

US005303878A

United States Patent

McWilliams et al.

Patent Number: [11]

5,303,878

Date of Patent: [45]

Apr. 19, 1994

[54]	TRACKING	AND APPARATUS FOR G AN AIMPOINT ON AN E STRUCTURE
[75]	Inventors:	Joel K. McWilliams, Highland Village; Don R. Van Rheeden, Lewisville, both of Tex.
[73]	Assignee:	Texas Instruments Incorporated, Dallas, Tex.
[21]	Appl. No.:	752,740
[22]	Filed:	Aug. 30, 1991
[52]	U.S. Cl	F41G 7/30 244/3.15; 382/1 arch
[56]		References Cited

References Cited

U.S. PATENT DOCUMENTS

4,868,871	9/1989	Watson et al	382/1
5,211,356	5/1993	McWilliams et al.	244/3.15
5,213,281	5/1993	McWilliams et al.	244/3.15

OTHER PUBLICATIONS

Blackman, Multiple-Target Tracking with Radar Applications, Artech House Inc. pp. 309-328, 1986. Huber, Robust Statistics, John Wiley & Sons, Inc. pp. 107–108, 1981.

Liu, "New Image Tracking Algorithm for Fuzzy-Relaxation Matching of Point Patterns", Hongwai Yanjiu, vol. 8, No. 5, 1989, pp. 349-354.

Mao, "Image Sequence Processing for Target Estima-

tion in Forward-Looking Infrared Imagery" Optical Engineering, vol. 27, No. 7, pp. 541-549, Jul. 1988. Hayman, "Design and Simulation of an Intelligent Missile Seeker," (origin date of article unknown).

Texas Instruments Inc., Defense Systems and Electronic Groups "Software Functional Specification for Image Tracking of the Autonomous Guidence for Conventional Weapons Technical Expert", 3183-S-0008, Aug. 15, 1989, vol. 6 of 15, Rev. B. Aug. 24, 1990 (prepared for Dept. of the Air Force).

A Collection of Presentation Materials Prepared by the Applicants on Jun. 26, 1991, for Presentation to the U.S. Army Technical Staff.

Primary Examiner—Ian J. Lobo Attorney, Agent, or Firm—Rene' E. Grossman; Richard L. Donaldson

[57] **ABSTRACT**

A method is disclosed for tracking an aimpoint on an elongate target with a set of arbitrarily related subimages in the field of view of the tracker. A dimensional relationship between the subimages and the aimpoint is initially determined and saved for later calculations. Subsequently, at least one of the aimpoints is reacquired. The aimpoint at the subsequent time is then determined using the position of the later acquired subimage, the saved dimensional relationship and indirectly on the position of the subimage in the field of view of the tracker.

7 Claims, 2 Drawing Sheets

METHOD AND APPARATUS FOR TRACKING AN AIMPOINT ON AN ELONGATE STRUCTURE

RELATED APPLICATIONS

This Application is related to U.S. Pat. No. 5,211,356, filed Aug. 30, 1991, entitled "Method and Apparatus for Rejecting Aimpoint Subimages", and is incorporated by reference herein.

This Application is related to U.S. Pat. No. 5,213,281, 10 filed Aug. 30, 1991, entitled "Method for Tracking an Aimpoint with Arbitrary Subimages", and is incorporated by reference herein.

TECHNICAL FIELD OF THE INVENTION

This invention relates to imaging and guidance systems and more particularly to tracking an aimpoint on an elongate structure with arbitrary subimages.

BACKGROUND OF THE INVENTION

In certain computer control applications, it is necessary to track and measure the image of an object passively. It is especially important in weapons delivery systems that a target be so tracked. If such a target were tracked actively, (i.e., using radar or laser range finding 25 techniques) the target might detect the presence of the tracker. Once the target has detected the presence of the tracker, it can respond in one of several ways, all of which are deleterious to the tracker. For instance, the target might "jam" the tracker by bombarding it with signals that are comparable to those which the tracker is actively using or the target might fire its own weapon at the tracker, at the source of the tracking signal, or, even at the launching site of the tracker. In this way, the target could defeat the tracker, destroy the tracker or 35 perhaps even destroy the launch site of the tracker, including the operating personnel.

Passively tracking a target, however, imposes at least one serious limitation on the tracker. A tracker cannot accurately determine the distance or "range" to a target 40 if it cannot actively sense the object. An active tracker, for instance, could determine the distance to a target by measuring the elapsed time from the emission of a radio frequency signal to the receipt of the signal reflected off of the target. The absence of a range measurement from 45 tracker to target limits the passive tracker's ability to compensate for the apparent change in target image as the tracker moves in relationship to the target. Without this ability, a tracker will fail to maintain a constant target.

In practice, a tracker benefits by tracking several subimages of its target's image. These subimages are two dimensional representations of structures that are physically connected to the exact target location or "aimpoint" in the real three-dimensional world. Multi- 55 ple subimages are used for redundancy purposes and because the actual aimpoint of the target is often untrackable. As the tracker nears the target, however, the subimages will appear to move with the respect to each other. The position of the subimages with respect to one 60 another may also change in certain situations. For instance, two subimages located on a target may appear to approach one another if they are located on a face of a target that is rotating away from the tracker. A tracker targeting an elongate structure such as a runway or tall 65 incorporates the disclosed invention; building will sense complex subimage motion due to closure of the tracker on the target. Certain subimages will appear to move at rates that are dependent on the

location of the subimage within the tracker's field of view.

Prior attempts to passively track an object have resulted in solutions with limited flexibility and poor accuracy. Heretofore, an object once identified as an aimpoint was tracked by tracking a predetermined number of subimages in a known pattern. Typically, the pattern chosen was a square with the aimpoint at its center and four subimages located at the four corners of the square. That system would track the four subimages located at the corners of the square and infer the actual aimpoint using the simple symmetry of the predetermined square. This method faltered when the geometry of the actual target resulted in less than four suitable subimages located in the requisite pattern. This system also lacked the ability to use trackable subimages that were not in the requisite pattern.

Therefore, a need has arisen for a passive subimage 20 tracker which is able to track an aimpoint or an elongate target by using any number of subimages arbitrarily related to the aimpoint without range data.

SUMMARY OF THE INVENTION

In accordance with the present invention, a method for tracking an aimpoint is provided which substantially eliminates or reduces disadvantages and problems associated with prior trackers.

A method for tracking an aimpoint on an elongate target comprises the steps of acquiring an aimpoint and a set of subimages in the tracker's field of view. The subimages may be arbitrarily associated with the aimpoint. A normalized distance from each subimage to the aimpoint is calculated for use at a later time when at least one of the subimages is reacquired. Each subsequent location of the aimpoint is estimated based on the subsequent location of the subimages, on the position of the subimages in the field of view, and on the saved normalized distances.

