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[57) ABSTRACT

An optimal control system for canceling the undesired
responses of a linear distributed-parameter system in
response to an input stimulus. The control system is
optimally distributed and its design is based on the ex-
tension of the Pontryagin’s maximum principle for a
lumped-parameter system to a distributed-parameter
system. The technique is to transform the stimulus-to-
undesired-output transfer function of the distributed-
parameter system into a multidimensional discrete state-
space model, and to require a performance criterion to
be defined. Theorems have been established to give
conditions for asymptotic stability of the closed-loop
distributed-parameter system, and to set up weighting
factors for the performance criterion. An optimal dis-
tributed-control system can force the states of the dis-
tributed system to behave according to the prescribed
performance criterion regardless of the boundary and
initial conditions. The optimal control law can be imple-

mented either as a state-feedback or an output-feedback
controller.

9 Claims, 10 Drawing Sheets
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OPTIMAL DISTRIBUTED CONTROL SYSTEM
FOR A LINEAR DISTRIBUTED PARAMETER
SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to control systems directed by
digital computers, and more particularly to a control
system for use 1in connection with a physical system.
The physical system responds to an input stimulus by
generating an undesired output which affects a physical
body, in addition to its desired outputs. The distributed
control system generates a state-space model of the
transfer function between stimulus and undesired out-

put and, using optimizing procedures which use a set of

optimal control gains, generates a derived output from
that space-state model which approximates the unde-
sired output for a given stimulus. The control system
then supplies the derived output to a transducer which
applies a transducer output to the physical body to
cancel the undesired output.

2. Description of the Prior Art

A number of modeling procedures have been devel-
oped in the prior art to control the dynamics of a contin-
uous distributed-parameter system in convenient forms.
These include a first-order system of partial differential
or difference equations method proposed by Wang and

‘Tung in 1964, 1n a paper entitled “Optimum Control of

Distributed-parameter Systems”, in Journal of Basic
Engineering, Trans. ASME, pages 67-78; a separation
method proposed by Meirovitch in 1967 in a book enti-
tled *“Analytical Methods in Vibrations (New York:
The Macmillan Co.), and by Meirovitch and Silverberg
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in 1983 1n a paper entitled “Globally Optimal Control of 35

Self-adjoint Distributed Systems”, in Optimal Control
Applications and Methods, Vol. 4, pages 365-386; and a
multidimensional state-space method proposed in vari-
ous forms by Attasiin 1973 in a paper entitled “Systems
Linearies Homogenes a Deux Indices”, in IRIA Rap-
port Laboria, No. 31; by Roesser in 1975 in a paper
entitled “A Discrete Space-State Model for Linear
Image Processing”, in 1IEEE Transactions on Auto-
matic Control, Vol. AC-20, No. 1, pages 1-10; by For-
nasini and Marchesini in 1978 in a paper entitled “Dou-
bly-Indexed Dynamical Systems: State-space Models
and Structural Properties”, in Math. Systems Theory,
pages 59-72; and by Kaczorek in 1985, in a book enti-
tled Two-dimensional Linear Systems (Heidelberg,
Germany: Springer-Verlag). 1 have also done work in
this area in my doctoral thesis, made publicly available
less than a year prior to the filing date of this applica-
tion, entitled Multidimensional Discrete State-space
Modeling Optimal Control and Tracking of The Linear
Distributed-parameter Systems, D.Sc. Dissertation,
School of Engineering and Applied Science, George
Washington University, Washington, D.C.

This application discloses a control system for con-
trolling the dynamics of a distributed-parameter system
in an optimum manner. Many researchers have devel-
oped techmques to manipulate the dynamic characteris-
tics of the distributed-parameter systems. These include
Wang and Tung in the work cited above; Paras-
kevopoulos in 1979, in an article entitled Eigenvalues
Assignment of Linear Multivariable Two-dimensional
Systems, in Proceedings of the IEEE, Vol. 126, pages
1204-1208; Paraskevopoulos and Kosmidou in 1981, in
an article entitled Eigenvalue Assignment of Two-di-
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mensional Systems Using PID Controllers™, in Interna-
tional Journal of Systems Science, Vol. 12, No. 4, pages
407-422, and Tzafestas and Pimenides in 1983, in a
paper entitled *“‘Feedback Characteristic Polynomial
Controller Design of 3-D Systems in State-space”, from
the Control System Laboratory, School of Engineering,
University of Patras, Patras, Greece, Vol. 314, No. 3,
pages 169-189. Paraskevopoulos et al presented a
method to reassign the poles of a two-dimensional sys-
tem to a set of desired values using a static state-feed-
back or static output feedback controller, Paras-
kevopoulos et al developed a multidimensional propor-
tional, integral, derivative (PID) controller for control-
ling the poles of the system, and Tzafestas et al extended
the concept of poles assignment by feedback controllers
to the three-dimensional systems. The difficulty associ-
ated with the implementation of these methods is in
knowing or determining the poles and the eigenvalues
of the state-space model of the distributed-parameter
system.

The prior art includes an optimal control technique as
1llustrated by Sage and White, in 1977, in a book entitled
Optimum Systems Control (New Jersey: Prentice-Hall
Inc.), and by Kou in 1980, in a book entitled Digital

Control Systems (New York: Holt, Rinehart and Win-
ston Inc.).

SUMMARY OF THE INVENTION

The present invention uses an optimal distributed-
control technique based on an extension of the single-
dimensional linear quadratic Gaussian technique as il-
lustrated by Sage and White, and by Kou in 1980, in a
book entitled Digital Control Systems (New York:
Holt, Rinehart and Winston Inc.). The method requires
a performance criterion be defined and the parameters
of the system be known. The goal is to determine an
optimal controller such that the performance criterion
1s minimized. The control gains may vary with respect
to time and/or space. When this is the case, the optimal
controller is referred to as a spatial-time varying opti-
mal controller whereas for the case of constant gains the
controller is said to be in steady-state. The steady-state
gains of an N-dimensional discrete optimal controller
are computed by a set of N -order polynomials. For
exampie, the steady-state gains of a two-dimensional
discrete optimal controller are computed from a set of
fourth-order polynomials and it is called the optimal
quartic controller. A number of theorems are presented
to support the design procedure. The theorems are
directly extended from the single-dimensional systems
as illustrated by Kou to multidimensional systems.

My invention is particularly applicable to a control
system that uses a model of a linear continuous distrib-
uted parameter system which, when excited by a stimu-
lus, produces both desired and undesired output re-
sponses. Thus, it is desired to use the linear system in
order to obtain its desired responses, but the undesired
responses are objectionable and would be eliminated if
possible. The undesired responses act on some physical
body 1n an objectionable way. For example, consider
the walls and motor of a refrigerator as a linear continu-
ous distributed parameter system. The motor has the
desired response of compressing refrigerant to operate
the refrigerator, but, responsive to the motor, the walls
have the undesired response of vibrating, which makes
objectionable noise in the house in which the refrigera-
tor 1s located. The transfer function of the linear system
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between the stimulus (for example, the power applied to
the refrigerator motor) and the undesired response (for
example, the vibrations which cause noise in the refrig-
erator walls) is converted to a state-space model of the
transfer function and as such 1s used to govern the
choices of possibilities to be made by a digital computer.
The digital computer responds to the stimulus which
excites the linear system to determine from the space-
state model the possible responses for the linear system.
Through choice-optimization logic, it derives an opti-
mum canceling response and uses that derived optimum
response to control a transducer which applies a de-
rived physical response to the physical body to cancel
the undesired output. For example, a time-coincident
noise of equal amplitude and opposite polarity to the
undesired noise being applied to the refrigerator walls
can be applied to those walls to cancel the undesired
output response. |

The conversion to a distributed state-space model can
be done by describing the continuous distributed trans-
fer function of the linear distributed system using a
quasi-Laplace or Moshfegh transform format, then ap-
plying a quasi-Z or Chester transform to the quasi-
Laplace or Moshfegh transform format to derive a digi-
tal transfer distributed transfer function, and then con-
verting the digital transfer function into a distributed
state-space model. These are called quasi-Laplace (or
Moshfegh) and quasi-Z (or Chester) formats because,
unlike the strictly traditional Laplace and Z transforms
which operate on differential equations involving only
one independent variable, typically a time functions, the
quasi functions may operate on partial differential equa-
tions involving a plurality of independent variable, typi-
cally both time and spatial dimensions. Otherwise, the
mathematics is similar to that involved with the strictly
traditional forms of the formats. A quasi-Laplace trans-
form, also called a Moshfegh transform, is defined as a
transform which is mathematically in the nature of a
Laplace transform except that, whereas a Laplace trans-
form involves time dimensions as the only independent
variable involved in the transform, a quasi-Laplace
transform or Moshfegh transform uses space dimensions
as an independent variable in at least one (but not all) of
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the places where a Laplace transform would use time 45

dimensions. A quasi-Z transform, also called a Chester
transform, is defined as a transform which i1s mathemat:i-
cally in the nature of a Z-transform except that, whereas
a Z-transform involves time dimensions as the only
independent variable involved in the transform, a quasi-
Z transform or Chester transform uses space dimensions
as an independent variable in at least one (but not all) of
the places where a Z-transform would use time dimen-
sions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 and 1A provide an overall block diagram of
a preferred embodiment of the invention.

FIG. 2 is a block diagram of the structure of a two-di-
mensional discrete space-state model and an optimal
distributed control system.

FIG. 3 is a diagram showing two-dimensional propa-
gation of the weighting factors P%(i,j) and P*(i,j).

FIG. 4 is a signal-flow diagram of a distributed pa-
rameter system. -

FIG. 5 is a graph showing uncontrolled spatial re-
sponses of a distributed parameter system for various
time samples.
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FIG. 6 i1s a graph showing uncontrolled time re-
sponses of a distributed parameter system for various
spatial samples.

FIG. 7 is a graph of overall uncontrolled spatial-time
response of a distributed-parameter system.

FIG. 8 is a graph of the overall spatial-time propaga-
tion of the weighting factor P4(i,j).

FIG. 9 is a graph of the overall spatial-time propaga-
tion of the weighting factor P¥(i,}).

FIG. 10 s a graph of the overall spatial-time propaga-
tion of the weighting factor Qa(i,)).

FIG. 11 is a graph of the overall spatial-time variation
of the optimal control gain G”(i,)).

FIG. 12 is a graph of the overall spatial-time variation
of the optimal control gain G'(i,)).

