0O

| | US0053275295A

United States Patent 9 r11] Patent Number: 5,327,529

Fults et al. 451 Date of Patent: Jul. 5, 1994

[54] PROCESS OF DESIGNING USER’S

INTERFACES FOR APPLICATION OTHER PUBLICATIONS
PROGRAMS “Making the Same Look Different”-ORACLE 1990
(Advertisement).

[75] Inventors: Douglas A. Fults, San Leandro; “Automatic, Look-And-Feel Independent Dialog Cre-
Anthony M. Requist, Alameda, both ation For Graphical User Interfaces”, Brad Vander
of Calif. Zanden and Brad A. Myers; School of Computer Sci-

_ ence, Carnegie Mellon University, CHI *90 Proceeding-

[73] Assignee: Geoworks, Berkeley, Calif. s-Apr. 1990, pp. 27-34.

“Neuron Data Open Interface” Technical Overview

[21] Appl. No.: 942,354 The Tool for Building Portable Graphical User Inter-

1ad- | faces Across All Windowing Standards-Neuron Data

[22] Filed: Sep. 9, 1992 Inc.. May 1991, _

Related U.S. Application Data Primary Examiner—Raymond J. Bayerl

Attorney, Agent, or Firm—Wilson, Sonsini, Goodrich &
f63] Continuation of Ser. No. 681,079, Apr. 5, 1991, aban- Rosati

doned, which is a continuation-in-part of Ser. No.

586,861, Sep. 24, 1990, abandoned. [57) ABSTRACT
. A method for invoking a user interface for use with an
E% {?ts C1C15 """""""""""""" GOok gg/sljigoggs%gg application operating in a computer system which in-

. volves providing in the computer system a generic
[58] Field of Search 3 953}25541 57%01&0’5 1226 113195’ object class that corresponds to a class of function that

is to be performed using the user interface; specifying i.n
[56] References Cited the application instance data in the form of a generic

object specification that corresponds to the genernc
U.S. PATENT DOCUMENTS object class, the instance data including attribute crite-

4,692,858 9/1987 Redford et al.coe...c. 3957157 ria and hint criteria; providing in the computer system
4,782,463 11/1988 Sanders et al. .coeeveciierrirnnnnnns 395/70 at least one speciﬁc user interface toolbox and control-
4,811,240 3/1989 Ballou et al. .coeierireeennennanenne 395/1355 ler that operates in the computer system to provide 3
4,866,638 9/1989 Cosentino et al. ...cceveecennnnnn. 395/159

selection of possible specific user interface implementa-

5,179,657 1/1993 DykStal et al, .oereeeeeanenns 395/155 X tions for use in perfomﬂng the class of function; and
. 5,021,976 6/1991 Wexelblat et a].a.i 3. .953/?;5/515; pI’GViding in the computer System at least onle inter-
g*?‘:'égg% g;}gg; g::;nngham CLaL o 3057700 x preter that corresponds to the at least one specific user
5119475 6/1992 Smith et al. .o, 3957156 nterface toolbox and controller.
5121.477 6/1992 Koopmans et al. ..o..ooeeee...... 395/156 . _
5,179,700 1/1993 Aihara et al.ccccveerereeneee. 395/650 11 Claims, 24 Drawing Sheets
HUMAN/ COMPUTER APPLICATION

INTERACTION DESIGN
CONSIDERATIONS

INPUT/0UTPUT
REQUIREMENTS

HINTS GENERIC OBJECTS

APPLICATION
INTERFACE

DESIGNER
-

GENERIC USER INTERFACE DESIGN
(ob Ject and hints)

Specific Ul Interpreter

NewWove

A
ON-SCREEN ON-SCREEN . oo
REPRESENTATION: {REPRESENTATION

Openl cok

ON-SCREEN
REPRESENTATION

U.S. Patent July 5, 1994 Sheet 10f24 9,327,929

HUMAN/COMPUTER
INTERACTION DESIGN

CONSIDERATIONS

APPLICATION
INPUT/Z0UTPUT
REQUIREMENTS

STYLE GUIDE FOR

SPECIFIC USER
INTERFACE

APPLICATIDN 1"
INTERFACE

DESIGNER

SPECIFIC INTERFACE
DESIGN FOR PARTICULAR Ul
(ob ject with attributes)

ON-SCREEN
REPRESENTATION

FlG.—1

U.S. Patent July 5, 1994 Sheet 2 of 24 5,327,529

| HUMAN/COMPUTER
INTERACTION DESIGN
CONSIDERATIONS

APPLICATION
INPUT/0UTPUT
REQUIREMENTS

HINTS Q GENERIC OBJECTS

APPLICATIDON
INTERFACE

DESIGNER

GENERIC USER INTERFACE DESIGN
(cbject and hints)

Specl-Flc Ul Interpreter

Motif NewWave UpenL ook

ON-SCREEN ON-SCREEN | . . | DN-SCREEN
REPRESENTATION| | REPRESENTATION REPRESENTATION

FIG.—2

U.S. Patent July 5, 1994 Sheet 3 of 24 5,327,529

Printer [ptions
Epson FH-80 on LPTI Chonge Options..

Document [ptions .
Print Quality High O Medium O Low(Fast)

Numker of Coples: 1AV

FIG.—3

Inter

action

1
[]
]
:
| -
[
—
bl
i
Y B
1 '-u
]
LI T - i.
e -
'y
.- - -
L
-
-
e
- - -
—n--llnl-"'r
[——— E-
- —— e
E] ﬁ-i—.ﬂ
A]
- ——— i y—

& —mmgy e 4 Sekereremiee

Trigger 1
riqqer 2

FIG.—4

i

r

]
maam

- - r
e o .
cmm e e o gy i B A
- —
—-—r e -

O Arts for [0O0S/90
] Canvas 2.1

O Digital Darkroom

U.S. Patent July 5, 1994 Sheet 4 of 24 5,327,529

(.
O ®
O 0 C
D O C
FIG.—9 |
—ICJ______ Somple Applicotion (o]]
FIG.—10

METHOD GOAWAY

METHOD PITCH
SEND

message_

message._
GODAWAY

PITCH
SALESMAN

YOU

FIG.—11

U.S. Patent July 5, 1994 Sheet 5 of 24 5,327,529

CLASS GenTrigger

UBJECT DOptilonTrigger

Attributes
Moniker
Hints

OBJECT EnableTrigger
Attributes

Moniker
Hints

FIG.— 12

GenApplication

GenPrimary

GenView ' GenInteraction

GenTrigger GenTrigger

FlG.—13

U.S. Patent July 5, 1994 Sheet 6 of 24 5,327,529

GenPrimary

ED Sample Application IED
GenInteraction

II o

GenView

FIG.—14

|E===—=SAMPLE

QUIT

FlG.—193

U.S. Patent July 5, 1994 Sheet 7 of 24 5,327,529

=] SAMPLEEXE. O
I

'llﬂ“l

Suve
' ; Suve _ASIII

(out

FIG.—16

Application

Application

Specific Ul

FIG.—17 FIG.—18

U.S. Patent July 5, 1994 Sheet 8 of 24 5,327,529

Printer [Op+tions

Epson FH-80 on LPT1 Change Options..

Document [ptions
Print Qualityr € High O Medium < Low(Fast)

Number of Copies m '

FIG.—19

Printer Configura-tion:

Click to cycle through choices

Other Op-tions:
Print Quality: € NLQ ORegulur O Draft

Coples: 1AV

FlG.—20

U.S. Patent July 5, 1994 Sheet 9 of 24 ' 5,327,529

Application (s) Application

Data

Generic User Interface
Oobject Libary o

Controller

Generic Ul
Specification

Specific Ul Interpreter

muse below)

|

|

|

_ |
(for the Specific Ul I
|

|

|

Specific

Specific User Interpreter UI Application
Toolbox & Controller Interface

Dota

Kbd Mousel! Video
ariverit| Drivery |driver
aro-—

wore

FIG.—21

U.S. Patent July 5, 1994 Sheet 10 of 24 5,327,529

Application
Data

Application (s)

Specific
Ul Application

Interfoce
Data

Specific User Interpreter

Toolbox & Controller

Kid Mouse | | Video
driver| |Driveri}ldriver
Hard-—

FIG.—&2&

(Prior Artd

U.S. Patent

July §, 1994

Fite |

GenDocumentlontrol

Instance Data

FIG.—23

Save

Copy to Desktop..
Open

Create o New..
Close

FIG.—24

Sheet 11 of 24

5,327,529

U.S. Patent July 5, 1994 Sheet 12 of 24 5,327,529

Attributes Hints
int numitems HINT_INTERPRET_BASED ONOOITEMS
boolean dynamic HINT_RECOMMEND_PDPUP LIST

monikerType moniker LT RECOMMEND_RADID. BUTTONS

HINT_RECOMMEND_SCROLLING_LIST
HINT_SHOW_ALL _OPTIONS
HINT_SHOW_CURRENT_SELECTION_ONLY

RINT_SHOW_ITEM_BITMAPS

HINT_USE_MAXIMAL _SCREEN_SPACE
HINT_USE_MINIMAL _SCREEN_SPACE

FIG.—27

Search
O Values
& Formulas

O Annotations

Avant Garde

Couler

Gothic

Helvetica

FIG__28 Modern

Palatino
Times

FIG.—30

Avant Gurde

Couler

Gothic

Helvetica
Modern

FIG.—29

Sheet 13 of 24 5,327,529

July 5, 1994

U.S. Patent

(LT > Suall)
4] 9sn ag Avuw 35| Bumouns

c3SxSz2anw ¢

SWILIOOND™@3SYE ™ L3JAILNIINIH) 30

SNOILJO ™ T~ MOHS™INIH 0
JIVASTNIZHIS T WHIXYW 3SNLNIH ¥
SNOLLNE~O0IAYY " ONIWWOI3Y~LNIHY ONY

(0l > SWall) Al

(G > SuWayl > 2)
41 3sn ag Aow Bui33as aalsNax3

APJ0E LUDAY

01 03 dn ‘suojrdo
G~-2 404 papuawuolad

Sauwl})10 3V suojxdo
UOJ3D3)13S)]0 SMOYS

ascxvds uaauds 30

auwi} v 39 Bumoys

(LTS X ANV H1BPOK SRS S 30 NN "

SW3LI ¢X) ND™q3sSvE~L3dYILNITINIHY 0 0913 9AISH $0 Jaqunu Auo sajpuol x
LSITTONITIONISTANIWWOIIY " INIH 0 214309 a3vds U33auds

=ushi 4o daauni auouke o | | f| [demog | o ST S

3s17 Bumoduds

5

3

runowo abuv) sa|ldnNIdo %

Buij.3 s aAIsN)ax3

: C

SIS X>9 ON E Suisooud
SWILIOOND™Q3SYE ™~ 13dAILNILNIHY 0 ~SBuBIT SUdn suordo Mo swous
A'INO NOILJ3T3S LN3JAND AOHS INIH D ENERREY UDJ1D3)3S FUIUJND SMOUS
30VdS " NIFAIS T IVHINIW - ISNINIH 0 Swayl

LSIT dNdOd™UNIWKWOI3N~LNIH) ONY

(9T > Swail A0

_ (9T > Swaypl > 9)
41 3sn aq Aou uo3}INg NUAK P330IA3JOON

anods uaaJdis 40
FUNOWY VWS . sa|dnNao0o

3Ny U0}V 3uduajul aping a3)A1S a)duox?

