United States Patent [
Hendricks et al.

[S4] METHOD AND APPARATUS FOR
TRANSLUCENT FILE SYSTEM

[75] Inventors: David Hendricks, Menlo Park: Evan
Adams, San Leandro; Tom Lyon,
Palo Alto; Terrence C. Miller, Menlo
Park, all of Calif.

Sun Microsystems, Inc., Mountain
View, Calif.

[21] Appl. No.: 714,312
[22] Filed: Jun. 10, 1991

[73] Assignee:

Related U.S. Application Data
[63] Continuation of Ser. No. 315,287, Jun. 10, 1989, aban-

doned.
[51] IRt CLS oo GOGF 15/40
[52] US. Cl oo, 395/600; 395/435;

395/160; 364/DIG. 1; 364/222.81; 364/282.1;
364/283.1; 364/286

[S8] Field of Search Cessertresinanns 395/600, 425, 146, 160
[S56] References Cited _ '
U.S. PATENT DOCUMENTS

4,742,450 5/1988 Duvall et al. erererererarens 364/200
4,809,170 2/1989 Leblang et al. 395/600
4,875,159 10/1989 Cary et al. ...ceveecvenennnns e 395/600
4,887,204 12/1989 Johnson et al. 395/600
4,912,637 3/1990 Sheedy et al. 395/600
4,914,569 4/1990 Levineetal. woomeeeeeeumnennnn, 395/600
3,001,628 3/1991 Johnsonetal. .oooeeeemeenenennnn, 395/600
5,077,658 12/1991 Bendertet al. ...oeeeveereeeennnn, 395/600
5,093,779 3/1992 Sakuraiccceerernrervennneen, 395/600

OTHER PUBLICATIONS

Hughes, Ronald P., “The Transparent Remote File
System,” Integrated Solutions, Inc. pp. 306-317.
Gregory, Roger, “XANADU, Hypertext from the Fu-
ture,” S Dr. Dobbs Journal, No. 75, Jan. 1983, pp.
28-35.

Lewis, Brian T., “Experience with a System for Con-
trolling Software Versions in a Distributed Environ-
ment,” Proceedings of the Symposium on Application
and Assessment of Automated Tools for Software De-
velopment, IEEE Univ. of Texas, 1983, pp. 1-19.

: <>

" 13

IR

US005313646A
[11] Patent Number:

[45] Date of Patent:

5,313,646
May 17, 1994

Interleaf Technical Publishing Software, Reference Man-
ual, vol. 1, Sun/Release 3.0, 1986, pp. 15-1-18, 16-1-19.
Kleiman, 8. R., “Vnodes: An Architecture for Multiple
File System Types in Sun UNIX,” Sun Microsystems,
pp. 238-247.

Sandberg, Russel, et al., “Design and Implementation of

the Sun Network Filesystem,” Sun Microsystems, pp.
119-130.

Huskamp, Jeffrey C.,' “A Modular Operating System

for the CRAY-1,” Software—Practice and Experience,
vol. 16(12), Dec. 1986, pp. 1059-1076. |

Tichy, Walter F., “RCS—A System for Version Con-
trol,” Software—Practice and Experience, vol. 15, No.
7, pp. 637-654, John Wiley & Sons, Ltd., 1985.
McGilton et al, “Introducing the UNIX System,”
McGraw-Hill, 1983, pp. 75-78. |

Andrew S. Tanenbaum, “Operating Systems—Design

and Implementation,” Prentice-Hall, Inc., 1987, Chap-
ter 5.

Primary Examinéer—Paul V. Kulik
Attorney, Agent, or Firm—Erwin J. Basinski

157) ABSTRACT

In a computer system having a hierarchical file struc-
ture, a file system is provided which permits users of the
system to share a file hierarchy and also have a private
hierarchy in which files are automatically copied to as
they are modified. Through the system of the present
Invention, a directory appears to the user as a single
directory but may actually comprise files originating
from a number of directories which are connected to
one another through search links. Each directory has a
search hink associated with it which contains the path
name of the back layer or directory behind it. The first
layer seen through the system of the present invention is
the front layer, private to the user. The back layers
behind the front layer and connected to the front layer
through the search links are shared layers accessible to
multiple users. Thus transparent to the user of the direc-
tory accessible comprises multiple layers comprising
shared and private files. The system further provides a
copy-on-write feature which protects the integrity of

~ the shared files by automatically copying a shared file

into the users private layer when the user attempts to
modify a shared file in a back layer.

