|

|

I

I

I

|

I

|




U.S. Patent July 26, 1994 Sheet 3 of 9 5,333,320

8 1

F I G.o 3

93

I G. <%

O 1
621 )



5,333,320

Sheet 4 of 9

July 26, 1994

U.S. Patent




U.S. Patent July 26, 1994

S
B
-»,
o

e
b
o
©

@20 --
CALC

(DS 2)
(@50
(@5 0]

&

SEND

&,
Ul -+
O

~
O
S,

SEND

@30 --

~1e
9]
& | N

SEND
(

@
o)
-
—

=
O
&

&
o
O

n

ol

()
N

Sheet 5 of 9 5,333,320

@10 --

@220 --

CALC

(@5 1]
(@5 2]
(®51)

SEND
(@5 0]
TO @

@30 --

I I G .o S



5,333,320

Sheet 6 of 9

July 26, 1994

U.S. Patent

ﬁf:..m Vi-12¢ T
m “ =0T " (25O
1 R el e L LRt b b e bbb bbbl
: (zs@) |
m : @OL [¢ =(26(M)) AONTS
Vi—-'Tg’ VvV-‘gg . Vi-'¢g
Ve -—1G VE-'Z¢
= | Sy p Lt (26
(25@) | : @OL [2 = (140)) aN2S
" : @01 [ i =(z2a® ) (aN:S
VE='Tg) ve-'gg R VE-1g
VZ-1'G VZ-'2¢
- m =+ ' (08@) ‘(08D * (25D
: (Zs®) | @ 0L [ i = fm@ (NS
: e @O | i =(2za® | UNAS
! m ®olL | L =(0s® ] anNnas
Ve—1'1¢ VZ-—-'C L VZ—-'¢{
4 N 1
V1 -2g Vi-22Z¢ VI-1'G VIT-12¢,

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

(2 SO}

i

.-‘----‘-*ﬁi---‘-
AR N T BRI R Y

@OL [& =(0S@)) ANIS

| MOL [é& =(08@ ) aNiS
vi-z1g)  vi-igg V-3¢ f.,_:u flnn#

V]-'g




5,333,320

Sheet 7 of 9

July 26, 1994

U.S. Patent

(TS®)

VL-¢1¢C

V9—¢G

(T S@)

V3—-¢1¢

VGE—¢G

(1 S@)

vé-—-¢1¢t

B L

il

e
t\-
!

™
N
™

VL-°CC
V9—-¢2¢C

VS—<L L

I-"-Ill—'-‘l—"-ll'_l'-l'-l_-llI_'_.I_.l_l__l..-l_l..l_..._llull_l._l__-l-ll """""

VLi-°¢¢E

l.__I_.I_.'.l._l__.l_"‘_I_I__I_I_.I_I.II.l..__l_'_.l_.l._.l.t.‘_l_l.'l.._-_l.ll.._l._l_._l__l__'_'ll" """"

Vo-—°¢

C -t gt (ZsD) ‘(15D

""""""""""""""""""""""""""""""""""""""

VG-<C

Vi=-'1¢
VI-'5

vg-'1¢L
VE—-1!G

It

ve~-'14t

VL-'2 L

VL-'EE
vVo9-1'2¢€

VO—-'LL
Vve-1'3 L

ey o i i e

@ W W i A A B

Ve—-'tL

""""""""

W we bm B o i P e

""""""""

B T T N ETE R R . e - - o N N N I o ol o

vi-'C

_I'_l__l__l__l_.l._l..l.tl_l._-_.._I-‘l-'l‘--l"l""'ll""' """

Vo-'t

lllllllllllllllllllllllllllllllllllllllll




5,333,320

Sheet 8 of 9

July 26, 1994

U.S. Patent

L L " I A

: 8V-22Z¢ T
w Hh]n*‘ﬂ\-NnHNmeUn
)
m . [ £ = (06@) ) ANAS )
ge—-<1¢ HEe—¢0 L 4 | gdf—<C
thLm 82-%2¢
b=ttty (TSM (2SO (TS@)
(TS@) | :
®OlL [ ¢ =(0s®) ) ANTS
He—¢T 4 0¢—-¢L L 1+ He—°L
ﬁm:iﬁm Hl-—-<28
= o sy (18D (25D ¢ (T5D)
(15@) |
q1-¢1¢/  dgr-cpe | m:Lnu

gb-16G
(

(2 S(D)

il

L L I B I N I W B N B W)

gv-'1¢€
gL -1'G

dv—-'LEL
HEe-1'2 80

I}

- e P B ESSFEHFSERE"

(2 SD)

dE-'T¢C
d¢—'S

= i B F B & B aA W e

ge-'et
g1 —-'¢L

- e e

- R R Ay b W T Y iam

'''''''''

""""""""

e B G Sp S W g e v B g B e B gt W kk e e om e A e b g e T e s e e R W A A

llllllll

llllllllll

""""""""""""""""""""""""""""""""

@O0l [ & =(28@®) ] ANAS

gV¥—-'L

=4+ (0SE) ‘(08D * (ZuD)

lllllllllllllllllllllllllllllllllllllll

@D OYL [ Z =(16M) ) ANHS
@ 0O.L * L = Mmme wszuw
DOL [ L ={08M) ) UNHS u
ge-'e
4

=*+ ‘(0Ss@) ‘(0s®) ' (2SO

=+ (0@ ‘ (0s®m) * (4D

- R E W o s e b ooy ek el AR e e e A=




5,333,320

Sheet 9 of 9

July 26, 1994

U.S. Patent

....
""'_-"l"l"'l"""'..I-'.l.l".'-.‘.'ll'_ """"""""

NN N W B L N
L I N W W N R N BN

d8-'1¢C gg-'tt gg-—-'t

L
¥
&
¥
a1
¥
#
’
|
L
b
’
"
1
1

[
¥
L
[ ]
&
&
4
#
[
L

d9-°S HO-¢2¢C

L BN
"""""""""""""""""""""""""""""""""""""

@ OL [0Y =([26(D)) AONIS

e e e P PSP
|
i
!
t
¥
]
|
I
’
]
"
’
L]
9
+
'
]
1
|
?
¢
¥
I
]
!
)
’
1
1
|
§
t
|
|
1
)
)
'
"
;
1
b
1
i
!
1
1
1
¥
¥
'
b
1

s dm i e P o i il

manu g9-'1g’/ d9-'te 89 -'¢
4G-'G g§5-12¢

|
o
R
&N
D
=
e’
~—
]
g
)
-
{
-
wemanf
N
| b
=
-

llllllllllllllll
llllllllllllllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllll

(2G(M) )} ANMS

)
1
S
S
O
-
e
i

ac-¢1¢g) aG-:ge 4G -3¢ as-'1g/ a@g-'ee gG—'¢



5,333,320

1

ELECTRONIC COMPUTER SYSTEM AND
PROCESSOR ELEMENT USED WITH THE
COMPUTER SYSTEM

FIELD OF THE INVENTION

The present invention relates to a data-driven type

computer system and a processor element used with the
computer system.

DESCRIPTION OF THE PRIOR ART

As a computer system in which a plurality of proces-
sOrs operate in parallel, there has been available one 1n
which a plurality of Neuman type processors are con-
nected. Such a system, however, has suffered from a
problem, namely, synchronization among the proces-
sors as well as communications control becomes com-
plex. Moreover, increased efficiency is difficult to
achieve without taking into consideration the contents
of jobs and the architecture of the processors in prepar-

Ing programs.

