RO et

. US005309567A
United States Patent [- [11] Patent Number: 5,309,567
Mizukami [45] Date of Patent: May 3, 1994
[54] STRUCTURE AND METHOD FOR AN 5,113,990 5/1992 Gabrius et al. ..cooeoerrerreneee. 194,/206
ASYNCHRONOUS COMMUNICATION 5,185,853 2/1993 Cheng et al.ucevvreveveneeenn 395/115

PROTOCOL BETWEEN MASTER AND Primary Examiner—Gopal C. Ray

SLAVE PROCESSORS Attorney, Agent, or Firm—Skjerven, Morrill,
[75] Inventor: Toshiaki Mizukami, Cupertino, Calif. =~ MacPherson, Franklin & Friel

[73] Assignee: C-Cube Microsystems, Milpitas, [57] ABSTRACT

Calif. In accordance with the present invention, a structure
[21] Appl. No.: 826,327 and a method for asynchronously interfacing a master
processor and a slave processor is provided by receiv-

22} Filed: Jan. 24, 1992 ing from and providing to the master device control
[51] Imt, CLS cerennerranass GO6F 15/16; GO6F 13/00 signals of a polling protocol, and receiving from and
[52] US. ClL .ot 395/325; 395/200; providing to the slave device control signals of an inter-

364/230; 364/230.4; 364/260; 364/240.8; rupt type protocol. In a first embodiment of this inven-
364/240.9; 364/DIG. 1 tion, the master processor provides WR (write request),

[58] Field of Search 395/325, 200, 275, 425, RD (read I'CC]HBSI), OE (output enable) Signa]S, and

335/725; 340/825.06, 825.52; 371/33; 370/85.1 receives a BUSY (busy) signal. The slave processor

[56] References Cited receives an “int” (interrupt) signal, and provides “in-

U.S. PATENT DOCUMENTS ECR,, ('mterru;?t acknowledge), “outs (.output), an_d

ins”’ (input) signals. In a second embodiment of this

4,393,501 7/1983 Kellogg et al.c...cc........ 371/33 invention, instead of the RD signal of the first embodi-

4,443 850 4/}984 Harr_'is 364/200 ment, the read request signal is the AND product of an

4,547,849 10/ ._.985 Loule et al.coceeeneervennn, 364/200 AS (address strobe) Sigﬂal and the most significant bit of
4,646,300 2/1987 Goodman et al.ceeeue.ee 371/33

4,972,368 11/1990 O'Brien €t al. .cooooorvooveeervene 364/900 the read address.

5,023,778 6/1991 Simon, Jr. et al. 364/200

5,072,369 12/1991 Theus et al. .ccocvvverereveenene. 395/425 14 Claims, 9 Drawing Sheets

MASTER PROCESSOR [~1%V

MASTERBUS _ .,
BUS INTERFACE
UNIT
| SLAVEBUS -

SLAVE PROCESSOR 101

BUS SYSTEM

5,309,567

Sheet 1 of 9

May 3, 1994

U.S. Patent

10¢

£0¢

Ay~

¢ 9ld
N3LSAS SNd

(2 HOSS3IDOHd HILSVYI)

2 HOSSID0Hd 3AVIS

rt
s AN R HE

1IN
I 30v4EaINISng [T

BN

e T ET T E

00¢

(1 HOSS3ID0Hd IAVIS)