It is a technical advantage of the invention that an aimpoint located on an elongate target may be tracked without range data using subimages that are arbitrarily related to the aimpoint. A normalized distance from the aimpoint to each subimage is calculated at an initial time and saved for subsequent steps. At each subsequent time, a vector is calculated which maintains the same normalized distance from each subimage to the aimpoint. The subsequent location of the aimpoint may be maintained despite apparent movement of the subimages due to uniform and non-uniform magnification due to closure.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a perspective view of an elongate target which may be tracked by the disclosed invention;

FIG. 2 is a part schematic, part cross-sectional diagram of a "fire and forget" missile which may incorporate the disclosed invention;

FIG. 3 is a flow chart of a subimage tracker which

FIGS. 4 and 5 are one and two-dimensional models. respectively, of a tracker targeting an aimpoint with one subimage on an elongate object; and

3

FIG. 6 depicts the magnification of a subimage as a function of its position in the tracker's field of view.

DETAILED DESCRIPTION OF THE INVENTION

The preferred embodiment of the present invention and its advantages are best understood by referring to FIGS. 1 through 6 of the drawings like numerals being used for like and corresponding parts of the various drawings.

FIG. 1 depicts an elongate target 10, Here target 10 is a runway but might also be a bridge, a train or a building relatively large in the horizontal dimension as compared to the vertical. An operator of the tracker, or an automatic algorithm, initially selects an aimpoint on 15 runway 10 such as its geometric center. A tracker targeting runway 10 then acquires trackable subimages such as control tower 12 or airplane 14 from which it can track the center of the runway 10. The tracker then determines range normalized distances from each 20 subimage to the designated aimpoint and saves these values for future calculations. This distance may be the actual number of pixels between the aimpoint and a subimage as sensed by the tracker's sensor or may be further normalized so that at least one subimage is a 25 particular distance, such as "1", away from the aimpoint.

The tracker reacquires the subimages at subsequent times and uses the range normalized distances and a mathematical model as will be explained in connection 30 with FIGS. 3 through 6 throughout to estimate the location of the aimpoint at those subsequent times. If the tracker is part of a device such as a "fire and forget" missile, it will continually adjust its course to intercept the initial aimpoint until it reaches the aimpoint.

As the tracker approaches runway 10, the subimages of runway 10 will exhibit complex motion relative to one another. This motion may be characterized as comprising a uniform and a non-uniform component. The uniform component of motion will cause the subimages 40 to radially move away from the aimpoint as the tracker nears the aimpoint and the target image fills more and more of the tracker's field of view. The non-uniform component causes each subimage to move depending on its location in the field of view of the sensor. For 45 instance, if a tracker targets an aimpoint on runway 10 between control tower 12 and airplane 14 and approaches runway 10 along its longitudinal axis from the left side of the figure, control tower 12 will appear to move toward the bottom of the field of view at one rate 50 while airplane 14 will appear to move toward the top at a much smaller rate. Without accounting for the nonuniformities, the aimpoint would likely slide from the true aimpoint toward the bottom of the field of view as the tracker attempted to find a compromise position 55 between control tower 12 and airplane 14. The compromise position would be one that would make the magnification of the subimages appear equal along the length of runway 10.

FIG. 2 depicts a "fire and forget" missile 16 which 60 may incorporate the disclosed invention. Missile 16 delivers a warhead 18 which detonates upon impact with a target. The missile 16 contains a passive imaging sensor 19, such as a forward looking infrared camera ("FLIR"), that is sensitive to radiation emitted by the 65 missile's target. The sensor 19 periodically acquires images within its field of view during operation. A latch 20 temporarily saves the information received by sensor

4

18 so that it is more accessible by central processing unit ("CPU") 22. CPU 22 might itself comprise various subsystems (not shown) which may be implemented by hardware or software, including an aimpoint designator for initially establishing the aimpoint on the target and a normalized distance calculator for calculating the distance between each subimage and the aimpoint. CPU 22 has associated with it a memory 24. Memory 24 may contain the routines which CPU 22 runs and stores data necessary to the disclosed invention. CPU 22 controls the direction of missile 16 through fin control unit 26. Fin control unit 26 manipulates each fin 28 through a servo 30. Missile 16 is propelled by rocket motor 32.

FIG. 3 depicts a high level flow chart of a subimage tracker which incorporates the disclosed invention. An aimpoint is initially selected on the target in block 50 by an operator. The tracker then acquires multiple subimages associated with the chosen aimpoint according to internal criteria such as image contrast or image brightness (block 52). The tracker calculates the normalized distances between each subimage that it has acquired and the selected aimpoint in block 54. These values are saved for later use at each subsequent time, the tracker reacquires the subimages and estimates the location of the aimpoint from the previously calculated normalized distances in blocks 56 and 58 respectively. The math and the particular normalized distances are more fully described below. The tracker may then adjust sensor pointry (block 60) to maintain the aimpoint at the center of its field of view. These final three steps are repeated until the missile impacts its target or the tracker otherwise ends its program.

It should be understood that block 60 may comprise any number of related steps such as issuing commands to an operator to follow the aimpoint or displaying crosshairs to pinpoint the location of the aimpoint in a display. The tracker may also be mounted in a stationary environment where it simply follows an aimpoint in its field of view without actively pursuing the target. The imager could, in fact, recede from the target and the tracker would still maintain the aimpoint properly.

The approach to multiple subimage tracking without range estimates is based on a generalized geometric model. This model is based on the assumption that though the target and thus the subimages will be growing in the image during closure, the relative dimensions of the target do not change. This assumes that the angle of attack between the tracker and target stays fairly constant, which is common during most of the terminal phase of the missile flight.

In the generalized geometric approach each tracker location is related to the aimpoint location using a normalized coordinate frame. An individual subimage i at image location (x_i, y_i) can be related to the aimpoint A at image location (x_A, y_A) by the following equations:

$$x_i = x_A + d_{x_i} + n_{x_i}$$

$$y_i = y_A + d_{yi} + n_{yi}$$

where (d_{xi}, d_{yi}) represents the offset in the image plane of subimage i from the aimpoint A, and (n_{xi}, n_{yi}) are additive noise terms which corrupt measurement of the true subimage location. These equations can be combined into a single equation using vector notation:

$$\underline{x} = \underline{x} A d\underline{x} + \underline{n}$$

The key to accurately modeling each subimage position is the accurate determination of how the offset vector varies as a tracker approaches an elongate target.