SUMMARY OF THE INVENTION

The present invention addresses the foregoing prob-
lems, and its essential object is to provide a data-driven
type electronic computer system having processor ele-
ments, wherein arithmetic/logic operations in individ-
ual processor elements, data communications among
processor elements and other similar operations are
performed in a data-driven manner (each operation 18
performed when required data are fully prepared),
asynchronously, thereby achieving highly efficient
computation.

The data-driven computer system according to the
present invention includes two systems: system 1 and
system 2. From the hardware point of view, either sys-
tem comprises a control processor, a plurality of proces-
sor elements, and a plurality of memory devices each of
which is directly accessed only by its corresponding
processor element (hereinafter in the specification the
control processor will be referred to as “CP’ and the
processor element as “PE”), wherein data transfers may
be performed in packet transmission among all the PEs;
each PE has an operation control unit which performs
arithmetic/logic operations and the like, and a commu-
nication control unit which performs data transfers to a
destination PE (hereinafter in the specification the oper-
ation control unit will be referred to as “OCU” and the
communication control unit as *“CCU”"); both the OCU
and the CCU are designed to perform in a data-driven
manner; the system 1 is so structured that, to instruct
PEs to perform operations, the CP broadcasts a pro-
gram statement to the PEs; and the system 2 1s so struc-
tured that, with part of a job described in the form of a
set of subsections each of which is assigned to one of the
PEs and stored in its corresponding memory device, the
CP instructs the .PEs to activate respectively corre-
sponding subsections so that the part of the job will be
executed.

The PE also herein proposed comprises a data mem-
ory with an associative function for simultaneously
comparing a variable identifier transmitted to the data
memory with variable identifiers each of which is held
in one of the cells of the data memory, and writing a
data transmitted together with the variable identifier
transmitted to the data memory in each cell of the data
memory matched by comparison, a stack memory hav-
ing cells each of which is designed to hold an address of

10

15

20

25

30

35

40

45

50

53

65

2

a cell of the data memory, an instruction memory hav-
ing cells each of which is designed to hold the content
of an operation defined by a program statement, and an
operation unit for performing an arithmetic/logic oper-
ation specified in a cell of the instruction memory when
operand data required for the arithmetic/logic opera-
tion are fully prepared in the data memory; and the PE
is designed to perform the arithmetic/logic operations
defined by a program statement arranged in reverse
Polish notation in a data-driven manner after setting the
data memory and the instruction memory by using the
stack memory. (Hereinafter in the specification the data
memory will be referred to as “DM?”, the stack memory
as “SM”, the instruction memory as “IM” and the oper-
ation unit as “OU”).

Important terms are listed below to clarify their
meanings in the context of the present invention.

Variable identifier: Variable identifier, in general,
refers to an identifier assigned to a data, a storage area
address of a data which has its storage area in a memory
device, a modified address expression immediately de-
finable in each PE or an address expression of a vector
variable. In the specification herein, however, a vari-
able refers to a scalar variable, unless otherwise noted.

Program element: Program element refers to a vari-
able identifier, an immediate data, or an operator indica-
tive of an arithmetic/logic operation, a store operation
or the like. Each individual program element 1s tagged
so that a variable identifier, an immediate data and an
operator are mutually discriminated: in the case of a
variable identifier, tagging clarifies the difference be-
tween a scalar and a vector, a mode of address modifica-
tion, and the difference between representation of an
operand address and representation of a result storage
address; and in the case of an operator; tagging clarifies
the number of operands the operator needs.

Program statement: Program statement refers to a
series of program elements arranged meaningfully 1n
reverse Polish notation.

Subsection: Subsection refers to a fragment of a pro-
gram assigned to a PE, wherein a portion which causes
the OCU in the PE to perform arithmetic/logic opera-
tions 1s described by program statements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing a basic structure
common to both a system 1 and a system 2, according to
the present invention;

F1G. 2 is a block diagram showing a detailed struc-
ture of a PE according to the present invention;

FI1G. 3 illustrates a data memory in detail;

FIG. 4 illustrates an instruction memory in detail;

F1G. 5 illustrates a data transfer control memory in
detail;

FIG. 6 shows the contents in a stack memory, a data
memory and an instruction memory, in the course of
action in a PE;

FI1G. 7 shows the initial contents in a memory device,
supposed for explaining the behavior of the arrange-
ment made of two sets of a PE and a memory device;

FIG. 8 shows the initial contents in the other memory
device, supposed for explaining the behavior of the
above-mentioned arrangement;

F1G. 9 shows the behavior of the above-mentioned
two PEs in the system 1,

FI1G. 10 shows the behavior of the above-mentioned
two PEs in the system 1;



5.333,320

3

F1G. 11 shows the behavior of the above-mentioned
two PEs in the system 2; and

FIG. 12 shows the behavior of the above-mentioned
two PEs in the system 2.

PREFERRED DETAILED DESCRIPTION OF
THE EMBODIMENTS

FIG. 1is a block diagram of the basic hardware struc-
ture of the system according to the present invention.
Shown in FIG. 1 are a control processor (CP) 1, a
broadcast network 21, a packet switched network 22,
processor elements (PEs) 31-3,, and memory devices
4,-4,.

In the systems according to the present invention, i.e.,
both system 1 and system 2, the broadcast network 21
from the CP 1is linked to each of PE 3,~3,, and each of
PEs 3;-3, is linked to its corresponding one of memory
devices 4,-4, in a manner that allows direct access
between them. The packet switched network 22 is avail-
able for data communications among PEs 31-3, and the
CP 1. The broadcast network 21 may be replaced with
a bus which has the link identical with that of the net-
work 21. ,

In the embodiments described below, it 1s assumed

that every variable has its own storage area in one of the

memory devices, and that a variable identifier appear-
ing in a program statement expresses a storage area
address either of an operand or of a result.

In the system 1 according to the present invention,
the CP broadcasts program elements which compose a
program statement one by one to PEs so as to set the
PEs to perform operations defined by the program
statement. '

The OCU in each PE which is assigned to perform
arithmetic/logic operations defined by the program
statement is set so that the arithmetic/logic operations
will be performed in a data-driven manner.

In the CCU in each PE which is endowed with direct
access to any of operand data needed for the arith-
metic/logic operations defined by the program state-
ment, when the above-mentioned operand data is ob-
tained, the above-mentioned operand data is transferred
to the PE which is assigned to perform the arithmetic/-
logic operations by using the above-mentioned operand
data.

In each of the OCU and CCU, any operation or any
data transfer performable with required data fully pre-
pared, is automatically performed.

In the system 1 according to the present invention,
the CP may broadcast program statements continuously
as long as no exceptional event takes place in any of the
PEs. ,

Described below are the components which make up
the system 1 of the present invention, and their behav-
10T.

(I) Control Processor (CP)

The CP broadcasts, to PEs, the leading word {EX-
EC} and program elements which compose the pro-
gram statement, one by one.

In each PE, when any of the DM, the IM, the data
transfer control memory, and the non-stored variable
list, all described later, is about to overflow (hereinafter
in the specification the non-stored variable list will be
referred to as “NSVL” and the data transfer control
memory as “DTCM”), or when the program element
broadcast from the CP represents a variable identifier
indicative of a result storage address which 1s already
written either in the later-described transfer variable

10

15

20

25

30

35

43

50

33

65

4
field of the DTCM or in the NSVL (this means a
change of a variable data in use in any of the PEs), the
PE so notifies the CP, thereby causing the CP to stop
broadcasting to PEs. When the above-described condi-
tion is removed, the PE so notifies the CP, thereby
causing the CP to start broadcasting again.