16 Claims, 8 Drawing Sheets

U.S. Patent May 17, 1994 Sheet 10f8 5,313,646

FI1G. 1

PRIOR ART

U.S. Patent May 17, 1994 Sheet 2 of 8 5,313,646

USER PROGRAMS

FILE SYSTEM

INTERFACE

HARDWARE CONTROL

HARDWARE LEVEL

FIG. 2

PRIOR ART

U.S. Patent ~ May 17, 1994 Sheet 3 of 8 5,313,646

USER/PROGRAM 10
USER LEVEL

KERNEL LEVEL

' SYSTEM CALL INTERFACE

FILE SYSTEM PROCESS CONTROL
1 INTERFACE sYSTEM | £
120 95
HARDWARE CONTROL +—110
KERNEL LEVEL
HARDWARE LEVEL
80

FIG. 3a

5,313,646

Sheet 4 of 8

TIALT A4S

May 17, 1994

U.S. Patent

QUIYORIA

SSAD0Ud
FAYAS

NIOMIIN JOAO S19)oRd

QUMY

JAdVMJAVH

TAATT TANATIA

dd0O0 AAOM.LIN

TIATTIHASN

SSd00¥Ud d95(1

TIATTTANYIA

U.S. Patent May 17, 1994 Sheet 5 of 8 5,313,646

oy
\ ™

U.S. Patent May 17, 1994 Sheet 6 of 8 5,313,646

v
2
=
<
2
a'

72

O
“ #SAS
N JO
ﬂ._u tSAS
Qw. JO
Tp #AA €SAS =

11
s] D

CAU/pareys
o C o >
7/ LOC

oo
L
o
™~
b
Q)
QL
ket
L »

$0C

[AQ/MIIAS
e {
gSAS-MIIAg 1og = AYPAEYS e

. "G
—

QL

'

< _
e Cha
S. [UOISIAY Z UOISIAY

-

U.S. Patent ‘May 17, 1994 Sheet 80f 8 5,313,646

FIG. 6

Revision 1|

220
shared
shared/rev1l @
215

$view/revl
$view=sys3

205
shared
Shal'ed/rcvz @ .
200

Revision 2

5,313,646

1

METHOD AND APPARATUS FOR TRANSLUCENT
FILE SYSTEM

This is a continuation/divisional of application Ser.
No. 07/315,287 filed Feb. 24, 1989 now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention:

The field of the Invention is computer systems utiliz-
ing hierarchical file structures, such as the hierarchical
file structure used in the UNIX operating system envi-
ronment. |

2. Art Background:

Computer systems available today range in cost and
mphlstlcatlon from low cost micro-processor personal
computers to sophisticated, high cost mainframe com-
puters. However, the computer systems can be said to
include the same basic components: at least one central
processing unit (CPU) which controls the performance
of computer operations, input/output units which con-
trol the input and output of information within and out
of the computer system, and memory or storage space
which stores information used by the CPU to perform
computer operatlons

The CPU is controlled by the Operatlng system
which dictates how certain computer operations are to
be performed. One portion of the operating system is
- the file system module which determines and controls
the file structure in the computer system.

One type of file structure in use is referred to as a
hierarchical file structure. In a hierarchical file struc-
ture files are organized into a tree structure commenc-
ing with a single root node often referred to as the
-“root”. One or more nodes may then be connected to

the root and one or more nodes may be connected. to
each node. Every non-leaf node of the file system struc-
ture, that 1s a node which has another node connected
to it, is a directory of files; and the files at the leaf nodes

5

10

15

20

25

30

35

of the tree are either directories, regular files, or a spe- 40

cial type of file such as a device file.

In a particular hierarchical file system, the name of
this file is the path name that describes how to locate the
file in the system hierarchy. A path name is a sequence
of component names separated by the *“/” character. A
full path name starts with a *“/” character which speci-

fies that a file is found by starting at the file system root

and traversing the file tree, following the branches that
lead to successive paths. For example, the path name
/usr/src/cmd/two.c follows a path such as that shown
within the box in FIG. 1 and designates the two.c file
labeled 5 in the tree shown.

In the software development environment, numerous
computer programmers may be working concurrently
on a single program or a group of programs which are
interrelated and operate together. It is quite desirable
that the work be done simultaneously so that it may be
compieted in the shortest amount of time. Typically,
each software programmer makes a copy of those files
in the portion of the file structure he is working in and
works on those particular copies to achieve his goal.
Thus, if a product consists of twenty programs, each
programmer may have a copy of those twenty pro-
grams in his user area.