FI1G. 13 is a graph of optimally controiled time re-

‘sponses of the distributed parameter system for various

spatial samples.
FIG. 14 is a graph of optimally controlled spatial
responses of the same system for various time samples.
- FIGS. 15 and 16 are different views of a three-dimen-
sional graph showing overall optimally controlled spa-
tial-time response of the distributed parameter system.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 provides an overall schematic view of the
preferred embodiment of the invention. An excitable
system 10, which is a linear continuous distributed pa-
rameter system, i1s excited by a stimulus 12 to produce a
desired output 14 and an undesired output 16. The con-
tinuous transfer function 18 of the excitable system 1s
derived by prior art methods and techniques discussed
herein are used by a converter 20 to convert this conti-
nous transfer function into a representation 22 of a
space-state model 26 of the transfer function for use in a
digital computer as the space-state model upon which it
operates as a digital controller. The undesired output 16
adversely affects a physical body 30. Digital computer
24, under the control of computation control logic 32,
operates a choice optimization logic section 34 to
choose an optimum derived output 36 from those family
of outputs 37 available from state-space model 26. The
optimum derived output is applied to a transducer 38,
which applies a cancellation output response to the
physical body 30, thereby canceling the effects of the
undesired output 16. |

FI1G. 1A shows a further breakdown of converter 20,
showing that it operates, preferably off-line at an earlier
time than the rest of the control function illustrated in
FIG. 1, by converting a distributed parameter model of
system 10 into a quasi-Laplace transform format in a
first converter 40, converting the quasi-Laplace trans-
form version to a quasi-Z transform format in a second
converter 42, and finally converting the quasi-Z trans-
form format in a third converter 44 into the solid-space
model. In practice, these various converters are sequen-
tial uses of a digital computer under the control of the
equations appropriate for the particular conversion.

Most physical processes typically fall into one of the
following classes of partial differential equations: hyper-
bolic, parabolic, or elliptic. The hyperbolic class of
differential equations originates from vibratory systems,
structural or fluid-borne acoustic noises and shock
waves. Heat conduction and unsteady-state heat flow
processes are described by the parabolic class of differ-
ential equations. The steady-state potential distribution
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or temperature equilibrium problems are generally asso-
ciated with the elliptic class.

The distributed-parameter system considered in this
section 1s described by a generalized second-order par-
tial differential equation with respect to two indepen-
dent variables x (spatial variable), and t (time variable)
and is presented by:

2 2 2 (1)
a agx.r; 4+ b d*¥x, ¢ +cagx,rz 4+ d aﬂx. ![ +
ax2 dxcl 332 ¢x

e 35.1‘, I!

= + Hx, 1) = gu(x, 1)
where a, b, ¢, d, e, f, and g may also be functions of the
independent variables x and t. Depending on the values
of the coefficients of the second partial derivative
terms,-system (1) 1s classed as hyperbolic when
(b?—4ac)>0, parabolic when (b2—4ac)=0, and elliptic
when (b2 —4ac) < 0. Distributed-parameter system (1) is
transformed into a state-space model based on a tech-
nique discussed in my doctoral dissertation, cited above.
The summary of the procedure is as follows:

a. Apply the multidimensional Laplace-like transfor-
mation to the dynamic equation (1).

b. Eliminate any term that contains a zero as an argu-
ment.

c. Derive the continuous multidimensional transfer
function.

d. Convert the continuous transfer function to a dis-
crete one using the multidimensional bilinear trans-
formation.

e. Realize a multidimensional state-space model from
the discrete transfer function.

This gives the following two-dimensional discrete

state-space model:

- (2a)
hy ; Ay A hi B
X+ L) x(i, J) N . u(Gi )
XMi j + 1) 43 As || X, j) B
(3a)
h
Wi ) = [C1 (] ¥ + Du(i, )
x¥(i, J)
The compact form 1s given by:
XU p=d XENp+V u(ij) (2b)
Wi )= AX(ij)+ D u(ij) (3b)

where x2(i,j)eR” and x"ERm are the state vectors,
u(1,j)eR? is the input or the external force vector acting
on the system, and y(1,j)¢R? is the system response.
Matrices A, A3z, A3, Ag, B1, By, Cy, C3, and D are of
appropnate dimensions, real and constant. The continu-
ous initial and boundary conditions of the dynamic
system (1) must also be converted to a set of conditions
in terms of the state variables of the multidimensional
discrete model (2a). Thus the initial and boundary con-
ditions are presented by the following two equations:

ki o
EDN ez 1,2,
x¥(i, 0)

(4)
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-continued
A
x0,
©.7 forj=101.2....
x¥(0, j)

respectively. To control the dynamics of two-dimen-
sional system (2a)-(3a) in an optimal manner it is neces-
sary to determine an optimal control law such that it
minimizes a desired performance criterion and to influ-
ence the dynamics of the state variables x%(i,j) and x(i,j)
in some desired fashion. However, the system must
satisfy certain requirements. For instance, the system
must be at least locally controllable which means that
all the states can be influenced by the control law, and
the control law itself must be at least locally observable.

The objective is to define a meaningful performance
criterion by which a distributed-parameter system is
controlled. To determine such a performance criterion,
a loss function must be defined. A loss function de-
scribes losses incurred when the actual states or the
outputs of the system are not equal to the prescribed
states or the prescribed outputs. A loss function may be
formulated in terms of the state variables x%(i,j) and
x*(1,)), the control function u(i,j) and system’s response
y(i,j)- Note, x(i,j) is denoted by x4(i,j=1,2, . . . ; x*(0,j);
x*(1,0); u(i,})), similarly x*(i,j) is denoted by x*(i,j=1,2, .
-5 x%(0,j); x¥(1,0); u(i,j)). The following are some possi-
ble loss functions:

(9)

LyG.p= || XG) || o N* + || u(i) | 2+ X(ij)
‘Su(i )+ [Su(ij)) X))

Ly(if)= || pip 1| 2z + | (i) R + Wiy Su(Lj)+-
[SuiN] v )

L3Gp= || u(ij) || *R

Matrix Q(i,j) is of dimension [(n+m), (n+m)], non-
negative definite, symmetric and real; matrix R is of
dimension [p,p], positive definite, symmetric, real and
constant; matrix S 1s of dimension [(n+ m),p], real and
constant; matrix Z 1s of dimension [q,q], nonnegative
definite, symmetric, real and constant. Also Q(j,j)-SS’
and Z-S5' are nonnegative definite. A performance
criterion based on loss function Li(i,j) is presented by:

Ji = (0.5 % 2 Lii D
L - I’
: (=0 ;=0 1&J

(6)

where 0=EN=« and 0=M= . The next step is to
determine the optimal control law.

Procedures and theorems of optimization for opti-
mum performance of a single-dimensional system are
well defined, Sage (1977). One optimization technique is
by Pontryagin’s maximum principle. This technique sets
up a differential equation known as the Hamilton-Jacobi
equation. From the Hamilton-Jacobi equation an opti-
mal control law can be derived that minimizes the per-
formance criterion. This concept can be extended for
the optimization of a multidimensional performance
criterion, as will be seen below. The extension of Pon-
tryagin’s maximum principle is considered for the two-
dimensional performance criterion (6) but the proce-

dure can easily be extended to higher dimensional per-
formance critena.
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CASE 1.
: : : : (11)
Time-Spatial Varying Optimal Control Gain s H(i. f)
. : oA + 1, /) XM+ 1, )
Problem Statement: Find an optimum control law s - —
u‘(i,j) such that the performance criterion: W—J(—_I_DT X' j+ 1)
) N—1M-1_ (7 |
J] = 0.5 ”X(hr. M) ” PAN.M) + 0.5 E jEO L](I. j) or,
. 10 (12)
is minimized, where J; is subjected to the two-dimen- X+ L) | & XG ) + Vuli)
sional system constraint (2a). The following 1s the out- x*(i, j + 1)
line of the two-dimensional optimization procedure:
5_3t_€p I: Define a tWO-d_lHlEHSIOHal function H(1,))- The final necessary condition is with respect to u(i,j):
H(i,j) defines the augmentation of system constraint (2a) 15
and the loss function Li by two costate vectors -
AGi,j)eR" and y(i,j)eR™. Costates A(i,j) and v(i,j) corre- -f(:—ﬁ— =0 (13a)
spond to the state variables x7(i,j) and x'(i,j), respec-
tively. Function H(,j) is named the two-dimensional or,
Hamiltonian function and is denoted by: 20 136
_ o M+ L)
(8) i N=S X, )+ V¥ (i j + 1)
| i A+ 1)) O (i
H(, )y = 0.5L10, /) + i i+ 1) (PXCG ) + Yul, )
25 Step 3: Assume a generalized solution for the costate
vectors by defining a two-dimensional function (M3i,))
where, that is a Lyapunov candidate function. This s presented
by:
Q1 Q0D S1 30 Q=05 |t XGH || iy’ (14)
XN j) = - ;S =
0a X () BN 0 52
where,
Qi is [n,n}, Q4 is [m,m}, sy is [n,p], Sz is [m,p], and R is
[p,p]. Matrices Q; and Q4 must be positive definite or 35 Ph;
. . . . _ ) 0
semidefinite, symmetric, real, and constant; matrix R PG, ) = N
must be positive definite, symmetric, real, and constant; 0 P
matrices Q1_s1 Sy’ and Q4—S3 S3’ must be at least non-
negative real and constant. Performance criterion J11s ~ Weighting matrices P4(i,j) and P*Gi,j) are [n,n] and
considered minimized if the two-dimensional Hamilto- 40 [m,m]), respectively, and they are diagonal, symmetric
nian function, H(,j), has an absolute minimum with and real. General solutions of the costate vectors are:
respect to the optimum control function, vl(,j), for
1,j=0, 1, 2, . . . over the space of all admissible control (152)
functions u(i,j). Let: a0, )
45 axP(i, ) A, j)
HLD AHXG); NG, v, uCi ), L)) RS, 1)) 30(i. J = w(i, /)
ox¥(i, J)
then,
or,
H(XD sy L= HXO, AS TU; u; i,j) 50
. (15b)
Step 2: Establish the necessary conditions for the ML | Yo
optimization. The first set of necessary conditions are yip |7 HEAAED
with respect to the state variables:
©) 5 Step 4: Formulate the optimal control law u0(,j) by
_aH(, ) using equattons (9) to (15). This gives:
axhi. ) | | M
dH(i, ) Y(i, J) (16a)
2x¥(i, j) 60 o A o e | XTGD
u(i, j) = ~1G. ) G¥G. )
x¥(i, j)
Or,
a0y  The compact form is presented by:
IX¢) ‘ | A+ L) '
i |ZQENXED+ @ s qy (T SHED 65 u%if) = — G(ij) XGij) (16b)

and the second set are with respect to the costates:

where,
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GUN=T(i) (§+¥ P P) (17)

TG j)=(R+WV P ¥)—! (18)

and,

From the optimal gain G(i,j), it can be observed that
the requirement of the positive definiteness for matrix R
can be removed since the inverse of R is no longer
required. However, I'(1,j) must exist. The optimal con-
trol law uo(y,j) is a two-dimensional time-spatial varying
controller and is referred to as Optimal Quartic Con-
troller. FIG. 2 illustrates the two-dimensional discrete
state-space model along with the optimal guartic con-
troller.