9] 5 404 PIAPUIWWOISIU

mmu_o_c_u. 1 86pon 3dissod

2
e
.
-

UO33NE NUBW P33VIASUACCY

July 5, 1994 Sheet 14 of 24 5,327,529

U.S. Patent

ce—

(1T > X (INV

SW3LI <(X> NO q3svd L3dAFLNI LNIH> 0

1SITTONITOA3S ANIWWOI3Y LNIH a0
SWall JO J3AGuNu DIWOUAP [

(1T > SuWalxb
4] 3sn adq Aow 3si Bumodds

0T > X > 2 aNV

SHILIOONO T3SvE ™ LIdIILNI ANIH) a0
dYWLIE WILI MOHS INIH a0
SNOILdO™ 11V MOHS™ INIH 30

JIVdS T NIIJIS WHIXYA 3ISN INIH 0

SNOLLNE 010V ON3WWOJ3Y LNIH) ONY

(0i > swail)) 3l

(G > Suwal}l > 2 UNV
(2100)I0AC Sdowiig JaXiuouw)

JI @sn ad Aouw uojing olpoy 191iydoudn
31Ny UOj3V3aUdduaazul aping a)Ails

Dl

UJP O
VD3 dAI3H

DiY3-09)

43N0

APJ40f JUDAY

awjy v 3o Bumoys
S3lU}Ud (O] 4O F)NVI3P %

SWall 40 Jagunu Auo SapPUVYy %

asnods uaaJds JO FUNOWD
aBuv) 03 wnipaw s3|dNDID0 %

13s17 Buinouons

01 03 dn ‘suojpdo
-2 U004 PapuUaWWodad

uojzdo yoova yiim
sdowllg 4aXIUOW SMOYs

Sawi).)¢ 3V suojj}do
UO|3.D3)3S 1|V SMOYS

anods uaaJds Jo
junowo aBuv) sajdnddo

Uo33Ng OIPVY 10Iiydody

U.S. Patent July 5, 1994 Sheet 15 of 24

GenList

Montker = Shape
- 6 Items
not dynamic

HINT_USE_MINIMAL _SCREEN _SPACE
HINT_SHOW_ITEM_BITMAPS

Moniker = Circle
HINT_OPTIONAL _MONIKER_BITMAP (¢ | Circle |»

Mdmker = Heart
HINT_DOPTIONAL _MONIKER_BITMAP (

Moniker = Line
HINT_OPTIONAL _MONIKER_BITMAP (

Moniker = [Oval
HINT_OPTIONAL _MONIKER_BITMAP (

Moniker = Square
HINT_OPTIONAL _MONIKER_BITMAP (|Square})

Moniker = Triangle
HINT_OPTIONAL _MONIKER_BITMAP ({Triangle|)

M=
Circle Heart Line Oval Square] | Triangle

FlG.—33

5,327,929

Circle
Heart

L.Ine

Oval
Square
Trianglet

U.S. Patent

July 5, 1994 Sheet 16 of 24

GenPrimary

Moniker = *Write”

Moniker = ‘Utilities”

GenTrigger '

Moniker = “Create Footnote”
HINT ADVANCED |

HINT_DESCRIPTIION (Create o

footnote at the text Insert point)
HINT_DOPTIONAL _MONIKER_BITMAP

<>

Moniker = “‘Check Spelling”
HINT _DESCRIPTION (Checks

spelling of document)
HINT_DPTIONAL _MONIKER_BITMAP

FlG.—34

5,327,529

U.S. Patent July 5, 1994 Sheet 17 of 24 5,327,529

[T v T T
- owmes [-

Create Footnote
Check Spelling ,

F'lG.—35

Checks spelling of document '

FlG.—36

U.S. Patent July 5, 1994 Sheet 18 of 24 5,327,529

L wete [[1
- - -|Options| - - - |Utities|---

- Novice Create Footnote
v/ Advanced Check Spelling

FIG.—3%7

Ll wete [T
- - -lOptions| - - - [Utwitles|---

v/ Novice Check Spelling
Advanced - - -

FlG.—38

U.S. Patent July 5, 1994 Sheet 19 of 24 5,327,529

Method 1 (Instance)
Method 2 (Instance);

tC.
Instance Data € e

LR
MethodHandler (Instance, Message):

FIG.—39

Method 1 (Instance)

Method 2 (Instance);
etc.

pointer to Method 1
pointer to Method 2

Instonce Data

FIG.—40

U.S. Patent July 5, 1994 Sheet 20 of i4 5,327,529

parent class
structure

pointer to class pointer tTo superclass

Intance Data

Message Ii pointer to Methodt Methodl(Instnnce)l
Message @ pointer to Method?

Method2(Instance

FIG.—41

00| [BOC

User

Application
Context:

what Is the Input?
where is t?

User Action and Respone

double click on text:
select word

triple click on text:
select line

System quick fox

FlG.—42

(Prior Art)

U.S. Patent July 5, 1994 Sheet 21 of 24

9,327,529

Application

WHAT 1S ITHE INPUT?
double click

|
WHERE IS IT?
text object

User Action and Respone:

double click on text:
select word

triple click on text
select line

Specific Ul Interpreter|

System quick fox

FlG.—43

U.S. Patent July 5, 1994 Sheet 22 of 24 5,327,529

HUMAN/COMPUTER APPLICATION STYLE GUIDE FOR
INTERACTION DESIGN INPUT/Z0UTPUT SPECIFIC USER

CONSIBERATIONS REQUIREMENTS INTERFACE

APPLICATION
INTERFACE

DESIGNER

Specific User Interface
Specification for Particular
Ul

ON-SCREEN
REPRESENTATION

FlG.—44

(Prior Art)

U.S. Patent July 5, 1994 Sheet 23 of 24 5,327,529

HUMAN/COMPUTER
| INTERACTION DESIGN

CONSIDERATIONS

APPLICATIDN

INPUT/0UTPUT
REQUIREMENTS

HINTS Q GENERIC OBJECTS

APPLICATION
INTERFACE

DESIGNER

i

GENERIC USER INTERFACE
SPECIFICATION

Spe cIfic Ul Interpeter

Motif NewWave OpenL ook
ON-SCREEN ON-SCREEN .o e OUN-SCREEN
| REPRESENTATIDN REPRESENTATION REPRESENTATION

FIG.—45

U.S. Patent July 5, 1994 Sheet 24 of 24 5,327,529

FIG.—47

5,327,529

1

PROCESS OF DESIGNING USER'’S INTERFACES
FOR APPLICATION PROGRAMS

This application is a continuation of application Ser.
No. 07/681,079, filed Apr. 5, 1991, now abandoned,
which is a continuation-in-part of application Ser. No.
07/586,861, filed Sep. 24, 1990, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

In general, the present invention relates to an applica-
tion program operating in a computer and, more partic-
ularly, the invention relates to a process for designating
a user interface of an application program.

2. Description of the Related Art Applications

An application (or program) is a tool which allows a
person to use a computer to accompiish a task. For
example, a word processor provides the user of a com-
puter with a way to write, store, and print out letters. A
drawing program allows him to create charts, diagrams,
and organizational charts. As far as the user is con-
cerned, the application is the interface between him and
the computer hardware. However, from the applica-
tion’s perspective, there is another layer.

Operating Systems

An operating system is a program which acts as an
interface between applications and the computer hard-
ware. It provides an environment in which a user may
execute programs. Operating systems attempt to make
the computer system easy and efficient to use. Operat-
ing systems in conjunction with the computer hardware
are often called environments. These principles are
discussed by James Peterson and Abraham Silberschatz
in “Operating System Concepts’.

User Interfaces

A user interface (UI) 1s a set of rules and conventions
by which a computer system communicates with the
person operating it. Initially, operating systems (such as
UNIX or MS-DOS) featured text-based command line
interfaces. Users were expected to use and remember
complicated, forgettable commands such as “enscript-
2Gr-Plw.” Different applications all had different user
interfaces—to print the current document, a user might
have to press the function key F7 in a word processor
and the keys Ctri-Alt-P 1n a database program. Comput-
ers were difficult to learn, difficult to use, and, worst of
all, inconsistent. In the pursuit of the often-coined prop-
erty known as “user friendliness,” much work was done
in terms of improving user interfaces. Just as the per-
sonal computer market as a whole 1s changing rapidly
and drastically, so too are user interface standards.
Through the years, operating systems have evolved
from complicated text-based, command line interfaces,
like UNIX or MS-DOS, to graphical, windowing inter-
faces such as the Apple Macintosh and Microsoft Win-
dows. These new graphical user interfaces (GUISs) fea-
ture menus, buttons, and windows accessed by a mouse.
The graphical, intuitive nature of these interfaces
solved many of the problems inherent in earlier operat-
ing systems. GUIs typically provide a large tool kit of
user interface gadgets such as windows, buttons, and
menus. Applications make use of these Ul items to 1m-
plement their interaction with the user. In order to
avoid inconsistent application interfaces, companies
develop rules and conventions for using the Ul gadgets.

5

10

15

20

235

30

35

45

50

35

65

2

Documents known as style guides are provided in an
attempt to instruct application designers in the appro-
priate usage of the user interface gadgets offered by a
system (see “Style Guides” for more detailed informa-
tion). Some examples of such user interface standards
are OSF/Motif, OpenLook, CUA, NewWave, and
Macintosh. Each of these standards shall be referred to
herein as a specific user interface.

However, even applications developed for a “user
friendly” environment like Windows or Macintosh
sometimes can be difficult to use. As applications have
become more and more powerful, some have also be-
come more and more difficult to use. There are so many
fascinating and complex things users can do with these
new programs that it can be very difficult to create a
user interface that 1s always easy to use. A new concept
in the GUI community attempts to come to terms with
this problem. It is the scalable graphic user interface.
Such a GUI allows the same applications to be accessed
at various levels of functionality. These levels range
from an appliance mode, where users are only required
to push a few buttons, to a novice computer interface
(such as Tandy’s Deskmate T™), to a full-fledged pro-
fessional graphic user interface like the Motif TM inter-
face. Users, as their skills and needs grow, may simply
switch interface levels to access more powerful fea-
tures. So, for example, if users only want to quickly type
a letter or envelope, they do not have to wade through
a program designed to produce newsletters involving
multiple columns of text running from page to page and
graphics placed randomly throughout the document.
They can merely run the word processor in appliance
mode and type a simple letter without having to set
many different options and to pick their way through a
a number of extra features (See “Style Guides” for how
scalability relates to style guides).

Applications Development

Applications have always been difficult and time-
consuming to develop. However, because of the vola-
tile and diverse nature of the computer software indus-
try, creating applications which execute under different
specific user interface standards often can be exception-
ally challenging. In the past, much or all of the applica-
tion often was rewritten in order to conform to the
various standards, and each version often was offered
for sale separately.

Some applications have implemented the scalable
GUI concept to some extent. Programs such as Mi-
crosoft Word have “full and short menu’ modes; nov-

“ices may choose “short menus,” which hides advanced

functionality by simply removing advanced commands
from the main menu. The user still has to contend with
multiple windows and pull-down menus, difficult
enough concepts in their own right. However, very few
programs even feature this Iimited scalability. Usually,
if users would like both a simple word processor and an
advanced word processor, they would have to purchase
two separate packages (in fact, some software publish-
ers offer several similar packages of varying complexity
in their product line.

Conventional Application Design Process

The typical process of writing an application is as
follows. An environment is chosen (e.g., UNIX work-
station running Motif). The functional goals of the pro-
gram are specified (e.g., a powerful word processor).
Then the user accessibility goals are specified (e.g.,

5,327,529

3

must be easy and intuitive to use and follow Motif
guidelines). A programmer or team of programmers
implements the functionality, and a human interface
expert or team (perhaps the same programmers) designs
the user interface to conform with the style guide for 5
the environment. |

We will focus on the user interface designer. The
interface designer balances human/computer interac-
tion design considerations, application input and output
requirements, and the style guide for the specific user 10
interface to create a specific interface description (typi-
cally in the form of user interface objects with attri-
butes) for the application. The graphical user interface
system software then implements this specific descrip-
tion, creating an on-screen representation. 15

If an operating system could somehow interpret the
user interface needs of an application and provide a
good implementation of one or more style guides, both
application developers and users would benefit.

SUMMARY OF THE INVENTION

It 1s an objective of the present invention to provide
a new process for generating on-screen application
interface for an application program.

It 1s another objective of the present invention to 25
provide a new process for generating user interfaces for
application programs. _

It 1s another objective of the present invention to
provide a new process for generating the on-screen
application interface in such a way that the application 30
1s largely independent of changes in specific user inter-
faces. Developing an application is a challenging and
time-consuming project. One essential aspect of this
process is the design and implementation of the applica-
tion’s user interface. In the traditional process of inter- 35
face design, the developer defines application input-
/output requirements and a list of human-to-computer
design considerations associated with those require-
ments. Referring to the style guide for the specific user
interface (e.g. Motif, OpenLook, or Windows) for 40
which the application is being designed, the designer
melds all three considerations together when defining
the user interface. He makes selections from the gadget
toolkit offered by the specific Ul and decides how those
objects should be arranged on the screen. These selec- 45
tions and decisions are made with an eye toward subjec-
tive design considerations. The exact final interface
design 1s then stored in data structures, which are later
faithfully rendered on screen by system software. To
run the application under a different specific Ul, the 50
design process would have to be repeated from scratch,
yielding a new executable version of the application.

BRIEF DESCRIPTION OF THE DRAWINGS

F1G. 1 illustrates a conventional application design 55
process.

FI1G. 2 illustrates a application design process accord-
ing to the present invention.

FIG. 3 illustrates a dialogue box.

FIG. 4 illustrates a menu. 60

FIG. § illustrates pixels on a screen.

FIG. 6 illustrates a scroll bar.

FIG. 7 illustrates a scrolling list.

FIG. 8 illustrates a submenu.

FI1G. 9 illustrates hierarchy of objects in tree data 65
structure.

FIG. 10 illustrates a window.

FIG. 11 illustrates the salesman example.

20

4

FIG. 12 illustrates a GenTrigger class of generic user
interface object and two objects in that class.

F1G. 13 illustrates a sample generic user interface
tree.

FIG. 14 illustrates an on-screen realization of the
sample user interface tree of FIG. 13.

FIG. 15 illustrates a sample user interface screen of a
prior art Macintosh application.

FIG. 16 1llustrates a sample user interface screen of a
prior art OS/2 application.

FIG. 17 illustrates a conventional user interaction.

FI1G. 18 1llustrates a user interaction according to the
present invention.

FIG. 19 illustrates an easy to use layout for print
dialogue box that can be more difficult to use.

FIG. 20 illustrates a poor layout for print dialogue
box.

FIG. 21 illustrates a computer system incorporating
elements in accordance with the present invention.