The problem with this arrangement is that each pro-
grammer must usually work with a large number of files
1n order to work on a single file. Consequently, multiple
copies of these files exist in numerous places on the

45

30

35

65

2

system, requiring a large amount of disk memory space
and adding to the complexity of the arrangement and
the identification of the files. Furthermore, it is quite

‘easy to lose track of or confuse older versions of pro-

grams with the current versions of programs. For exam-
ple, programmer one may be working on certain por-

tions of a program that has a revision date of may, and

programmer two may be working on a program that
has a revision date of June. Thus the changes made by
either programmer are contained in different versions:
and, in order to incorporate the new software devel-
oped by the programmers, the code must be incorpo
rated into the latest version of the code, a repetitive a.nd
cumbersome task.

SUMMARY OF THE INVENTION

It 1s, therefore, an object of the present invention to
provide a computer system which contains a file struc-
ture and system comprising a private file hierarchy and
a shared file hierarchy, the private hierarchy containing
those files which only the private user has modified.

It is further an object of the present invention to
provide a computer system in which shared files are
written into a private user file automatlcally if the user
attempts to modify the file.

It 1s another object of the present invention to pro- -
vide a computer system in which files may be accessed
by a common name regardless of the location of the file
in the file structure.

It 1s an additional object of the present invention to
provide a computer system in which a file directory
contains both shared and private files.

In the computer system of the present invention, the
operating system comprises a translucent file system
module (TFS) which permits users of the computer
system to share a file hierarchy and also to have a pri-
vate file hierarchy in which files from the shared hierar-
chy are copied into the private hierarchy only as they
are modified, a feature referred to as a *“copy-on-write”
procedure. Writing is done only in the private hierar-
chy. Thus, individual users are isolated from changes
made by others because files in the shared hierarchy are
guaranteed not to change. In addition, files are only
copied when they are modified; until modified, the
shared files are utilized. Consequently, a significant
amount of disk space is conserved.

A directory seen through the TFS appears to the user
as a single directory, but actually comprises listings for
files or directories which may exist in a number of lay-
ers. Each layer is a physical directory, and the layers are
joined by what are referred to as search links. Each

layer has a search link associated with it which contains

the directory name of the next layer behind it. The first
layer seen through the TFS is considered to be the front
layer, and layers found by following the search links
from this layer are considered to be behind the front
layer in what are referred to as the “back layers”. The
files show through from back layers uniess the same
files exist in a layer in front to mask the files in the back
layers. Therefore, it can be said that the front layer is
translucent or selectively transparent

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the system of
the present invention will be apparent from the follow-
ing description in which:

FIG. 1 illustrates a hierarchical file system structure;

J),313,646

3

FIG. 2 is a block diagram representation of a UNIX-
based computer system;

FI1G. 3(a) is a block diagram illustrative of the loca-
tion of the TFS module system in one embodiment of
the system of the present invention;

FIG. 3(b) is a block diagram illustrative of the loca-
tion of the TFS module system in another embodiment
of the system of the present invention;

FI1G. 4(a) and 4(b) illustrates a hierarchical file system
and the resulting structure visible to the user through

the system of the present invention;

FIG. § illustrates a hierarchical file system employed
using an embodiment of the system of the present inven-
tion including shared layers and variant layers; and

FIG. 6 further illustrates the embodiment of the sys-

tem of the present invention described with respect to
FIG. 4.

DETAILED DESCRIPTION OF THE
INVENTION

In the system of the present invention, a file system is
provided comprising a Translucent File System module
(TFS), which provides users with a shared file hierar-
chy and a private hierarchy in which shared files edited
by the user are automatically copied into the user’s
private hierarchy. By means of the TFS module, search
links are formed for each directory. The search link for
a directory comprises a pointer stored in the layer with
a directory which points to the next directory which is
in the next layer behind the directory. Therefore, files
can be accessed from directories or layers which are
behind the front layer by examining the layer identified
through the search links. -

The physical layers may be located in one location of
memory or storage on one computer system or at multi-
ple locations situated on multiple computer systems
linked together through a computer network. When-
ever a user or a process accesses a file, the TFS module
causes the most current version of the file to be pres-
ented for access. Furthermore, if a user requests a direc-
tory listing, the TFS module causes a directory listing
to be displayed, listing only the most current versions of
the files found among the directories linked together
through search links. The files listed may be shared files
located in different back layers or the files may be pri-
vate files, private to the user and located in the front
layer.