(II) Processor Element (PE)

FIG. 2 is a block diagram showing a detailed struc-
ture of the PE according to the present invention.-Each
PE, which is made of a control unit, an operation con-
trol unit (OCU) and a communication control unit
(CCU), may be applied to both the system 1 and the
system 2 (hereinafter in the specification the control,
unit will be referred to as “CU”). Indicated in FIG. 2
are CU 31;, OCU 32;, and CCU 33;, where 1=i=n. CU
31; has non-stored variable list (NSVL) §; descnbed
later; OCU 32, has stack memory (SM) 7;, data memory
(DM) 8;, instruction memory (IM) 9;and operation unit
(OU) 39,, all described later. CCU 33; has data transfer
control memory (DTCM) 6; described later.

(I1-1) Control Unit (CU)

The CU in each PE is so designed that it carries out
adjustment and control of actions of the OCU and the
CCU, and controls accesses to the memory device.

In each CU of the system 1, when the program ele-
ment in a program statement sent from the CP repre-
sents a variable identifier which is a modified address
expression, address calculation is immediately per-
formed to replace the modified address expression.

Furthermore, in order to avoid confusion in connec-
tion with a change of a variable data, each CU has a
NSVL for holding addresses of a storage area in which
a data has not been stored yet although the PE was set
sO as to store that data in the memory device.

The description that follows is the action of the CU of
the system 1 according to the present invention.

In the system-1 of the present invention, while each
PE receives from the CP a program statement, which 1s
composed of program elements, in succession to the
word {EXEC}, the CU carries out the following ac-
tions (1) and/or (2) in parallel.

(1) In each PE which is assigned to perform arith-
metic/logic operations defined by the program state-
ment, the program statement is delivered to the OCU so
that the arithmetic/logic operations are set to be per-
formed in a data-driven manner. In this embodiment,
the PE which 1s endowed with direct access to the
memory device containing a result storage area indi-
cated in a program statement is designed to perform the
arithmetic/logic operations defined by the program
statement to generate the result, unless otherwise noted.

Hereupon, if the same variable identifier as the result
storage address is already written either in the NSVL or
in a later-described transfer variable field of the DTCM,
the following action (X)/(Y) is performed in order to
avoid confusion in connection with a change of a vari-
able data.

(X) If the same variable identifier as the result storage
address is already written in a later-described transfer
variable field of the DTCM, the CP is requested to stop
broadcasting the program statement. Later, the data
corresponding to the same variable identifier will be
written in the DTCM if the whole system has been
normally set. Then, the CP is requested to restart broad-
casting the program statement.

(Y) If the same variable identifier as the result storage
address is already written in the NSVL, the CP is re-
quested to stop broadcasting the program statement.



5,333,320

S

Later, the same variable identifier will be deleted from
the NSVL if the whole system has been normally set.
Then, the CP is requested to restart broadcasting the
program statement.

At the end of the program statement, the result stor-
age address is written in the NSVL in the PE which 1s
directly accessible to the result storage area. Hereupon,
the variable identifier indicative of the result storage
address is retained in an unshown register, while the
program statement 1s broadcast.

When the OCU compietes the calculation defined by
the program statement, the CU is requested to store the
result data in the memory device. Then, the CU re-
quests the memory device to store the result data. On
completmn of storing, the address of the result storage
area is deleted from the NSVL.

(2) In each PE, each time directly accessible one 1s
recognized from among operand variables presented in
the program statement, the CCU is set so that, when the
data corresponding to the above-mentioned operand
variable is obtained, the data will be transferred to the
PE which performs the arithmetic/logic operations by
using the above-mentioned operand variables. It is pos-
sible to know the destination PE for each operand vari-
able; the variable identifier indicative of the result stor-
age area is retained in the unshown register, while the
program statement is broadcast.

Hereupon, if the same variable identifier as that of the
. above-mentioned operand variable does not exist in the
NSVL, a fetch request for the corresponding variable
data is given to the memory device. The data fetched
from the memory device in response to the fetch re-
quest is then transmitted to the CCU together with the
variable identifier.

Conversely, if the same variable identifier as that of
the above-mentioned operand variable exists in the
NSVL, the PE is set so that, when the corresponding
variable data is obtained in the OCU, the corresponding
variable data will be transmitted to the CCU together
with the variable identifier.

As detailed above, in the system 1 according to the
present invention, each PE performs accesses to the
memory device and transfers of operand data between
PEs, on an automatic basis, without explicit instructions
issued by the CP.

In the case where memory devices 4;-4, constitute
interleaved memory banks, vector operation may be
performed by defining a vector variable and using the
defined vector variable in a program statement. Tag-
ging or the like may be used to differentiate a vector
variable from a scalar variable. A vector variable may
be described, for example, by specifying the address of
the heading vector element, the address interval be-
tween vector elements, and the number of the vector
elements. The CU in each PE, for each program ele-
ment representing a vector variable, judges if any vec-
tor element belonging in the memory device directly
linked to the PE exists. If a directly accessible vector
element exists, the OCU and/or the CCu is set so that
the vector element will be processed in the same man-
ner as in the case of a scalar operation.

In each PE, when any of the NSVL, the DTCM
described later, the DM described later and the IM aiso
described later, is about to overflow, the PE so notifies
the PE, thereby causing the CP to stop broadcasting to
PEs. When the above-mentioned condition 1s removed,
the PE so notifies the CP, thereby causing the CP 1o
restart broadcasting.

10

15

20

25

30

33

45

50

55

65

6

It may be possible for the CP to be notified of various
control information as mentioned above by establishing
signal lines. Alternatively, a dedicated device may be
provided to collect control information from all the
PEs.

(I1-2) Operation Control Unit (OCU)

The OCU in each PE comprises a stack memory
(SM), a data memory (DM), an instruction memory
(IM) and an operation unit (OU), all described later.
The OCU is so designed that it performs arithmetic/-
logic operations defined by a program statement deliv-
ered from the CU, in a data-driven manner. In the sys-
tem 1 according to the present invention, the program
statement delivered from the CU to the OCU has been
originally sent from the CP to the CU in succession to
the word {EXEC}.

The components of the OCU are described below.

(a) Stack Memory (§M) |

The SM has cells each of which is designed to hold a
DM cell address. Namely, a DM cell address may be
pushed onto it, or a DM cell address may be popped
from 1t.

(b) Data Memory (DM)

FIG. 3 illustrates the structure of the DM in detail.
Cells 81;, 82, ... form the DM 8;. Each DM cell 1s made
of a matching field (811;, 821, . . . ), a data field (812,
822, ... ) and a data control field (813;, 823,, .. . ).

Each matching field is designed to hold a variable
identifier. Each data field is designed to accommodate
an immediate data, the data corresponding to the con-
tent in the matching field of the same cell or the like.

The DM has an associative function for simulta-
neously comparing a variable identifier transmitted to
the DM with variable identifiers each of which is held
in one of the matching fields of the DM, and writing a
data transmitted together with the variable identifier
transmitted to the DM in the data field of each DM cell
matched by comparison.

Each data control field is where control information
is held, for example, indicating whether the cell 1s now
in use, whether an entry has been made in the data field
of the cell, and the like.

(c) Instruction Memory (IM)

The IM is designed to hold contents of a program
statement arranged in reverse Polish notation, in the
form of a set of individual operations whose operand
data are to be held in DM cells.