} HOSS300Hd H3LSVIN

L Ol
NILSAS SNd

101 HOSS300Hd JAVIS

SN8 JAYIS .-

_ LINN
YOI 30y443INI SNG

<0l SNE H3LSVIN

HOSS300dd HLSVIN

00}

5,309,567

Sheet 2 of 9

May 3, 1994

Lt

Snq ejep dAe|S SNq ejep JojSseuw *

7l

J9)s1bal Jndino

U.S. Patent

5,309,567

Sheet 3 of 9

May 3, 1994

U.S. Patent

€ 9l
OL AdA

dt Ol

ttt

10)e1ouab
A ssalppe palojoan

0Lt

Vv

SSaIppe payoje}

SSaIppe PalojosA

N el e s FEEEEEEEETEhl S T IIIIIIIII!IiIIIIlII'I

60€

Jje X
O Yijg 5
80¢

LOE

00(Q SSalppe Jajsew

bEe 806

5,309,567

Sheet 4 of 9

May 3, 1994

U.S. Patent

Yoejul

8ct

qgee 45¢E

[2€ 18)s16a1 ndul

SNQ EJep oAE|S

19181691 Jndjno

P>

108

SNq EJep Jajsew

5,309,567

=) ¥ Ol
= OL A3
urH
;
)
& 60€
" £ee -
o . Jo)esauab v 5 U0l
= SS3Ippe Pal0jIdA SSaIppe palojdsA " ssalppe payolel O L0t
0it 300 SSOJppE J3}Sel

A J8p0oo8p v

TG TUBOTUDIS

» SEEaewaEnias $ ARE TR ey i AN Sk agm SeonsieEananlis T S TEEababikbbiniieid sl sy Seeeesbebeesnlik paan s GabbeaEESseskl el Eaal | absbaesibEessesll Sl B il WS Eaaaaararesens el | bk bplk s Sk M s SN . L

U.S. Patent

U.S. Patent May 3, 1994 Sheet 6 of 9 5,309,567

1 2 3 t4 15

master data bus
outputen

master address
bus

latched address

rdrg
wirQ

input reg.

slave bus

wait_
busy

INS
Int
intack

data transfer from master to slave

FIG. 5A

U.S. Patent

May 3, 1994 Sheet 7 of 9 9,309,567

master data bus

outputen

master address
bus

latched address

rdrq
WrrQ

input reg.

slave bus

wait_
busy

INS
int
Intack

data transfer from master to slave

FIG. 5B

U.S. Patent ‘May 3, 1994 Sheet 8 of 9 5,309,567

g
il .
A

L

masterbus @ ------te-a--

outputen

master address
bus

latched address

rdrg
output reg.

slave bus

wait_
busy
outs

NS
" Y/

intack

“data transter from master to slave

FIG. 5C

U.S. Patent May 3, 1994 Sheet 9 of 9 5,309,567

master bus
outputen
master address
bus
latched address
rdrg |
output reg. : i‘l-l-—Q-E.
slavebus ~ ----------- LR F
’ . - _
- : ﬂ'n-"
AR/ B IAN
ins ’ q.!"
Int | l p
intack

data transfer from slave to master

FIG. 5D

5,309,567

1

STRUCTURE AND METHOD FOR AN
ASYNCHRONOUS COMMUNICATION
PROTOCOL BETWEEN MASTER AND SLAVE
PROCESSORS

FIELD OF THE INVENTION

‘This invention relates to the design of a system of
communicating computers. In particular, this invention
relates to the design of communication protocols be-
tween devices of a computer system.

DESCRIPTION OF RELATED ART

In a computer system involving multiple communi-
cating processors, synchronization of bus timing be-
tween communicating processors is necessary for suc-
cessful data transfer from one processor to another. A
discussion of various schemes for bus timing synchroni-
zation generally known in the art can be found in
“Computer Architecture and Organization” by John
Hayes, second edition, pp. 475-84.

One class of protocols, called “polling”, i1s widely
used in memory systems. Polling involves a master
device controlling the bus transactions, and issuing
“read” and “write” requests to a slave device. A bus
transaction 1s completed when the slave device pro-
- vides a “‘data ready” signal, which is also sometimes
called the “busy’ signal. This system requires the slave
device to poll the master device regularly for read and
write requests. However, if the read and write requests
are not 1ssued with regularity, polling is wasteful of the
slave device’s resources. Because of the simple signal-
Iing convention, this system is suitable when the slave
device is a dedicated resource, such as a primary mem-
ory system, in which the overhead incurred in polling
cannot be otherwise put to productive use.