One operating system which uses a hierarchical file
structure is the UNIX ® (UNIX is a registered trade-
mark of AT&T) operating system initially developed by
Bell Laboratories. Although the preferred embodiment
1s described in a UNIX operating system environment,
it is evident that the system of the present invention may
be applied to other operating systems employing a hier-
archical file structure. | |

In a UNIX-based system, the operating system inter-

acts directly with the hardware providing common

services to programs and isolating the software and
users from the hardware idiosyncrasies of a particular
computer system. Viewing the system as a set of layers,
the operating system is commonly called the “system
kernel” or just “kernel”, emphasizing its isolation from
the user programs. Because the programs are indepen-
dent of the underlying hardware, it is easy to move the
programs between UNIX systems running on different
hardware. The UNIX file system, located within the
kernel, organizes the file structures.

5

10

15

20

25

30

33

40

435

4

The kernel is depicted generally in FIG. 2 which
shows three levels: user/programs, kernel and hard-
ware. The system call and library interface represents
the border or interface between programs and the ker-
nel. The system calls are divided into those system calls
that interface with the file system and those that interact
with the process control system. The process control
system is responsible for process synchronization, inter-

process communication, memory management and pro-
cess scheduling. The file system manages files, allocates
files space, administers free space, controls access to

files and retrieves data for users and programs.

One embodiment of the system of the present inven-
tion is realized in the system illustrated in FIG. 3(a).
The kernel 60 interfaces to the user/programs at the
user level 70 and the hardware at the hardware level 80.
The file system comprises a file system interface 90
which receives the file system commands and deter-
mines whether the current directory to be accessed i1s a
TES directory. This is preferably achieved by storing a
table or file accessible by the file system interface 90,
which identifies those directories or file systems which
are to be accessed through the TFS module.

One UNIX-based system is the SUNOS (Sun Operat-
ing System), produced by Sun Microsystems, Inc.,
Mountain View, Calif. This operating system includes
in its most recent versions, a Network File System
(hereinafter NFS). The NFS is further described in a
paper entitled Design and Implementation of the Sun
Network File System, Sandberg et al, published by Sun
Microsystems Inc. Associated with the NFS is a Virtual
File System (hereinafter VFS). The VFES is a file inter-

face architecture for accommodating multiple file sys-

tems within the SUNOS kernel. In particular, the VFS
provides a file system interface which supports local
disk file systems such as the 4.2BSD file system, state-
less remote file systems such as NFS, statefull remote
file systems such as AT&T’s RFS, or non-UNIX file
systems stich as MSDOS. The VFS is further described
in a paper entitled Vnodes: An Architecture for Multiple
File System Types in Sun UNIX, S. R. Kleinman, pub-
lished by Sun Microsystems, Inc.

The VFS allows the mounting of different file sys-
tems which require different mount data. To accom-
plish this, in using the system mount command, the file
system type, the directory which is the mount point, the

" directory to be mounted, various generic flags such as

50

33

65

“read only,” and a pointer to the file system specific
type data are provided. The mount system command
accepts as one of its file system types the designation
TES.

Thus, the file system may be identified to be a “TFS
type” by the user when the directory or file system is
mounted. The “mount’” command attaches a named file
system to a file system hierarchy which is identified by
a path name location (e.g. */usr/src”). For example, if a
first file system ““/aaa/bbb/ccc” is mounted on a second
file system *“/usr/src” the resulting file system consists
of “/usr/src/aaa/bbb/ccc”. This pathname for the file
system to be attached is the pathname which designates
the frontmost writable directory in the TFS system.

If the current directory is a TFS directory, then any
directory command to be executed is executed through
the TFS module 95. Otherwise the command is exe-
cuted by the non-TFS module, hereinafter referred to as
the “generic file system module” 120. If the command is
to be executed through the TFS module system 95, the
TFS module under control of a TFS server process (a

5,313,646

S

user program) makes requests through the generic file
system module 120 which provides the proper com-
mands to the hardware control system 110 for causing
the hardware 100 to execute the commands. The TFS
module system 95, upon receipt of a command, such as
one for reading a file or for providing a listing of the
directory, utilizes the search links from the designated
directory and other features particular to the TFS file
system in order to access the most current version of the
file or files that may be located in the multiple layers in
the file system. |

A second embodiment of the invention which mini-
mizes the modifications to the kernel is shown in FIG.
3(6). In this embodiment, the TFS file system module is
connected through a pre-existing file system module
such as the Network File System Module (N FS) which
iIs connected to the file system interface as a server. The
NFS module directs the command to the NFS server
that is bound to, and for the purposes of TFS, the TFS
module 1s the file server. Therefore, the system com-
mands are directed to the TFS module. Since the com-

mands for operating the NFS module are already in the

kernel, when the TFS acts as an NFS server the kernel
does not have to be modified. Thus, commands relevant
to a TFS file system are first directed to the NFS mod-
uie where they are forwarded to be executed through
the TFS module. The TFS module then provides the
layer directories in the manner described.