Step 5: Compute weighting matrices P#4(i,j) and
P¥(1,7). Substitute equations (12), (15b) and (16b) into
equation (10) then eliminate X(i,j) from both sides of the
equation. This gives:

PUp=®" P (@ —WG(i))— S Gl + i) (19)

Equation (19) is named Linear Quartic Regulator
(LQR). LQR 1s computed recursively by backward
iteration in terms of P2(iA,jA), P¥(iA,jA) and Q>(iA,jA)
starting from the known weighting matrix P(N,M).
P(N,M) 1s defined 1n the performance criterion J; (7):

|

Matrices P#/(N,M) and P*(N,M) are positive definite,
symmetric, real and constant. FIG. 3, presents the two-
dimensional backward propagation of the weighting
matrices P%(i,j) and P¥(i,j) starting from the time-spatial
point (N,M). LQR has (n+m)? equations and the total
number of unknown parameters in matrices P4, P and
Q2 are given by the following relationship:

(20)

PYN, M) 0
0 PN, M)

for0 < N :0<c M< «

n m (21)
a=nm -+ 'EU(H_I)+ 2 {m =1

= =

Case 2. Steady-State or Time-Spatial Invariant Opti-
mal Control Gain:
In this case the performance criterion contains infi-
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Weighting matrices P/(N,M) and P*(N,M) are se-
lected to be null matrices when (N,M)=(,28 ). The
reason 1s that their values have no impact on the final
result of matrix P. The optimization procedure is similar
to the previous case and the system (the state-space
model) must be locally controllable and observable. As
(1,J)—(x,ec) the optimal control gain G(,j), the
weighting matrices P (i,j) and Q»(i,j) become constant:

(23)
lim (G D; B J); Qi ik Jl = [Gss: Pis: 25s]

Therefore, the steady-state optimal quartic control
law is presented by:

— (24)
xh i,
WG ) = —[Gh 6ty | T D
x¥(i, j)
where,
G ﬁ‘l[(-—".s:s"I Gs'l=(R+ VP W)™ I{S' + ¥ P D) (25)

Weighting matrix Py is determined by solving the
following simultaneous quartic matrix equation:

P55= ¢”P55 (¢—‘PG_;5)—-S GES+ st

(26)
where,
A Pgs 0 A 1 Q?.ss
P_g_; — ] QE.‘F =
0 P;; s Q4

Theorem 1: Weighting matrices P%(i,j) and P*(i,j) are
symmetric.

Proof: Let matrices R and Q(i,j) be symmetric. Ma-
trix transpose of LQR (19) is:

Pp=(@ - GENVWP T Epe—GUpS + Q6

The only difference between equation above and
equation (19) matrices P(i,j) and P!1(i,j) are replaced by
P’(1,3) and P!1'(i j) respectively. The two equations pro-
duce the same results. This implies P(,))=P'(1,)) and
Pll(1,j)=P11'(i,j). In other words, matrices P(i,j) and
Pll(i,j) are symmetric.

Theorem 2: Given a performance criterion described

: . . ) : (27
nite summations with respect to independent variables. 55 I XG A u D) = 051 XN , )
For example, considering performance criterion (7) for  (y_/py_7 S ul )} = O3 [| XN, My || van +
N=« and M= «. This gives:

N—1M—1
05 2 X Lk D
o o | (22) (=0 j=0
J = 0.5 ‘2020 L](L j) 6\0
= = . . .
! and subjected to the distributed-parameter system (2a).
The optimum performance criterion for the case when
O0=M< o and 0EN< ¢ is:
V- (28)
0 0.5 x’l‘(N—k,M-—l) P PN — kM- ) 0 x“’(]\"—k,M——I)-]
= L. 4
[N— kM~ XN —-kM-D || 0 PIN—-kM-D || (N =k M-
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11

12

-continued

XN — kM~ 1+ 1)
XN —k+ 1. M-

][P"(h’-—kﬂd—!+l)
0

and for the case when M=« and N= « Is:

. (29)
o - [xh(o,m ] pi 0 [x"’(ﬂ,ﬂ) ]
[oc,0c] x*(0,0) 0 Fss|L X¥(0,0)
where,
(30)
0
stpv= lim PN — kM - 1)
07 ss (k’n_"(mlm)

Theorem 3: Performance criterion J is described by:

(31)
J =

| 48

05 Ojgo(uxu,j)nzgﬁ + Hup |l rRD

!

If matrices Qg and R are positive definite, real and
symmetric, then weighting matrix Py is positive defi-
nite.

Proof: Since matrices Qg and R are positive definite,
then performance criterion (31) 1s positive. The reason
is that the performance criterion J is a quadratic func-
tion of the state variables and the control law. From
theorem 2, J is presented by the quadratic relation (29).
Using equation (29) and knowing that J 1s positive then
P, must be positive definite.

The optimal state and output responses of the system
are presented by:

]___

h .
Wij) = [C1 — D G¥ij) C; — D G¥(ij)} ["‘ ()
x"(i.f)

(32)

[xh(f + 1)
x¥(ij + 1)

[x"(f.ﬁ ]
x¥(1,))

respectively.

Theorem 4: Consider performance criterion (31)
under constraint of the controllable distributed-parame-
ter system (2a)-(3a) where weighting matrices Qsand R
are positive definite, real and symmetrical. The initial
state variables x#(0,0) and x¥(0,0) are observable and the
optimal quartic controller that minimizes the perfor-
mance criterion 1s:

A1 — ByGMijy Ay — B1GY(i )
A3 — BaGMij) A4 — BaG'(ij)

(33)

h -

x¥(i,j)
where,
[Gs" Gss"]=(R+ V' P ¥)~ W' P® (34)
and
Po='Pys (P — ¥ G5)+ Oss (35)

Then the closed-loop optimal feedback system:

PN—-—k+1,M~-1
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65

-
0 XN — kM =1+ 1)
| XN =k + 1LLM~-)

)

(36)
I:xh(,- + 1) ]_ A) — BiG% A2 — B\Gy, [xﬁ(f.ﬁ ]
@i + 1 Az — ByG". Ay — ByGY, [Lx"G))

is asymptotically stable.
Proof: By theorem 3, weighting matrix P 1s positive
definite if weighting matrices Qs and R are positive

definite. Define a two-dimensional discrete Lyapunov
candidate function:

VIX(i )] AVIxMG.j) x¥G.j); i) -—-_—0-5 | XG) |} 2 Pse (37)

The Lyapunov candidate function V has the following
properties:
a) V[X(,7)] i1s a positive valued function for all
xA(i,j)50 and x*(i,j)50
b) VIX(,))] is zero for x%(i,j)=0 and x*(i,j)=0
c) V[X(,j)] approaches infinity as || X(@,j) || =<
Let,

VXV G = VRIxAG+ 1,5); XG0+ VxR,

xV(ij+ 1l
then,
AVIXG =X G p)— NXGA)] (38)
or,
AVIXGP)=0.5 ()| XV | 2 pss— | XED 1L 2pss) (39)

If AV[X(1,))] <0 then the closed-loop system (36) is
asymptotically stable. Substitute equation (36) into
equation (39). This gives:

AVNX(UN]=0.5X ()P ~ VY Gg) Pod P — Y Gg5) — Pos))-
X))

(40)
Substitute the right hand side of equation (35) into equa-

tion (40). This gives the following reduced form rela-
tion:

AVIX())=—0.5 X (i) (Q+ DX}, (41)
where,

Y=G'o VW PP —VGy) (42)
From equation (34) the following identity holds:

VPP =(R+ YV P ®)G (43)

Then Y is reduced to the following relationship by
substituting equation (43) into equation (42):

Y=G'R Gg= |j Gss || R? (44)

Matrices Q and Py are positive definite and matrix Y
is nonnegative definite because R is positive definite.
Therefore, AV[(X(1,})] is nonpositive, V[X(i,j)] is a two-
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dimensional Lyapunov function and the closed-loop
system (36) 1s asymptotically stable.

The performance of the optimal distributed-control
system can be demonstrated by considering the dynam-
ics of noise (acoustic noise) in a combustion chamber.
The linearized equation of motion for such a process is
described by the following second-order continuous
hyperbolic differential equation:

X1(iAx, jAr) = [:x"((f + DAxjAn

¢ =
a
Wy :—1
r
(45)
2
BHED L SN D L e e

for t>0 and O0<x<L, where is L. the length of the

chamber. The boundary and initial conditions are given
by:

W0,0) = W(t): 0=1 (46)

and

Wx0)=F(x), 0=x=L (47)
respectively. The state-space model of the distributed-
parameter system (45) 1s obtained by implementing the
steps outlined in section 2.1. The steps are:

Step 1, multidimensional Laplace-like transformation:
Lyl.d{Model(45)]=ai(5152 Y(51.53) — 52 ¥(0,57)
. — 51 ¥(51,0) + Y(0,0)) + aa(s2 ¥(s1,52) — ¥(51,0)) + aa(-
51 Y{(s1,52

— Y(0,52))+ a4 Y(52,52) = bU(s1.52) (48)

Step 2, eliminate terms with zero as the argument in
equation (48):

(a1 s1524+ a3 s2+a3 51+ a4 ¥(s1,52)=bU(s1,52) (49)

Step 3, derive the continuous multidimensional trans-
fer function:

b (50)
¥(s1.52) aj
Hswd) = sy = a2 a3 a4
S92 + 5782 + gm 8+

Step 4, convert transfer function (50) to a discrete
transfer function using bilinear transformation:

H(z1,29) = H(sy,572) for (51)

_2_ a2
T="Ax zi+1 ' T TAr

where, Ax and At are sampling intervals with respect to
space and time.