FIG. 4 illustrates the structure of the IM in detail.
Cells 91;, 92;, . . . form the IM 9, Each IM cell 1s made
of an operation field (911;, 921;, . . . ) which is designed
to hold the code of an operator, a first operand field
(912, 922;, . . . ), a second operand field (913;, 923, . . .
), a result field (914;, 924;, . . . ), and an instruction con-
trol field (915;, 925;, . . . ). Each of a first operand field,
a second operand ﬁeld and a result ﬁe]d is designed to
hold a DM cell address.

The instruction control field is where control infor-
mation is held, for example, indicating whether the cell
is now in use, whether an entry of a data has been made
in the DM cell whose address is indicated in the first
operand field of the same IM cell, whether an entry of
a data has been made in the DM cell whose address 1s
indicated in the second operand field of the same IM
cell, and the like.

In this embodiment, it is assumed that each operator
takes two operands or less. If the number of operand
fields of each IM cell is increased, however, an operator
taking more operands may be utilized.



5,333,320

7

(d) Operation Unit (OU)

The OU is so designed that it performs arithmetic/-
logic operations each of which is specified in an IM cell.

The OU may have the pipeline processing capability,
or may be made up of a plurality of arithmetic/logic
units which can operate in parallel.

Next, the action of the OCU of the PE is described
below.

When a program statement which implies calculation
of a variable data is delivered from the CU to the OCU,
the OCU 1s set so that the calculation defined by the
program statement will be performed 1n a data-driven
manner, by taking one of the following five different
actions for each program element.

(1) If the program element represents a variable iden-
tifier indicative of a result storage address, an unoccu-
pied DM cell 1s secured, the variable identifier indica-
tive of the result storage address 1s written in the data
field of the DM cell secured, and the address of the DM
cell secured 1s pushed onto the SM.

(2) If the program element represents a variable iden-
tifier of an operand, an unoccupied DM cell is secured,
the variable identifier of the operand is written in the
matching field of the DM cell secured, and the address
of the DM cell secured is pushed onto the SM.

(3) If the program element represents an immediate
data, an unoccupied DM cell 1s secured, the immedaiate
data is written in the data field of the DM cell secured,
and the address of the DM cell secured is pushed onto
the SM.

(4) If the program element represents an operator to
generate a result data such as an arithmetic/logic opera-
tor, an unoccupied DM cell is reserved for the result
data, addresses of a DM cell, to the number of operands
the operator needs, are popped from the SM, an unoc-
cupied IM cell is secured, the code of the operator 1s
written in the operation field of the IM cell secured, the
addresses popped from the SM are written in the re-
spective operand fields of the IM cell secured, the ad-
dress of the DM cell reserved is written in the result
field of the IM cell secured, and the address of the DM
cell reserved 1s pushed onto the SM.

(5) If the program element represents an operator to
generate no result data such as the operator *="" which
means assignment of a data (or store of a data), ad-
dresses of a DM cell, to the number of operands the
operator needs, are popped from the SM, an unoccu-
pied IM cell is secured, the code of the operator is
written in the operation field of the IM cell secured, and
the addresses popped from the SM are written in the
respective operand fields of the IM cell secured.

Described below is the behavior of the OCU i1n the
PE based on a data-driven manner.

When a variable data, together with 1ts correspond-
ing variable identifier, is transmitted to the OCU in the
PE, by virtue of the associative function of the DM, the
variable identifier is simultaneously compared with
variable identifiers each of which is held in one of the
matching fields of the DM, and the variable data is
written in the data field of each DM cell matched by
comparison.

When the operand data which were to be held 1n the
respective DM cells whose addresses are indicated 1n
the respective operand fields of an IM cell in which an
arithmetic/logic operation is specified are fully pre-
pared in the DM, the arithmetic/logic operation speci-
fied in the IM cell is performed in the OU, and then the
result data is written in the data field of the DM cell

10

15

20

235

30

35

45

50

35

65

8

whose address is indicated in the result field of the IM
cell.

When the operand data which were to be held in the
respective DM cells whose addresses are indicated in
the respective operand fields of an IM cell in which a
store operation is specified are fully prepared in the
DM, the CU i1s requested to store the data.

When the operation specified in an IM cell 1s com-
pletely performed, both the IM cell in which the opera-
tion is specified and the DM cells each of which has
been holding one of the operand data are freed for later
use.

In the embodiment herein, an unoccupied cell of the
DM is secured, each time a program element represent-
ing a variable identifier of an operand is delivered to the
OCU. In the present invention, however, when there is
a DM cell which is already holding the same variable
identifier in the matching field, that DM cell may be
assigned to the program element. In that case, any unoc-
cupied DM cell need not be secured.

FIG. 6 illustrates the behavior of the OCU in the PE.
Referring to FIG. 6, the action is described further in
detail.

The DM and the IM shown in FIG. 6 are identical
with the DM in FIG. 3 and the IM in FIG. 4 respec-
tively, except that the data control field of each DM cell
and the instruction control field of each IM cell are
omitted in FIG. 6. Each cell where broken lines are
drawn in FIG. 6 is unoccupied. (In FIG. 6, as the action
is in progress, each reference numeral is followed by a
hyphen and a stepwise increasing number indicating the
step of action, in order to show the contents in each
component with progress.)

It is assumed that a program statement, for example,
{[A], [a], 5, *,=} (meaning [A]=[a]*5), is delivered to
the OCU.

When the program element representing the variable
identifier [A] indicative of a result storage address 1s
delivered to the OCU, the cell with an address
< <1>> of the DM 8-1 is assigned to the variable
identifier [A], the variable identifier [A] is written in the
data field of the DM cell, and simultaneously, the ad-
dress < <1>> of the DM cell 1s pushed onto the SM
as in 7-1 in FIG. 6. Hereupon, each cell of the DM and
the IM is tagged with address, 1, 2, 3, . . . from the top
down, in FIQG. 6.

When the program element representing the variable
identifier [a] of an operand is delivered to the OCU, the
cell with an address < <2>> of the DM 8-2 is as-
signed to the variable identifier [a], the variable identi-
fier [a] is written in the matching field of the DM cell,
and simultaneously, the address < <2>> of the DM
cell is pushed onto the SM as in 7-2 in FIG. 6.

When the program element representing the immedi-
ate data ‘5’ is delivered to the OCU, the cell with an
address < <3>> of the DM 8-3 is assigned to the
immediate data ‘5, the data ‘5’ is written in the data field
of the DM cell, and simultaneously, the address
< <3>> of the DM cell is pushed onto the SM as 1n
7-3 in FIG. 6.

When the program element representing the operator
‘** is delivered to the OCU, the cell with an address
< <4>> of the DM 8-4 is reserved for the result data
to be generated by the operator ‘*’, two addresses
< <L2>>, <<3>> are popped from the SM (the
operator ‘*’ is a dyadic operator), and the cell with an
address 1 of the IM 9-4 is secured for holding the con-
tent of the arithmetic operation. Namely, the code of



5,333,320

9

‘the operator ‘*’ is written in the operation field of the
IM cell, the addresses < <2>> and < €3> > popped
from the SM are written in the first and second operand
fields of the IM cell respectively, and the address
< <4> > of the DM cell reserved for the result data 1s
written in the result field of the IM cell. The address
< <4>> of the DM cell 1s pushed onto the SM as in
7-4 in FIG. 6.