In either embodiment of the invention, the user has a
single private front layer. The name of the directory for

10

15

20

25

30

the front layer is specified at mount time and sent to the |

TFS server process. The TFS server process then fol-
lows the search links from the designated front layer to
determine the rest of the layers. The searchlinks are
originally established by software commands “acquire”
and “preserve” in the Network Software Environment,
utilities that run on the SUNOS; obviously, other com-
mands might be used in other systems. These commands
are used when a file is first viewed by a user and point
to the next back layer. |
As explained, in the preferred embodiment the search
Iinks for a file system are in a file associated with a
directory and identify the next back directory for the

layer in back of a particular directory. In effect, a direc-

tory is designated as lying in a back layer by the search
hnks pointing to it. When the search links are estab-
hished, the files in that back directory are designated as
read-only by the TFS server process. Although it is
preferred that the search link for each directory be
located in a file associated with that directory, the
search links for the entire file system might be located in
a single file situated in a central location such as the root
directory of the file system. The search links identify
the directories of shared files located in the back layers.
The files are designated “shared” simply because of the
search links which have been established.

When a TFS module receives a command to be exe-
cuted, such as “list a particular file”, the TFS directory
identified in the command, which by default is the front
layer, is examined first to determine if the file requested

35

45

6

front layer, even though the file may be located on a
back layer numerous layers behind the front layer. This

-entire operation of searching multiple layers or directo-

ries is transparent to the user.

FIG. 4 illustrates three layers 10, 20 and 30 connected
by search links 40 and 45 containing different versions
of files one.c, two.c, and three.c. Layer 30 is the private
layer and contains files one.c3 and three.c! indicating
the most current version with respect to the user of
those files, and a white-out marker 60 indicating that file
X 61 is deleted for this user. The files one.c3 and two.c!
are private files signifying that the user had either cre-
ated the files or had modified the shared versions of the
files. The layer directly behind the private layer 30, is
layer 20. This is a shared layer and contains the file
one.c, an earlier version of one.c3. File one.c?, was
copied automatically 75 via copying means 50 into layer

‘30 when the user modified or wrote on the file. Con-

nected by search link 40 is shared layer 10 which is
behind layer 20. Shared layer 10 contains files one.cl
which is an earlier version of one.c2, file X and file
two.cl. Using the TFS module of the present invention,
the resulting file structure, that is the file structure visi-
ble to and accessible by the user is a single directory, a
single layer containing files one.c3, two.c! and three.c!.
This is illustrated in FIG. 4(b) in which the files one.c3
and three.c! originated from the private layer 30 and file
two.c! originated from the shared back layer 10 are
displayed to the user via display means 72. Thus, it can
be seen that the complexities of multiple layers are iso-
lated from the user of the system. Furthermore, the
shared files located in the back layers are protected

from modification by a user by the copy-on-write fea-

ture which automatically copies a file into the user’s
private front layer when the user attempts to modify the
file. |

Because the back layers are read only and the private
layer is the only layer which is read and write accessi-
ble, files may only be deleted from the private layer.
However, if the user has no need for certain files that
are located in back layers, the user can effectively delete
those files through a “white out” function. The white-
out function causes a file which would otherwise be
displayed when a user reviews his directory, to be
masked-out and not visible or accessible to the user. A
file is provided in which the white-out entries are listed.

- The file is referred to by the TFS module to determine

50

53

is located in the front layer. If the file is not located in

the front layer, the TFS module reads the file contain-
ing the search link and examines the files in the direc-
tory identified in the search link. This process continues
until the last directory identified through search links is
read or until the file is found. If the file requested is
found, it is identified to the user in the same manner as
if it was located in the user's current directory, i.e. the

65

whether a particular file is to be masked or “whited
out” when file system operations are performed. The
white out entries for a file system may be stored in a
single file in the root directory of the file system. Alter-
natively, the file containing the white-out entries for a
directory may be stored in each directory or the white-
out entries may be incorporated into the same file con-
taining the search link. In a preferred embodiment,
commands may be included for listing the files subject
to the whiteout command and for removing the white-
out indication for a particular file.