FIG. 4 depicts the mathematical framework for determining the offset vector related to an elongate target 5 in a two-dimensional universe, the vertical plane through the missile and the aimpoint. Here an aimpoint A is downrange of and below a missile "M" by a distance "R". A trackable subimage is located at B. B is further downrange of A by a distance "x". For a large distance R relative to x, the angle between the subimage, missile and aimpoint may be expressed as:

$$d_y = \frac{x \sin \Theta}{R + x \cos \Theta}$$

This angle is distance from the aimpoint to the subimage which a tracker actually "sees" when it acquires an image. (In FIG. 4 R is shown as on the same order of magnitude as X for purposes of clarity.)

The vertical "magnification" of a subimage associated with an elongate target at a particular time may then be defined as:

$$M = \frac{d_y(R_1)}{d_y(R_0)}$$

where $d_y(R_0)$ is the distance between the subimage and aimpoint at an initial range of R_0 and $d_y(R_1)$ is the distance between the subimage and aimpoint at a subsequent range R_1 . If the tracker is a missile designed to intercept the target, then R_1 will be less than R_0 . The magnification M may be used to model the behavior of the subimages between successive times and thus, may 35 be used to predict the subsequent position of the aimpoint. This model will be more fully described in connection with FIGS. 5 and 6.

FIG. 5 depicts a mathematical framework for determining the offset vector of a subimage associated with 40 an elongate target in a three-dimensional universe. The four vectors R_M , R_T , $R_{T/M}$ and $R_{C/T}$ may be expressed as:

$$R_{M} = \begin{pmatrix} x_{M} \\ O \\ -h \end{pmatrix}, R_{T} = \begin{pmatrix} x_{T} \\ O \\ O \end{pmatrix}, R_{T/M} = \begin{pmatrix} x_{T} - x_{M} \\ O \\ h \end{pmatrix}$$

$$R_{C/T} = \begin{pmatrix} x_C \\ y_C \\ o \end{pmatrix}$$

where X, Y and Z are positive in the directions indicated by the depicted coordinate system. The distances between the subimage and aimpoint are indicated as x_c and y_c for the X and Y dimensions respectively.

The coordinate system in FIG. 5 may be transformed to a platform ("(p)") coordinate system at the missile position through the transformation:

$$D = \begin{pmatrix} \cos\Theta & O & \sin\Theta \\ O & 1 & O \\ -\sin\Theta & O & \cos\Theta \end{pmatrix}$$

where

$$\Theta = \tan^{-1} \left(\frac{h}{x_T - x_M} \right)$$

The vectors $R_{T/M}$ and $R_{C/M}$ may be transformed into the new coordinate system as:

$$R_{T/M(p)} = \begin{pmatrix} R_s \\ O \\ O \end{pmatrix} R_s = \sqrt{(x_T - x_M)^2 + h^2}$$

$$R_{C/M(p)} = \begin{pmatrix} R_s \\ O \\ O \end{pmatrix} + D \begin{pmatrix} x_C \\ y_C \\ O \end{pmatrix}$$

$$R_{C/M(p)} = \begin{pmatrix} R_s \\ O \\ O \end{pmatrix} + \begin{pmatrix} x_C \cos \Theta \\ y_C \\ -x_C \sin \Theta \end{pmatrix}$$

The vector $R_{C/M(p)}$ may be used to calculate the magnification function M as was done in connection with FIG. 4. The Y and Z platform components correspond to the distances between the subimage and the aimpoint in the platform coordinate system. These may be divided by the total platform downrange distance $R_s + x_C$ cos Θ to yield angular distances between aimpoint and subimage:

$$\begin{pmatrix} d_x \\ d_y \end{pmatrix} = \begin{pmatrix} \frac{y_C}{R_S + x_C \cos \Theta} \\ -x_C \sin \Theta \\ \hline R_S + x_C \cos \Theta \end{pmatrix}$$

or rearranging,

50

$$d_x R_s + d_x x_C \cos\Theta = y_C \text{ and } d_y R_s = -(d_y \cos\Theta + \sin\Theta)x_C$$

The distances d_x and d_y correspond to the distances between the aimpoint and the subimage in the horizontal and vertical axes of the image plane of the passive sensor.

The distances d_x and d_y may be used to solve f or (x_C, y_C) for a given geometry with the series of equations:

$$\begin{bmatrix} -d_x \cos \Theta & 1 \\ -d_y \cos \Theta - \sin \Theta & O \end{bmatrix} \begin{bmatrix} x_C \\ y_C \end{bmatrix} = \begin{bmatrix} d_x R_s \\ d_y R_s \end{bmatrix}$$

These equations, are used to create test cases for simulation of the tracker and to illustrate the results in the following paragraph.

FIG. 6 depicts the magnification versus vertical image position for one particular geometry. Specifically, the solution is depicted in terms of M_H and M_ν as a function of $d_\nu(6000)$ where $M_H = d_x(R_1/d_x(R_o), M_\nu = d_\nu(R_1)/d_\nu(R_o)$, $R_1 = 3,000$ and $R_o = 6,000$. The solution indicates that M_H and M_ν are identical and are closely related to $d_\nu(R_0)$ by an equation having the form of a line, $M_0 + bd_\nu(R_0)$. M_0 are b are constants. Combining these empirical results with the general equations:

as:

$$x_i = x_A + d_{xi} + n_{xi}$$
$$y_i = y_A + d_{yi} + n_{yi}$$

leads to the set of equations for the location of the image of the ith subimage at each successive time:

$$x_{i} = x_{A} + M_{H}d_{x_{i}}(R_{0}) + n_{x_{i}}$$

$$y_{i} = y_{A} + M_{V}d_{y_{i}}(R_{0}) + n_{y_{i}}$$
or
$$x_{i} = x_{A} + M_{O}d_{x_{i}} + d_{y_{i}}d_{x_{i}}b + n_{x_{i}}$$

$$y_{i} = y_{A} + M_{O}d_{y_{i}} + d_{y_{i}}d_{y_{i}}b + n_{y_{i}}$$

where d_{xi} and d_{yi} are understood to be determined when the aimpoint is first acquired. For N subimages, the above equations for one subimage may be expanded as:

$$\begin{bmatrix} x_1 \\ \vdots \\ x_N \\ y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} 1 & O & d_{x1} & d_{x1}d_{y1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & d_{xN} & d_{xN}d_{yN} \\ O & 1 & d_{y1} & d_{y1}^2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & d_{yN} & d_{yN}^2 \end{bmatrix} \begin{bmatrix} x_A \\ y_A \\ M_0 \\ b \end{bmatrix} + \begin{bmatrix} n_{x1} \\ \vdots \\ n_{xN} \\ n_{y1} \\ \vdots \\ \vdots \\ n_{yN} \end{bmatrix}$$

This equation itself can be more conveniently expressed

$$x = H\theta + n$$

where $\theta = [x_A \ y_A \ M_o \ b]^T$ and H is the $2N \times 4$ matrix depicted above. At each successive time the tracker reacquires the subimages, all variables are known except those in θ and the noise vector \underline{n} .