Another widely used class of protocols is the “inter-
rupt” system. Under the interrupt system, the slave
processor executes an interrupt service routine only
when a service request from the master processor is
detected. The detection of whether an interrupt is
raised is performed at a very low level, typically be-
tween instructions in the current context of the slave
processor, so that the overhead for detecting a service
request is minimum. Only after an interrupt is detected
and accepted is the overhead of a context switch and of
servicing the master device incurred. Because the mas-
ter device must wait for the slave device to “acknowl-
edge” the interrupt (1.e. the slave device shows accep-
tance of the interrupt by issuing an interrupt acknowl-
edge signal) before the bus transaction can proceed, the
interrupt system is particularly efficient if the slave
processor 1s 2 much *faster” processor than the master
device. For example, this system is useful as between a
printer, as a master device, and a central processing unit
(CPU), as the slave device.

The “interrupt” type protocol is also very versatile
because the scope of the services provided by the slave
processor can exceed simple read and write operations
raised on dedicated bus lines. Typically, the master
processor specifies in an “interrupt vector” the service
requested of the slave processor. Many variations of
requested service are therefore possible.

However, when the master and slave devices are
general purpose processors of comparable performance,
neither these schemes or other schemes in the prior art
provides satisfactory performance.

10

15

20

235

30

35

45

50

33

65

2
SUMMARY OF THE INVENTION

In accordance with the present invention, a bus inter-
face unit mediates communication between a slave pro-
cessor and a master processor. The master processor,
which controls data transfer to and from the slave pro-
cessor, provides and receives control signals which
assume “polling” by the slave processor. The slave
processor provides and receives control signals which
assume “interrupt’” by the master processor. The bus
interface unit provides protocol translation between the
control signals of the master and slave processors.

In one embodiment, a bus interface unit of the present
invention is provided between two computers, one of
which is designated the master processor and the other
is designated the slave processor. In this embodiment,
only the computer designated the master processor can
initiate data transfer.

In another embodiment, two bus interface units of the
present invention are provided between two computers.
In this embodiment, either computer can initiate a data
transfer. The computer which initiates the data transfer
is designated the master processor with respect to that
transfer.

The bus interface unit provides the benefits of the
simplicity of the “polling” type protocol, and both ver-
satility and efficiency of the “interrupt” type protocol.
Beside providing protocol translation between two
otherwise incompatible protocols, the present invention
achieves high efficiency for communication between
two computers of comparable performances.

BRIEF DESCRIPTION OF THE DRAWINGS

'FIG. 1 shows a system in which a bus interface unit,
in accordance with the present invention, provides a
communication protocol between a master and a slave
Processor.

FIG. 2 shows a system in which two bus interface
units, in accordance with the present inventton, provide
communication protocols between two processors.

FIGS. 3A and 3B show a first embodiment of a bus
interface unit 1n accordance with the present invention.

FIGS. 4A and 4B show a second embodiment of a bus
interface unit in accordance with the present invention.

FIG. SA 1s a timing diagram showing the control
signal transitions in a data transfer from the master
processor to the slave processor. In FIG. 8g, the “busy”
signal 1s reset when the write request signal is issued by
the master processor. |

F1G. 5B 1s a timing diagram showing the contro]
signal transitions in a data transfer from the master
processor to the slave processor. In FI1G. 35, the “busy”
signal is set when the write request signal is issued by
the master processor.

FIG. §C 1s a timing diagram showing the control
signal transitions in a data transfer from the slave pro-
cessor to the master processor. In FIG. 5S¢, the “busy”
signal is reset when the read request signal is issued by
the master processor.

FIG. §D 1s a timing diagram showing the control
signal transitions in a data transfer from the slave pro-
cessor to the master processor. In FI1G. 34, the “busy”
signal 1s set when the read request is 1ssued by the mas-
ter processor.