In another embodiment of the system of the present
invention, conditional search links are provided. A con-
ditional search link can point to more than one direc-
tory, wherein the directory pointed to is dependent on
the variant used. To accomplish this result, each search
link provides a string of characters which indicate that
there are variants of the search link. In use, the TFS
module determines which variant to use from the file
system designation given at the mount command, and

. the string is replaced by the TFS module with a proper

Y,313,646

7

variant name to read the proper search link to yield the
name of the next back layer. |

These conditional search links are particularly help-
ful where numerous identical source files are used for
different versions of operating systems since each ver-
sion is then capable of compiling its own object code
from the same source code.

Referring to FIG. §, there two variants, sys3 and sys4
which are used on two separate hardware architectures.
There are two revisions, revision 1 and 2; and each
revision has a variant layer for each of the sys3 and sys4
variants and a layer 210 shared between the two vari-
ants. The sys3 and sys4 variants both have layers in
revision two 200, 205 with search links to the shared
layer for revision two 210. These search links 206, 207
have the form “shared/rev#” 301 for accessing each
variant. The “shared” portion 302 is used to identify the
“system Number” and the “rev#”’ portion 303 identifies
the revision variant portion of the access link. The
shared layer 210 has a conditional search link 215 to
$view Revl. In the preferred embodiment, the “$view”
is the indication used for a conditional search link.
When the user looks at the sys3 variant this conditional
search link points to the sys3 revision one layer 220 and
if the user looks at the sys4 variant the search link points
to the sys4 revision one layer 225. The sys3 and sys4
revision one layers 220, 225 have regular, that is, uncon-
ditional search links 230, 235 to the shared layer for
revision one 240. The conditional search links and the
shared layers allow files to be shared by different vari-
ants so that the source files in the shared layer will be
seen in both sys3 and sys4 variants.

Additionally, protection is provided to prevent a user
operating in one variant from modifying a source file
from a shared layer such that the file is copied to the
front layer which is variant specific. If this occurs, the
source file is no-longer shared because the most current
version of the source file 1s in a user’s front layer which
1s varniant specific and is no longer in the layer shared
among the variants. It i1s therefore preferable that the
most current version of the source files stay in the
shared layer even when it is modified. This feature is
achieved by providing a front layer comprising sub-lay-
ers: a shared sub-layer and a sub-layer for each variant.
Thus, any modification performed with respect to a
shared or variant sub-layer is maintained in the particu-
lar sub-layer. If a file is found in either of the two front
sub-layers, the file will be modified in that sub-layer.
This 15 1llustrated in FIG. 6. If file one.c in the revision
two shared layer 205, which is the front layer, is modi-
fied by a user who is operating under the sys3 variant,
the file will not be copied to the revision two variant
sub-layer 210; instead the file will remain in the revision
two shared sub-layer 205. Furthermore, when a file is
created, it is created in the front variant sub-layer unless
the file name has appeared in the shared sub-layer
whereby the file is created in the front shared sub-layer.
The preservation of the sub-layers also applies to the
copy on write function of back layers as well; if a file to
be modified is found in the shared sub-layer of a back
layer that file will be copied to the shared sub-layer of
the front layer. If a file to be modified is found in a
variant sub-layer, it will be copied to the variant sub-
layer of the front layer.

For example, referring to FIG. 6, if the file two.c 215
in the revision one shared layer 220 is modified, it is
copied to the shared sub-layer of revision two 205.

However, if the file two.0 is modified, it is copied to the

10

15

20

25

30

35

45

50

3

60

65

8

variant sub-layer of revision two 210. Thus, only one

front writable layer exists, but the layer comprises mul-
tiple sub-layers reflecting shared variant sub-layers.
One problem with the invention disclosed to this
point is that as the number of back layers increase, so do
the number of search links and the amount of time to
perform a file system function such as listing the con-
tents of the directory which requires reading numerous

directories and search link files until the last back layer
is reached. Consequently, in another embodiment of the
system of the present invention, a file look-up cache,

referred to as a ‘“‘back file”, is utilized to accelerate file
look-up and directory read functions.

To minimize the amount of time and the number of
operations required to perform operations with respect
to a multi-layered file system, back files are used. The
back file for a directory contains a list of all the read-
only files in the file system and the path names of the
back layers the files are found in. Thus, to read a direc-
tory, the TFS system needs only to read the directory
entries of the front layer and the back file for that direc-
tory located in the front layer to determine the names
and the actual locations of the files in a file system.
Furthermore, a file located in a back layer can be di-
rectly accessed simply by determining the location
through the back file. The back file is always accurate
because the back layers are read only; that is, the files in
the back layer cannot change so once a file is placed in
a back layer, it remains in the back layer.