The vector θ and hence the aimpoint may be estinated by several statistical methods, including a least squares technique:

$$\hat{\boldsymbol{\theta}} = (H^T H)^{-1} H^T \underline{\boldsymbol{x}}$$

where $\hat{\theta}$ is the estimate of θ . This method will minimize the effect of the noise vector n.

Sections A-G below contain FORTRAN computer code for one embodiment of the disclosed invention. In particular, Section A discloses subroutine TRKNORNG2D for computing the aimpoint using a single magnification model. Section B discloses Subroutine TRKNORNG for computing the location of the aimpoint using the dual magnification model. Section C discloses Subroutine INTJITTER for rejecting bad subimages associated with an aimpoint under the subroutine TRKNORNG2D. Section D discloses subroutine JITTER for rejecting bad subimages associated with an aimpoint under the subroutine TRKNORNG. Section E discloses Subroutine LEASTSQ for calculating the least-squares estimate of a parameter vector. Section F discloses the common block variable declarations TKPTPARM and PROCPARM for the previous subroutines. Section G discloses a library of subroutines useful primarily for matrix math called by subroutines TRKNORNG, TRKNORNG2D, INTJITTER, JIT-TER and LEASTSQ.

NOTICE: "COPYRIGHT 1991, (TEXAS INSTRUMENTS, INC.) A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatever."

Section A

Texas Instruments
TIINTERNAL DATA
Property of Texas Instruments ONLY

SUBROUTINE TRKNORNG2D

NAME:

TRKNORNG2D

FUNCTION:

Computes the aimpoint and trackpoint when no range estimates are available. A least-square estimator calculates aimpoint and target magnification by assuming magnification is the same in each dimension.

A single magnification factor is used.

DESCRIPTION:

LEASTSQ

```
Initialize the trackpoint measurement variances, the number of good
            trackers, and the standard deviation for one tracker
     Set the tracker mode to locked on and the breaklock flag to false
      Do for all trackers
            If a tracker is active and is at least one cycle old Then
                   Assign model matrices and observation vectors used to
                    compute least-squares target aimpoint and size estimates
                   If weight trackers by distance from the aimpoint Then
                          Assign X distance weights
                          Assign Y distance weights
                   Else
                          Assign all weights to unity
                   End of If weight trackers by distance from the aimpoint
                   Increment the number of trackers counter
             Else this tracker is not active or at least one cycle old
                   Zero the least-squares weights for this tracker
             End of If a tracker is active and at least 1 cycle old
      End of Do for all trackers
      If there are at least two valid trackers Then
             Use least-squares to estimate aimpoint location and target size
             Run the jitter test to delete trackers with bad measurements
             Recompute the estimated trackpoint location and target size
                   after removing the bad measurements
             Compute track errors and measurement variances
             Update the aimpoint and trackpoint by adding in track errors
             Save the estimated target sizes
             Set the tracker mode to locked on
      Else if there is one valid tracker Then
             Find the tracker measurement of the good tracker
             Compute the aimpoint as the offset from the tracker
             Set the tracker mode to locked on
      Else there are no valid trackers
             Set the breaklock flag
             Set the tracker mode to rate coast
      End of If there are valid trackers
REFERENCES:
None
CALLING SEQUENCE:
      CALL TRKNORNG2D
INPUTS:
       None
OUTPUTS:
       None
DEPENDENCIES:
       Common Blocks
             PROCPARMS
                                        Processing parameters
                                        Trackpoint/aimpoint related parameters
             TKPTPARMS
       Subroutines
                                        Integrating jitter test
             INTJITTER
```