DETAILED DESCRIPTION

FIG. 1 shows a system 1n which a bus interface unit
104 in accordance with the present invention is inter-

5,309,567

3

posed between a master processor 100 and slave proces-
sor 101 to provide a communication protocol between
these processors.

In this system, the master processor 100 controls data
transfer using a polling protocol. In this polling proto-
col, from the master processor 100’s perspective, the
slave processor 101 polls the master processor 100 for
read and write requests and signals completion of a bus
transaction by the high-to-low transition of a “busy”
signal. Under this scheme, the master processor 100
treats the slave processor 101 as a peripheral device.
However, from the slave processor 101’s perspective,
the slave processor 101 uses an interrupt protocol in
which the slave processor 101 services a data transfer
request only when it receives an interrupt signal from
the master processor 100. Hence, the bus interface unit
104 provides a protocol translation from the master
processor 100’s polling protocol to the slave processor
101’s interrupt protocol, and vice versa. The master
processor 100 reads and writes data over the master bus
102, whereas the slave processor 101 reads and writes
data over the slave bus 103.

F1G. 2 shows a system in which two bus interface
units 204a and 204H in accordance with the present
invention are interposed between two processors 200
and 201 to provide communication protocols between
these processors. Unlike the system shown in FIG. 1,
where one processor is designated the master device
and the other is designated the slave device, both pro-
cessors 200 and 201 are master and slave devices. This is
~ because processors 200 and 201 each, with respective to
data transfer it initiates, act as the master device. Con-
versely, with respect to interrupts received, each of
processors 200 and 201 acts as the slave device. Hence,
in this configuration, the designation of “master” and
“slave” depends on which processor initiates (and
therefore, controls) the data transfer. As in the system
shown in FIG. 1, the master device uses a polling proto-
col, and the slave device uses an interrupt protocol.
Processor 200 reads and writes data over bus 202, and
processor 201 reads and writes data over bus 203.

FIG. 3 shows a first embodiment of a bus interface
unit in accordance with the present invention. This bus
interface unit 1s suitable for use as the bus interface unit
104 of FIG. 1 and as either bus interface unit 204a or
2045 of FIG. 2. As shown in FIG. 3, the control signals
provided by the master processor are the WR (“‘write
enable” or *“write request”) signal on lead 304, RD
(“read enable” or “read request””) on lead 305, OE
(“output enable”) on lead 302, and “reset” signal on lead
303. The master processor receives as control signal the
“busy” signal on lead 306. The master processor con-
trols data transfer by raising either the RD signal on
lead 305, or the WR signal on lead 304. At the same
time, the master processor provides an address of the
slave processor on master address bus 307. This address
1s recogmzed by address decoder 308, which enables
AND gates 312 and 313, to provide either internal sig-
nal “wrrq” or internal signal “rdrq”, corresponding
respectively to either signal WR or signal RD.

The reset signal is provided on lead 303 to abort a
previous read or write request. The OE (“output en-
able”) signal on lead 302, controls the direction of mas-
ter data bus 301. When OE is held at logic low, buffer
326a 1s at a high-impedance state, so that the data on
master bus 301 is held to be read by input register 3255
for transfer to the slave processor. Conversely, when
the OE signal is held at logic high, the content of output