The back files are written by the TFS process server
when a user looks up a file in a TFS directory or reads
a TFS directory; if at that time no back file exist for the
directory, one is created. Normally, this is a simple
process because there is usually a back file for the direc-
tory of the next layer back which can be used to con-
struct the new back file for the front layer. Thus, usu-
ally only the first read-only layer has to be read for its
contents since the locations of the rest of the read-only
files can be determined from the back file in the first
read-only layer.

While the invention has been described in conjunc-
tion with preferred embodiments, it is evident that nu-
merous alternatives, modifications, variations and uses
will be apparent to those skilled in the art in light of the
foregoing description.

We claim:

1. In a multi-user computer system comprising a cen-
tral processing unit (CPU), an input/output unit and
memory, sald CPU being controlled by an operating
system, said operating system comprising a file system
module, wherein the file system module organizes and
controls access to files located on disks in the computer
system, said file system module organizing files into file
systems comprising directories said directories contain-
ing files organized in a hierarchical file structure, a
method for translucently providing to a user both
shared and private access to current revisions of files,
said method comprising the steps of:

structuring a designated file hierarchy into two or

more layers whereby each layer contains at least
one directory;

creating an ordered set of layers which can be shared

by any number of users, wherein two or more lay-
ers of the designated file hierarchy are arranged in
time-of-creation sequence such that a layer con-
taining a less recent revision of a file in the desig-
nated file hierarchy is placed below a layer with a
more recent revision of the same file;

9

providing one or more front layers, each containing
at least one directory, with each of the one or more
front layers being controlled by a particular user of
the system and is not being shared with other users
- of the system, with files located in each of said one
or more front layers being designated such that
‘only the particular user can read from and write to
the files in said particular user’s front layer, and
~each front layer being positioned in front of the
ordered set of shared layers of the designated file
hierarchy;

displaying to a particular user, most recent revisions

of files regardless of whether these files reside in
the directory of the particular user’s front layer or
in the directories of the ordered set of shared lay-
ers, as if all of the files resided in the particular
user’s front directory. |

2. The method of claim 1 wherein the step of creating
an ordered set of shared layers further comprises a first
connecting step for connecting a particular layer in the
ordered set of shared layers to a layer below said partic-
ular layer by means of search links, and wherein the step
for providing one or more front layers further com-
prises a second connecting step for connecting each of
the one or more front layers to a topmost layer of the
ordered set of shared layers using search links, wherein
the search links are associated with a directory of each
layer and comprise a path name of a directory of a layer
behind the layer the search link is located in, said path
name identifying the location of a directory in a file
system. |

3. The method of claim 1 further comprising steps for
automatically copying a designated file from a layer of
the ordered set of shared layers, into a particular user’s
front layer when the particular user attempts to execute
a write command to the designated file, whereby the
copy of the designated file in the particular user’s front
layer can be modified according to the write command
which triggered the copy operation without the copy
operdtion or the location of the modified copy of the
designated file being evident to the particular user.

4. The method of claim 2 wherein the step of connect-
ing the one or more front layers and the ordered set of
shared layers through search links comprises an addi-
tional step of establishing such search links when a new
layer is created.

5. In a multi-user computer system comprising a cen-
tral processing unit (CPU), an input/output unit and
memory, said CPU being controlled by an operating
system, said operating system comprising a file system
module, wherein the file system module organizes and
controls access to files located on disks in the computer
system, said file system module organizing files into file
systems comprising directories and files organized in a
hierarchical file structure, said directories containing
the files, a translucent file system module which cooper-
ates with the file system module, said translucent file
system module comprising:

organizing means for structuring a designated file

hierarchy into two or more layers whereby each
layer contains at least one directory;

ordering means for creating an ordered set of layers

which can be shared by any number of users,
wherein the two or more layers of the designated
file hierarchy are arranged in time-of-creation se-
quence such that a layer containing a less recent
revision of a file in the designated file hierarchy is

5,313,646

10

15

20

25

30

35

45

10

placed below a layer with a more recent revision of
the same file;

a first layering means for providing one or more front
layers, each containing at least one directory, with
each of the one or more front layers being con-
trolled by a particular user of the system and not
being shared with other users of the system, with
files located in each of said one or more front layers
being designated such that only the particular user
can read from and write to the files in the particular
user’s front layer and each particular user’s front
layer being positioned in front of the ordered set of
shared layers of the designated file hierarchy; and

display means for displaying to a particular user, most
recent revisions of files regardless of whether these
files reside in the directory of the particular user’s
front layer or in the directories of the ordered set of
shared layers, as if all of the files resided in the
particular user’s front directory.