Weighted least-squares estimator

```
SIDE EFFECTS:
      None
TARGET PROCESSOR:
      VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
      05/29/91 D. Van Rheeden Initial Release
Local Variables
                  Normalized magnification factor
FACTOR
                  Least-squares model matrix
H
                  Maximum number of least-squares parameter estimates
MAXEST
                  Maximum number of least-squares observations
MAXOBS
                  Number of trackers whose errors are being averaged
NTRACKERS
                  Least-squares estimate covariance matrix
                  Measurement standard deviation of one tracker
SIGMA
TRACKER
                  Tracker index into data arrays
                  Least-squares weighting vector
W
XHAT
                  Least-squares estimate vector
                  Least-squares observation vector
ZHAT
                  Least-squares estimates of tracker locations
Variable Declarations
      IMPLICIT NONE
      INCLUDE 'COMMON:PROCPARM.CMN'
                                               ! Processing parameters
      INCLUDE 'COMMON:TKPTPARM.CMN' ! Processing parameters
      INTEGER*2
                        MAXEST/3/, MAXOBS/24/, NTRACKERS,
                        TRACKER
&
      REAL*4
                        FACTOR, H(24,3), P(3,3), SIGMA, W(24),
                        XHAT(3), ZHAT(24), Z(24)
&
                            EXECUTABLE CODE
Initialize the trackpoint measurement variances, the number of good
trackers, and the standard deviation for one tracker.
      TPVARX = 0.0
      TPVARY = 0.0
      NTRACKERS = 0.0
      SIGMA = 0.5
Set the tracker mode to locked on and the breaklock flag to false.
      TRKMODE = 1
      BRKLCK = .FALSE.
For each good tracker at least one cycle old...
DO TRACKER = 1, MAXT
```

```
IF (DBASE(TRACKER,1) .EQ. 2 .AND. DBASE(TRACKER,9) .GE. 1)
         THEN
&
   Assign model matrices and observation vectors used to compute
   least-squares target aimpoint and size estimates.
         H(TRACKER,1) = 1.0
         H(TRACKER,2) = 0.0
         H(TRACKER,3) = DIST2DX(TRACKER)
         H(TRACKER + MAXT, 1) = 0.0
         H(TRACKER + MAXT,2) = 1.0
         H(TRACKER + MAXT,3) = DIST2DY(TRACKER)
                                      DBASE(TRACKER,2)
         Z(TRACKER)
         Z(TRACKER + MAXT) =
                                      DBASE(TRACKER,3)
   If selected, assign least-squares weights based on the distance of the
   tracker from the aimpoint.
         IF (WEIGHTDIST) THEN
               IF (DISTX(TRACKER) .GT. 0.1) THEN
                     W(TRACKER) = 1.0 / DISTX(TRACKER)
               ELSE
                     W(TRACKER) = 10.0
               END IF! X normalized distance > 0.1
               IF (DISTY(TRACKER) .GT. 0.1) THEN
                     W(TRACKER + MAXT) = 1.0 / DISTY(TRACKER)
               ELSE
                     W(TRACKER + MAXT) = 10.0
               END IF! Y normalized distance > 0.1
         ELSE! Don't assign distance weights
               W(TRACKER)
                                       = 1.0
               W(TRACKER+MAXT)
               END IF! Assign distance weights
   Increment the number of trackers counter.
               NTRACKERS = NTRACERS + 1
   Else, zero the least-squares weights for this tracker.
               ELSE
                     W(TRACKER)
                                       = 0.0
                     W(TRACKER + MAXT) = 0.0
               END IF! This tracker is good and at least 1 cycle old
         End DO! For all good trackers
   If there are at least two trackers . . .
          IF (NTRACKERS .GT. 1) THEN
    Use least-squares to estimate aimpoint location and target size.
         CALL LEASTSQ (H, Z, W, XHAT, ZHAT, P, MAXEST, MAXOBS)
    Run the integrating jitter test to delete trackers with bad measurements.
          DO TRACKER = 1, MAXT
```

```
PREDX(TRACKER) = ZHAT(TRACKER)
           PREDY(TRACKER) = ZHAT(TRACKER + MAXT)
     END DO
     CALL INTJITTER
Recompute the estimated trackpoint location and target size
after removing the bad measurements.
     DO TRACKER = 1, MAXT
           IF (DBASE(TRACKER,1) .EQ. -1) THEN
                W(TRACKER) = 0.0
                W(TRACKER + MAXT) = 0.0
           END IF! A tracker is not valid.
     END DO! For all trackers
     CALL LEASTSQ (H, Z, W, XHAT, ZHAT, P, MAXEST, MAXOBS)
Compute track errors and measurement variances.
     RESERRX = XHAT(1) - AIMX
     RESERRY = XHAT(2) - AIMY
     MAGNIFY = XHAT(3)
     TPVARX = SIGMA**2 * P(1,1)
     TPVARY = SIGMA**2 * P(2,2)
     MAGVAR = SIGMA^{**2} * P(3,3)
Compute the aimpoint and trackpoint.
     AIMX = XHAT(1)
     AIMY = XHAT(2)
     TRACKX = AIMX + MAGNIFY * OFFSETX
     TRACKY = AIMY + MAGNIFY * OFFSETY
Compute the estimated target sizes based on magnification.
     FACTOR = MAGNIFY / INITSIZEX
     RSIZEX = FACTOR * INITSIZEX
     RSIZEY = FACTOR * INITSIZEY
Else, if there is one tracker . . .
     ELSE IF (NTRACKERS .GT. 0) THEN
Find the tracker measurement of the good tracker.
      TRACKER = 1
     DO WHILE (W(TRACKER) .EQ. 0.0)
           TRACKER = TRACKER + 1
     END DO! while searching for the good tracker measurement
Compute the aimpoint as the offset from the tracker. Use the estimated
magnification from the previous tracker frame.
     RESERRX = (Z(TRACKER) - DIST2DX(TRACKER)*MAGNIFY) - AIMX
     RESERRY = (Z(TRACKER + MAXT)-DIST2DY(TRACKER)*MAGNIFY) - AIMY
     TPVARX = SIGMA**2
     TPVARY = SIGMA**2
     AIMX = AIMX + RESERRX
```

```
AIMX = AIMY + RESERRY
TRACKX = TRACKX + RESERRX
TRACKY = TRACKY + RESERRY
```

Else, set the breaklock flag to true and tracker mode to rate coast.

ELSE

BRKLCK = .TRUE.TRKMODE = 0

END IF! There are any trackers

RETURN

END

Section B

Texas Instruments TI STRICTLY PRIVATE Property of Texas Instruments ONLY

SUBROUTINE TRKNORNG

NAME:

TRKNORNG

FUNCTION: Computes the aimpoint and trackpoint when no range estimates are available. A least-squares estimator calculates aimpoint and target size estimates. Separate X and Y magnification factors are used.

DESCRIPTION:

Initialize the trackpoint measurement variances, the number of good trackers, and the standard deviation for one tracker Set the tracker mode to locked on and the breaklock flag to false

Do for all trackers

If a tracker is active and is at least one cycle old Then Assign model matrices and observation vectors used to compute least-squares target aimpoint and size estimates If weight trackers by distance from the aimpoint Then Assign X distance weights Assign Y distance weights

Else

Assign all weights to unity

End of If weight trackers by distance from the aimpoint Increment the number of trackers counter Else this tracker is not active or at least one cycle old Zero the least-squares weights for this tracker

End of If a tracker is active and at least 1 cycle old

End of Do for all trackers

If there are at least two valid trackers Then

Use least-squares to estimate trackpoint location and target size Run the jitter test to delete trackers with bad measurements Recompute the estimated trackpoint location and target size after removing the bad measurements Compute track errors and measurement variances

Update the aimpoint and trackpoint by adding in track errors

20 19 Save the estimated target sizes

Else if there is one valid tracker Then Find the tracker measurement of the good tracker Compute the aimpoint as the offset from the tracker

Else there are no valid trackers Set the breaklock flag to true Set the tracker mode to rate coast End of If there are valid trackers

REFERENCES:

None

CALLING SEQUENCE:

Call TRKNORNG

INPUTS:

None

OUTPUTS:

None

DEPENDENCIES:

Common Blocks

PROCPARMS - Processing parameters

TKPTPARMS - Trackpoint/aimpoint related parameters

Subroutines

LEASETSQ - Weighted least-squares estimator

Robust JITTER test JITTER -

SIDE EFFECTS:

None

TARGET PROCESSOR:

VAX 8000 Series VMS 4.5, Fortran Compiler 4.5-219

HISTORY:

05/29/91

D. Van Rheeden Initial Release

07/29/91

D. Van Rheeden Added subpixel estimates

Local Variables

HX, HY

Least-squares model matrices

MAXEST **MAXOBS** Maximum number of least-squares parameter estimates

NTRACKERS

Maximum number of least-squares observations Number of trackers whose errors are being averaged

PX, PY

Least-squares estimate covariance matrices

SIGMA

Measurement standard deviation of one tracker

SUMWX, SUMWY Sum of weight values

TRACKER

Tracker index into data arrays Least-squares weighting vectors Least-squares estimate vectors