FIG. 22 illustrates a prior art computer system.

FI1G. 23 illustrates a document control object.

FI1G. 24 illustrates a NewWave TM interpretation of
the document control object of FIG. 23.

FIG. 25 illustrates an OpenLook TM interpretation of
the document control object of FIG. 23.

FIG. 26 illustrates a Motif TM interpretation of the
document control object of FIG. 23.

FIG. 27 illustrates a list object and some possible
hints that can be used as instance data for that object.

FIG. 28 illustrates a NewWave TM interpretation of
the list object of FIG. 27.

F1G. 29 illustrates an OpenLook TM interpretation of
the list object of FIG. 27.

FIG. 30 illustrates a Motif TM interpretation of the
list object of FIG. 27.

FIG. 31 illustrates a style guide interpreter that pro-
vides three possible gadget choices (Abbreviated Menu
Button, Exclusive Settings and Scrolling List) with an
example of a screen display and style guide interpreter
interpretation rules for each.

FIG. 32 illustrates a style guide interpreter that pro-
vides two possible gadget choices for a hypothetical
user mnterface (Graphical Radio Buttons and Scrolling
List) with an example of a screen display and style guide
Interpreter interpretation rules for each.

FIG. 33 illustrates a generic user interface specifica-
tion for the GenList object and an OpenLook TM user
interface interpretation and a hypothetical user inter-
face interpretation of the generic GenList object.

FIG. 34 illustrates a sample generic user interface
specification.

FIG. 35 illustrates an interpretation of an object hav-
ing the specification of FIG. 34 under Motif TM or
OpenLook T™™.

FIG. 36 illustrates an interpretation of an object hav-
ing the specification of FIG. 34 under a hypothetical
user interface style guide. |

FIG. 37 illustrates an interpretation of an object hav-
ing the specification of FIG. 34 under a hypothetical
user interface of the future in an advanced mode.

FIG. 38 illustrates an interpretation of an object hav-
ing the specification of FIG. 34 under a hypothetical
user interface of a future in a novice mode.

FIG. 39 illustrates an implementation of the princi-
ples of the invention using procedural programming
rules.

5,327,529

S

FIG. 40 illustrates an implementation of the princi-
ples of the invention using objects using pointers to
methods.

FIG. 41 illustrates an implementation of the princi-
ples of the invention using objects having class pointers
to class structures.

FI1G. 42 illustrates a prior art user interaction with an
application to produce an action in a computer system.

FI1G. 43 illustrates a user interaction with an applica-
tion in accordance with the present invention to pro-
duce an action in a computer system.

FIG. 44 illustrates prior art development and use of a
specific user interface specification for a particular user
interface. s

FIG. 45 1illustrates development and use of a generic
user interface specification for use with any of multiple
specific user interface interpreters (Motif TM, New-
Wave TM and OpenLook T™, for example), and the use
of such generic user interface to produce different on-
screen displays using such different specific user inter-
face interpreters.

FIG. 46 illustrates a one-choice element of a control
area or a menu, used in various ways such as to execute
commands, display pop up windows, and display
means.

FIG. 47 illustrates a non-exclusive setting that shows
a checkmark in a square box when a setting is chosen.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT

Before explaining the principles in the present inven-
tion, it is useful to define a group of terminologies as
follows.

10

20

25

30

35
gadget toolkit

set of components such as windows, menus, buttons,
scrolling lists, radio buttons, scroll bars, etc. A portion
of every specific user interface’s style guide concerns
itself with the enumeration, definition, and uses of these
components

generic Ul object class

group of generic Ul objects with identical types of

data and methods 4

generic Ul object

ul component representing an input/output need of
an application (as opposed to a visual specification such 50
as a scrolling list). Examples include document control,
exclusive list selection, and viewing areas.

generic Ul object library

set of generic Ul objects and hints available for speci-
fying an interface independent of any particular gadget
toolkit

33

generic user interface specification

interface designéd for a particular application based
on objects from the generic Ul object library, including
the selection and organization of objects and hints

generic to specific Ul interpreter (Ul Interpreter)

software which interprets a generic Ul specification 65
to create the on-screen representation of the application
in such a way that a specific UI’s style guide require-
ments and recommendations are met

6
hint
embodiment of human/computer interface criteria
for an application, stored digitally. Examples of such
criteria follow:
“infrequently used feature”

“advanced feature”
“should be displayed as large as possible”

specific user interface

the look and feel ONLY of a particular user interface
specification, such as Motif, Open Look, Windows, or
Macintosh, as denoted by that user interface’s style
guide (i e the end user’s perception of the user interface,
separated from the API and software)

specific user interface specification

interface designed for a particular application based
on gadgets from a specific user interface’s gadget toolkit

Conventional Application Design Process

The process of the present invention has redefined
how application user interfaces are developed. The
illustrative drawings of FIG. 1 shows a representative
conventional process for developing an application. In
contrast to the conventional process, a designer using a
new process in accordance with the present invention
does not attempt to define the final, gadget-level inter-
face to the application. Instead, referring to FIG. 2, he
selects objects from a generic Ul object library based
solely on the input/output requirements of the applica-
tion, and groups them according to function within the
application. Subjective design considerations assoclated
with those requirements, which would ordinarily be
weighed by the designer in order to pick specific gad-
gets, are instead stored digitally along with the generic
Ul objects. The designer’s job is done, as everything
short of the style guide has been considered and stored
as part of the Ul specification for the application. This
data is later interpreted in software by any one of a
number of Ul interpreters, which map the selected ge-
neric Ul objects and hints into an interface implementa-
tion which meets the specific UI's style guide require-
ments. The final interface for the application is then
presented on-screen.

GEOS Application Design Process

The process of the present invention allows the same
application executable to come up with the look and
feel of any number of specific user interfaces, meeting
the style guide requirements and recommendations for
each. The illustrative drawing of FIG. 2 shows an appli-
cation development process in accordance with the
present invention. The more information about the ap-
plication’s interface requirements and subjective consid-
erations that can be stored in generic object and hint
format, the better the interface that can be created for
the application when running under Ul interpreters for
different or new specific user interfaces. Since the ge-
neric model essentially decouples the application from
its user interface, the application is completely indepen-
dent of changes in specific user interfaces. The applica-
tion’s user interface is specified solely in terms of com-
mon semantic properties rather than specifics of partic-
ular Ul gadgets, so the application’s user interface can
be properly constructed and presented under new and
different specific user interfaces. New Ul interpreters
for new style guides can he written after the creation of

5,327,529

7

an application executable, and the application’s user
interface will be presented in accordance with the new
style guide. What this means is that new, improved user
interfaces could add novel and wonderful capabilities
far beyond that imagined by the original application
designer, simply because functional as well as subjective
information about the application’s Ul needs are stored
with the application. Similarly, specific user interfaces
intended for users with varying levels of proficiency
may be defined, so the very same application executable
can also be presented appropriately to both novice,
average, and advanced users.

The question then is how to accurately represent, in
data, application input/output requirements and subjec-
tive design considerations. The GEOS process replaces
traditional gadget toolkits with a generic Ul object
library and stores subjective, descriptive considerations
digitally in hints.

Generic UI Object Library vs. Gadget Toolkits

As mentioned before, conventional operating systems
provide the developer with gadget toolkits. These tool-

kits generally attempt to provide a large number of

simple as well as sophisticated user interface compo-
nents. The idea is that given a plethora of low-level
building blocks, the interface designer may use, com-
bine, and organize them in such a way that he can bal-
ance size, speed, and complexity issues. Unfortunately,
this method of defining user describing and storing the

10

15

20

23

core, fundamental input/output needs or capabilities of 30

an application. And it does not necessarily give any
indication of the raw subjective information the de-
signer considered in order to select from the gadgets
available and to lay them out.

The generic Ul object library overcomes these limita-
tions. Input/output needs are abstracted to the highest
level possible. Functional needs are identified and
placed into distinct categories, called generic Ul object
classes. The subjective, descriptive thoughts and con-
siderations previously existing solely in the mind of the
Ul designer are stored as characteristics, known as
hints, of the application and its user interface.

The following sections elaborate on how the new
model improves substantially upon prior art, on a prac-
tical as well as a conceptual level.

Abstractions In Scope

To properly present a given application in any num-
ber of different specific user interfaces, 1t is necessary to

35

45

abstract many higher-level functional requirements of 50

the application. Otherwise there is a risk that an inter-
face specified for one style guide which might contra-
dict the requirements of another. For instance, two style
guides may conflict in their requirements for what must
appear in the “File” menu:

Hypothetical Specific UI “A” Example

Style guide “A” requires “File” menu to have these
ment items:
New-—creates a new document
Open . . . —opens a previously created document
Close—closes an open document (user chooses
whether to save changes)
Save—saves changes but does not close document

Save As ... —save changes under a different name,
original document is untouched

Copy To ... —copies modified document to another
file name

33

63

8

Exit—exit from program (user chooses whether to
save and close document

Specific Ul “B”

Style guide requires “File” menu to have these menu
items:

Create—create a new documernt

Open . . . —open a previously created document

Close—close and save a document

Quit—end program (automatically save document)
A specific Ul specification which provides a “File”
menu with the items required for specific Ul “B” would
be an illegal interface for specific UI “A” since menu
items are named differently and function differently.
This problem is solved by abstracting the fundamental
need for “document control” within an application.
Most applications have a need to manage and manipu-
late documents, so the generic Ul object hibrary pro-
vides a single GenDocumentControlClass object. This
object, if chosen for use in an application’s interface,
stores the abstract concept that the application performs
operations on files and therefore needs the user interface
to allow the user to manipulate files. The generic Ul to
specific Ul interpreter software for each of the above
specific Uls processes the existence of a GenDocument-
ControlClass object by creating the appropriate file
menu, as specified by the style guide.

By contrast, conventional methods of application
design often require the developer to create two distinct
executables to conform to A and B’s style guides. One
would contain code to generate the proper File menu
with the one type of behavior. The other would contain
different code to generate the shorter File menu with
another different type of behavior.

Abstraction of Function

A common interface requirement of an application 1s
to let the user choose between a number of different
options. Some of the gadgets available in different spe-
cific Uls which may be used to accomplish this are:

a scrolling list of items, of which one is highlighted

radio buttons, of which one may be selected (pushed

in, like the buttons on a stereo receiver to

choose between Tuner, Tape, CD, etc.)

a menu of items, in which the last one selected is

checked

a pop-up list, whereby the current selection i1s shown.

Clicking on it brings up a window which shows the
rest of the possible selections. Dragging the mouse
over the desired item and releasing selects it.

Most specific Uls offer one or more of these options,
yet the basic abstract input/output requirement 1s the
same—the user may choose one item out of a list of
several. The generic Ul object library classifies each of
the gadgets above as being functionally identical, and
thus provides only the GenListClass object. The choice
of specific implementation is left up to the Ul inter-
preter. As a result, applications are not bound to only
using a particular gadget. For example, a traditional
application might choose to use a scrolling list. A pop-
up list might be more appropriate, but suppose 1t hadn’t
been invented yet. The application is stuck with the
scrolling list because it is hard coded into the program.
With the new approach, the application would take
advantage of the newest technologies available. Con-
versely, the GEOS application also works properly
under a specific user interface which forbids the use of

5,327,529

9

scrolling lists, whereas the traditional application would
not.

Storage of Subjective Design Considerations

In order for existing and future Ul interpreters to
make intelligent decisions on the choice of Ul gadgetry,
the proper information must be available. Beyond the
functional behavior that the application needs or ex-
pects, the designer knows other, less tangible informa-
tion. For instance, when implementing a list where the
user chooses from a number of different options, the
designer might know which of the following general
characternistics might apply:

This feature is obscure

This feature is commonly used

This feature is easily understood

This feature is advanced
He would probably know more specific characternstics:

Want to see as many of these items at a time as possi-
ble when choosing
Going through each item one at a time while choos-
ing is fine
Want to see all options (selected and unselected) at all
times | |
These subjective pieces of information can be enu-
merated and appropriate statements “stored” along
with generic Ul objects. In this case, the GenListClass
object would be able to incorporate all of the consider-
ations listed above.

Hints

A hint is an embodiment of human/computer inter-
face criteria for an application, stored digitally. The
following example illustrates how they are used. First,
suppose we have three hypothetical specific user inter-
faces: A, B, and C. Their style guides might specify the
following:

Specific Ul A
Scrolling list gadgets

Specific Ul B

Requires an “Options” menu, which has “Novice”
and “Advanced” menu commands. Advanced features
should only appear when “Advanced” menu item is
selected

Scrolling list gadgets

Pop-up list selection gadgets

Specific Ul C

Intended for novice users—applications should pro-
vide basic behavior and not be overly complicated
Radio button gadgets

Example: Sample Ul Component

Let’s look at how we would describe a Ul component
with the old and the new approach. Suppose our appli-
cation required the user to choose one of the 50 states.
For the application, the state selection item 1s unimpor-
tant and unnecessary to its functionality.