6. The translucent file system module of claim 5
wherein the ordering means for creating an ordered set
of shared layers further comprises a connecting means
for connecting a particular layer in the ordered set of
shared layers to a layer below said particular layer by
means of search links, and for connecting each of the
one or more front layers to a topmost layer of the or-
dered set of shared layers using search links, wherein
the search links are located in a directory of each layer,
and comprise a path name of a directory of a layer
behind the layer the search link file is located in, said
path name identifying a location of a directory in the
translucent file system.

7. The translucent file system module of claim § fur-
ther comprising copying means for automatically copy-
ing a designated file from a layer of the ordered set of
shared layers, into a particular user’s front layer when
the particular user attempts to execute a write command
to the designated file, whereby the copy of the desig-
nated file in the particular user’s front layer can be
modified according to the write command which trig-
gered the copy operation without the copy operation or
the location of the modified copy of the designated file
being evident to the particular user.

8. The translucent file system module of claim 6
wherein the means for connecting each of the one or

- more front layers and the ordered set of shared layers

50

33

60

635

through search links comprises a means establishing
such search links when a new layer is created.

9. The translucent file system module of claim 5 fur-
ther comprising routing means to direct any file system
commands from the file system module with respect to
the designated file hierarchy to the translucent file Sys-
tem module such that the commands are executed
through the translucent file system module. |

10. The translucent file system module of claim 5§
further comprising designating means for identifying
directories according to a type of variant of files con-
tained in the directories; and

accessing means for accessing files located in the at

least one directory of the one or more front layers
and in the ordered set of shared layers, comprising
identification means for identifying the type of
variant of files to be accessed, wherein the particu-
Jar user is provided access through the particular
user’s front layer directory to files located in direc-
tories identified by a variant type requested by the
particular user.

J,313,646

11

11. The translucent file system module of claim 10
wherein a search link file is located in the at least one
directory of each layer, said search link file comprising
a variant type name which identifies a variant type of
files contained in a directory located in a next lower 5
layer and a path name identifying a location of a direc-
tory located in a next lower layer which contains files of
a desired variant type.

12. The translucent file system module of claim 11

wherein the accessing means for accessing the particu- 10

lar user’s front layer and the ordered set of shared layers
further comprises means directing any file system com-
mands from the file system module with respect to the
designated file hierarchy to the translucent file system
module such that the commands are executed through 15
the translucent file system module.

13. The translucent file system module of claim 12
wherein each of the one or more front layers comprise
at least a first and a second sub-layer, the first sub-layer
comprising a directory containing those files which are 20
not identified by a variant type and the second sub-layer
comprising a directory containing those files identified
by a variant type.

14. The translucent file system module of claim 13
further comprising copying means for automatically 25
copying a selected file located in a layer of the ordered
set of shared layers into a particular user’s front layer
when the particular user attempts to write the selected
file, and for copying selected files which are not identi-
fied by a variant type into a directory of the sub-layer 30
which is not identified by a variant type and for copying

35

435

50

35

65

12

files which are identified by a variant type into a direc-
tory of the sub-layer identified by the variant type.

15. The translucent file system module of claim 5

wherein the file system module is distributed among a
plurality of computer systems connected together via a
computer network such that different portions of the
file system are located on different computer systems
connected together via the computer network.
16. The translucent file system module of claim §
further comprising masking means to eliminate access
to an unwanted file located in a layer of the ordered set
of shared layers without deleting the unwanted file such
that the unwanted file may be accessed by others shar-
ing the ordered set of shared layers, said masking means
comprising: |

marking means for establishing a white-out file in a

particular user’s front layer identifying unwanted
files in a layer of the ordered set of shared layers to
which access by the particular user will no longer
be permitted from the particular user’s front layer;
and

reading means for reading the white-out file and

masking out any unwanted file listed in the white-
out file when any operation is performed involving
the file system such that a masked unwanted file is
invisible to the particular user of the system when
viewed from the layer containing the white-out file
or from any layer above a layer containing the

white-out file.
% & ¥ ¥ kK

	Front Page
	Drawings
	Specification
	Claims