When the program element representing the operator
‘=" meaning assignment of a data (or store of a data) is
delivered to the OCU, two addresses <<1>>,
< <4> > are popped from the SM (here, the operator
‘=" is assumed to be a dyadic operator), and the cell
with an address 2 of the IM 9-8 is secured for holding
the content of the store operation. Namely, the code of
the operator ‘=" is written in the operation field of the
IM cell, the addresses < <1> > and < <4> > popped
from the SM are written in the first and second operand
fields of the IM cell respectively. Thus, the OCU 1s set
so that the calculation meaning [A]=[a]*5 will be per-
formed in a data-driven manner.

When the data ‘2’, together with the variable identi-
fier [a], is transmitted to the OCU, the associative func-
tion of the DM allows the data ‘2’ to be written in the
data field of the DM cell which is holding the vanable
identifier [a] in the matching field, as in 8-6 in FIG. 6.

Then, the arithmetic operation specified in the cell
with the address 1 of the IM 9-6 becomes performable,
so the content in the IM cell with the address 1 is sent
to the OU 7 to be performed there. Thereafter, the IM
cell with the address 1 and the two DM cells with the
addresses < <2> >, € <3>> are freed.

When the OU provides a data ‘10’ as the arithmetic
operation result, the result ‘10’ is written in the data
field of the DM cell with the address < <4> >, which
was indicated in the result field of the IM cell with the
address 1. '

Then, the store operation specified in the cell with
the address 2 of the IM 9-7 becomes performable, so the
CU is requested to store the data ‘10’ in the result stor-
age area specified by the variable identifier [A]. There-
after, the IM cell with the address 2 and the two DM
cells with the addresses < <1> >, < <4> > are freed.

(11-3) Communication Control Unit (CCU)

The CCU in each PE is so designed that it performs
data transfers to a destination PE through the packet
switched network. |

Each CCU is provided with a later-described data
transfer control memory (DTCM). Retaining variable
identifiers to be transferred and their respective destina-
tions, the DTCM allows each data transfer to be per-
formed toward its corresponding destination when the
variable data corresponding to the variable identifier to
be transferred 1s obtained.

F1G. 5 illustrates the structure of the DTCM in de-
tail. Cells 61;, 62;, . . . make up the DTCM 6,. Each cell
is made of a destination field (611;, 621;, . . . ) where a
destination PE is specified, a transfer vanable field
(612;, 622, . . . ) which is designed to hold a variable
identifier to be transferred, a transfer data field (613,
623;, . . . ) which is designed to hold a data to be trans-
ferred, and a transfer control fieid (614;, 624, . . . ).

The DTCM has an associative function for simulta-
neously comparing a variable identifier transmitted to
the DTCM with variable identifiers each of which 1s
held in one of the transfer variable fields of the DTCM,
and writing a data transmitted together with the vari-

10

13

20

25

30

35

435

50

55

63

10

able identifier transmitted to the DTCM in the transfer
data field of each DTCM cell matched by comparison.

Each transfer control field is where control informa-
tion is held, for example, indicating whether the cell 1s
now in use, whether an entry has been made in the
transfer data field of the cell, and the like.

Next, the action of the CCU is described below.

In each of the system 1 and the system 2 according to
the present invention, each time the CU requests the
CCU to set a data transfer by specifying both a variable
identifier to be transferred and a destination PE, an
unoccupied cell of the DTCM is secured, and entries
are made both in the transfer variable field and 1n the
destination field of the secured DTCM cell. Any unoc-
cupied DTCM cell need not be secured, however, if
both the same variable identifier to be transferred and
the same destination are already written in a DTCM
cell.

The CP can request a PE to set a data transfer by a
command. On that occasion entries are made both in the

-destination field and in the transfer variable field of an

unoccupied cell of the DTCM. The destination in this
case is the CP.

Each variable data to be transferred is designed to be
transmitted, together with its corresponding variable
identifier, either from the OCU 32;or from the memory
device 4;. When a variable data, together with its corre-
sponding variable identifier, is transmitted to the CCU,
by virtue of the associative function of the DTCM, the
variable identifier is simultaneously compared with
variable identifiers each of which is held in one of the
transfer variable fields of the DTCM, and the variable
data is written in the transfer data field of each DTCM
cell matched by comparison.

The content in a DTCM cell in which an entry of the
data to be transferred has been made 1s sent out through
the packet switched network. Then, the DTCM cell 1s
freed, making it available for another data transfer.

In the embodiment, it is assumed for simplicity that
data transfers to the OCU in the same PE go from the
CCU through the pocket switched network.

Referring now to FIG. 7 through FIG. 10, the behav-
ior of the system 1 according to the present invention 1s
described below, wherein the system 1 comprises two
PEs, 3; and 35, connected to memory devices 41 and 43,
respectively. |

FIG. 7 and FIG. 8 show the initial contents written 1n
memory devices 41 and 4;, respectively. (In the follow-
ing, (1) and (2) preceding any number refer to memory
devices 4 and 4,, respectively. For example, (1)20 rep-
resents the address 20 in memory device 41, and [(1)20]
represents the variable or the variable identifier having
its data storage area in the address (1)20).

FIG. 9 and FIG. 10 illustrate the behavior of the
above two PEs in the system 1 according to the present
invention. Referring to both figures, the behavior 1s
described below.

In FIG. 9 and FIG. 10, as the action is 1n progress,
each reference numeral is followed by a hyphen, a step-
wise increasing number indicating the step of action,
and ‘A’ denoting the system 1.

It is assumed that both PE 3; and PE 3> at the outset
are initialized with no contents written in any of the
NSVL, the DTCM, the SM, the DM, and the IM.

It is also assumed that the CP broadcasts, to both PE
3; and PE 3, {EXEC, [(1)52], [(1)50], [(2)50], +,=}
(executable instruction for the program statement
meaning [(1)52]={(1)50]+[(2)50}).



5,333,320

11

In this condition, as the variable identifier {(1)52],
indicative of a result storage address, belongs in mem-
ory device 4;, OCU 32;-1A in PE 3; is set so that the
above arithmetic operation will be performed in a data-
driven manner, and the variable identifier [(1)52] is
written in NSVL 5;-1A. And a data fetch request for
the address (1)50 is made to memory device 41. In CCU
33;-1A, the variable identifier [(1)50] and the destina-
tion (1) (meaning PE 3;) are written in an unoccupied
cell of DTCM 6; so that the data transfer will take place
toward the destination PE through the packet switched
network when the corresponding variable data is ob-
tained. Similarly, in connection with the variable
[(2)50], the CCU in PE 3, is set as in 33,-1A, and a data
fetch request for the address (2)50 is made to memory
device 4,. |

It is assumed that, in succession to the above broad-
casting, the CP broadcasts {EXEC, [(2)51], [(1)52],
[(1)51)], 4, *, —,=} (executable instruction for the pro-
gram statement meaning [(2)51]=[(1)52] —([(1)51]*4)).
As the variable identifier [(2)51], indicative of a result
storage address, belongs in memory device 4;, the OCU
in PE 3> is set as in 325-2A, and the variable identifier
[(2)51] is written in NSVL 5,-2A. In PE 34, the CCU is
set as in 33;-2A so that each data transfer to PE 3,
concerning the variable [(1)52]/[(1)51], will be per-
formed when its corresponding data is obtained, by
assigning an unoccupied cell of the DTCM to each of
the variables [(1)52], [(1)51]. A data fetch request for the
address (1)51 is made to memory device 4;. Since the
variable identifier [(1)52] is found in NSVL §5;-2A, the
data of the variable [(1)52] is arranged so as to be trans-
mitted from OCU 32; to CCU 33; when the data 1s
obtained. In the meantime, when the data ‘7’ of the
variable [(1)50] is transmitted from memory device 4; to
PE 3;, by virtue of the associative function of DTCM
6,, the data transfer concerning the variable [(1)50]
becomes performable as shown in 33;-2A in FIG. 9. So,
the packet containing both the variable identifier [(1)50]
and its corresponding variable data ‘7’ 1s sent out
through the packet switched network. Similarly, the
data transfer concerning the variable [(2)50] is per-
formed in CCU 33;-2A 1n PE 3;.