Traditionally, the designer would think about the Ul
component and the many different ways he could pres-
ent it. He would weigh the considerations imposed by
the fact that the item is unimportant. If he were writing
for Specific Ul A, he would choose a scrolling list gad-
get containing the 50 states since he had no other
choice. If he were writing for Specific UI B, he would
have a choice between a scrolling list and a pop-up list.

10

15

20

25

30

35

45

50

55

65

10

He would choose a pop-up list gadget containing the 50
states since it takes up less space than a scrolling list. He
would also implement the functionality necessary to
remove the pop-up gadget when the user chooses “nov-
ice” mode. If he were writing for Specific Ul C, he
would not include the option at all, since the Ul 1s de-
signed for novices. Each of these decisions for each of
the specific Uls would be coded into each different
version of the application. Changes in the Ul for any
one of the applications would require the program to be
modified or rewritten.

Now, let’s look at the new design process. Function-
ally, the designer knows that the user has the choice of
one item out of fifty. So, he chooses a GenListClass
object, which encompasses the abstract functionality of
choosing from a list. He attaches a list of the 50 states to
choose from. Next, he assigns subjective considerations
to the object, selecting the following hints:

feature is important
+ feature is unnecessary to functionality of application

feature should occupy very little screen space

user does not need to see all of the options at once

That’s it. He’s done. No program code is written.
Subsequently, when the application 1s executed under
each of the three specific user interfaces, the associated
Ul interpreter chooses a gadget to fit the description.

Specific Ul A Interpretation

Because the component is a list object, 1t 1s imple-

mented as a scrolling list gadget (no other gadgets are
availlable).

Specific Ul B Interpretation

Because the feature should “occupy very little screen
space, it is implemented as a pop-up list gadget. Further-
more, since it is unimportant and unnecessary”’, the
component is removed when the user selects the Novice
mode.

Specific Ul C Interpretation

Because the feature i1s “unimportant” and “‘unneces-
sary,” it is not included in the application’s user inter-
face.

So, by merely defining the application’s user interface
using generic Ul objects and hints, the single applica-
tion executable can be run under many different specific
user interfaces at many different levels of functionality.
To the developer, it’s a better product and time and
resources are saved. To the user, it’s five (or more!)
programs for the price of one.

Additional Hint Examples

The definition and incorporation of a comprehensive
set of hint values greatly increases the adaptability of
applications to future developments in user interface
technology. |

Therefore, the GEOS process offers many different
types of hints. In addition to functional hints as de-
scribed above (size, importance, etc.), there are task
related hints. For instance:

This feature would appeal to someone constructing a

resume

This feature would appeal to someone constructing a

term paper

This feature would appeal to someone constructing a

report

This feature would appeal to someone constructing a

schedule

5,327,529

11

This feature would appeal to someone constructing a
poster

These hints might be used by a task-oriented specific
user interface. Other types and categories of hints can
be defined. The more of these that are incorporated, the >
better the implementation of an application’s user inter-
face under future style guides (e.g. one developed for
3D holographic computer displays).

Before explaining the embodiment according to pres-
ent mvention, it is useful to list some more conventional
definitions in a glossary.

10

Conventional Glossary

application 15

tool which allows a person to use a computer to
accomplish a task

application program interface (API)

the package of the many system services that the 20

operating system makes available to a program and the
techniques developers use to call them

button

: 25
one-choice element of a control area or a menu, used

in various ways such as to execute commands, display
pop up windows, and display menus; See FIG. 46

check box

: : , 30
non-exclusive setting that shows a check mark 1n a

square box when the setting 1s chosen; see FIG. 47

class

group of objects with identical types of data and
methods

35

data structure

tables of data including structural relationships

declarative language

programing language in which the order of execution
1s well defined, branching and looping as necessary;
individual functions and procedures operate on sepa-

rately defined and maintained data 43

development tool

tool, generally a software program, which is either
essential to the application development process or

which makes the process faster and more convenient 50

dialog box

rectangle containing elements that elicit responses
from the user, typically several at a time; the drawing of 55
F1G. 3 shows an illustrative dialog box

environment

combination of an operating system and the particu-

lar computer on which it 1s used 60

executable

binary file which contains application code; single file
which may be run by the user

: : 65
graphic user interface

user interface based upon pictures and objects rather
than text and commands -

12
inheritance
classes have instance data and methods in common
with classes above it in a hierarchy

instance

specific incarnation of a certain type (class) of objects

library

module of executable code which is dynamically
loaded into memory when needed by one or more appli-
cations. Only one copy of a library module is loaded at
a time and is shared by all executing applications

menu

rectangle containing a group of controls (basically a
“multiple-choice” control). Usually accessed as a pull
down menu from the main menu area or as a pop up
menu from any place on the screen; the drawing of
F1G. 4 shows an illustrative menu

message

an object sends a message to another object to make
it perform a particular action

method

program code in an object which responds to a par-
ticular message

modal

usually used in conjunction with ‘“dialog box’-
'—means that the user must respond before continuing;
he can do nothing else

object

self-contained data structure which contains instance
data and methods

object oriented programming

programming language based on self-contained ob-
jects which send messages to each other to get things
done

operating system

program which acts as an interface between applica-
tions and the computer hardware

pixel
single dot on the screen arranged in a rectangular
grid; images on the screen are composed of many indi-

vidual pixels of certain colors; the drawing of FIG. §
shows a curve formed from individual pixels

procedural language

programming language with a well defined flow of
execution during which procedures operate on data to
accomplish tasks

resource

data or code, separate from actual program code,
stored in a resource file

resource file

file or part of a file that contains data used by an
application, such as menus, fonts, and/or icons

5,327,529

13

scalable user interface

user interface which allows the same applications to

be accessed at various levels of functionality and com-
plexity

scroll bars

control used to move the view of the data displayed

In a view; the drawing of FIG. 6 shows a representative
scroll bar

scrolling list

pane containing a list of text fields. The list can be
read-only or it can be editable; the drawing of FIG. 7
shows a representative scrolling list

style guide

document intended to impose visual and operational
consistency across the set of applications running in a
particular environment. See Appendix E.

submenu

menu that displays additional choices under a menu
item on a menu; the drawing of FIG. 8 shows a repre-
sentative submenu

‘system software

see operating system

tree

hierarchy of objects; the drawing of FIG. 9 shows a
sample tree hierarchy structure

user interface (UI)

set of rules and conventions by which a computer
system communicates with the person operating it

user interface component

see user interface gadget

user interface gadget

item which has some function in allowing the user to

communicate with the computer, e.g. button, menu,
window

user mterface too!l kit

collection of user interface gadgets offered by an
operating system for use by applications

window

rectangle containing application elements; the draw-
ing of FIG. 10 shows a sample window

Object Oriented Programming

Object-Oriented programming is an approach to pro-
graming which is vastly different than traditional proce-
dural programming. Programming languages such as C
and Pascal consist of functions and procedures which
manipulate data. The program code executes in a well-
defined order, looping and branching when necessary.
Object-oriented programming, on the other hand,
groups data and procedures in a bundle known as an
object. There is no predictable flow of execution.

The five main concepts of object-oriented program-
ming are: objects, methods, messages, class, and inheri-
tance. Each is described below.

D

14
Objects

Objects are self-contained units (data structures)
which contain data (called instance data) and proce-
dures (called methods) to modify their own data. Ob-
Jects send and receive messages. For example, suppose
a dog 1s an object. The commands you give him are
messages. He learns those commands, and the responses
he remembers are his methods. So, if you instruct the

10 dog to “Sit,” you are sending him a 637 Sit” message.

15

20

25

30

35

45

50

He receives the “Sit” message, initiates his “Sit”
method, and subsequently sits on the ground.

Messages

A message roughly corresponds to a procedure call in
C or Pascal. An object sends a message to another ob-
Ject to make it perform a particular action. This is also
known as invoking another object’s method. This way
of accomplishing tasks is a natural extension of how
humans interact. For example, referring to FIG. 11,
when a traveling salesman appears at your door, you
say, “(Go away,” and he leaves. You give a command
and expect the recipient to handle it. This is how users
interact with their computers, and this is why object-
oriented programming lends itself so well to a user-
driven system.

Methods

Methods directly translate to procedures and func-
tions in procedural languages. A method is the program
code in the object which responds to a particular mes-
sage. In the above example, the salesman’s “Go away”
method was his knowledge that when someone says
“Go away” he should turn around, walk away, and
remove your name from his list of potential customers
(his instance data).

Classes

Classes are groups of objects with identical types of
data and methods. Objects in a class share common sets
of data and knowledge of how to respond to certain
messages. Each object is called an “instance” of a class.
For instance, the salesman above might be an instance
of the “Acme Encyclopedia Salesmen” class. He and
other fellow instances of the “Acme” class all know
how to respond to a “Go away” message because of
training from their supervisor.

Classes are organized in a hierarchical structure.
Classes inherit behavior from classes above it. For ex-

~ ample, the class “dog” might be defined as:

55

65

Dog
Pretty Dog
Poodle
Poberman
Ugly Dog
Pit Bull
Sample Class Hierarchy
Inheritance

The class Dog has subclasses Pretty Dog and Ugly
Dog. These subclasses may have subclasses of their
own. Due to inheritance, if the class Dog contains a
method *“Sit,” then every subclass (Pretty Dog, Ugly
Dog) also understands that method. So, if an instance of
the class Poodle receives a *“Sit” message, it doesn’t
need to have its own “Sit” method. It simply passes the

5,327,529

15

message up to the class Pretty Dog which passes the
message to the class Dog.

Why Is Object-Oriented Programming Natural?

The world in which we live is composed of objects.
And as we saw earlier, we accomplish much of what we
do by sending messages to other objects in our world
and reacting to their messages. Furthermore, we gener-
ally do things by telling other objects what we want
done rather than by explaining in great detail how to do
. them. The how describes the procedures and is part of

~ the procedural programming model. The what de-
- scribes the task, the problem, and its solution in descrip-
tive, or declarative, terms, and is part of the declarative
programming model of which object-oriented program-
ming is a prime example. When you give your computer
a print message, you don’t tell it, “Now I want you to
take this document that I’'ve just finished creating and
analyze its bitmap structure. Got it?” You just tell it to
print and expect it to follow.

Similarly, if you give an assignment to a subordinate,
you generally say, “I need the quarterly objectives
report on my desk by 3:00, Jim.” You don’t say, “Jim, I
want you to sit down at your desk. Take out a piece of
paper and a pencil. Now, put at the top of the paper . .

But these descriptions—simplified for illustra-
tion—are good summaries of the differences between
procedural programming and object-oriented program-
ming. The world just doesn’t work procedurally. Con-
sequently it is much easier to write programs designed
to emulate or simulate reality and intelligence in object-
oriented programming environments than in more
procedure-oriented environments. See Dan Shafer,
Hyper Talk Programming.

How Is All This Implemented?

Objects are intrinsically related to classes. Think of a
rolodex with printed sections for name, address, and
phone numbers. Every time you fill one out, you create
an object. The format of the rolodex card 1s the class. So
then, whenever you fill out a rolodex card, you are
creating an instance of the rolodex card class. The way
that the format of the rolodex card is presented to an
operating system is known as a data structure. Objects
(and classes) are implemented as data structures. Data
structures are tables of data including structural rela-
tionships. So a Ul object, with its moniker, attributes,
and hints would be a single data structure in the form of
its class.

‘The GEOS Process of Application Design
Introduction

Object oriented programming is not a new concept.
Neither 1s the 1dea of using objects to represent user
interface components. What is novel is the way of using
objects as Ul components such that the GEOS operat-
ing system can interpret what those components are
intended to do. Then GEOS can create the actual, vi-
sual and behavioral application Ul to be a good inter-
pretation of any number of style guides.

The GEOS process changes the process of designing
an application’s user interface. The user interface de-
signer weighs the human/computer interaction design
considerations against application input/output require-
ments and creates a generic user interface description
(in the form of objects with attributes and hints). The
GEOS operating system uses its specific user interface

n)

10

15

20

25

30

33

45

50

3

65

16

software and automated style guide interpreter to read
the generic description and produce on-screen repre-
sentations adhering to any particular specific user inter-
face style guide. The GEOS system accomplishes this
task through a two step process.

Firstly, the application developer defines his pro-
gram’s user interface using Ul objects with special
properties that allow him to express the user interface
needs of his application.

Secondly, the GEOS system reads the description,
interprets it, and produces a realization of the program
user interface which visually and behaviorally con-
forms to the explicit and implicit guidelines of a particu-
lar style guide. Because this interpretation is done at
runtime, the user may switch specific user interfaces
(e.g. Motif to Openlook) at any time.

The Automated Style Guide

The GEOS process shortens and streamlines the ap-
plication development process by removing the step in
which the user interface is designed to fit a particular
style guide. The GEOS system provides what 1s essen-
tially an auto style guide. Appendix E explains the role
of a style guide. Details and nuances of each specific
user interface are implemented by the GEOS system.
The application simply defines its user interface using a
generic model. This generic model, in essence, decou-
ples the application from its user interface. The applica-
tion developer specifies the application’s user interface
in terms of common semantic properties, rather than
specifics of the particular user interface gadgets.