10

15

20

25

30

35

45

30

33

4
register 325¢ is provided to the master bus 301 through
enabled buffer 326a. |

The slave processor receives an interrupt signal “int”
on lead 329, and provides an interrupt acknowledge
signal “intack” on lead 328, an output strobe signal
“outs” on lead 330, and an input strobe stgnal “ins” on
lead 331. The slave processor receives or writes data on
a slave bus 327, which is isolated from the master bus
301 by the registers 325q and 325b. Register 325a and
3250 are each clocked by a falling edge transition at its
clock input lead. When servicing a write request from
the master processor, the slave processor reads from the
slave bus 327 the data which is previously strobed from
master bus 301 into register 3255 by the signal “wrrqg.”
The slave processor reads this data in register 325b
during the logic high state of the input strobe signal
“ins” on lead 331, which enables buffer 326b to gate the
output signal of register 3256 onto the slave bus 327.
Alternatively, when servicing a read request from the
master processor, the slave processor provides the data
on the master bus 301 during the logic high state of the
output strobe signal “outs” on lead 330, which strobes
the content of slave bus 327 into register 325a. Both the
“ins” and the “outs” signals are controlled by the inter-
rupt service routines of the slave processor. The content
of register 325a 1s then provided to master bus 301,
when the master processor provides the output enable
signal “OE,” which is gated by AND gate 311 as the
enable signal “outputen” of buffer 326¢.

This embodiment of the interface bus unit can be
integrated with the slave processor on the same inte-
grated circuit chip. The present invention can also be
implemented as a separate integrated circuit, for exam-
ple. In this embodiment, the master processor can be a
host microcomputer, such as a Macintosh personal
computer, available from Apple Computer, Cupertino,
Calif. It will be appreciated that this configuration is
intended to be exemplary of the present invention and
not necessary. For example, other computers, including
other personal computers, minicomputers Or main-
frames, may also be used as a host computer.

In the following description, a signal is said to set a
set-reset (RS) flip-flop when a logic low-to-high transi-
tion of the signal occurs at the *‘set” terminal of the RS
flip-flop causing the RS flip-flop’s output to go to or to
remain at a logic high state. Alternatively, a signal is
said to reset a RS flip-flop when a logic low-to-high
transition of the signal occurs at the “reset” terminal of
the RS flip-flop causing the RS flip-flop to go to or to
remain at a logic low state.

As shown in FIG. 3, this bus interface unit includes
AND gates 311-313, 315, 317-318 and 335, OR gates
316, 319 and 323, inverter 314, decoder 308, address
latch 309, vectored address generator 310, four edge
detectors 324a-3244, and three set-reset (RS) flip-flops
320-322, respectively formed by NOR-gate pairs
320a-320b, 321a-3216 and 3224-322b. Edge detectors
3244 is a rising edge detector, and edge detectors
324a-324c¢ are falling edge detectors. Each edge detec-
tor of edge detectors 324a-3244 sends out a pulse (i.e. a
logic low-to-high transition, to be followed after a pre-

~ determined delay a logic high-to-low transition) at its

65

output lead when its input signal undergoes the desig-
nated rising or falling edge transition. For example,
edge detector 324g sends a pulse when it detects in the
“outs” signal a falling edge transition. Edge detector
3244, however, sends a pulse at its output lead when it
detects 1n the signal “rdrq” a rising edge transition.

5,309,567

S

Further, edge detector 324a’s pulse, assuming the out-
put signals of OR-gates 323 and 319 are not each already
in logic high state, will reset to logic low RS flip-flop
320 and set to logic high RS flip-flop 321 (hence, sets
the “nowait” signal and reset the “busy” signal).

The master processor’s output enable, read request
and write request signals, 1.e. OE, RD and WR, are each
ANDed with the chip select signal provided by decoder
308 on lead 334 to form the signals “outputen”, “rdrq”
and “wrrq”’ respectively, as described above. The
“busy” signal generated on lead 306 1s the output signal
of the RS flip-flop 320 ANDed at AND gate 335 with
chip select signal of decoder 308.

As can be readily seen in FIG. 3, when the “nowait”
signal on lead 332 is at logic high, a rising edge of the
“rdrq’ signal can be detected by edge detector 3244,
which then sets by an output pulse both RS flip-flops
320 and 322, and resets RS flip-flop 321. Similarly,
when the “nowait” signal is at logic high, a falling edge
of the “wrrq” signal can be detected by edge detector
- 324¢, which also sets by an output pulse both RS flip-
flop 320 and 322, and resets RS flip-flop 321. The output
of RS flip-flops 320, 321 and 322 are respectively the
“busy” signal on lead 306 (when AND gate 335 is en-
abled by chip select signal of decoder 308), the “no-
wait” signal on lead 332, and the “int” (1.e. interrupt)
signal on lead 329. When either the rising edge of the
“wrrq’’ signal or the falling edge of the “rdrq” signal 1s
recognized, the respective edge detector generates an
interrupt at the slave processor, sets the “nowait” signal
to logic low, and signals to the master processor that the
slave processor is busy. As will be shown below, the
master processor monitors a bus transaction through the
“busy” signal. The “nowait” signal ensures that a write