-1

14

Step 5, realize the discrete transfer function (51) into
a state-space model, see FIG. 4. The state-space model
1s presented by:

5 X' (iax,jan=X(x jan + Yu(idx,jAl) (52)
Widx jA1) = AX(iAx jAD + D u(iAx,jAD (53)
where,
where,

h . -
:I:. X(iAx,jAr) = ["‘ (iBx/81
x*(iAx,jAT

J

x(idx,(f + DAD

da; — 2a38Ax + 2axAr — azAxAt

4AxAN(—a1as + ara3)
2a1 + a3lAx

8a7 + 4a3Ax

4ay + 2a38x — 2a;A1 — asAxAt

[ e 280ty 4 2y 4 g s

and,

r=0,"! (4a;+ 203Ax+2a:814+asAx AN
30

Consider the case when coefficients of the distribut-
ed-parameter system are aj=ay—aj==1, ags=—1, and
b=1. The initial condition is defined as W(t)=10 e—,
the boundary condition is constant and is given by
F(x)=10 and the length of the chamber is normalized to

unity. The discrete approximation of the initial and
boundary conditions are:

35

HAx,0)=10e— "B for L=MAx=1:i=0,1,2,..., M (54)
40
and,
WOjAN=10 for j=0,1, 2, ... (55)
45 respectively. The sampling intervals with respect to

time and space are At=0.1 and Ax=0.05, respectively.
The spatial and time responses of the system are shown
in FIGS. § and 6, respectively. The three-dimensional
distributed motion is shown in FIG. 7. In order to con-

trol the noise in the chamber the following performance
criterion:

30

(56)

o5 J = 0.5 ]| X(208x508) | A20.50) +

19 49 |
20 2o N1 XGxA) || op + | ulibxjan || gD

J==

1s minimized. The weighting matrices are:

|

where Q2(14,jA) to be determined by a LQR relation-
ship, and

. O
O(iAx,jAr) = I: 0>'(iAx,jAx)

for 01 = 100;

((ihx,jAr)
Qa

65 O4 = 450
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15 16
A20Ax 50AD) — [1 0 ]; R 1 Q:(14,jA) by a three-dimensiqnal plot where one axis
0 1 presents the time, another axis presents the space and

5 the third axis gives the value of the weighting matrix,
An LQR relation similar to equation (19) is written in TCSPCCtlve{Y- The time and spatial responses for the
terms of the state-space model (52) and the above optimal gains G#(iAx,jAt) and G*(iAx,jAt) are illustrated

weighting matrices. This gives: by three-dimensional plots, see FIGS. 11 and 12. The
o ' (57)
Piiaxjan O _ 100 QiAxjAn | | 0.9561.909
0  PYiAxjAD (iAx,jAry 450 0.0050.909
PN + DAx,jAD) 0 0.9561.909 0.233 .
[ 0 PY(iAx,(j + 1A 0.0050.909 |~ | 0233 |CUA%/AD
The optimal gains are determined by: " optimal gains G%(iAx,jAt) and G*(iAx,jAt) will reach
o their steady-state values within 8 to 12 iterations with
oo e 10233 7] oy [0.9561.909 respect to each independent variable. The steady-state
CUlxjar) = Tasxjan) [0.233 ] P ibxjb) [0.0050.909 20 wvalues of the optimal gains G*(iAx,jAt) and G*(iAx,jAt)
are denoted by G”;and GV and their values are 1.1976
where, | and 5.0699, respectively. The optimal controlled re-

sponse of the distributed-parameter system (52)-(53)
using the optimal quartic controller G(iAx,jAt) as the
state-feedback controller are shown in FIGS. 13, 14, 15

: . . d 16. FIGS. 15 and 16 show the same graph, but for
LQR equation (57) is computed recursively by a an . _ _ grapn,
backward iteration in terms of PA(iA,jA), P'(iA,jA) and the sake of clarity, the view shown in FIG. 16 is rotated

Q2(iA,jA). Computation starts by the following initial 60 degrees to the right in azimuth and down 15 degrees

F(iAx,jAN=(1+ 0.0542[}*((f+ 1)Ax,jA1) PY(iAx,
G+ Dan) ! 25

values for the weighting matrix P(iAx,jAt): " in elevation from t_he view show in FIG. 15.

P2((i+ 1)Ax,jAt)=0 for i=21 and j=0, 1, ..., 51

PA(20Ax,50At) =1 APPENDIX B

PY(1Ax,G+ DAtY)=0for j=51and i=0, 1, ..., 21

PY(20Ax,50At)=1 This appendix contains a copy of a Fortran program
and, | 35 which operates to carry out a number of the calcula-

G(1Ax,)At)=0fori=0, 1,...,21 and j=351;i=21 and tions in accordance with the invention. They are in-

1=0, 1, ..., 51; (1,))=(20,50) cluded for the convenience of the Examiner, and will

FIGS. 8, 9 and 10 illustrate the time and spatial varia- not be included in the specification unless their inclu-

tions of weighting matrices P%(iA,jA), P¥(iA,jA) and sion is requested or recommended.

i g

c******************************************_***************************
C*»

*

C* This program simulates the dynamic behavior of a continuous *
C* constant coefficient distributed-parameter system using a *
C* 'mul?idimensional state-space model. Also 1t computes an %*
C* optimal distributed control law based on a prescribed %
C* performance criterion for controlling the dynamic of the *
C* systen. | %
C* *
C* *
C* A.discretg state-space model for a distributed-parameter *
C* system which is a function of two independent variables is as *
C* follows: *
C* *
g: Xh(i+l,3) = All+Xh(i,j) + Al2*Xv(i,d) + B1*U(1i,9) %
g: XV(i,j'}'l) = A21*Xh(i,3) + A22*Xv(i,j) + Bz*U(i,j) *
| >

C* The output equation of the model is: L
C* | *
g: Y(i,3) = C1*Xh(i,j) + C2*Xv(i,j) + D*U(i,]) *
%

g: £(1) = ¥(1,0) ; 1is the initial displacement, for i=0,1,2,... *
%

g: g(J) = ¥(0,3) ; is the boundary condition, for §=0,1,2,... *
%*

C* | Date: August 15, 1951 *
g: _ Allen Moshfegh *
%

Q)
*
*
¥
*
¥
¥
*
*
*
*
%
*
*
*
%
.
*
»
%*
4
¥
*
%
¥
¥
*
%
¥
»
¥
%
¥
%
¥
¥
¥
%
¥
»
¥
*
%
¥
%
.
¥
*
%
-
¥
%
%
»
%*
*
2
*
»
*
%
%
*
¥
%
¥
*
%
%
%*
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C
INTEGER TIMEDIM, SPCDIM,DIM,DIMX,DIMX1,DIMT,DIMT1, TIMEITR, SPCITR
PARAMETER (SPCDIM=1,TIMEDIM=1,DIM=SPCDIM+TIMEDIM)
DOUBLE PRECISION All(SPCDIM,SPCDIH),AlZ(SPCDIH,TIMEDIM),E(l,l),
1A21(TIMEDIM, SPCDIM) ,A22 (TIMEDIM, TIMEDIM) , Bl (SPCDIM,1),E: (1,1}, .
2B2 (TIMEDIM,1),C1(1,SPCDIM),C2 (1, TIMEDIM) ,TC2 (TIMEDIM,1) .
DOUBLE PRECISION CTLAll(SPCDIM,SPCDIM),CTLA12(SPCDIM,TIMEDIM),
1CTLA21 (TIMEDIM, SPCDIM) ,CTLA22 (TIMEDIM, TIMEDIM) ,B11 (SPCDIM, SPCDTIM)
2,Bl2(TIHEDIM,SPCDIM),BZl(TIMEDIM,SPCDIM),B22(TIMEDIM,TIMEDIM)
. DOUBLE PRECISION SUMl,SUM2,Tl,R,D,Xl,Q,PINVC2(TIMEDIM,l),
LPINVC1 (SPCDIM, 1) ,XVV(TIMEDIM, 1) ,XHH(SPCDIM,1),TCl(SPCDIM,1),
2GH(1,S5PCDIM),GV(1l,TIMEDIM)
C X and T are the maximum number of iterations with respect to the
C spatial and time variables.

INTEGER X, T

PARAMETER (X=40)

PARAMETER (T=80)

DOUBLE PRECISION XH(X,T,SPCDIM),XV(X,T,TIMEDIM),U(X,T),¥(X,T),

1F1(X),F(X,1)

COMMON /STATEV/ XV

COMMON /OUTY/ Y

COMMON /STATEH/ XH,U

WRITE (*,*) 'Enter Sampling Periods For The Spatial Variable x°

WRITE (*,*) 'And Time Variable t ==> !

READ (*,*) X1,T1
-
C*******************************************************i************
C This 1s an example of a state-space model for a distributed-

parameter system. Comment the next Eleven statements and

C
C uncomment the SOUBROUTINE INMAT if another model is desired.
C State~-Space Model is:
c -
R=4+ (2*X1)+ (2*T1) - (X1*T1)
Q = X1*T1/R
Al1(1,1)=(4-(2*X1)+(2*T1)+(X1*T1)) /R
Al2(1,1)=(8+4*X1) /R
A21(1,1)=8*X1%*T1/(R*(2+X1))
A22(1,1)=(4+(2%X1)=-(2*T1)+(T1*X1l))/R i
Bl1(l,1)=1/R
B2(1,1)=1/R
Cl(1l,1)=Q*(8+(4*T1))
C2(1,1)=Q*(8+(4*X1))
D=0Q
C

C CALL INMAT (All,AlZ,A21,A22,Bl,32,Cl,C2,D,SPCDIH,TIMEDIH)
C % e o e e dk e e o sk e 3k ok ok o ok ok e sk e A s ok g e o e o gk ok ok e ok ok ok e ok e ok Sk o ok e gk ok e ok gk ok ok ok e ok ok S o e e S e ok ke ok

C Write a routine to describe the initial conditions, like the one
C given below:
. .

CALL DISFUN (F1,Xl,SPCITR)
C WRITE (*,1) (I,F1(I),I =1, SPCITR)
1 FORMAT (1X, I3, 3X, F9.4)

DO 2 I= 1, SPCITR

F(I,1)=F1(I)

2 CONTINUE
C

C The initial STATE conditions of the model are determined next!