As a result, the system can support a scalable environ-
ment and several GUI specifications with the same
application code. Under the generic model, the devel-
oper specifies the application’s user interface in terms of
abstract (generic) objects, common semantic properties,
and guiding hints, rather than specific user interface
gadgets. These generic objects are placed in a hierarchy
to demonstrate their relative importance and interde-
pendencies.

Once the application’s user interface 1s described in
generic terms, the GEOS system maps each generic Ul
object to one or more specific Ul objects, depending on
which specific user interface is chosen. For example, an
application’s Ul file might specify that a list of options
be presented to the user. Depending on the attributes
and “hints” of the generic object, this might be imple-
mented as a submenu in OpenlLook or as a dialog box in
OSF/Motif TM. The conversion from generic to spe-
cific user interface is transparent to the application. The
GEOS system can accommodate any number of specific
user interface libraries.

In this manner, the GEOS system makes sure that the
end result of the specific user interface transformation
conforms with its corresponding style guide. This is an
important step. Style guides, as explained before, pro-
vide guidelines and specifications for application de-
signers to follow when they design their program’s user
interface. Given a particular set of human-to-computer
interaction needs, it defines which specific Ul compo-
nents to use. Sometimes style guides are very specific:
for example, OpenLook specifies that main controls are
to be organized in a series of button menus and most
style guides ask that menu items end in an ellipses (. . .
} if the user will be asked for more information before
the operation is carried out. Sometimes style guides are
very general: for example, there 1s a certain safe guide

5,327,529

17

which is not clear on, given a dialog box used to set
properties, whether to supply OK, Reset, Cancel, and
Help buttons or Apply, Reset, Close, and Help buttons.
So, due to the complexities and nuances inherent in the
process of designing the specifics of an application’s
user interface, developers may be forced to spend signif-
icant time and resources tweaking their designs. With
the GEOS system, this step 1s automated and relatively
painless.

This method of implementing the user interface pro-
vides benefits for developer and user alike. The user can
purchase one application—a word processor, for in-
stance. Then, depending on his personal preference, he
may run the program with a Motif, OpenLook, or New-
Wave user interface. If his son wants to type a quick
letter, he can switch to a user interface designed for
novices, for example.

‘The developer saves untold time and resources which

would have been spent designing, thinking about, and

redesigning the user interface for his program. And just
for one specific style guide. With the GEOS system,
one application runs under different style guides (we
refer to the implementation of a particular style guide as
a “specific user interface.”) and different levels of com-
plexity (which is really just another style guide).

Defining an Application’s User Interface

An application defines'its user interface using generic
UI classes. -

Generic User Interface Classes

Generic Ul classes are abstract types of user interface
components. By thoroughly researching and analyzing
existing and proposed GUIs, GeoWorks identified the
major kinds of user interface components that were
common. Abstracting these components-—reducmg
them to their functional essence resulted in ten generic
UI classes. For example, all specific Uls need a method
of initiating an action hence the generic trigger class. A
list of the major generic Ul classes follows:

GenApplication, manages the various top-level win-

dows of an application

GenPrimary, provides the main window for an appli-

cation, grouping and managing all of the i controls
and output areas for the application

GenTrigger, represents a pushbutton that initiates a

certain action when triggered by the user

GenSummons, elicits responses from the user, typi-

cally several at a time

Genlnteraction, serves as a generic grouping object

(group of controls, non-modal dialog box, menu, or
sub-menu)

GenRange, allows the user to interactively set a value

within a discrete range of values

GenList, groups multiple selection items (to set op-

tions, and so on)

GenView, provides an area of the screen on which a

document may be shown |

GenDisplay, displays and manages one or more sec-

ondary windows

GenTextEdit and GenTextDlsplay, provides text

fields with differently formatted text, keyboard
navigation, cut and paste, and other editing func-
tionality

Generic User Interface Objects

Generic Ul ob_]ects are instances—specific incarna-
tions—of generic Ul classes. FIG. 12 illustrates two

10

15

20

25

30

35

45

50

33

65

18

instances, the options trigger and the enable trigger, of
the GenTrigger class. When an application needs a
particular Ul component (a button, for instance) it
chooses the appropriate generic class (GenTrigger) and
asks the GEOS system to create an instance of that
class. The application can then use the resulting generic
Ul object as part of its user interface. Each individual
Ul object has its own instance data whose scope is
determined by the Ul class. There are two kinds of
instance data: attributes and hints.

User Interface Components

When an application needs a particular Ul compo-
nent (a button, for instance) it defines a generic Ul
object that represents the functionality inherent in the
type of component desired. The GEOS system provides
different types of generic Ul objects which determine
the general category of functionality wanted. Special
properties of that object are set to convey more detailed
as well as vague information about the human/com-
puter interaction design considerations and application
input/output requirements.

Basically, these generic Ul objects are data structures

with two different types of instance data—attributes
and hints.

Attributes

Attributes define the behavior and/or appearance of
a Ul object in a very specific manner: an attribute is
either on or off, and there is a definite set of attributes
associated with every Ul object class. When an applica-
tion sets an attribute, it can be sure that the specific Ul
component that the GEOS system selects exhibits the
desired behavior.

For example, setting the modal attribute for a dialog
box ensures that the user must respond to it before con-
tinuing. Setting the disabled attribute for a trigger dims
the trigger’s label (called a moniker) and does not allow
the user to select it.

Monikers

A moniker is a special attribute every Ul object has.
Each Ul object may be given a moniker, or visual repre-
sentation, though a moniker does need to be defined for
every object. It could be the name of a button or the
icon to be displayed when a window is minimized. A Ul
object 1s not restricted to a single moniker: a list of
monikers may be defined. Depending on the situation
and context, the GEOS system uses one of the moni-
kers. For example, an application may define different
icons for CGA, EGA, and VGA monitors to optimize
the its appearance. The GEOS system displays the
proper one for a particular user’s set up. Some UI ob-
jects may have several textual and pictorial monikers.
GEOS chooses the appropriate moniker.

Hints

Hints provide additional information about the Ul
object in question. An application’s needs are not al-
ways absolute and may be interpreted differently (even
1ignored) by different specific Uls. Some visual and
behavior aspects of Ul objects should not be imple-
mented as attributes because of this. In other words,
there are some Ul components or functionality which is
not universal to all specific Uls. Those capabilities can- .
not be attributes, since not all specific Uls support them.

Therefore, they become hints. When the developer
assigns hints to a particular Ul object, he cannot be

5,327,529

19

certain that the hint will be implemented by any one
specific Ul

There are two types of hints: command and declara-
tive.

Command Hints

Command hints are direct requests for a specific im-
plementation of a Ul component. A developer would
choose to use a command hint when he had a specific
Ul component style in mind. For example, an applica-
tion may explicitly ask for a scrolling list (HINT_S-
CROLL_LIST) or check boxes (HINT_CHECK-
BOXES). Not all specific Uls offer the capability to
follow command hints. For instance, some specific Uls
allow the user to use the keyboard to navigate menus
and dialog boxes. To support this, certain Ul objects
would contain several HINT_NAVIGATION._ID
and HINT_NAVIGATION_NEXT_ID hints. For
example Motif might make use of this hint, but Open-
Look might ignore it because the style guide does not
allow such navigation. The GEOS system fulfills a
particular command hint in any specific user mterface
that supports it.

Declarative Hints

Declarative hints are more vague; without referring
spectifically to a particular implementation, they give an
indication of the functionality of the Ul object in ques-
tion. For example, a generic Ul object containing a list
of possible actions may have a HINT _MENUABLE,
indicating that the developer envisions the list being
- presented in a menu. However, perhaps a specific Ul
designed for novice users states that a menu is too com-
plex. Then the GEOS system implements the list of
actions as a simple series of large, plainly visible but-
tons. Or, similarly, an option in that menu may have
hints stating that 1t is advanced, infrequently used, and
potentially dangerous. Then a novice specific Ul would
remove the trigger altogether.

Once again, declarative hints may or may not be
implemented by a particular specific Ul. For instance,
CUA does not allow submenus in the menu bar. A
Genlnteraction object with the hint HINT _MENUA-
BLE that 1s inside of another Genlnteraction object
with the hint HINTMENUABLE would be imple-
mented as a submenu in Openl.ook or Motif. However,
in CUA, it would be added to the menu and set apart by
separators, since submenus are illegal according to the
style guide.

Using Generic Ul Objects

The generic Ul objects an application chooses to
represent the Ul components it needs are arranged into
a tree. This tree 1s a hierarchy of Ul objects, to convey
the relative importance and interdependencies of each
object. This provides an indication of which compo-
nents ought to be in plain view and which can be hidden
one or more layers deep. The illustrative drawings of
FIG. 13 show an example of such a generic Ul tree. A
description of the generic Ul tree of FIG. 13 1s provided
in Appendix A. Appendices A-E are expressly incorpo-
rated herein by this reference.

Given a generic user interface description such as the
one in FIG. 13, the GEOS system can implement it in a
number of different specific user interfaces. It automati-
cally sizes menus, fields, and boxes; it places buttons,
scroll bars, and text—all the while adhering to the spe-
cific user interface style guide. The illustrative drawing

10

15

20

25

30

35

45

50

33

60

635

20

of FIG. 14 shows how this particular generic Ul specifi-
cation might be realized by GEOS for Motif. Note that

GenApplication has no visual representation.

Decorations

Decorations are additional specific user interface
components that the developer does not request, but
that the GEOS system provides in order to maintain a
good impiementation of a particular style guide. For
example, note that in the sample application above,
GEOS adds the buttons in the upper corners, a resizing
border, and a “pin” option in the menu. These are all
accoutrements which the Motif style guide, for exam-
ple, states should exist and function in a certain manner.
The developer does not need to worry about remember-
ing them or asking for them, since they may be different
for Open Look or New Wave, for example. This 1s
another example of how the GEOS system ensures a
good interpretation of style guide without needing ex-
plicit direction from the programmer.

Specific User Interfaces

Specific user interfaces are implemented as hibraries.
Much like a group of students can go to the public
library and all share an encyclopedia, programs can
share library modules. Libraries are modules of execut-
able code which are dynamically loaded into memory
when needed by one or more applications. Only one
copy of a library module is loaded at a time and is
shared by all executing applications. Specific Ul hibrar-
ies are responsible for interpreting the genernic Ul de-
scription and implementing the actual application’s user
interface.

Programming Examples

To ground out the above concepts, let’s compare
designing a simple user interface the conventional way
versus the GEOS way. We will not worry about the
underlying application functionality. We shall create a
simple user interface in two different specific exemplary
user interfaces (Macintosh and OS/2 Presentation Man-
ager). We will end up with two separate executable
applications. Then we shall do the same 1n accordance
with the GEOS process, and show how the resulting
single executable application can be displayed in any
number of specific user interfaces.

Macintosh Example

Let’s create a simple user interface on an Apple
Macintosh—a single window with a File menu contain-
ing five commands, New, Open, Save, Save As, and
Quit.

Macintosh applications make use of many resources,
such as menus, fonts, dialog boxes, and icons, which are
stored in resource files. For example, an icon resides in
a resource file as a 32-by-32 bit image, and a font as a
large bit image containing the characters of the font. In
some cases the resource consists of descriptive informa-
tion (such as, for a menu, the menu title, the text of each
command in the menu, whether the command is
checked with a check mark, and so on). The resources
used by an application are created and changed sepa-
rately from the application’s code. This separation is the
main advantage to having resource files. A change in
the title of a menu, for example, will not require any
recompilation of code, nor will translation to another
language. The preceding together with the following

5,327,529

21

description and code fragments are from, Inside Macin-
tosh, Volume 1.

S0, to create the sample application, the programmer
would first make use of graphical, interactive develop-
ment tools on the Macintosh to define the menu and its
contents. He would first create a new menu resource.
Then he would add commands to the menu (New,
Open, Save, Save As, and Quit). Finally, he sets the
attributes of the menu and its choices (e.g. no check-
marks, separators between Save As and Quit, etc.).
Below is a complete list of all the resources he would
define: |

Menu (resource ID #128)-menu with the apple sym-

bol as its title and no commands in it

Menu (resource ID #129)-file menu with commands

New, Open . . ., Save, Save As . .., and Quit
commands

Window template (resource ID #128)-—document

window without a size box; top left corner of
(50,40) on coordinate plane, bottom right corner of 20 .

(300,450); title “Sample”; no close box

Each menu resource also contains a “menu ID” that’s
used to 1dentify the menu when the user chooses a com-
mand from it; for all three menus, this ID is the same as
the resource ID.

Excerpts of code to initialize and display these re-
sources are provided in Appendix B.

The code in Appendix B and the resource file would
result in the on-screen shown in FIG. 15.

Note that the code required to create this particular
on-screen representation is very specific to the Macin-
tosh. For instance, if you would like to make the appli-
cation’s appearance and behavior conform to the CUA
(Sort Presentation Manager) style guide, everything
would have to be rewritten.

OS8/2 Presentation Manager Example

Let’s create the same user interface in OS/2 Presenta-
tion Manager. OS/2’s style guide (CUA) and operating

system are quite different than Apple’s, so user interface

designs need to be altered and code needs to be com-
pletely rewritten.