transaction completes before the next read or write
transaction can proceed. |

Each of RS flip-flops 320 and 322, set either by the
“rdrq” or the “wrrq” signal, is reset by the “reset”
signal on lead 303. The interrupt acknowledge “intack”
signal raised on lead 328 by the slave processor resets
flip-flop 322, to clear the pending “int” signal, while the
interrupt is being serviced. RS flip-flop 320, i.e. the
“busy’ signal, is reset by one of the three conditions: a)
a reset signal on lead 303, b) a falling edge 1s detected by
edge detector 324a in the “outs” signal on lead 330, and
¢) a falling edge is detected by edge detector 3245 1n the
“ins” signal on lead 328, when the “rdrq’ signal 1s not at
logic high. As will be shown by the protocols to be
described below, these three conditions correspond
respectively to a reset, the completion of a read request
by the slave processor, and the completion of a write
request by the slave processor, when no other read or
write request is pending.

RS flip-flop 321, which provides the “nowait” signal
when reset, is set by the “reset” signal on lead 303 and
also by the falling edge of either the “outs” signal on
lead 330 and the “ins” signal on lead 331. The RS flip-
flop 321, and hence the “nowait™ signal is reset by either
the rising edge of the “rdrq” signal on the falling edge
of the “wrrq” signal.

Address latch 309 latches the address made available
on the master address bus 307 when a rising edge 1s
detected in either the “rdrq” signal or the “wrrq” sig-
nal. This latched address is decoded by the vectored
address generator 310, which maps the latched address
to the vectored address where the routine the slave
processor uses to service the interrupt is located. The

10

15

20

25

30

35

45

50

35

65

6

vectored address is made available to the slave proces-
sor on vectored address bus 333.

FI1GS. 5a-5d each shows the control signal protocol
of a bus transaction implemented by the bus interface
unit shown in FIG. 3. In addition to the corresponding
figure of FIGS. 5a-5d, each bus transaction is also de-
scribed below with reference to FIG. 3.

F1G. 5a shows the control signal transitions when the
WR signal, i.e. a write request, is raised at time t1 by the
master processor on lead 304. FIG. Sa assumes that all
previous transactions have been completed or a reset
signal on lead 303 is just received, so that the “busy”
signal on lead 306 is at logic low, and the *“nowait”
signal on lead 332 is at logic high. The control signal
transitions corresponding to the condition in which the
WR signal is raised when the previous transaction is not
completed are discussed in conjunction with FIG. 5b.

The WR signal raised at time ti propagates through
AND gate 312 as the “wrrg” signal. At the same time,
the master processor places on master bus 301 the data
to be written, and on master address bus 307 an address
of the slave processor. The address on master address
bus 307 is latched by address latch 309, after some prop-
agation delay (the *“busy’ signal being at logic low)
through AND gate 317 and OR gate 316. Meanwhile,
the signal OE is maintained at logic low to disable
buffer 326« (i.e. to maintain buffer 3264’s output lead at
“high impedance” state), so that the output signal of
register 325z is not imposed on master bus 301.

Upon the master processor dropping the WR signal
at time t2, the resulting falling edge of “wrrq” signal is
detected by edge detector 324¢, which resets RS flip-
flop 321 and sets both RS flip-flop 320 and 322. Thus,
after some propagation delay, the “nowait” signal 1s
reset and both the “busy” signal on lead 306 and the
interrupt signal “int” on lead 329 are set. At the same
time, the falling edge of “wrrq” signal provides the
strobe signal to latch the data on master bus 301 into
register 325b. From the master processor’s point of
view, the write bus transaction is complete at this time
t2. The master processor is not required to wait for the
slave processor to complete the remainder of the write
bus transaction. After time t2 the master can immedi-
ately access another peripheral or data bus.