DO S00 I=]1, SPCDIM
 XH(1,1,I) = 0.0

9S00 CONTINUE

C C2' (C2#%C2')A(-1)

- CALL MTRS (C2,TC2,1,TIMEDIM)
CALL MPROD (C2,TC2,E,1,TIMEDINM,1)
E(1,1)=1/E(1,1)
CALL MSFPROD (TCZ,E,PINVCZ,TIHEDIM,I)
CALL MPROD (PINVC2,F,XVV}TIMEDIM,l,l)

C Cl'(Cl*Cl')A (-1}
CALL MTRS (Cl,TC1,1,SPCDIM)
CALL MPROD (Cl1,TCl1,E,1l,SPCDIM,1) )
E(1,1)=1/E(1,1)
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CALL MSPROD (TCl1,E,PINVC1l,SPCDIM,1)
DO 910 I=1, TIMEDIM
_ XV(1,1,I) = XVV(I,1)
910 CONTINUE

DO 1000 I = 1, SPCITR ' ' .
DO 1200 DIMX= 1, SPCDIM -
SUM1= 0.0

DO 1210 DIMT= 1, .TIMEDIM
SUM1= SUM1+(Al2(DIMX,DIMT)*XV(I,1,DIMT))
1210 CONTINUE
SUM2= 0.0
DO 1220 DIMX1l= 1, SPCDINM
SUM2= SUM2+ (A1l (DIMX,DIMX1)*XH(I,1l,DIMX1))
1220 CONTINUE
XH(I+1,1,DIMX)= SUM1+SUM2
XHH (DIMX,1)= SUM1+SUM2
1200 CONTINUE |
CALL MPROD(C1,XHH,El,1,SPCDIM,1)
E1(1,1)= F(I+1,1)-E1(1,1)
CALL MPROD (PINVC2,El,XVV,TIMEDINM,1, 1)
DO 1010 Il=1, TIMEDIM
XV(I+1,1,TI1) = XVV(I1,1)
1010 CONTINUE
C WRITE (*,*) XH(I,1,1),XV(I,1,1)
1000 CONTINUE

C
C The boundary STATE are determined next!
-
WRITE(*,*) 'Enter the number of TIME-iterations, as it presents’
WRITE(*,*) 'the total time when controller is off:’
WRITE(*,*) ' !
READ(*,*) TIMEITR
WRITE (*,*) "' °

' 4
WRITE(*,*) 'Total Time of Uncontrolled response is:
WRITE (*,*) TIMEITR*T1,'Units of Time'®
WRITE (*,*) ! °
DO 2000 I =1, T-1
DO 2200 DIMT= 1, TIMEDIM
SUMl= 0.0
DO 2210 DIMT1= 1, TIMEDIM
SUMl= SUM1l + (A22(DIMT,DIMT1) * XV(1,I,DIMT1))
2210 CONTINUE
SUM2= 0.0
DO 2220 DIMX= 1, SPCDIM
SUM2= SUM2 + (A21(DIMT,DIMX) * XH(1,I,DIMX))
2220 CONTINUE
XV(1,I+1,DIMT)= SUM1l + SUM2 °
| XVV (DIMT,1)= SUM1+SUM2
2200 CONTINUE

c )
% 5k e e 7k e ok e sk o sk vk e ok ok ok ok ok ok ok ok ke e ok ok ke ok e vk ko ok ok ok gk ko ok o ok ok ok ok ok ok o ok ok ok ok ok ok vk sk ok ok ok ok ok ok ok ok ke k ok
C Write a routine to describe the boundary function; for this
C problem the boundary function is constant and is defined as g(0,%t)=10.
C
CALI MPROD(C2,XVV,El,l,TIMEDIM, 1)
C g(0,ty = 10.0

E1(1,1)= 10.0-E1(1,1)
CALL MPROD (PINVC1,El,XHH,SPCDIM,1,1)
DO 2010 Il=1, SPCDIM
XH(1,I+1,T1) = XHH(IL,1)
2010 CONTINUE
2000 CONTINUE

C
CALL INPUT (U;SPCITR,T;MEITR)
C Uncontrolled Response 1s:
C
DO 3000 J= 1, TIMEITR )
DO 3100 I= 1, SPCITR
SUM1i= 0.0

DO 3110 DIMT= 1, TIMEDIM
SUMl= SUM1 + (C2(1,DIMT) * XV(I,J,DIMT))
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3110 CONTINUE
SUM2= 0.0
DO 3120 DIMX1l= 1, SPCDIM
SUM2= SUM2+(C1(1,DIMX1)*XH(I,J,DIMX1))
3120 CONTINUE
Y(I,J)= SUM1+SUM2+ (D*U(I,J))
DO 3200 DIMX= 1, SPCDIM
SUM1= 0.0
DO 3210 DIMT= 1, TIMEDIM
SUM1= SUM1+ (Al2 (DIMX,DIMT)*XV(I,J,DIMT))
3210 CONTINUE
SUM2= 0.0
DO 3220 DIMX1= 1, SPCDIM
. SUM2= SUM2+ (A1l (DIMX,DIMX1)*XH(I,J,DIMX1))
3220 CONTINUE
XH(I+1,J,DIMX)= SUM1+SUM2+(B1(DIMX,1)*U(I,J))
3200 CONTINUE
DO 3300 DIMT= 1, TIMEDIM
SUM1= 0.0
DO 3310 DIMT1= 1, TIMEDIM
SUMl= SUM1+(A22 (DIMT,DIMT1)*XV(I,J,DIMT1))
3310 CONTINUE
SUM2= 0.0 -
DO 3320 DIMX= 1, SPCDIM
SUM2= SUM2+ (A21 (DIMT, DIMX)*XH (I, J,DIMX))
3320 CONTINUE
XV(I,J+1,DIMT)= SUM1+SUM2+(B2(DIMT,1)*U(I,J))
3300 CONTINUE
3100 CONTINUE
3000 CONTINUE

C |
C Optimal Controlled Response is:
C
CALL OPCONTRL (All,Al2,A21,A22,Bl,B2,GH,GV,SPCDIM, TIMEDIM, DIM)
C
WRITE(*,*) 'The total time when optimal controller is on-line:'
WRITE(*,*) (T=-1=-TIMEITR)*Tl,'Units of Time"
WRITE (%, %) !
C

CALL MPROD (Bl,GH,Bll,SPCDINM,1,SPCDIM)
CALL MPROD (B1,GV,B12,SPCDIM,1,TIMEDIM)
CALL MPROD (B2,GH,B21,TIMEDIM,1,SPCDIM)
CALL MPROD (B2,GV,B22,TIMEDIM,1,TIMEDIM)
CALL MSUB (All,B11l,CTLAll,SPCDIM, SPCDIM)
CALL MSUB (Al2,Bl12,CTLAl2,SPCDIM,TIMEDIM)
CALL MSUB (A21,B21,CTLA21,TIMEDIM,SPCDIM)
CALL MSUB (A22,B22,CTLA22,TIMEDIM, TIMEDIM)'
DO 4000 J= TIMEITR, T-1

DO 4100 I= 1, SPCITR
SUMl= 0.0
DO 4110 DIMT= 1, TIMEDIM
SUM1l= SUM1+(C2(1,DIMT)*XV(I,J,DIMT))
4110 CONTINUE .
SUM2= 0.0 '
DO 4120 DIMXl= 1, SPCDIM
SUM2= SUM2+(C1(1l,DIMX1)*XH(I,J,DIMX1))
4120 CONTINUE
Y(I,J)= SUM1+SUM2+(D*U(I,J))
DO 4200 DIMX= 1, SPCDIM
SUMl= 0.0
DO 4210 DIMT= 1, TIMEDIM

| SUMl1l= SUM1+(CTLA12(DIHX DIMT) *XV(I,J,DIMT))
4210 CONTINUE

SUM2= 0.0
DO 4220 DIMXl= 1, SPCDIM :
SUM2= SUM2+(CTLA1ll (DIMX,DIMX1)*XH(I,J,DIMX1))
4220 CONTINUE
XH(I+1,J,DIMX)=" SUM1+SUM2+(B1(DIMX,1;*U(I,J))
4200 CONTINUE

DO 4300 DIMT= 1, TIMEDIM
SUMl= 0.0



5,329,442
23 24

DO 4310 DIMTI1= 1, TIMEDIM
| SUM1= SUM1+(CTLA22(DIMT DIMT1) *XV(I,J DIMTl))
4310 CONTINUE

SUM2= 0.0

DO 4320 DIMX= 1, SPCDIM

SUM2= SUM2+(CTLA21(DIMT,DIMX)*XH(I,J,DIMX))
4320 CONTINUE

XV(I,J+1,DIMT)= SUM1+SUM2+ (B2 (DIMT,1)*U(I1,J))
4300 CONTINUE
4100 CONTINUE
AQ0Q0 CONTINUE
C DO 31 K= 1, SPCITR

K=SPCITR

- C WRITE (*,1) (I,¥(X,I),I= 1,T-1)
C3l CONTINUE

STOP

END
C - .
c'.luir********************************************************i*********
¢ _This is a function routine for the initial condition.
C

SUBROUTINE DISFUN (F,SPCSAM,NUMSAM)
C

INTEGER NUMSAM
DOUBLE PRECISION LENGTH,SPCSAM,J,F(*)
WRITE (*,*) 'Enter the total 1ength for the spatial variable !
WRITE(*,*) 'for example, x = L where L is the total length ==>'"
WRITE(*, %) ' !
READ (*,*) LENGTH
J =LENGTH/SPCSAM
NUMSAM =IDNINT(J)+1
WRITE (*,*) 'Number Of Sample Points In The Spatial Direction
lAre'!, NUMSAM |
DO 10 I =1, NUMSAM
F(I) =10*EXP( (I- 1)*SPCSAM)
10 CONTINUE

RETURN

END
C
c*******g**********************************************f**************
C* This routine is for setting up the .discrete state~space model: *
C* _ . %
C* A discrete state-space nodel for a distributed-parameter %*
C* system which is a function of two independent variables is as *
C* follows: - *
C* | | | %
C* Xh(i+l,j) = All*Xh({i,j) + Al2*Xv(i,J) + Bl*U(i,3) %
C=* ¥
C* " Xv(i,j+1) = A21*Xh(i,j) + A22*Xv(i,j) + B2*U(i,]) -k
C* ‘ ' ¥
C* The output equation of the model is: %*
C* | %*
C* Y(i,j) = Cl*Xh(i,j) + C2*Xv(i,j) + D*U(1i,3) *
C* - %*
Chhhhddkkkhhkhhkhhhhkhhhhkohkhhdhdhkhhhhhdhhdhhhhdkhkhkhkhdhkhhkhhhhkhdkdkhhkhkkk

C
SUBROUTINE INMAT (All,Al2,A21,A22,B1,B2,C1,C2,D,N, M)