As a result of the above data transfers, OCU 32;-3A
in PE 3; comes with [(1)50]=7, [(2)50]=3, and the part
of the program statement, {[(1)50], [(2)50],+} (mean-
ing [(1)50]+[(2)50]), becomes performable, and it is
then performed. The arithmetic operation result ‘10’ 1s
substituted for it. |

Then, the content in OCU 32;-4A becomes {[(1)52],
10,=} (meaning [(1)52]=10). Since this means that the
variable [(1)52] has determined its value, that data is
transmitted to memory device 4; and to CCU 33;.

When the data ‘10’ of the variable [(1)52] is transmit-
ted from OCU 32-4A to CCU 33,-5A, the data transfer
to the destination (2) (meaning PE 3;) becomes per-
formable through the packet switched network.

On storing the data of the variable [(1)52] in its stor-
age area in memory device 4, the variable identifier
[(1)52] is deleted from NSVL §;-3A. |

Similar steps are performed until a data ‘2’ 1s obtalned
as the data of the variable [(2)51] and is stored in its
storage area in memory device 4;. Thus, the execution
of the contents defined by the two program statements
mentioned above 1s terminated.

The actual state does not necessarily agree with the
state in each step shown in FIG. 9 and FIG. 10; the time
required for each action and the timing of each action

10

15

20

25

30

35

45

50

55

65

12

depend on the momentary state and the detailed struc-
ture of the packet switched network and other compo-
nents.

The above embodiment has been described based on
a system made of two sets of a PE and a memory device.
According to the present invention, however, any num-
ber of PEs may be employed.

Next, the system 2 according to the present invention
is described.

Also in the system 2 as shown in FIG. 1, a control
processor (CP) 1 is connected to each of the processor
elements (PEs) 3;-3, by a broadcast ‘network 21. Each
of the PEs 3;-3, is connected to its corresponding one
of the memory devices 4;-4, so that direct access 18
allowed between them. A packet switched network 22
allows data communications among PEs 3,-3, and the
CP 1

In the system 2, a certain part of a job is described 1in
the form of a set of subsections each of which is as-
signed to one of the PEs, so that the part of the job is
executed, in parallel, by the plurality of the PEs. With
each subsection stored in its corresponding memory
device, the CP may instruct PEs to activate respec-
tively corresponding subsections whose respective stor-
age areas are indicated.

In each PE instructed to activate any subsection, the
subsection is loaded from the corresponding memory
device, and the operation control unit (OCU) and/or
the communication control unit (CCU), both described
below, are set so that the contents of the subsection will
be performed in a data-driven manner. When the sub-
section is fully loaded, the PE so notifies the CP.

In each of the OCU and the CCU in the PE, any
operation or any data transfer performable with re-
quired data fully prepared, is automatically performed.

When the execution of the contents of the subsection
is completed, the PE again so notifies the CP.

In the system 2 according to the present invention,
even when part of the contents of the subsections re-
main to be performed in some PEs, the CP can, as a
general rule, activate other subsections, one after an-
other.

When the CP instructs PEs to activate respectively
corresponding subsections, indirect addressing using
pointers may be utilized to indicate, to each of the PEs,
the storage area of its corresponding subsection. In this
case, each of the PEs can simultaneously activate its
corresponding one of a plurality of subsections accord-

.ing to a set of pointers whose respective storage areas

are indicated by the CP at a time.

Described below is the action of the components
which make up the system 2 of the present invention.

() Control Processor (CP)

With each subsection stored in its corresponding
memory device, the CP may instruct each of PEs to
activate its corresponding subsection by issuing a
CALL command whereby the storage area of the above
subsection is indicated.

Each PE is designed to notify the CP when loading of
the assigned subsection from the memory device 1s
completed and when the execution of the contents of
the assigned subsection based on a data-driven manner
is completed. So, the CP can instruct PEs to activate
other subsections, one after another, in accordance with
progress in the execution of the contents of already
activated subsections, without damaging the mutual

relationship among instructions and that among data.
(I11) Processor Eiement (PE)



5,333,320

13

As in the system 1, each PE in the system 2 comprises
a control unit (CU), an operation control unit (OCU)
and a communication control unit (CCU).

(1I-1) Control Unit (CU)

In the CU in each PE in the system 2, when the pro-
gram element in a program statement loaded from the
memory device represents a variable identifier which 1s
a modified address expression, address calculation 1s
immediately performed to replace the modified address
expression.

As in the system 1, in order to avoid confusion in
connection with a change of a variable data, each CU in
the system 2 has a non-stored variable list (NSVL) for
bolding addresses of a storage area in which a data has
not been stored yet although the PE was set so as to
store that data in the memory device.

- The action of the CU in the system 2 is described
below.

In the system 2, when the CP instructs the CUina PE
to activate a subsection by a CALL command, the CU
loads the subsection from the memory device and sets
the OCU and/or the CCu so that the operations and/or
the data transfers specified in the subsection will be
performed in a data-driven manner.

When the subsection the CP instructed the CU to
activate is fully loaded from the memory device, and
when the operations and/or the data transfers specified
in the subsection are fully performed in a data-driven
manner, the CU so notifies the CP.

In this embodiment, it is assumed that a subsection

comprises a CALC command for setting the OCU to
perform arithmetic/logic operations defined by a pro-
gram statement and/or a SEND command for setting
the CCU to perform a data transfer.
- (a) By means of a CALC command, arithmetic/logic
operations defined by a program statement which fol-
lows the word {CALC} are set so as to be performed in
the OCU, and when the result of the calculation defined
by the program statement is obtained, the result 1is
stored in the memory device.

In this context, the CU delivers, to the OCU, the
program statement which follows the word {CALC} so
that the arithmetic/logic operations are set soO as to be
performed in a data-driven manner.

Besides, in the CU, the result storage address is writ-
ten in the NSVL when the program statement 1s loaded,
and the result storage address is deleted from the NSVL
when the result is stored 1n its storage area.

(b) By means of a SEND command, a packet contain-
ing a variable identifier and its corresponding data 1s
arranged so as to be transferred to a destination PE.

In this context, the CCU is set so that the data transfer
specified by the SEND command will be made toward
the destination PE when the data corresponding to the
variable identifier is obtained.

Besides, if the same variable identifier as the variable
identifier to be transferred does not exist in the NSVL,
the CU makes a fetch request for the corresponding
variable data to the memory device. Conversely, if the
same variable identifier exists in the NSVL, the PE 1s set
so that, when the corresponding variable data 1s ob-
tained in the OCU, the corresponding variable data will
be transmitted to the CCU.

Uniike the system 1, in the system 2, essential data
communications among PEs concerning operands are
specified explicitly in subsections.