To create an application’s user interface in OS/2
Presentation Manager, the code describing the user
interface is partially imbedded in the actual program
code. To display standard window with a simple menu,
the designer would include the lines shown in Appendix
C 1n his main program file (e.g. SAMPLE.C). The code
fragments in Appendix C are from Programming the
OS/2 Presentation Manager by Charles Petzold.

The code and resource files of Appendix C are com-
piled and the resulting on-screen representation of the
application would look similar to the representation of
FIG. 16. |

Notice that when developing in either OS/2 Presen-
tation Manager or Apple Macintosh, the programmer
defines specific user interface components with specific
attnibutes. Then the program code accesses them and
the operating system draws them on the screen. The
actual mechanics of programming and development in
these two environments are very different.

In Presentation Manager, menus and menu-related
attributes are defined in a textual resource file. Attri-
butes of windows and other Ul components are defined
via routine calls. Options are passed as parameters.

On the Macintosh, Ul components are contained in
separate resource files. Thus, their attributes, are de-
fined using a resource editor application. This applica-

10

13

25

30

35

45

50

33

65

22

tion supplies graphical templates which the program-
mer uses to create and edit resources. For example, the
programmer formats dialog boxes in the editor, manu-
ally sizing the border, adding text blocks, setting text
styles, placing buttons, and so forth.

GEOS Example

In the GEOS process, the programmer defines the
user interface needs of his application with generic Ul
objects. These objects have attributes, as do the OS/2
or Macintosh objects, but these attributes are only those
that represent an aspect of apace or behavior which is
common to all specific Uls. Peculiarities of different
specific Ul implementations are accommodated
through the use of hints.

Appendix D provides a sample user interface descrip-
tion file.

User Interaction

Perhaps the most vital aspect of computer use is user
interaction with the computer, for what use are hun-
dreds of features and a clear and concise user interface,
if the user cannot easily make use of them? Most graphi-
cally oriented systems make use of a device called a
mouse. The user slides the palm-sized object around on
his desk, and a pointer on the screen moves in accor-
dance. A mouse may have one to three buttons. Moving
the pointer around the screen, the user can click on
buttons, resize windows, and draw circles. However,
just as nearly every specific user interface has a style
guide describing visual and behavioral aspects of the
system, nearly every specific user interface style guide
defines user interaction conventions. There are so many
ways that a user could possibly click and drag and dou-
ble chick the left button and triple click the right button
and so on that these conventions are necessary.

So, once again, Geoworks identified a problem. Con-
ventional applications generally handle their own user
interaction. For example, referring to FIG. 17, if the
user double clicks on any letter in a word, the applica-
tion selects the entire word because that is what its style
guide says to do. Notice that we have a parallel without
our earlier dilemma—different style guides have differ-
ent ways of handling user input. How can an application
be truly specific user interface independent if it has to
worry about different types of user input? The answer
according to the present invention is to abstract user
interaction as well.

Let’s follow how user interaction works in the GEQS
system with reference to FIG. 18. First, the application
receives user input. For instance, the user double clicks
while using a word processor under Motif. Then, the
application determines the context of the user input. For
Instance, the user clicked on the second word in a word
processing document. Next, the application passes this
information, the actual input and the context, to the
appropnate specific Ul interpreter. Finally, the Ul in-
terpreter, given the context and the raw input, tells the
application exactly what to do. For example, it tells the
word processor to select the targeted word.

Conventional Development

There are two major problems with conventional
user interface development: the time involved and the
potential for difficult to use application user interfaces.

23
Time

The current state-the-art operating systems offer a
variety of tools and utilities to make the developer’s life
easier. However, no matter whether the program’s en-
vironment is the NeXT computer or Microsoft Win-
dows for the PC, for example, the developer still has to
manually lay out every user interface component. He
chooses the window style. He places the menu items.
He adds buttons and dialog boxes. He carefully places
list of options and text fields in those dialog boxes, per-
haps moving them around a pixel (a single dot on the
screen) at time. He defines the exact sizes and locations
of every user interface component. Then he steps back
and makes sure that the resulting interface still adheres
to the style guide set forth for his environment. He
tweaks the design some more, steps back, and tweaks it
some more. Finally, when the user interface design 1s
finally completed, the programming team write the rest
of the program. Generally, at least 30 percent of devel-
opment time is spent designing and implementing the
user interface.

It is a time-consuming task to redesign the user inter-
face (that took so long to complete) of an application for
other environments. In some environments it is easier
than others. But in all of them, the designer is constantly
adjusting and worrying about making the result con-
form with the style guide. And that can require much
time and hard hard work. Modifying 1t to adhere to
another style guide can also take much time and hard
work.

Differences in the Quality of UIS

There are many very good applications with intuitive
and logical user interfaces. There are also a lot of very
powerful applications with user interfaces that are not
as intuitively easy to use. When the developers are
solely responsible for making sure that their applica-
tions correspond with the goals and objectives set forth
in a style guide, there are bound to be some odd inter-
pretations. Given a stack of wood and power tools, a
master carpenter could build a beautiful and priceless
bird house. A less skillful craftsman might build a
worthless doorstop. Similarly, given the tools for creat-
ing a user interface, programmers could very easily
create less than optimal user interfaces. For example,
examine the case of a dialog box summoned when a user
selects the print command. There are many, many dif-
ferent ways that an application could handle this situa-
tion. Some are satisfactory, some are excellent, and
others are less than optimum. For instance, FIG. 19
shows a good layout for the print dialog box. The dia-
log box design of FIG. 19 is good for several reasons.
Firstly, it visually groups options into logical groups
with sensible titles—Printer Options and Document
Options. The setting of which printer is connected is not
one which the user frequently changes. Therefore, the
options related to this are not even accessed through
this dialog box. Clicking Change Options . . . brings up
a separate dialog box. The Document Options have
descriptive, obvious names—high, medium, and low
print quality. Print and Cancel give an good indication
of what the buttons will do. Additionally, the extra box
around Print indicates a default action, good for experi-
enced users as well as novices unsure of what to do next.

In contrast, the dialog box of FIG. 20 1s can be a
challenge to use. The options are not obviously grouped
into logical divisions. The title Other Options is some-

5,327,529

10

15

20

23

30

35

45

50

55

65

24

what vague. “Configuration” is a technical term.
Printer Configuration options are not often accessed,
and possibly should not be here, for example. Chcking
to cycle through the choices is not an intuitive or
friendly way to accomplish the task-it doesn’t plainly
show the user all the possible choices, and if the user
passes the proper setting, he will have to keep clicking
to get back to it. Print Quality options use 1s unclear;
technical terms—NLQ, regular, and draft. What does
mean? Is regular latter looking than NLQ? Go and Stop
buttons are unclear as to their function. There i1s no
default action.

And on top of it all, once the developers have created
a good interface for their application and spent lots of
time and money doing it, they still have to create an
entirely view executable program to run in a different
environment under a different specific Ul.

Scalable User Interface

The scalable user interface can be thought of as just
another style guide. It is simply a style guide designed
with the user’s computer proficiency very much iIn
mind. For example, for novices, the style guide would
state that the user should be able to plainly see all his
options. Thus, hidden menus (pulldown or pop up)
would not be allowed. Scrolling views are also undesir-
able because of their complexity. Visible methods of
getting help need to be evident at all times. Thus, an
automated style guide can run an application with its
normal style guide (such as Motif or Open look), or
switch to one designed for novices. Conceptually and to
the application developer, it’s just the same as switching
between two very similar “professional” specific user
interfaces. To the user, it’s like getting several programs
for the price of one.

Operation

Referring to FIG. 21, there is shown a diagram illus-
trating the dynamic interaction of the constituent ele-
ments of the invention. The elements of FIG. 21 all are
implemented in computer software. The Application
software interacts with the operating system software.
The operating system software includes the Generic
User Interface Object Library and Controller (GUI-
OLC), multiple specific UI Interpreters (SUIls) (only
one shown), and multiple specific UI Toolbox and Con-
trollers (SUITC) (only one shown), and their respective
driver software modules (only one set of driver soft-
ware modules shown).

Application Data is operated upon by the Applica-
tion Software. A Generic Ul Specification (GUIS),
which is associated with the Application, is operated
upon by the GUIOLC. Specific UI Application Inter-
face Data is operated upon by the SUITC."

Multiple Applications can run simultaneously. Each
Application corresponds to a particular GUIS. It 1s
possible to have multiple GUISs, that is, different
GUISs for the different Applications.

The GUIOLC and the SUII serve to map Input/Out-
put (I/0) requirements of an Application to the SUITC
under which the Application is to be presented to the
user. In the present embodiment, the GUIOLC pro-
vides a series of generic Ul object classes (e.g., GenAp-
plication, GenPrimary, GenTrigger, etc. . . .). These
generic Ul classes act as an interface between the Apph-
cation and the portion of the operating system software
that controls the representation of a specific user inter-
face for the Application. For example, when the Appli-

5,327,529

23

cation needs to represent a Ul component used to initi-
ate a certain user action, it specifies the GenTrigger
generic user interface object. From the standpoint of
the Application, the steps required to represent a com-
ponent for initiating user interaction merely involves
specifying the GenTrigger object As explained below,
the operating system software, in accordance with the
invention, handles the details of actually selecting, ar-
ranging and otherwise managing the gadgets used to
represent the component.

Once the Application has specified a particular ge-
neric user interface object, a selected SUII uses the
specified object and instance data for that object to
interpret the manner in which the specified object is to
be represented. In particular, the selected SUII selects
gadgets from a corresponding SUITC and arranges the
gadgets in accordance with attributes and hints in the
instance data for the specified object.

Each Application can have a different GUIS associ-
ated with it. Thus, while two applications might specify
the same generic Ul object, the different GUISs associ-
ated with the different Applications can result in differ-
ent representations (visual or behavioral) for the same
generic Ul object. This is because different GUISs can
have different instance data.

In the present invention, the Operating System Soft-
ware, rather than the application, indicates the specific
Ul under which the Application is run. Thus, for exam-
ple, if there are four possible specific Uls (with four
corresponding SUISs and four corresponding SUITCs)
then the system software determines which of the four
1s to be used by the Application (and which of the four
SUIIs and SUITCs). However, it is possible for the
application itself to indicate which of the four (or more)
specific Uls is to be used by the Application.

FIGS. 23-26 illustrate how the same generic Ul ob-
ject and the GUIS for a particular Application can
result in different visual representations when different
specific Uls are designated. In FIG. 23, a Gen-
DocumentControl object and the instance data from an
Application GUIS is shown. FIG. 24 shows a possible
NewWave interpretation of the object of FIG. 23. FIG.
25 shows a possible OpenL.ook interpretation of the
object of FIG. 23. FIG. 26 shows a possible Motiff
interpretation of the object of FIG. 23.

FI1GS. 27-30 further represent how the same generic
Ul object and a GUIS for a particular Application can
result in different visual representations when different
specific Uls are designated. FIGS. 28-30 respectively
represent possible NewWave, Openl.ook and Motiff
interpretations of the object of FIG. 27.

FIG. 31 illustrates the operation of a representative
SUII for a GenList object under an OpenLook User
interface. Possible gadget choices available from the
corresponding Openl.ook SUITC are indicated in the
left column. The representation and arrangement of the
gadgets in accordance with this SUII is indicated in the
center column. The decision method used to determine
which gadget choice to make is indicated in the right
column.

Thus, the representative interpreter selects which
gadgets (left column) and their arrangement (center
column) based upon predetermined criteria (right col-
umn). The information used to test the criteria is found
in the instance data of the GUIS for the designated
GenList object.

It should be noted that, for example, one Application
may specify certain instance data in its GUIS for the

10

15

20

25

30

35

43

50

33

60

65

26

GenList object, and another Application might specify
different instance data in its GUIS for the GenList ob-
ject. The operating system using the exemplary SUII of
FIG. 31, therefore, could represent a GenList object
differently for the two Applications due to their differ-
ent GUISs.

FIG. 32 illustrates the operation of another exem-
plary SUIIL The interpreter of FIG. 32 is hypothetical
for a GenList object. The left column represents possi-
ble gadgets from the hypothetical SUITC (not shown).
The center column represents their arrangements under
this interpreter. The right column illustrates the criteria
used to select the gadgets.

From FIGS. 31 and 32, it should be appreciated that

even the same generic Ul object (e.g. GenlList) using
‘the same instance data from the same GUIS can result in

a different Ul representation when a different specific
Ul 1s selected. For example, in FIG. 31, the specific Ul
1s OpenLook, and in FIG. 32, the specific Ul is a hypo-
thetical UL

FIG. 33 shows a further representation of a generic
user interface object (GenList) and its instance data and
two possible interpretations of it, one under a hypotheti-
cal Ul, and the other under an Openl.ook UL

F1G. 34 shows a representative hierarchy of generic
UI objects and their respective instance data. FIG. 3§
shows possible Motiff and OpenLook interpretations.
FIG. 36 shows a possible hypothetical graphical Ul
interpretation. FIGS. 37 and 38 respectively show pos-
sible hypothetical interpretations under advanced and
novice modes.