C
INTEGER N,M
DOUBLE PRECISION All(N, N),AlZ(N M) ,A21(M,N),A22(M,M),C1(1,N),
1C2(1,M),B1(N,1),B2(M,1),D

e

WRITE (*,*) 'Enter Each Matrix By Its Rows.'
WRITE(*,*) ' °!
WRITE (*,*) ‘'Enter Matrix All ====>!
DO 10 I = 1, N
DO 113 =1, N
READ (*,%*) All(I,J)
11 CONTINUE
10 CONTINUE
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WRITE (*,%*) 'Enter Matrix Al2 ====>
DO 20 I = 1, N
DO 21 J = 1, M
~ READ (*,*) Al2(I,J)
CONTINUE
CONTINUE
WRITE (*,%*) 'Enter Matrix A2l =m===>?
DO 30 I = 1, M '
DO 31 Jd = 1, N
READ (*,*) A21(I,J)
CONTINUE
CONTINUE
WRITE (*,%) 'Enter Matrix A22 ====>
DO 40 I = 1, M
DO 41 o = 1, M
READ (*,*) A22(I,J)
CONTINUE
CONTINUE
WRITE (*,*) 'Enter Matrix Bl ====>!
DO 50 I = 1, N |
READ (*,*) B1(I,1)
CONTINUE
WRITE (*,%*) 'Enter Matrix B2 =m===>!
DO 60 I = 1, M
READ (*,*) B2(I,1)
CONTINUE
WRITE (*,*) 'Enter Matrix Cl ====>!
DO 70 I = 1, N ,
READ (*,*) C1(1,I)
CONTINUE
WRITE (*,*) 'Enter Matrix C2 ====>?
DO 80 I =1, M
READ (*,%*) C2(1,I)
CONTINUE
WRITE (*,*) 'Enter D (Scalar) ====>!
READ (*,*) D
RETURN
END

26
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C*

This routine is for setting up the discrete input function

W

ChkRERRARRXARRRRRRRREIARR Rk Rhkhhhddhdhdhhddhdhddhdiin

C

-
-

- N

C

SUBROUTINE INPUT (V,L,T)
INTEGER L, T
DIMENSION V(L,T)
DOUBLE PRECISION V
DO 1 I=1, T
DO 2 J=1, L -
V(JT,I)=0.0
CONTINUE
CONTINUE
RETURN
END

C % % % % Je Je v gk vk %o e v e vk d v e ke Je e e d dk ke T ok b e de Ok e gk e v gk vk o b d %k g e g ok o gk gk o ok d 9 e J o o e Tk ok ke Je T ok de ok % e e

C*
Cx
C*

This is a matrix multiplication routine

' SRS IAEET C=A%1B CEREmETEm==

*

%
*

ChhkhhkhkhkkhhhrhhhhhhhtRkERRAAREIRRRER AR AARRARRARRA I AR AR Rk AR AR ARk k

C
C

SUBROUTINE MPROD (A,B,C,N,M,L)

INTEGER N, M, L
DIMENSION A(N,M), B(M,L), C(N,L)
DOUBLE PRECISION A,B,C,SUM

DO 1 I=1, L
DO 2" J=1, N
SUM=0.

DO 3 K=l, M
SUM=SUM+ (A (J,K) *B(K, I))
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3 CONTINUE '
C(J,I)=SUM

2 CONTINUE
1 CONTINUE

RETURN

END
C
c********************************************************************
C* This is a matrix subtraction routine *
C* | . "
Cw M= ==D C=A~-B A T i s e e %

C********************************************************************
- C
SUBROUTINE MSUB (A,B,C,N,M)

C

INTEGER N,M

DIMENSION A(N,M), B(N,M), C(N,M)

DOUBLE PRECISION A,B,C

DO 1 I=l1l, N N

DO 2 J=1, M
C(I,J)=A(I,J)-B(I,J)

2 CONTINUE
1l CONTINUE

RETURN

END
C -
C********************************************************************
C* This is a matrix addition routine *
C* ' | | *
C* EE==mes== C=A2+B P T 3 1 %

C********************************************************************
c
SUBROUTINE MSUM (A,B,C,N,M)

C
INTEGER N,M
DIMENSION A(N,M), B(N,M), C(N,M)
DOUBRLE PRECISION A,B,C
DO 1 I=1l, N '
DO 2 J=1, M
C(I,J)=A(I,J)+B(I,J) ~
2 CONTINUE
1 CONTINUE
RETURN
END
C
Cﬁ************************************ﬂ******************************
C* This is a matrix-scalar multiplication routine %
C % o
Cx o= mrazIs> C=D#*A Commmmmeara K

C********************************************************************

. C
SUBROUTINE MSPROD (A,B,C,N,1L)

C

INTEGER N, L

DIMENSION A(N,L), C(N,L)

DOUBLE PRECISION A,B,C

DO 1 J=1, L

DO 2 K=1, N
C(K,J)=A(K,J)*B

2 CONTINUE
1 CONTINUE

RETURN

END .
C
C********************************************************************.
c* This is a matrix transpose routine *
C* *
C* A === > Al | *

c********************************************************************

C
SUBROUTINE MTRS (A,B,N,M)
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INTEGER M, N
DIMENSION A(N,M), B(M,N)
DOUBLE PRECISION A,B

DO 1 I=1,N
DO 2 J=1,M
B(J,1)=A(I,J)
CONTINUE
CONTINUE
RETURN
END

WEN

C

C % % % Jde e ¢ Je e ok de g e e ok e e % de o A I e e de o e e de ek ke e ok e e d e v e b e de Jb ok d e de i v de o b de de e de e Yk e ok gk e Rk e ke
C*

Ck

C* This Subrcutine Provides A Set of Optimal Feedback Gains for The
C* State-Space Model of The Discrete Distributed-Parameter System.
. C*

C* For Example, State-Space Model is:

C*x

C* Xh(i+l,3) = All*Xh(i,3) + Al2*Xv(i,d) + Bi1*U(i,3)

C*

Cx Xv({i,j+1) = A21*Xh(i,j) + A22*Xv(i,j) + B2*U(i,3)

C*»

%

C* System's Qutput 1is:

C ,

C* Y({(i,j) = Cl*Xh(i,3) + C2*Xv(i,j) + D*U(i,5)

C*

C* The Optimal Feedback Controller is:

C* |

C* Uo(i,3j) = =Gh(i,J)*Xh(i,]) -Gv(i,])*Xv(i,])

C*x

C*

C*

C* IMPORTANT REMARK:

C*

*
*®

%

%

*

*

*

C* The weighting matrices P(i,J), Q(i,3j) and R MUST BE POSITIVE *
x

. 4

*

”"

%

“

*

* 4 % % % % ¥ % o F % ¥ ¥ ¥ ¥ ¥ Kk

%

C* DEFINITE SYMMETRIC AND REAL

C* .

C* Date: August 15, 1951

C* Allen Moshfegh
Cx

C***************************************ﬁ****************************
C
SUBROUTINE OPCONTRL (All,AlZ,A2l,A22,Bl,BZ,GH,GV,SPCDIH,TIMEDIM
1,DIM)
. INTEGER TIMEDIM,SPCDIM,DIM,DIMX,DIMX1,DIMT,DIMT],TIMEITR,SPCITR
C O is equal to M+N
' INTEGER M,N,0,I,II,d
PARAMETER (M=1,N=1,O=N+M)
DOUBLE PRECISION All(N,N),Al2(N, H) ,A21(M,N),A22 (M,M),B1(N,1),
 1B2(M,1),GH(1,N),GV(1,M),R,A(0,0),B(0,1),AT(0,0),BT(1,0)
C  Spatial and Time iterations
INTEGER X,T
PARAMETER (X=30,T=30)
DOUBLE PRECISION PH(X,T,N,N),PV(X,T,M,M),Qhh(N,N),Qvv(M,M),
1Qhv(X,T,N,M),Qvh(X,T,M,N),P(0,0),Q(0,0)

C DOUBLE PRECISION HH2(N,M),HH3(M,N),E(1,1),HH1(N,N), HH4 (M,M),
1H(0,0),D1(0,0),D2(0,0) ,HH(O,0),C(1,0),D(1,0),K2(1,0),RH(X,T,L, N)
2,KvV(X,T,1,M),P1L(N,N),P2(M,M),Qhv1(N,M),Qvhl(M,N)

COMMON /GAINV/ KV,PV
COMMON /GAINH/ KH,PH,QHEV
WRITE(*,*) 1t !

WRITE(*,*) 'Enter The Desired Number Of Spatial & Time Iterations'

4
WRITE(*,*) 'For Computing The Optimal Feedback Gains. Iterations'
WRITE(*,*) 'Must Be Smaller Or Equal To s==>' X T

WRITE(*,%) ' !
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WRITE(*,*) 'Now Enter The Number Of Spatial Iterations ===> !
READ (*,%*) SPCITR
WRITE(*,%*) ' !
WRITE(*,*) 'And Enter The Number Of Time Iterations ===>
READ(*,%*) TIMEITR

Set the initial conditions of the two-dimensional weightiing
matrix P(i,j) to ZERO for (i=1l, all 4's) and (all i's , §=1).
Assign arbitrary values to Ph(2,1) and Pv(1l,2).

O0000

DO 1000 I= 1, SPCITR
DO 1010 DIMT= 1, TIMEDIM
DO 1020 DIMT1= 1, TIMEDIM
PV(I,1,DIMT,DIMT1)= 0.0
1020 CONTINUE
1010 CONTINUE
1000 CONTINUE

DO 1100 I= 1, TIMEITR
DO 1110 DIMX= 1, SPCDIM
DO 1120 DIMX1= 1, SPCDIM
PH(1,I,DIMX,DIMX1)= 0.0
1120 CONTINUE
1110 CONTINUE
1100 CONTINUE

DO 1030 I=1, TIMEITR
DO 1011 DIMT= 1, TIMEDIM
DO 1021 DIMX= 1, SPCDIM
ohv(1l,I,DIMX,DIMT)= 0.0
1021 CONTINUE .
1011 CONTINUE
1030 CONTINUE

DO 1032 I=1, SPCITR
DO 1012 DIMT= 1, TIMEDIM
DO 1022 DIMX= 1, SPCDIM
Qvh(I,1,DIMT,DIMX)= 0.0

1022 CONTINUE
1012 CONTINUE
1032 CONTINUE
C
DO 1042 DIMT= 1, TIMEDIM
DO 1041 DIMX= 1, SPCDIM
Qvh(2,1,DIMT,DIMX)= 0.0
Qvh(l,2,DIMT,DIMX)= 0.0
1041 CONTINUE
1042 CONTINUE
C
DO 1051 DIMT= 1, TIMEDIM
DO 1052 DIMX= 1, SPCDIM
Qhv(2,1,DIMX,DIMT)= 0.0
Qhv(1l,2,DIMX,DIMT)= 0.0
1052 CONTINUE
1051 CONTINUE
C
WRITE (%, %) ' kkkddkkksh IMPORTANT REMARK! de e e % J % %k %k o
*
WRITE(* %) ' !
WRITE(*,*) 'The FOLLOWING weighting matrices Ph(i,3j), Pv(i,3),'
WRITE(*,*) 'Qhh(i,3), Qvv(i,j) and R MUST BE POSITIVE DEFINITE'
WRITE(*,6*) 'SYMMETRIC AND REAL!'®
WRITE(*%,*) ' '
WRITE(*,*) ' Enter initial value of matrix Ph ==> !
DO 1200 I= 1, SPCDIM
DO 1210 J= 1, SPCDIM
READ(*,*) PH(2,1,1,J)
P1L(I,J)=PH(2,1,1I,J)
1210 CONTINUE
1200 CONTINUE
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WRITE(*,*) ' Enter initial value of matrix Pv ==> !