XHAT, YHAT

WX, WY

Least-squares observation vectors

ZX, ZY

ZXHAT, ZYHAT Least-squares predicted observation vectors

Variable Declarations

IMPLICIT NONE

```
INCLUDE 'COMMON:PROCPARM.CMN'
                                             ! Processing parameters
    INCLUDE 'COMMON:TKPTPARM.CMN'
                                             ! Trackpoint parameters
     INTEGEL:
                     MAXEST/2/, MAXOBS/12/, NTRACKERS, TRACKER
     REAL*4
                     HX(12,2), HY(12,2), PX(2,2), PY(2,2), SIGMA,
                     WX(12), WY(12), XHAT(12), YHAT(12),
                     ZX(12), ZY(12), ZXHAT(12), ZYHAT(12)
                           EXECUTABLE CODE
Initialize the trackpoint measurement variances, the number of
good trackers, and the standard deviation for one tracker.
     TPVARX = 0.0
     TPVARY = 0.0
     NTRACKERS = 0
     SIGMA = 0.5
Set the tracker mode to locked on and the breaklock flag to false.
     TRKMODE = 1
     BRKLCK = .FALSE.
For each good tracker at least one cycle old ...
DO TRACKER = 1, MAXT
 IF (DBASE(TRACKER,1) .EQ. 2 .AND. DBASE(TRACKER,9) .GE. 1) THEN
Assign model matrices and observation vectors used to compute
least-squares target aimpoint and size estimates.
     HX(TRACKER,1)
                       = 1.0
                      = DISTX(TRACKER)
     HX(TRACKER,2)
     HY(TRACKER,1)
                       = 1.0
     HY(TRACKER,2)
                      = DISTY(TRACKER)
     ZX(TRACKER)
                       = DBASE(TRACKER,2) + SUBPIXX(TRACKER)
     ZY(TRACKER)
                       = DBASE(TRACKER,3) + SUBPIXY(TRACKER)
If selected, assign least-squares weights based on the distance of the
tracker from the aimpoint.
        IF (WEIGHTDIST) THEN
          IF (DISTX(TRACKER) .GT. 0.1) THEN
            WX(TRACKER) = 1.0 / DISTX(TRACKER)
          ELSE
            WX(TRACKER) = 10.0
          END IF! X normalized distance > 0.1
          IF (DISTY(TRACKER) .GT. 0.1) THEN
            WY(TRACKER) = 1.0 / DISTY(TRACKER)
          ELSE
            WY(TRACKER) = 10.0
          END IF! Y normalized distance > 0.1
       ELSE! Don't assign distance weights
```

```
5,303,878
              23
                                                             24
          WX(TRACKER) = 1.0
          WX(TRACKER) = 1.0
        END IF! Assign distance weights
Increment the number of trackers counter.
                      NTRACKERS = NTRACKERS + 1
Else, zero the least-squares weights for this tracker.
          ELSE
            WX(TRACKER) = 0.0
            WY(TRACKER) = 0.0
          END IF! This tracker is good and at least 1 cycle old
        END DO! For all good trackers
If there are at least two trackers ...
        IF (NTRACKERS .GT. 1) THEN
Use least-squares to estimate aimpoint location and target size.
    CALL LEASTSQ (HX, ZX, WX, XHAT, PX, ZXHAT, MAXEST, MAXOBS)
    CALL LEASTSQ (HY, ZY, WY, YHAT, PY, ZYHAT, MAXEST, MAXOBS)
Run the jitter test to delete trackers with bad measurements.
     DO TRACKER = 1, MAXT
        PREDX(TRACKER) = ZXHAT(TRACKER)
        PREDY(TRACKER) = ZYHAT(TRACKER)
     END DO
     CALL JITTER
Recompute the estimated trackpoint location and target size
after removing the bad measurements.
     DO TRACKER = 1, MAXT
        IF (DBASE(TRACKER,1) .EQ. -1) THEN
           WX(TRACKER) = 0.0
```

WX(TRACKER) = 0.0

WY(TRACKER) = 0.0

END IF! A tracker is not valid.

END DO! For all trackers

CALL LEASTSQ (HX, ZX, WX, XHAT, PX, ZXHAT, MAXEST, MAXOBS)

CALL LEASTSQ (HY, ZY, WY, YHAT, PY, ZYHAT, MAXEST, MAXOBS)

Compute track errors and measurement variances.

RESERRX = XHAT(1) - AIMX RESERRY = YHAT(1) - AIMY TPVARX = SIGMA**2 * PX(1,1) TPVARY = SIGMA**2 * PY(1,1)

Update the aimpoint and trackpoint by adding track errors.