As in the system 1, 1t may be possible for the CP to be
notified of various control information mentioned as

10

15

20

25

30

35

435

30

93

65

14

above by establishing signal lines. Alternatively, a dedi-
cated device may be provided to collect control infor-
mation from all the PEs.

(II-2) Operation Control Unit (OCU)

As in the system 1, the OCU in each PE in the system
2 comprises a stack memory (SM), a data memory
(DM), an instruction memory (IM) and an operation
unit (OU). The OCU is so designed that it performs
arithmetic/logic operations defined by a program state-
ment delivered from the CU, in a data-driven manner.
In the system 2 according to the present invention, the
program statement delivered from the CU to the OCU
has been originally loaded from the memory device by
the CU as part of a subsection.

(I1-3) Communication Control Unit (CCU)

As in the system 1, the CCU in each PE in the system
2 is so designed that it performs data transfers to a desti-
nation PE through the packet switched network. Each
CCU is provided with a data transfer control memory
(DTCM).

Also as in the system 1, in the system 2 according to
the present invention, each time the CU requests the
CCU to set a data transfer by specifying both a vanable
identifier to be transferred and a destination PE, an
unoccupied cell of the DTCM is secured, and entries
are made both in the transfer variable field and in the
destination field of the secured DTCM cell.

Each variable data to be transferred is designed to be
transmitted, together with its corresponding variable
identifier, either from the OCU 32;or from the memory
device 4, When a variable data, together with its corre-
sponding variable identifier, is transmitted to the CCU,
by virtue of the associative function of the DTCM, the
variable identifier is simultaneously compared with
variable identifiers each of which is held in one of the
transfer variable fields of the DTCM, and the vanable
data is written in the transfer data field of each DTCM
cell matched by comparison.

The content in a DTCM cell in which an entry of the
data to be transferred has been made is sent out through
the packet switched network. Then, the DTCM cell 1s
freed, making it available for another data transfer.

In the embodiment, it is assumed for simplicity that
data transfers to the OCU in the same PE go from the
CCU through the packet switched network.

Referring now to FIG. 7, FIG. 8§, F1G. 11 and FIG.
12, the behavior of the system 2 according to the pres-
ent invention is described below, wherein the system 2
comprises two PEs, 3; and 3;, connected to memory
devices 4; and 4; respectively.

FI1G. 7 and FIG. 8 show initial contents stored in
memory devices 41 and 4> respectively. (In the follow-
ing, (1) and (2) preceding any number refer to memory
devices 41 and 43, respectively. For example, (1)20 rep-
resents the address 20 in memory device 41, and [(1)20]
represents the variable or the variable identifier having
its data storage area in the address (1)20).

FIG. 11 and FIG. 12 illustrate the behavior of the
above two PEs in the system 2 according to the present
invention. Referring to both figures, the behavior is
described below. -

In FIG. 11 and FIG. 12, as the action is in progress,
each reference numeral is followed by a hyphen, a step-
wise increasing number indicating the steps of action,
and ‘B’ denoting the system 2.

It is assumed that both PE 3; and PE 3; at the outset
are mitialized.



5,333,320

15

It is also assumed that the CP simultaneously instructs
each of PEs, 3; and 35, to activate its corresponding
subsection whose storage area is indicated by the
pointer in the address 10 in its corresponding memory
device, by means of a CALL command.

So, in PE 3, six words from the address 20, which the
pointer in memory device 4; means, {CALC, [(1)52],
[(1)50], [(2)50}, +, =} calculation instruction for the
program statement meaning [(1)52]=[(1)50]}+{(2)50]),
are loaded. OCU 32;-1B is set so that the above-men-
tioned arithmetic operation will be performed 1n a data-
driven manner, and the variable identifier [(1)51] indica-
tive of a result storage address is written in NSVL 5;-

1B. Then, PE 3; notifies the CP of the completion of

loading. |

In PE 3,, on the other hand, eight words from the
address 20 in memory device 43, {CALC, [(2)51],
[(1)52], [(1)51), 4, *, —, = } (calculation instruction for
the program statement meaning
[(2)511=[(1)52] —([(1)51]* 4)), are loaded. OCU 32;-1B
is set so that the above-mentioned arithmetic operations
will be performed in a data-driven manner, and the
variable identifier [(2)51] indicative of a result storage
address is written in NSVL §,-1B. Then, PE 3; notifies
the CP of the completion of loading.

When the CP is notified of the completion of loading
of the subsection both from PE 3; and from 3,, the CP
again instructs each of PEs, 31 and 3, to activate its
corresponding subsection whose storage area is indi-
cated by the pointer in the address 11 in its correspond-
ing memory device, by means of a CALL command.

So, in PE 3; nine words form the address 26 in mem-
ory device 41, {SEND, {(1)50}, TO (1); SEND, [(1)52],
TOQ2): SEND, [(1)51], TO(2)} (data transfer instruc-
tions for transferring the data of the variable [(1)50] to
the OCU in PE 34, the data of the variable [(1)52] to the
OCU in PE 3,, and the data of the variable [(1)51] to the
OCU in PE 3,), are loaded. An unoccupied cell of the
DTCM is assigned to each of the above SEND com-
mands so that each of the above data transfers will be
performed through the packet switched network when
its corresponding variable data is obtained, thereby
setting the CCU as in 33,-2B. Since the variable identi-
fiers [(1)50], [(1)51] are not found in NSVL 5;-2B, a data
fetch request for the address (1)50 and that for the ad-
dress (1)51 are made to memory device 4;. On the other
hand, since the variable identifier [(1)52] is found in
NSVL §;-2B, the data of the variable [(1)52] is arranged
so as to be transmitted from OCU 32, to CCU 33; when
the data is obtained in OCU 32,. Then, PE 3; notifies the
CP of the completion of loading of the subsection.

In PE 35, on the other hand, three words from the
address 28 in memory device 43, {SEND, [(2)50], TO
(1)} (data transfer instruction for transferring the data
of the variable [(2)50] to the OCU in PE 3;), are loaded.
CCU 33,-2B is set so that the above data transfer will be
performed through the packet switched network when
the corresponding variable data is obtained. Since the
variable identifier [(2)50] is not found in NSVL §,-2B, a
data fetch request for the address (2)50 1s made to mem-
ory device 4. Then, PE 3; notifies the CP of the com-
pletion of loading of the subsection.

When the data ‘7'/‘2’ of the variable [(1)50]/[(1)51] 1s
transmitted from memory device 4; to PE 3}, CCU
33,-3B sends out the packet including the data and its
corresponding variable identifier through the packet
switched network: CCU 33;-3B recognizes the destina-
tion PE by means of the DTCM.

65

16

In the same manner, when the data ‘3’ of the vanable
[(2)50] is transmitted from memory device 42 to PE 3,,
the data transfer takes place toward the destination (1)
(meaning PE 3;) through the packet switched network.

5 As this completes the execution of the contents of the
subsection made of three words from the address (2)28,
the CP is so notified.

As a result of the above data transfers, OCU 32;-4B in
PE 3; comes with [(1)50]=7, [(2)50] =3, and the part of

10 the program statement, {1(1)50], [(2)50],4+} (meaning
[(1)50]+ [(2)50]), becomes performable, and it 1s then
performed. The arithmetic operation result ‘10’ is substi-
tuted for 1it.

Then, the content in OCU 32;-5B becomes {[(1)52],

15 10, =} (meaning [(1)52]=10). Since this means that the
variable [(1)52] has determined its value, that data 1s
transmitted to memory device 4; and to CCU 331.