FIG. 43 provides a dynamic block diagram which
represents interpretation of user interaction by an oper-
ating system in accordance with the present invention.
A user provides an input such as a double click mouse
command on text. The Application passes the user input
command information (double click) and the context
information (over text) to a specific Ul interpreter. The
SUII interprets the input information and indicates its
meaning to the Application. The Application then can
request the operating system to perform a function
consistent with the input (e.g., select a targeted word).

It will be understood that different specific Uls can
interpret the same input differently. Moreover, the dif-
ferent interpretations can depend not only upon the

nature of the command but also upon the context in
which the command is provided. The SUII shields the
Application from the details of user input interpretation.
Of course, as explained above, there may be multiple
specific Uls supported by the operating system. As
explained above, the different SUlIs for the different
specific Uls may interpret the user input (command plus
context) differently.

Referring to FIG. 41, there is provided a dynamic
block diagram which provides a generalized representa-
tion of the operation of an object oriented system. The
present invention is implemented as an object oriented
system, although it could be implemented as a proce-
dural system (FIG. 39).

In the presently preferred embodiment, each generic
Ul object represents a-class. The GUIS for an Applica-
tion provides instance data for the generic Ul object
class members. The multiple SUIls include messages
that point to methods for operating on the instance data.

Thus, for example, when an Application is running
under a first specific Ul, the generic Ul object points to
the SUII for the first specific Ul, and the messages and
methods of that first SUII operate on the instance data

5,327,529

27
of the generic Ul object. If, on the other hand, an Appli-

cation is running under a second specific U, the generic
Ul points to the SUII for the second specific Ul and the
messages and methods of the second SUII operate on
the instance data of the generic Ul object. 3

It will be appreciated, for example, that an Applica-
tion and an SUII can communicate through a generic
Ul object. For example, referring to FIG. 31, the Appli-
cation may specify the generic Ul object GenList and
communicate the message, delete “tomato”. The Gen- 10
List object, running under the OpenLook specific Ul,
for example, sends the message to the OpenLook SUIL
The Openl.ook SUII uses the message to identify a
method that results in removal of the “tomato” moniker
from the Ul representation.

Style Guides

Style guides are documents intended to promote both
visual and operational consistency across the set of
applications running in a particular environment. To 20
achieve this goal, design rules describe the user inter-
face and design approach in detail. However, it is im-
possible to anticipate all situations. So that consistent
extensions can be made, portions of the document at-
tempt to explain the rationale behind the rules, and the 25
intended “feel” of the applications in question. These
design rules are provided in pursuit of integration and
consistency. Application programmers are asked to
commit themselves to following the design rules be-
cause of the importance of a cohesive, consistent set of 30
applications. See, for example, HP NewWave Environ-
ment: User Interface Design Rules.

For example, the following is an excerpt from Open
Look Graphical User Interface Application Style Guide-
lines. Tt describes behavioral and visual guidelines for 37
scroll bars (which allow the user to view portions of a
large document at a time by “scrolling” up and down
and left and right). |

“Scrolling with Scrollbars: This section describes
information you need to specify for your application
when you provide scrollbars for a scrollable text region

"}

15

Appendix A

28

“Scrolling Objects of Unknown Size: In some situa-
tions, it is impossible to determine the size of the object
being viewed. For example, the result of a database
query might be read in only as needed. Such situations
call for a slight modification of the usual scrollbar be-
havior.

When the size of the entire object is not known, make -
the length of the proportion indicator represent the
length of the part of the object that 1s known at any
given point.”

“If users scroll to the end of the cable—either by
dragging the elevator or by clicking on the end cable
anchor—scroll the view to the end of the data that has
already been read in. To leave the elevator at the very
end would be misleading, because the view is not at the
end of all the data.

When the elevator i1s not at the end of the data, bump -
the elevator a few pixels upward from the bottom
cable anchor to show that the view is not at the true
end of the data. Put a message in the footer of the
window to inform users about what is happening.

When users drag the elevator again or click on the
down (or right) arrow, interpret that action as a sig-
nal that users want to read in the next portion of the
data.”

“Once the new data 1s read in, the scrollable object is
larger, and you will need to adjust the position of the
elevator accordingly.”

Releasing the application developer from having to
deal with pages and pages of this 1s what the patent is all
about. |
While a particular embodiment of the invention 1s
shown and described, it will be appreciated that the
present system can be implemented differently without
departing from the invention. For example, as illus-
trated in FIG. 39, the invention can be implemented as
a procedural system rather than as an object oriented
system. Moreover, for example, in the present embodi-
ment, the GUIOLC and the multiple SUIIs are separate
modules. The GUIOLC and the multiple SUIls can be
implemented as a single module without departing from
the invention.

/* This application is in its own rescurce so that geoManager
* can load it quickly to grab the icon for the application. */

start ADPResource

SampleApp = GenApplication {

/* GecManager uses this token information ¢o store the
* application’s icon in a database. */

tokenChars = "'S*,'A', 'M*, 'pP*";
tokenlID = "MANUFACTURER ID GW"
children = SamplePrimary;
active = YodaPrimary:

}

end AppResourzce:

/* one child =/
/¥ have window
appear when launched. ¢/

B e e e el et T R e . Y e———

Primary Window

start Interface:; /* This resources holds misc UI obijects. */

SamplePrimary = GenPrimary ({
moniker = "Sample Application™:

genStates = default -maximized:;

children = SampleView, SampleMenu
hints = | '

/* Do not open */
/* maximized */

HINT_NOT MINIMIZABLE)

end Interface:

UI Objects within Primary Window

---_—---ﬂ-“*ﬂ—ﬂ--—-—ﬂ-“----ﬂ----— et L R L T L T T P T —

- —— =t - — ——f

start Interface: /* This resources holds misc UI objects, */

SampleView = GenView ({
viewAttributes = isglatedContents, grabWhilePressed,
dragScroilinalOn:

output = process; /* send exposed method to appl =/
backCeolorR = BLACK /* background coclor */ |
horizCpenSize = 256;

vertOpenSize = 2356;
herizAttributes = scrollable;

vertAttributes = scrollable:

end Interface:;

start MenuResource:

SampleMenu = Genlnteraction {
moniker = "Interaction™:
hints = {

HINT MENUABLE /* all ¢f the childvren */

/* can ke placed in a menu */
]

children = Menulteml, Menultem?2:
]

Menulteml = GenTrigger
moniker = "Trigger 17;

5,327,529
31 32

MenuItem? = Genlrigger |
moniker = "Trigger 27

end MenuResource;

Aggendix B

{The USES clause brings in the units containing the Pascal }

{interfaces. The $U expression tells the compiler what file to look }
{in for the specified unait. | '

USES {SU Obj/MemTypes | MemTypes, {basic Memory Manager data types]
{SU Obj/QuickDraw)} QuickDraw, ({(interface to QuickDraw}
{SU Obj/0SIntf] OSIntf, {interface to the QOper Systemj
{SU Ob3j/ToollIntf |} Toollntf:; {interface to the Toolbox]

CONST applelD = 128; {resource IDs/menu IDs for Apple, File menu)
fileID = 129;

appleM = 1; {index for each menu in myMenus (array of }
fijleM = 2; {menu handles))

menquunt = 2 {total numper of menus)

windowID = 128; (resource ID for application’s window}
newCommand - (menu item numbers identifying ccﬁmands in)

cpenCommand - {File menu]

1
2;
saveCommand = 3,
saveAsCommand = 4;

6.

exitCommand - {skip a number because of separator)

VAR mvMenus: ARRAY([l..menuCount) Cr MenuHandle:
{ array of handles to the menus |
wRecord: WindowRecord: {(info apoutr the application windew)
myWindow: WinaowPtr; {pointer tc wRecozrd]

PROCZDURE SetUpMenus;
{ Set up menus and menu bar |

VAR i: INTEGER:

BEGIN
{Read menu descriptions from resource file into memory and store)
{handles in myMenus array }
myMenus (appleM] := GetMenu(applelD):

{ read Apple menu £rom resource file |
AddResMenu (myMenus (appleM]}, '"DRVRY) ;

{ add desk accessory names to Apple menu |

5,327,529
33 o 34

myMenus (fileM] := GetMenu(fileID);
{ read File menu from rescurce file |

FOR i:=1 TO menuCount DO InsertMenu (mvMenus{i],0); {install menus |
DrawMenuBar:; (in menu bar and draw menu bari

END; |(of SetUcMenus |

BEGIN {main program)
{ Initialization |}

InitWindows:; {initialize Window Manager!

InitMenus; {initialize Menu Manager}

TEInit: {initialize TextEdit)

InitDialogs (NIL):; {initialize Dialcg Manager)

InitCursor: {call QuickDraw to make cursor an arrow}
SetUpMenus; - {set up menus and menu bar]

myWindow := GetNewWindow(windowID,@wRecord, POINTER(-1}):
{ put up application window |}
SetPort {myWindow) ;

{ call QuickDraw to set current grafPort to this window }

END.

Appendix C

CHAR szClientClass [] = "Sampie”®
HAB hab ;

int main (void)
{
static ULONG flFrameflags = FCEF TITLEBAR | FCF SYSMENU |

FCE_SIZEBORDER { FCF_MINMAX |
FCF_SHELLPOSITION |

FCT_TASKLIST | FCF_MENU ;

HMQ hmg ;
HWND hwndframe, hwndClient

QMSG gmsg

hab = WinInitialize (0)
hmg = WinCreateMsgQueue (hab,0) ;

WinRegisterClass (hab, // Anchor block handle
szClientClass, // Name of c¢lass being

// registered
ClientWndProc, // Window procedure for class

oL, // Class style
0) ¢ // Extra bytes to reserve

35

hwndf rame = WinCreateStadWincow {

HWND DESKTOP,
WS VISIBLE,
&¢flrrameflags,

szClientClass,
NULL,

- QL,

winSendMsg (hwndframe, WM SETICCN,

NULL,
ID_RESOURCE,

¢hwndClient)

/7
[/
//
//
//
[/
//
//
[/

),327,529
36

Pareni window handle

Style of frame window
Point to control data
Client window class name
Title bar text -

Style of client window
Mocdule handle for resources
ID ¢of resources

Pointer to client window hndl

WinQuerySysPointer (HWND_DESKTOP, SPTR APPICON,
FALSE),

NULL) ; // Set minimized icon for window

This code creates a standard applicadon window with anributes defined by

fiframeFlags.

« FCF_TITLEBAR, creates a title bar

 FCF_SYSMENU, creates a sysiem menu

'« FCF_SIZE BORDER, creates a sizing border

« KT _MINMAX, creates 2 minimize and maximize buton

« FCF_SHELLPOSITION, the Presentanon Manager (shell) determines the posidon
of the window, typically in a cascaded positon from the last application that started

« FCE_TASKLIST, adds the window to the switch list of the Task Manager

« FCF _MENU, creates a menu bar

The menu optons are defined in a separate resources file (SAMPLE.RC). Note that the

44 LAy

quit

iy B e R B ek sl T e slile S A i sk e m alnlle SEDR- sioue Ghibiy SN EEE) Y AN wlaE Sl EEEp EER SCES

gincluce <os2.h>

#include "sample.h”

MENU ID RESOURCE

{

SUMW v "E‘ll&" ¢

MENUITEM

MENUITEZM

MENUITEM

MENUITEM

MENUITEM

MENUITEM
SENUITEM
!

"~0Open..",
"~New",
SEPARATOR
"~Save"©,
"Save =-As_"
SEPARATOR

"E~-xzt"”,

CUA style guide specifies a different order of commands as well as “exit” rather than

IDM FILE

IDM_OPEN
IDM NEW

IDM SAVE
IDM_SAVEAS

IDM_EXIT

5,327,529

37
Appendix D

$incluce "generic.uih”

38

L & X r 3 3 ¥F ¥ 3 3 B ¥ X K B I & E N L 2 1 L B iR T AR A A D A G R S R A - ---——------------

/* This application is in its own resource so that geoManager

}
children = FileSubMenu,
ExitGroup:;

FileSubMenu = GenInteraction (
children = NewTrigger,
OopenTrigger,
SaveTrigger,
SaveAsTrigger:
hints = (|
HINT MENUABLE,
HINT_SUB_GROUP

NewTrigger = GenTrigger {

NEW_TRIGGER VALUES
}

"~

OpenTrigger = GenTrigger ({
OPEN_TRIGGER VALUES
hints = (
HINT BRINGS UP WINDOW

SaveTrigger = GenTrigger ({
SAVE_TRIGGER_VALUES

SaveAsTrigger = GenTrigger |
SAVEAS _TRIGGER VALUES
.hints = |
HINT_BRINGS_UP_WINDOW

*/ can be put in menu */

*/ add separator */

*/ moniker = N “Néﬁ“: */
*/ moniker = 'O', "Open"; =/

*/ append ".." »/

*/ moniker =

*/ moniker =

IS'I'r

IAI'r

"Save"; */

“"Save As":

*/

5,327,529

39
FileExit = GenTrigger |
EXIT TRIGGER_ VALUES

}
end MenuResource:

What 1s claimed is:

1. A method for invoking a user interface for use with
an application operating in a computer system compris-
ing the steps of: |

providing in the computer system a generic object

class that corresponds to a class of function per-
formed with the user interface;

specifying in the application instance data in the form

of a generic object specification that corresponds
to the generic object class, the instance data includ-
ing attribute criteria, which are criteria that must
be met by a specific user interface implementation
that is selected using the instance data, and hint
criteria, which are criteria that are permitted but
not required to be specified in the instance data,
and if specified, are permitted but not required to
be met by a specific user interface implementation
that 1s selected using the instance data;

providing in the computer system a specific use inter-

face toolbox and controller that operates in the
computer system to provide a selection of possible
specific user interface implementations for use in
performing the class of function; and

providing in the computer system an interpreter for

the specific user interface toolbox and controller,
the interpreter operating in the computer system to
select a specific user interface implementation from
the selection of possible specific user interface im-
plementations, such that a selected specific user
interface implementation satisfies both the attribute
criteria and hint criteria specified for the generic
object class, except if no specific user interface
implementation satisfies both the attribute criteria
and hint criteria specified for the generic object
class then the interpreter being operable to select
another specific user interface implementation that
satisfies the attribute criteria but not all of the hint
criteria that have been specified for the generic
object class.