The slave processor responds to the interrupt signal
“int” by raising the “intack” signal at time t3 on lead
329. The “intack” signal resets the *“int” signal on lead
328 after the propagation delay of RS flip-flop 322.
From the slave processor’s point of view, interrupt
service is initiated at time t3 when the slave processor
raises the interrupt acknowledge signal “intack™. After
raising the interrupt acknowledge signal, the slave pro-
cessor jumps to the vectored address generated by vec-
tored address generator 310; the vectored address 1s the
location at which the slave processor’s service routine
for a write request resides.

At time t4, when the slave processor is ready to re-
ceive the data to be written, the slave processor raises
the signal “ins” on lead 331, which enables the buffer
326b to make available the data in register 3255 onto the
slave bus 327. After the slave processor has read the
data from slave bus 327, the “ins’ signal on lead 331 1s
brought back to logic low at time t5. The falling edge of
the “ins” signal is detected by the edge detector 3245,
which resets RS flip-flop 320 to bring signal “busy” to
logic low and sets RS flip-flop 321 to bring the “no-
wait” signal to logic high. At this point, the bus transac-
tion is completed from the slave processor’s point of

5,309,567

7

view. The falling edge of the “ins” signal at time t5 also
disables the buffer 3265, thereby isolating the slave bus
324 once again from the register 325b.

Because the master processor does not wait for the
slave processor’s part of the bus transaction, nor is the
slave processor required to respond to the interrupt
immediately, each processor maintains control over its
scheduling in this bus transaction.

FIG. 5b shows the control signals of a “write” bus
transaction, in which the master processor raises the
WR signal at time t1, when the slave processor has
another pending interrupt. At time t1, because of a prior
bus transaction, the “busy” signal on lead 306 is held at
logic high to indicate that the prior bus transaction is
not completed. Note that the prior transaction is neces-
sarily a write operation because, as will be seen below,
during a read operation, the master processor cannot
initiate a new transaction until the slave processor’s
read operation i1s completed. As described above, when
the WR signal is raised, the master processor also places
an address and data on master address bus 307 and mas-
ter bus 301 respectively. Because the “nowait” signal is
at logic low at time t1, the “wrrq” signal is blocked by
AND gate 317, so that, unlike the situation of FIG. 8a,
the master address bus on master address bus 307 is not
latched by address latch 309 until after the ‘“nowait”
signal 1s brought to logic high again at the end of the
prior transaction.

As shown in FIG. 8b, the slave processor’s prior
transaction was completed at time t2, when the “ins”
signal 1s brought back to iogic low to reset the “busy”
signal. While the slave processor’s “busy” signal re-
mains set, the master processor must wait until the

10

15

20

25

30

“busy” signal is reset, which occurs shortly (i.e. after

some propagation delay) after the “ins™ stgnal 1s reset at
time t2. The master processor can drop the WR signal

after the “busy” signal is reset. Upon receiving the logic

low level of the signal “busy” on lead 306, the master
processor terminates its wait by bringing the WR signal
to logic low level at time t4, thereby completing the
“write” transaction from its point of view. The signal
protocol subsequent to time t3 for the remainder of this
“write” request of FIG. §b is identical to the signal
protocol subsequent to time t2 of FIG. Sq, and therefore
not repeated.