DO 1220 I= 1, TIMEDIM
DO 1230 J= 1, TIMEDIM
READ(*,*) PV(1,2,I,J)
P2 (I,J)=PV(1,2,I,J)
CONTINUE

CONTINUE

WRITE(*,*) ' Enter Welghting Matrix Qhh ==> !
DO 1240 I= 1, SPCDIM

DO 1250 J= 1, SPCDIM

READ(*,*) Qhh(I,J)

CONTINUE
CONTINUE

WRITE(*,*) ' Enter Weighting Matrix Qvv ==> !
DO 1260 I= 1, TIMEDIM

DO 1270 J= 1, TIMEDIM

READ(*,*) Qvv(I,J)

CONTINUE
CONTINUE

WRITE(*,*) ' Enter The Input Weighting Factor R =

READ(*,*) R

CALL VCOMPACT (B,Bl,B2,DIM,SPCDIM,TIMEDIM,1)
CALL MTRS (B,BT,DIM,1)

>

CALL MCOMPACT (A,All,Al2,A2]1,A22,DIM,SPCDIM,TIMEDIM)

CALL MTRS (A,AT,DIM,DIM)

C FIND GAMMA=1l/(R+B'PB)

4002
4001
C

4004
4003
C

C

SHEPNS

DO 3000 J= 1, TIMEITR
DO 4000 II= 1, SPCITR
IF (J .EQ. 1) THEN

I=II+1
ELSE

I=I1
ENDIF

DO 4001 DIMX=1, SPCDIM
DO 4002 DIMX1=1l, SPCDIM
P1(DIMX,DIMX1)=PH(I,J,DIMX, DIMX1)
CONTINUE
CONTINUE

DO 4003 DIMT=1l, TIMEDIM
DO 4004 DIMT1=1, TIMEDIM
P2 (DIMT,DIMT1)=PV(I,J,DIMT,DIMT1)

-~ CONTINUE

CONTINUE

CALL DCOMPACT (P,Pl,P2,DIM,SPCDIM,TIMEDIM)
CALL MPROD (BT,P,C,1,DIM,DIM)
CALL MPROD (C,B,E,1,DIM,1)
E(1,1)=1/(E(l,1)+R)
K(k) = E *# [ TGAMMA * P(k+1) * PHI ]

CALL MPROD {(C,A,D,1l,DIM,DIM)
CALL MSPROD (D,E,K2,1,DIM)

C The optimal gains are KH and KV

O

DO 7 Il=1,SPCDIM
KH(I,J,1,I1)=K2(1,I1)
CONTINUE
DO 8 Il=l,TIMEDIM
KV(I,J,1,I1)=K2(1,SPCDIM+I1)
CONTINUE

34
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¢ P(k) = Q + TPHI*P(k+1)*[PHI - {GAMMA*K(X))}]
C

CALL MPROD (AT,P,H,DIM,DIM,DIM)

CALL MPROD (B,K2,D1,DIM,1,DIM)

CALL MSUB (A,Dl,D2,DIM,DIM)

CALI MPROD (H,D2,HH,DIM,DIM,DIM)

CALL MDCOMP (HH,HH1,HH2,HH3,HH4,DIM,SPCDIM,TIMEDIM)
CALL MSUM (Qhh,HH1,Pl,SPCDIM,SPCDIM)

CALL MSUM (Qvv,HH4,P2,TIMEDIM,TIMEDIM)

CALL MCOPY (~EH2,Qhvl,SPCDIM,TIMEDIM)

CALL MTRS (Qhvl,Qvhl,SPCDIM,TIMEDIM)

DO 4031 DIMX=1, SPCDIM
DO 4032 DIMX1=1, SPCDIM
PH(I+1,J,DIMX,DIMX1)=P1(DIMX,DIMX1)
4032 CONTINUE
4031 CONTINUE

DO 4033 DIMT=1, TIMEDIM
DO 4034 DIMT1=1, TIMEDIM
PV(I,J+1,DIMT,DIMT1)=P2 (DIMT,DIMT1)
4034 CONTINUE '
4033  CONTINUE
DO 4231 DIMX=1, SPCDIM
DO 4232 DIMT=1, TIMEDIM
Qhv (I+1,J,DIMX, DIMT)=Qhvl (DIMX,DIMT)
4232 CONTINUE
4231 CONTINUE
DO 4331 DIMX=1, SPCDIM
DO 4332 DIMT=1, TIMEDIM
ovh(I,J+1,DIMT,DIMX)=Qvhl (DIMT, DIMX
4332 CONTINUE ,
4331 CONTINUE

CALL MCOMPACT (Q,Qhh,Qhvl,Qvhl,Qvv,DIM,SPCDIM,TIMEDIM)
| CALL DCOMPACT (P,Pl1,P2,DIM,SPCDIM,TIMEDIM)
4000 CONTINUE |

3000 CONTINUE

DO 5001 I=1,SPCDIM
GH(1,I)=KH(SPCITR,TIMEITR,1,I)
5001 CONTINUE
DO 5002 I=1,TIMEDIM
GV(l,I)=KV(SPCITR,TIMEITR,1,I)

5002 CONTINUE
WRITE(*,*) 'Optimal Gains are:'
WRITE(#*,%*) 'GH ==>', (GH(1,I), I=1,SPCDIM)
WRITE(*,*) 'GV ==>', (GV(1,I), I=1,TIMEDIM)
WRITE(*,%*) l—e—eceeccccccnnr e r s n e e e n e e cc e ccc e ——- -1
WRITE(*,%*) 'Optimal Gain Matrices are:'
DO 5004 I=1,TIMEITR
C WRITE(*,*) I
DO 5003 J=1,SPCITR
C WRITE(*,2) KV(J,I,1,1)
c WRITE(*,2) KH(J,I,1,1)
5003 CONTINUE -
5004 CONTINUE -
DO 5014 I=1,TIMEITR
WRITE(*,*) I
DO 5013 J=1,SPCITR -
WRITE(*,2) Qhv(J,I,1,1)
5013 CONTINUE
5014 CONTINUE
DO 5005 J=1,DIM
C WRITE(*,*) 'Q ==>',(Q(J,I), I=1,DIM)
5005 CONTINUE
WRITE(*,%*) '=—werorrccccccccnae- - o o 2 i i 0 o e e '
2  FORMAT (F9.4) '
RETURN
END
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C*************************************************************#******
C* This routine generates a unit matrix J

C* *
C* A =T | v

C %t % ve Je % Je ok de sk de ok de i de sk de e dp e ok de Je de de de e Je e v de ok de db e e Jk ok Je e v T b e v e T ok ek T gk e ok e e Tk e ok e Tk ek ke ek ke K

C
SUBROUTINE MUNIT (A,N)
DIMENSION A(N,N)
TNTEGER N, I, J

C REAL A
DOUBLE PRECISION A
po 1 I=1,N
DO 2 J=1,N
- IF (I .EQ. J) THEN
A(I,J)=1.
ELSE
A(I,J)=0.
ENDIF |
2 CONTINUE
1 CONTINUE
RETURN
END
C
C e % e de & %k e de vk ok e o dr o v W 3k ok o Je 9k e db v e ok v e o e o 9 Y o ot W vk ok Y ok o I ok gt sk vk Sk Y T T g 9t e T Tt Jt v e e e e 7 K ok
C* This routine copies one matrix into another *
Cx %*
C* A =B *

C*********i**********************************i***********************
- ST
' SUBROUTINE MCOPY (A,B,N,M)

DIMENSION A(N,M), B(N,M)

INTEGER N,M,I,J
C REAL A, B

DOUBLE PRECISION A, B

DO 1 I=1, N

DO 2 J=1, M

B{(I,J)=A(I,J)

2 CONTINUE
1 CONTINUE

RETURN

END
c -
-C*********************************************************************
Cx A Square Matrix Routine %*
C* B - . %*
C* 17 Al A2 | *
C* A=] | : Q=N+M *
C* | A3 A4 | *
C % ¥
c***********************ﬁ*****i***************************************

C

SUBROUTINE MCOMPACT (A,Al,A2,A3,A4,Q,N,M)
C

INTEGER N,M,Q -
DOUBLE PRECISION A(Q,Q) ,AL(N,N) ,A2(N,M),A3(M,N),Ad (M,M)
DO 1 I=1,N
DO 2 J=1,N
A(I,J)=A1(I,J)
2 CONTINUE
DO 3 J=1,M
A(I,N+J)=A2(I,J)
CONTINUE |
CONTINUE
DO 4 I=1,M
DO 5 J=1,N
| A(I+N,J)=A3(I,T)
5 CONTINUE
DO 6 J=1,M
A(I+N,J+N)=a4(I,T)
CONTINUE
CONTINUE

W

= O
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RETURN
END
C -
C************************ﬂ*******************************************
C* A Non-Square Matrix Routine %
C* o
C* | Al | *
C* A =| : ; Q=N+M . %*
C* | A2 | ¥
®
C********************************************************************

C
SUBROUTINE VCOMPACT (A,Al,A2,Q,N,M,P)

C
INTEGER N,M,P,Q
DOUBLE PRECISION A(Q,P),Al(N,P) A2(N,P)
DO 1 I=1l,N |
DO 2 J=1,P
A(I,J)=A1(I,J)
2 CONTINUE
1 CONTINUE
DO 4 I=1 M
DO § J=1,P
A(I+N,J)=A2(I,J)
5 CONTINUE
4 CONTINUE
RETURN
END
C
c********************************************************************
C* A Diagonal Matrix Routine
C# . %
C* | Al .NULL | *
C* A=] | ; Q=N+M - *
cC* | _ NULL A2 _| %
C* | : *
(9 e e e e e e s 3 e o T Tk e e e de e Fe e e de gk ke e ke sk e 7k ok ke ke o e e ek ok g e e e vk ok o e o o ok b kg e ok ko ko ok ok

C
SUBROUTINE DCOMPACT (2&,Al,A2,Q,N, M)