When the data ‘10’ of the variable [(1)52] is transmit-
ted from OCU 32;-5B to CCU 33;-6B, the data transfer

20 to the destination (2) (meaning PE 3;) becomes per-

formable through the packet switched network.

On storing the data of the variable {(1)52] in its stor-
age area in memory device 4;, the variable identifier
[(1)52] is deleted from NSVL 5,-6B.

As this completes the execution of the contents of the
subsection made of six words from the address (1)20 and
that of the subsection made of nine words from the
address (1)26, the CP is so notified.

Similar steps are performed until a data ‘2’ is obtained
30 as the data of the variable [(2)51] and stored 1n 1ts stor-
age area in memory device 4;. Thus, the execution of
the contents of the subsection made of eight words from
the address (2)20 is terminated. The CP is so notified.
This completes two subsections in each of the two PEs.

The actual state does not necessarily agree with the
state in each step shown in FIG. 11 and FIG. 12; the
time required for each action and the timing of each
action depend on the momentary state and the detailed
structure of the packet switched network and other
40 components.

The above embodiment has been described based on
a system made of two sets of a PE and a memory device.
According to the present invention, however, any num-
ber of PEs may be employed.

In the above illustration of the behavior of the system
2 according to the present invention, the CP 1nstructs a
plurality of PEs to activate respectively corresponding
subsections at a time by using pointers. Alternatively,
the CP may individually instruct each PE to activate its
50 corresponding subsection, one after another, by directly

indicating the storage area of the subsection.

Furthermore, a computer system may have both the
function of the system 1 and the function of the system
2. In such a system, the CP causes the PEs to execute

55 jobs by switching back and forth between the two func-

tions by means of computer programming.

According to the present invention, efficient compu-
tation is achieved by running a plurality of PEs in paral-
lel.

Furthermore, since each PE operates independently
of the other PEs in a data-driven manner, the PEs may
be arranged in a simple control structure. This 1s advan-

tageous in that programming requires relatively less
- consideration for the control structure.

What 1s claimed 1is: .

1. A data-driven electronic computer system cOm-
prising:

a control processor;

25

35

45



5,333,320

17

a packet switched network;

a plurality of processor elements connected to said
control processor and said packet switched net-
work, each processor element having an operation
control unit for performing arithmetic/logic opera-
tions in a data-driven manner and a communication
control unit for performing data transfers between
said processor elements through said packet
switched network in a data-driven manner; and

a plurality of memory devices having one-to-one
correspondence with said processor elements, and
each being connected to and being directly ac-
cessed only by its corresponding one of said pro-
cessor elements,

whereby, when said control processor broadcasts a
program statement arranged in reverse Polish nota-
tion, said program statement defining anthmetic/-
logic operations, each of said processor elements
assigned to perform the arithmetic/logic opera-
tions defined by said program statement sets the
operation control unit to perform said arithmetic/-
logic operations defined by said program statement
in a data-driven manner; whereas each of said pro-
cessor elements which has direct access to a data
corresponding to any operand variable in said pro-
gram statement sets the communication control
unit so that, when said data is obtained, said data
will be transferred through said packet switched
network to the processor element assigned to per-
form the arithmetic/logic operation by using said
data.

2. A data-driven electronic computer system com-

prising:

a control processor;

a packet switched network;

a plurality of processor elements connected to said
control processor and said packet switched net-
work, each processor element having an operation
contro! unit for performing arithmetic/logic opera-
tions in a data-driven manner and a communication
control unit for performing data transfers between
said processor elements through said packet
switched network in a data-driven manner; and

a plurality of memory devices having one-to-one
correspondence with said processor elements, and
each being connected to and being directly ac-
cessed only by its corresponding one of said pro-
cessor elements,

wherein, with a set of subsections defining a part of a
job, and each being assigned to one of said proces-
sor elements and being stored in its corresponding
one of said memory devices, when said control
processor instructs a processor element of said
processor elements to activate a subsection of said
set of subsections assigned to said processor ele-
ment, said processor element loads said subsection
from its corresponding one of said memory devices
and, by processing said subsection, said processor
element sets itself to perform in a date-driven man-
ner.

3. The data-driven electronic computer system ac-

cording to claim 2, wherein, with a subsection and a
pointer being stored in 2 memory device of said mem-
ory devices, said pointer indicating the area in which
said subsection is stored, said control processor indi-
cates the address holding said pointer in tnstructing the
one of said processor elements which 1s directly con-

10

15

20

25

30

33

45

50

33

18

nected to said memory device to activate said subsec-
tion.

4. The date-driven electronic computer system ac-
cording to claim 2, wherein, for the purpose of activat-
ing a plurality of subsections at once, with a pointer
being stored at the same address in each of said memory
devices, said pointer indicating the storage area of a
subsection of said plurality of subsections in the same
memory device, said control processor indicates said
address.

5. A processor element comprising:

a data memory having a plurality of cells each of
which is constructed to hold a variable identifier
and a variable data, said data memory having an
associative function for comparing a variable iden-
tifier transmitted to said data memory with variable
identifiers each of which is held in one of said cells
of said data memory, and writing a variable data in
each cell of said data memory holding the same
variable identifier as said variable identifier trans-
mitted to said data memory;

a stack memory having a plurality of cells each of
which is constructed to hold an address of a cell of
said data memory;

an instruction memory having a plurality of cells each
of which is constructed to hold an operation code
and at least three addresses of a cell of said data
memory; and

an operation unit for performing an arithmetic/logic
operation specified in one of said cells of said 1in-
struction memory when all of operand data re-
quired for said arithmetic/logic operation are pre-
pared in said data memory, wherein

said processor element is set to perform arithmetic/-
logic operations defined by a program statement
arranged in reverse Polish notation in a data-driven
manner by carrying out one of the following proce-
dures each time a program element which is a com-
ponent of said program statement 1s conveyed to
said processor element,

namely, for a program element which represents a
variable identifter indicative of a result storage
address in a memory device, writing said variable
identifier indicative of said result storage address In
an unoccupied cell of said data memory, and push-
ing the address of said cell of said data memory 1n
which said variable identifier indicative of said
result storage address is written onto said stack
memory;

for a program element which represents a variable
identifier of an operand, writing said variable 1den-
tifier of said operand in an unoccupied cell of said
data memory, and pushing the address of said cell
of said data memory in which said variable identi-
fier of said operand is written onto said stack mem-
ory; |

for a program element which represents an immedi-
ate data, writing said immediate data in an unoccu-
pied cell of said data memory, and pushing the
address of said cell of said data memory in which
said immediate data is written onto said stack mem-
orYy;

for a program element which represents an operator
to generate a result data, reserving an unoccupied
cell of said data memory for said result data, pop-
ping addresses of a cell of said data memory, to the
number of operands that said operator needs, from
said stack memory, writing the code of said opera-



5,333,320

19

tor, said addresses popped from said stack memory
and the address of said cell of said data memory
reserved for said result data in an unoccupied cell
of said instruction memory, and pushing said ad-
dress of said cell of said data memory reserved for
said result data onto said stack memory; and

for a program element which represents an operator

10

15

20

25

30

35

40

45

50

33

63

20

to generate no result data, popping addresses of a
cell of said data memory, to the number of oper-
ands that said operator needs, from said stack mem-
ory, and writing the code of said operator and said
addresses popped from said stack memory in an

unoccupied cell of said instruction memory.
| * L L * %k



	Front Page
	Drawings
	Specification
	Claims