AIMX = AIMX + RESERRX AIMY = AIMY + RESERRY

C

```
TRACKX = TRACKX + RESERRX
    TRACKY = TRACKY + RESERRY
Save the estimated target sizes.
    RSIZEX = XHAT(2)
    RSIZEY = YHAT(2)
Else, if there is one tracker ...
ELSE IF (NTRACKERS .GT. 0) THEN
Find the tracker measurement of the good tracker.
    TRACKER = 1
    DO WHILE (WX(TRACKER) .EQ. 0.0)
        TRACKER = TRACKER + 1
    END DO! while searching for the good tracker measurement
Compute the aimpoint as the offset from the tracker.
    RESERRX = (ZX(TRACKER) - DISTX(TRACKER) * RSIZEX) - AIMX
    RESERRY = (ZY(TRACKER) - DISTY(TRACKER) * RSIZEY) - AIMY
    TPVARX = SIGMA**2
    TPVARY = SIGMA**2
     AIMX = AIMX + RESERRX
    AIMY = AIMY + RESERRY
     TRACKX = TRACKX + RESERRX
     TRACKY = TRACKY + RESERRY
Else, set the breaklock flag to true and tracker mode to rate coast.
     ELSE
        BRKLCK = .TRUE.
        TRKMODE = 0
    END IF! There are any trackers
    RETURN
    END
                                 Section C
                              Texas Instruments
                              STRICTLY PRIVATE
                      Property of Texas Instruments ONLY
    SUBROUTINE INTJITTER
NAME: INTJITTER
               Performs the integrating robust jitter test for the 2-D range
FUNCTION:
           independent track model.
DESCRIPTION:
     Initialize the number of trackers to zero
    For each good tracker at least one cycle old
        Increment the number of trackers counters
        Compute the difference between found and predicted
        Save the difference in a temporary vector
     End of loop
```

```
If at least 3 trackers are present then
        Compute the median of the difference values
        Compute the median absolute deviations of the difference values
        For each good tracker at least one cycle old
            Jitter value = ((Difference - Median) / MAD)**2
            If the either jitter value > threshold then
                Execute routine to delete the tracker
                Set the appropriate reason for deletion flag to true
            End of if
        End of loop
    End of if
REFERENCES:
     None
CALLING SEQUENCE:
     CALL INTJITTER
INPUTS:
     None
OUTPUTS:
     None
DEPENDENCIES:
     Common Blocks
         PROCPARMS - Processing parameters
     Functions
         MEDIAN - Calculates median of a vector of samples
SIDE EFFECTS:
     None
TARGET PROCESSOR:
     VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
     06/20/91 D. Van Rheeden Initial Release
Local Variables
                        Differences between the found and predicted locations
      DIFF
                        Vertical and horizontal errors of good trackers only
      ERROR
                        Vertical and horizontal jitter scores
      JITRX,JITRY
                        Median absolute deviation of track errors
      MAD ERROR
      MEDIAN ERROR Median of track errors
                        Minimum allowed median absolute deviation
      MINMAD
                        Number of good trackers
      NTRACKERS
                        Number of samples to compute median/MAD
      NSAMPLES
                        Threshold for the jitter test
      THRESH
                        Tracker index (position in the databases)
      TRKR
 Variable Declarations
      IMPLICIT NONE
```

```
INCLUDE 'COMMON:PROCPARM.CMN' ! Processing parameters
    INTEGER*2 NSAMPLES, NTRACKERS, TRKR
                DIFF(24), ERROR(24), JITRX, JITRY, MAD ERROR,
    REAL*4
                MEDIAN, MEDIAN ERROR, MINMAD /0.5/
&
                THRESH(24) /0.0, 0.0, 18.5, 20.6, 21.2, 16.3,
    REAL*4
                     13.7, 12.3,12.3,12.3,12.3,12.3,
                     12.3, 12.3, 12.3, 12.3, 12.3, 12.3,
                     12.3, 12.3, 12.3, 12.3, 12.3, 12.3/
                 THRESH(24) /0.0,0.0,5.0,5.0,5.0,5.0,
    REAL*4
                     5.0,5.0,5.0,5.0,5.0,
                     5.0,5.0,5.0,5.0,5.0,
                     5.0,5.0,5.0,5.0,5.0,5.0/
    EXTERNAL MEDIAN
                           EXECUTABLE CODE
Count the number of good trackers and compute the differences between the
predicted and the found locations.
    NTRACKERS = 0
    DO TRKR = 1, MAXT
      IF (DBASE(TRKR,1) .EQ. 2) THEN
       NTRACKERS = NTRACKERS + 1
       DIFF (2*TRKR-1) = FLOAT(DBASE)(TRKR,2)) - PREDX(TRKR)
       DIFF(2*TRKR) = FLOAT(DBASE(TRKR,3)) - PREDY(TRKR)
       ERROR(2*NTRACKERS-1) = DIFF(2*TRKR-1)
       ERROR(2*NTRACKERS) = DIFF(2*TRKR)
      END IF
     END DO
     NSAMPLES = 2 * NTRACKERS
If there are at least three good trackers Then do the jitter test.
     IF (NSAMPLES .GE. 3) THEN
Compute the jitter median.
     MEDIAN ERROR = MEDIAN (ERROR, NSAMPLES)
Compute the jitter median absolute deviation (MAD).
     NTRACKERS = 0
     DO TRKR = 1, MAXT
      IF (DBASE(TRKR,1) .EQ. 2) THEN
       NTRACKERS = NTRACKERS + 1
       ERROR(2*NTRACKERS-1) = ABS (DIFF(2*TRKR-1) - MEDIAN ERROR)
       ERROR(2*NTRACKERS) = ABS (DIFF(2*TRKR) - MEDIAN_ERROR)
      END IF
     END DO
```

```
32
                 31
       MAD ERROR = MAX ((MEDIAN (ERROR, NSAMPLES) / 0.6745), MINMAD)
  For each good tracker compute the jitter test scores.
       DO TRKR = 1, MAXT
        IF (DBASE(TRKR,1) .EQ. 2 .AND. DBASE(TRKR,9) .GT. 0) THEN
          JITRX = ((DIFF(2*TRKR-1) - MEDIAN_ERROR) / MAD ERROR)**2
          JITRY = ((DIFF(2*TRKR) - MEDIAN ERROR) / MAD ERROR)**2
          WRITE (TRLUN(TRKR), *)
          WRITE (TRLUN(TRKR), 10) 'JITRX =', JITRX, 'JITRY =', JITRY
           FORMAT(2(5X,A7,F6.2))
   10
  If the jitter scores fail, delete the tracker from the database and set the
  reason flag. Scale the jitter values to save in integer database.
          IF (JITRX .GT. THRESH(NSAMPLES) .OR.
           JITRY .GT. THRESH(NSAMPLES)) THEN
&
           CALL DBDEL(TRKR)
           REASONS(2,TRKR) = .TRUE.
          END IF
          DBASE(TRKR,14) = 100 * JITRX
          DBASE(TRKR,15) = 100 * JITRY
        END IF! good tracker
       END DO! trkr = 1 to maxt
  Else, if not enough trackers, set the jitter values to zero
       ELSE
        DO TRKR = 1, MAXT
          IF (DBASE(TRKR,1) .EQ. 2) THEN
            DBASE(TRKR, 14) = 0
            DBASE(TRKR,15) = 0
            WRITE (TRLUN(TRKR), *)
            WRITE (TRLUN(TRKR), *) 'JITRX = 0.0JITRY = 0.0'
          END IF! existing tracker
         END DO !i = 1, maxt
       END IF! ntrackers > = 3
       RETURN
       END
                                    Section D
                              Texas Instruments
                        TIINTERNAL DATA
                      Property of Texas Instruments ONLY
   NAME:
              JITTER
                  Performs the robust jitter test
   FUNCTION:
   DESCRIPTION:
        Initialize the number of trackers to zero
        For each good tracker at least one cycle old
```