C.
INTEGER N,M,Q | ] |
DOUBLE PRECISION A(Q,Q),AlL(N,N) A2(M,M)
DO 1 I=1,N |
DO 2 J=1,N
A(I,J)=21(I,J)
2 CONTINUE
DO 3 J=1,M
A(I,N+J)=0.0
3 CONTINUE
i CONTINUE
DO 4 I=1,M
DO 5 J=1,N
A(I+N,J)=0.0
5 CONTINUE
DO 6 J=1,M
A(I+N,J+N)=2a2(T,J)
6 CONTINUE
4 CONTINUE
RETURN
END
C
C********************************************************************
C* A Decomposed Square Matrix Routine %
C* %
C* |~ Al A2 | *
C* A=] | H Q=N+M *
C* | _ A3 A4 | %*
C* | %
v % Je Je de Je de e % Je e Je de d vk K % ek ok e e T vk de g de v e e de e de v e e e e de v e ok v %k ke %k %k o Ok e e e vk e g e v ok e o e ok ek

C
SUBROUTINE MDCOMP (A,Al,A2,A3,A24,Q,N,M)
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INTEGER N,M,Q

DOUBLE PRECISION A(Q,Q) ,AL(N,N),A2(N,M),A3(M,N),Ad (M,M)

DO 1 I=1,N
DO 2 J=1,N
Al(I,J)=A(I,J)
CONTINUE
DO 3 J=1,M
A2(I,J)=A(I,N+J)
CONTINUE

CONTINUE

DO 4 JI=1,M

DO 5 J=1,N
A3(I,J)=A(I+N,J)
CONTINUE

DO 6 J=1,M
A4 (I,T)=A(I+N,JT+N)
CONTINUE

CONTINUE

RETURN

END

C***i***************************************************ﬁ*i**********

C
¥
C*
C*
C*
CX

A Decomposed Non-square Matrix Routine *

%

| Al | *

A =] | ;o Q=N+M . *
|_ A2 _| *

*

*

C***************************************************i***************

C

C

| a8

> Ut

-

SUBROUTINE VDCOMP (A,Al,A2,Q,N,M,P)

INTEGER N,M,P,Q
DOUBLE PRECISION A(Q,P),ALl(N,P),A2(N,P)
DO 1 I=1,N
DO 2 J=1,P
Al(I,J)=A(I,J)
CONTINUE
CONTINUE
DO 4 I=1,M
DO 5 J=1,P
A2(I,J)=A(I+N,J)
CONTINUE
CONTINUE
RETURN
END

(O e % e v g de v ok de ok de de vk de de I v e v g sk de v e o ok e v o vk ok e gk de e de S d v e O g e Sk g e o e T d e gk e e e gk e gk e ke Sk de e e e ok ke

C*
C*x
C*
C%
C*
Cx

C

c

H N

D

A Decomposed Diagonal Matrix Routine %

) *

|- Al NULL | *
A=| l ; Q=N+M | *
| NULL A2 _| *
%*

x

C % e 7 o e dr S e de dr e de de S e ok I e vk e e ok dk e o e ko o e de e g de ke gk e e T e ok dke e s o ok gk e e Sk e e o e sk o e e e e e ke e ke

SUBROUTINE DDCOMP (A,Al,A2,Q,N,M)

INTEGER N,M,0Q .
DOUBLE PRECISION * A(Q,Q),Al(N,N),A2(M,M)
DO 1 I=1,N |
DO 2 J=1,N

AL(I,J)=A(I,J)

CONTINUE -
CONTINUE
DO 3 I=1,M

DO 4 J=1,M

CA2(I,J)=A(I+N,J+N)

CONTINUE
CONTINUE
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RETURN
END
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What is claimed is:

1. A control system comprising:

A. a linear continuous distributed parameter system,
which, when excited by an input signal, produces
both desired output responses and at least one un-
desired output response, which has-a continuous
distributed transfer function describable by a par-
tial differential equation with respect to at least two
independent variables, at least one of which is lim-
ited in length,

B. a physical body which is so placed that it is subject
to the undesired output response,

C. means using a Moshfegh transform format for
converting said continuous distributed transfer
function of said system, said function describing
the transfer between input signal and at least one
undesired output response, into a digital distributed
transfer function in a discrete format and for ob-
taining from the digital distributed transfer func-
tion a digital distributed state-space model of said
system capable of use with a digital computer, said
model being in the form of state-space equations,

D. means for using said model and responsive to the
mput signal for deriving an optimal computed out-
put signal representing a derived output response
which 1s coincident in time and space with the
undesired output response, equal in magnitude and
opposite in phase, and

E. transducer means responsive to the computed
output signal for applying the derived output re-
sponse to said body to cancel the effects of the
desired output response.

2. A control system in accordance with claim 1,

wherein the means for converting further comprises:

A. means for converting the continuous distributed
transfer function into Chester transform equations
to obtain said digital distributed transfer function,
and

B. means for converting the Chester transform equa-
tions into said state-space model of said system.

3. A control system in accordance with claim 2,
wherein the means for deriving an optimal computed
output signal further comprises:

A. means for deriving a plurality of possible com-

puted output signals, and

B. optimizing means for selecting the best one of the
plurality of possible computed output signals to
obtain the actual computed output signal.

4. A control system comprising:

A. a hinear continuous distributed parameter system,
which, when excited by an input signal, produces
both desired output responses and at least one un-
desired output response,

B. a physical body which is so placed that it is subject

to the undesired output response,

C. means using a Moshfegh transform format for
converting a continuous distributed model of the
linear distributed system with at least two indepen-
dent variables, at least one of which is limited in
length, 1nto a continuous distributed transfer func-
tion,

D. means using a Chester transform format for con-
verting the continuous distributed transfer function
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into a discrete distributed transfer function capable
of use with a digital computer,

E. means for converting the discrete distributed
transfer function into a distributed state-space
model of the linear distributed parameter system,

F. means for using the distributed state-space model
of the transfer function and responsive to the input
signal for deriving a computed output signal repre-
senting a derived output response which is coinci-
dent in time and space with the undesired output
response, equal in magnitude and opposite in phase,
and

G. transducer means responsive to the computed
output signal for applying the derived output re-
sponse to the physical body to cancel the effects of
the undesired output response.

9. A control system in accordance with claim 4,
wherein |
A. the continuous distributed transfer function is
derived from equations having the form

Jd o x.1 + e agx.rz

Sx Py + f(x 1) = gu(x,)

and
B. said state-space model has the form

xh(i + 1) ] I:Al A ]I:xh(f’j) :l I:Bl ] |
— + !
I:xi’(f,j + 1) A3 As || x)) B> u(if)

h .
wWij) =[C1 G [" (@)) }+ D u(ij).
x¥(i,/)

6. A control system in accordance with claim 4,
wherein the means for deriving a computed output
signal further comprises:

A. means for deriving a plurality of possible com-

puted output signals, and

B. optimizing means for selecting the best one of the

plurality of possible computed output signals to
obtain the actual computed output signal.

7. A control system in accordance with claim 6,
wherein the plurality of possible computed output sig-
nals is represented by the expression y(i,j) for the de-
rived output in the digital distributed state-space model

equations
Ih(f + 1) J_ [Al A J[xh(‘.‘j-) ] [B] ] '
[x"(f.j + 14 L4 As L x) *1 B, u(i,j)

h .
wip =1C1 G [" ) :|+ D u(ij)

and wherein the equations for the best one of the plural-
ity of possible output signals has been selected when the
value of the expression u(i,j) is chosen as the optimum
value u“(i,)), which is an optimum quartic controller in
accordance with the control equation
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8. A control system comprising:

A. a linear continuous distributed parameter system,
which, when excited by an input signal, produces
both desired output responses and at least one un-
desired output response,

B. a physical body which 1s so placed that it is subject
to the undesired output response,

C. means using a first transform format operating
with both space and time as independent variables,
wherein the space variable is limited in length, for
converting a continuous distributed model of the
linear distributed system into a continuous distrib-
uted transfer function,

D. means using a second transform format for con-
verting the continuous distributed transfer function
into a discrete distributed transfer function capable
of use with a digital computer,

E. means for converting the discrete distributed
transfer function into a distributed state-space
model of the linear distributed parameter system,

F. means for using the distributed state-space model
of the transfer function and responsive to the input
signal for deriving a computed output signal repre-
senting a derived output response which 1s coinci-
dent in time and space with the undesired output
response, equal in magnitude and opposite in phase,
and

G. transducer means responsive to the computed
output signal for applying the derived output re-
sponse to the physical body to cancel the effects of
the undesired output response,

wherein the first transform format i1s mathematically in
the nature of a Laplace transform and the second trans-
form format is mathematically in the nature of a Z-
transform format except that at least one of the variable
dimensions each of the first transform format and of the
second transform format are length-limited spatial di-
mensions in addition to the strictly time dimensions
usually used in Laplace transforms and in z-transforms.

9. A control system comprising:

A. a linear continuous distributed parameter system,
which, when excited by an input signal, produces
both desired output responses and at least one un-
desired output response,

B. a physical body which is so placed that it 1s subject
to the undesired output response,

C. means using a Moshfegh transform format for
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converting a continuous distributed model of the
linear distributed system with at least two indepen-
dent variables, at least one of which i1s limited in

length, 1nto a continuous distributed transfer func-
tion,

D. means using a Chester transform format for con-
verting the continuous distributed transfer function
into a discrete distributed transfer function capable
of use with a digital computer,

E. means for converting the discrete distributed
transfer function into a distributed state-space
model of the linear distributed parameter system,

F. means for using the distributed state-space model
of the transfer function and responsive to the input
signal for deriving a computed output signal repre-
senting a derived output response which is coinci-
dent in time and space with the undesired output

response, equal in magnitude and opposite in phase,
and

G. transducer means responsive to the computed
output signal for applying the derived output re-

sponse to the physical body to cancel the effects of
the undesired output response.

and wherein the means for deriving a computed output
signal further comprises:
H. means for deriving a plurality of possible com-
puted output signals, and
I. optimizing means for selecting the best one of the

plurality of possible computed 'output signals to
obtain the actual computed output signal,

a_nd wherein the plurality of possible computed output
signals 1s represented by the expression y(i,j) for the
derived output in the digital distributed state-space

model equations
:”:x"(flf!
x¥(1,))

=1 4
:|+ D u(p)

Wij) = [C1 G ["‘h“’”
x¥(i.)

A)

X + 1))
Ag

xij + 1)

and wherein the equations for the best one of the plural-
ity of possible output signals has been selected when the
value of the expression u(i,j) is chosen as the optimum

value u°(1,3), which is an optimum quartic controller in
accordance with the control equation

u(ip) = — [G"Gj) G'G) [xh(m

):"

x¥(i,

¥ * * * =%
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