FI1G. Sc shows the control signal transitions after the
RD signal, 1.e. a read request, is raised at time t1 by the
master processor on lead 308. In FIG. 5¢, the “busy”
signal 1s at logic low at time t1. The case in which the
“busy” signal is at logic high when a RD signal is raised
is described below in conjunction with FIG. 8d4. This
signal RD propagates through AND gate 313 as the
“rdrq” signal (i.e. read request). At the same time as the
RD signal is raised, the master processor places an ad-
dress of the slave processor on master address bus 307.
Since the *“nowait” signal is at logic high (no incomplete
previous transaction), the rising edge of the “rdrg”
signal i1s propagated by AND gate 318 and detected by
edge detector 3244, which resets through RS flip-flop
321 the “nowait” signal and sets respectively both the
“int” signal on lead 329 and the *“busy” signal on lead
306 through RF flip-flops 322 and 320. This rising edge
of signal “rdrq” detected by edge detector 3244 is also
propagated through OR gate 316 to strobe the address
on master address bus 307 into address latch 309. The
latched address is used by the vectored address genera-
tor 310 to generate on vectored address bus 333 a vec-
tored address of the slave processor where the slave

35

45

50

55

65

8

processor’s service routine for the read request 1s lo-
cated.

The slave processor responds to the interrupt signal
“int” by raising the ‘“‘intack’ signal at time t2 on lead
328, which resets the *“int” signal on lead 329 after the
propagation delay of RS flip-flop 322. From the slave
processor’s point of view, the interrupt service 1s initi-
ated when it raises the “intack” signal at time t2 to
service of the pending interrupt.

At time t3, the OE signal is raised by the master pro-
cessor. Because the function of this OE signal is to
direct the output of register 3254 onto the master bus
301 through buffer 326a, this OE signal can be raised
any time before the master processor reads the master
bus 301 for the requested data. In this embodiment, the
OE signal appears a fixed time period after the RD
signal is asserted, but this fixed time relationship is not
necessary, since the OE signal can be asserted by the
master processor any time after RD is asserted and
before reading from the master bus 301. For example,
the OE signal may be provided after the “busy” signal
is reset at time t5 described below. In this embodiment,
since the OE signal is asserted before the slave proces-
sor completes the read request, the data appearing on
the master bus 301 are initially invalid.

Upon raising the “intack’ signal at t2, the slave pro-
cessor jumps to the vectored address provided by vec-
tor address generator 310, to begin servicing the read
request. When the slave processor is ready to provide
the requested data at time t4, the slave processor raises
the signal “outs” on lead 330, and at the same time
places the requested data onto slave bus 327. The “outs”
signal is brought to logic low by the slave processor at
time t5, so that its falling edge strobes the data on the
slave bus 327 into output register 3254. The falling edge
of the “outs” signal is detected by edge detector 3244,
which sets the *“nowait” signal on lead 332 and resets
the “busy” signal on lead 306 via RS f{lip-flops 321 and
320, signalling the completion of the read bus transac-
tion from the slave processor’s point of view.

When the master processor detects that the “busy”
signal on lead 306 is brought to logic low, the master
processor reads the data from master bus 301 (the buffer
326a having been enabled by the OE signal since time
t3). After the requested data is read, the master proces-
sor brings the RD signal to logic low at time t6, signal-
ling the end of the read cycle for the master processor.
In a read request, the master processor’s transaction
completes after the slave processor’s transaction 1s com-
pleted. .

F1G. 5d shows the control signals of a “read” bus
transaction, in which the master processor raise the RD
signal at time t1, when the “busy” signal is at logic high.
This condition, as explained above, occurs when slave
processor has yet to complete service of a previous
write request. At time t1 when the RD signal is raised,
the master processor places an address on master ad-
dress bus 307. The RD signal i1s propagated by AND
gate 313 as the “rdrq” signal, as previously described.
The rising edge transition of the “rdrqg” signal is
blocked temporarily by the AND gate 317 and not
detected by edge detector 3244, until after the “nowait”
signal 1s brought to logic high by the slave processor on
lead 332 to signal completion of the previous write
request. As shown in FIG. 54, the slave processor re-
ceives the data to be written in the pending write re-
quest by bringing to logic high the *“ins’ signal on lead
331 at time t2<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>