2. The method of claim 1 wherein said step of provid-
ing a generic object class in the computer system in-
cludes providing a library of generic objects classes,
each respective generic object class in said library rep-
resenting a respective class of functions.

3. The method of claim 1 wherein:

said step of providing a generic object class in the

computer system includes providing in the com-
puter system multiple generic object classes, each
of which corresponds to a different class of func-
tion performed with the user interface; and

said step of specifying instance data includes specify-

ing in the application multiple respective generic
object specifications.

4. The method of claim 3 wherein said step of specify-
ing multiple respective generic object specifications
includes specifying a tree hierarchy relationship among
the multiple respective generic object classes.

5. The method of claim 3 wherein:

said step of specifying multiple respective generic

40

*/ kbdkccelerator = specificUI F3: \

monirer =

IE';

=/

"Exit";

object specifications includes specifying a tree hier-
archy relationship among the multiple respective
generic object classes; and

said tree hierarchy provides an indication of which

visual user interface components are to be in plain
view and which such visual user interface compo-
nents are to be hiddend by other such components.

6. The method of claim 1 wherein the generic object
class 1s of a GenListClass that encompasses the generic
user interface functionality of selecting from among
multiple choices.

7. The method of claim 1 wherein the generic object
class 1s of a GenTriggerClass that encompasses the
generic user interface functionality of using a screen
image to invoke an action.

8. A method for invoking a user interface for use with
an application operating in a computer system compris-
ing the steps of:

providing in the computer system multiple respective

generic object classes that respectively correspond
to respective classes of function performed with
the user interface:

specifying in the application instance data in the form

of a generic object specification that corresponds
to a designated one of the respective generic object
classes provided in the computer system, the in-
stance data including respective attribute criteria,
which are criteria that must be met by a specific
user interface implementation that is selected using
the instance data nd respective hint criteria, which
are criteria that are permitted but not required to
be specified in the instance data, and if specified,
are permitted but not required to be met by a spe-
cific user interface implementation that is selected
using the instance data; and

providing in the computer system a specific user

interface toolbox and controller that operates in the
computer system to provide a selection of possible
specific user interface implementations for use in
performing the class of function of the designated
generic object class; and

providing in the computer system an interpreter that

corresponds to the specific user interface toolbox
and controller, the interpreter operating in the
computer system to select a specific user interface
implementation from the selection of possible spe-
cific user interface implementations, such that a
selected specific user interface implementation

satisfies both the respective attribute criteria and
the respective hint criteria specified for the desig-
nated generic object class, except if no specific user
interface implementation satisfies both the respec-
tive attribute criteria and the respective hint crite-
ria specified for the designated generic object class
then the interpreter being operable to select an-
other specific user interface implementation that
satisfies the respective attribute criteria but not all
of the hint criteria that have been specified for the
designated generic object class.

10

15

20

25

30

35

45

30

33

63

5,327,529
41 42

9. A method for designating a user interface for use
with an application operating in a computer system
comprising the steps of:

providing in the computer system a first generic ob-

Ject class and a second generic object class wherein
each such respective generic object class corre-
sponds to a respective class of function to be per-

user interface interpretation that satisfies the sec-
ond attribute criteria but not all of the second hint
criteria that have been specified.
10. A method for designating a user interface for use
5 with an application operating in a computer system
comprising the steps of:
providing in the computer system a generic object

formed using the user interface;

specifying in the application first instance data in the
form of a first generic object specification that
corresponds to the first generic object class, the
first instance data including first attribute criteria,
which are criteria that must be met by a specific
user interface implementation that is selected using
the first instance data, and first hint criteria, which
are criteria that are permitted but not required to
be specified in the first instance data and if speci-
fied, are permitted but not required to be met by a
specified user interface implementation that is se-
lected using the first instance data;

specifying in the application second instance data in
the form of a second generic object specification
that corresponds to the second generic object class,
the second instance data including second attribute
criteria, which are criteria that must be met by a
specific user interface implementation that is se-
lected using the second instance data and second
hint criteria, which are criteria that are permitted
but not required to be specified in the second in-
stance data, and if specified, are permitted but not
required to be met by a specific user interface im-
plementation that is selected using the second in-
stance data;

providing in the computer system a specific user
interface toolbox and controller that operates in the
computer system to provide, for each of the first
and second generic object classes, a respective
selection of multiple possible specific user interface
implementations;

providing in the computer system an interpreter that
corresponds to the specific user interface toolbox
and controller, the interpreter including a first
generic object class interpreter and a second ge-
neric object class interpreter;

producing a first specific user interface interpretation
for the first generic object class from the specific
user interface toolbox and controller using the first
generic object class interpreter, such that the first
specific user interface interpretation satisfies both
the first attribute criteria and the first hint criteria,
except if no first specific user interface interpreta-
tion satisfies both the first attribute criteria and the
first hint criteria, then using the first generic object
class interpreter to produce another first specific

10

15

20

25

30

335

45

50

class that corresponds to a class of function that is
to be performed with the user interface:

specifying in the application instance data that corre-

sponds to the generic object class, the instance data
including attribute criteria, which are criteria that
must be met by a specific user interface implemen-
tation that is selected using the instance data, and
hint criteria, which are criteria that are permitted
but not required to be specified in the instance data,
and if specified, are permitted but not required to
be met by a specific user interface implementation
that is selected using the instance data;

providing in the computer system a first specific user

interface toolbox and controller that is operable in
the computer system to provide a first selection of
multiple possible first specific user interface imple-

mentations for use in performing the class of func-
tion;

providing in the computer system a second specific

user interface toolbox and controller that is opera-
ble in the computer system to provide a second
selection of multiple possible second specific user
interface implementations for use in performing the
class of function;

providing in the computer system a first interpreter

that corresponds to the first specific user interface
toolbox and controller, the first interpreter opera-
ble in the computer system to select a first specific
user interface implementation from the first selec-
tion of possible first specific user interface imple-
mentations, such that a selected first specific user
interface implementation from the first selection
satisfies both the attribute criteria and the hint cri-
teria specified for the generic object class, except if
no first specific user interface implementation from
the first selection satisfies both the attribute criteria
and hint criteria specified for the generic object
class then the first interpreter being operable to
select another first specific user interface imple-
mentation from the first selection that satisfies the
attribute criteria but not all of the hint criteria that
have been specified for the generic object class:

providing in the computer system a second inter-

preter that corresponds to the second specific user
interface toolbox and controller, the second inter-
preter operable in the computer system to select a
second specific user interface implementation from

user interface interpretation that satisfies the first ss the second selection if possible second specific user
attribute criteria but not all of the first hint criteria interface implementations, such that a selected
that have been specified; and second specific user interface implementation from
producing a second specific user interface interpreta- the second selection satisfies both the attribute
tion for the second generic object class from the criteria and the hint criteria specified for the ge-
specific user interface toolbox and controller using ¢p neric class, except if no second specific user inter-
the second generic object class interpreter, such face implementation from the second selection
that the selected second specific user interface satisfies both the attribute criteria and hint criteria
interpretation satisfies both the second attribute specified for the generic object class then the sec-
criteria and the second hint criteria, except if no ond interpreter being operable to select another
second specific user interface interpretation satis- g5 second specific user interface implementation from

fies both the second attribute criteria and the sec-
ond hint critena, then using the second generic
object interpreter to select another second specific

the second selection that satisfies the attribute crite-
ria but not all of the hint criteria that have been
specified for the generic object class;

5,327,529

43

selecting one of the first and second specific user
interface toolbox and controllers and a correspond-
ing one of the first and second interpreters; and

producing one of a first specific user interface imple-

mentation and a second specific user interface im- 5

plementation using the selected controller and the

selected interpreter.

11. A method for designating a user interface for use
with an application operating in a computer system
comprising the steps of: 10

A. providing in the computer system a first generic
object class that corresponds to a first class of func-
tion and a second generic object class that corre-
sponds to a second class of function;

B. specifying in the application first instance data in 15
the form of a first generic object specification that
corresponds to the first generic object class, the
first instance data including attribute criteria,
which are criteria that must be met by a specific
user interface implementation that is selected using 20
the first instance data, and hint criteria, which are
criteria that are permitted but not required to be
specified 1n the first instance data, and if specified,
are permitted but not required to be met by a spe-
cific user interface implementation that is selected 25
using the first instance data;

C. specifying in the application second instance data
in the form of a second generic object specification
that corresponds to the second generic object class,
the second instance data including attribute crite- 30
ria, which are criteria that must be met by a specific
user interface implementation that is selected using
the second instance data, and hint criteria, which
are criterta that are permitted but not required to
be specified in the second instance data, and if 35
specified, are permitted but not required to be met
by a specific user interface implementation that is
selected using the second instance data;

D. providing in the computer system a first specific
user interface toolbox and controller that is opera- 40
ble in the computer system to provide, for each of
the first and second generic object classes, a respec-
tive first selection of multiple possible first specific
user interface implementations:

E. providing in the computer system a second spe- 45
cific user interface toolbox and controller that is
operable in the computer system to provide, for
each of the first and second generic object classes,

a respective second selection of multiple possible

second specific user interface implementations:; 50

F. providing in the computer system a first inter-
preter that corresponds to the first specific user
interface toolbox and controller,

1. wherein the first interpreter is operable to select
from the first specific user interface toolbox and 55
controller a respective first specific user inter-
face implementation for the first generic object

class, such that a selected first specific user inter-
face implementation satisfies both the attribute
criteria and hint criteria specified for the respec- 60
tive first generic object class, except if no first
specific user interface implementation satisfies
both the attribute criteria and hint criteria speci-
fied for the first generic object class then the first
interpreter being operable to select another first 65
specific user interface implementation from the
first selection that satisfies the attribute criteria

44

but not all of the hint criteria that have been
specified for the first generic object class, and

i1. wherein the first interpreter is operable to select
from the first specific user interface toolbox and

controller a respective first specific user inter-
face implementation for the second generic ob-
ject class, such that a selected first user interface
implementation satisfies both the attribute crite-
ria and hint criteria specified for the second ge-
neric object class, except if no first specific user
interface implementation satisfies both the attri-
bute criteria and hint criteria specified for the
second generic object class then the first inter-
preter being operable to select another first spe-
cific user interface implementation from the first
selection that satisfies the attribute criteria but
not all of the hint criteria that have been speci-
fied for the second generic object class;

G. providing in the computer system a second inter-

preter that corresponds to the second specific user

interface toolbox and controller,

1. wherein second interpreter is operable to select
from the second specific user interface toolbox
and controller a respective second specific user
interface implementation for the first generic
object class, such that a selected second specific
user interface implementations satisfies both the
attribute criterta and hint criteria of the respec-
tive first generic object class, except if no second
specific user interface implementation satisfies
both the attribute criteria and hint criteria of the
first generic object class then the second inter-
preter being operable to select another second
specific user interface implementation from the
second selection that satisfies the attribute crite-
ria but not all of the hint criteria that have been
specified for the first generic object class, and

1. wherein the second interpreter is operable to
selected from the second specific user interface
toolbox and controller a respective second spe-
cific user interface implementation for the sec-
ond generic object class, such that a selected
second user interface implementation satisfies
both the attribute criteria and hint criteria of the
second generic object class, except if no second
specific user interface implementation satisfies
both the attribute criteria and hint criteria of the
second generic object class then the second in-
terpreter being operable to select another second
specific user interface implementation from the
second selection that satisfies the attribute crite-
ria but not all of the hint criteria that have been
specified for the second generic object class;

H. selecting one of the first and second specific user

interface toolbox and controllers:

1. in the event of the selection of the first specific
user interface toolbox and controller, using the
first interpreter to select respective first specific
user interface implementations for the first ge-
neric object class and the second generic object
class, and

i1. in the event of the selection of the second specific

user Interface toolbox and controller, using the
second interpreter to select respective second

specific user interface implementations for the
first generic object class and the second generic

object class. ‘
X ¥ #* L #

	Front Page
	Drawings
	Specification
	Claims