33

```
Increment the number of trackers counters
        Compute the difference between found and predicted
        Save the difference in a temporary vector
    End of loop
    If at least 3 trackers are present then
        Compute the median of the difference values
        Compute the median absolute deviation of the difference values
        For each good tracker at least one cycle old
            Jitter value = (Difference - Median)**2 / MAD **2
            If the either jitter value > threshold then
                Execute routine to delete the tracker
                Set the appropriate reason for deletion flag to true
            End of if
        End of loop
     End of if
REFERENCES:
None
CALLING SEQUENCE:
     CALL JITTER
INPUTS:
     None
OUTPUTS:
     None
DEPENDENCIES:
     Common Blocks
         PROCPARMS - Processing parameters
     Functions
         MEDIAN - Calculates median of a vector of samples
SIDE EFFECTS:
     None
TARGET PROCESSOR:
     VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
 HISTORY:
      11/03/88 R. Broussard Initial Release
      01/28/91 D. Van Rheeden Replaced mean and standard deviation with median
                                 and median abs deviation
 Local Variables
                              Number of good trackers
      NTRACKERS
                              Differences between the found and predicted locations
      DIFFX, DIFFY
                              Vertical and horizontal errors of good trackers only
      ERRX, ERRY
                              Vertical and horizontal jitter scores
      JITRX, JITRY
                              Median absolute deviation of X and Y track errors
      MADX, MADY
      MEDIANX, MEDIANY Median of X and Y track errors
                              Minimum allowed median absolute deviation
      MINMAD
                              Threshold for the jitter test
      THRESH
                              Tracker index (position in the database)
      TRKR
```

```
Variable Declarations
     IMPLICIT NONE
    INCLUDE 'COMMON:PROCPARM.CMN'! Processing parameters
     INTEGER*2 NTRACKERS, TRKR
    REAL*4
                DIFFX (12), DIFFY(12), ERRX(12), ERRY(12), JITRX,
                JITRY, MADX, MADY, MEDIAN, MEDIANX, MEDIANY,
                MINMAD /0.5/
    REAL*4
                THRESH(12) /0.0, 0.0, 18.5, 20.6, 21.2, 16.3,
                   13.7, 12.3, 12.3, 12.3, 12.3, 12.3 /
&
    REAL*4
                THRESH(12) /0.0, 0.0, 5.0, 5.0, 5.0, 5.0,
&
                    5.0, 5.0, 5.0, 5.0, 5.0, 5.0 /
    EXTERNAL MEDIAN
                       EXECUTABLE CODE
Count the number of good trackers and compute the difference between the
predicted and the found locations.
    NTRACKERS = 0
    DO TRKR = 1, MAXT
        IF (DBASE(TRKR,1) .EQ. 2) THEN
           NTRACKERS = NTRACKERS + 1
           DIFFX(TRKR) = FLOAT (DBASE(TRKR, 2)) - PREDX(TRKR)
           DIFFY(TRKR) = FLOAT(DBASE(TRKR,3)) - PREDY(TRKR)
           ERRX (NTRACKERS) = DIFFX (TRKR)
           ERRY (NTRACKERS) = DIFFY (TRKR)
        END IF
    END DO
If there are at least three good trackers Then do the jitter test.
    IF (NTRACKERS .GE. 3) THEN
Compute the jitter median.
       MEDIANX = MEDIAN (ERRX, NTRACKERS)
       MEDIANY = MEDIAN (ERRY, NTRACKERS)
Compute the jitter median absolute deviation (MAD).
    NTRACKERS = 0
    DO TRKR = 1, MAXT
       IF (DBASE(TRKR,1) .EQ. 2) THEN
          NTRACKERS = NTRACKERS + 1
          ERRX (NTRACKERS) = ABS (DIFFX(TRKR) - MEDIANX)
          ERRY (NTRACKERS) = ABS (DIFFY(TRKR) - MEDIANY)
       END IF
    END DO
```

```
MADX = MAX ( (MEDIAN( ERRX, NTRACKERS ) / 0.6745), MINMAD )
    MADY = MAX ( (MEDIAN( ERRY, NTRACKERS ) / 0.6745), MINMAD )
For each good tracker compute the jitter test scores.
    DO TRKR = 1, MAXT
        IF (DBASE(TRKR,1) .EQ. 2 .AND. DBASE (TRKR, 9) .GT. 0) THEN
           JITRX = (DIFFX(TRKR) - MEDIANX)**2 / MADX**2
           JITRY = (DIFFY(TRKR) - MEDIANY)**2 / MADY**2
            WRITE (TRLUN(TRKR), *)
            WRITE (TRLUN(TRKR), 10) 'JITRX =', JITRX, 'JITRY =', JITRY
            FORMAT (2(5X,A7,F6.2))
If the jitter scores fail, delete the tracker from the database and set the
reason flag. Scale the intervalues to save in integer database.
           IF (JITRX .GT. THRESH (NTRACKERS) .OR.
              JITRY .GT. THRESH (NTRACKERS)) THEN
&
               CALL DBDEL (TRKR)
               REASONS (2,TRKR) = .TRUE.
           END IF
            IF (JITRX .LT. (2**15-1) /100) THEN
             DBASE (TRKR,14) = 100 * JITRX
            ELSE
             DBASE (TRKR, 14) = (2^{**}15-1)/100
            END IF
            IF (JITRY .LT. (2**15-1) /100) THEN
              DBASE (TRKR, 15) = 100 * JITRY
            ELSE
              DBASE (TRKR,15) = (2**15-1) / 100
            END IF
        END IF! good tracker
     END DO! trkr = 1 to maxt
Else, if not enough trackers, set the jitter values to zero
     ELSE
         DO TRKR = 1, MAXT
            IF (DBASE (TRKR,1) .EQ. 2) THEN
               DBASE (TRKR,14) = 0
               DBASE (TRKR, 15) = 0
               WRITE (TRLUN (TRKR), *)
               WRITE (TRLUN (TRKR), *)' JITRX = 0.0 JITRY = 0.0'
            END IF! existing tracker
         END DO ! i = 1, maxt
     END IF! ntrackers > = 3
     RETURN
     END
                               Section E
                           Texas Instruments
                     TIINTERNAL DATA
                   Property of Texas Instruments ONLY
```

SUBROUTINE LEASTSQ (H, Z, W, XHAT, ZHAT, P, NEST, NOBS)

NAME: LEASTSQ

FUNCTION: Weighted least-squares estimator. The estimator uses the standard form:

 $x = (H^{T} * W * H)^{-1} * H^{T} * W * z$

where

x = vector of least-squares estimates
 z = vector of input observations
 H = least-squares model matrix

W = weighting matrix

The predicted observations are computed by:

$$z = W * H * (H^{T} * W * H)^{-1} * H^{T} * W * z$$

DESCRIPTION:

Compute the matrix product HW = H^T * W

Compute the matrix product HW * H and invert the result

Save the least-squares estimate covariance matrix

Compute the least-squares pseudo-inverse matrix

Computer the least-squares estimates

Computer the least-squares estimates Compute the observation estimates

REFERENCES:

Elbert, T. F., Estimation and Control of Systems, Van Nostrand Reinhold Co., 1984, pp. 367-369.

CALLING SEQUENCE:

CALL LEASTSQ (H, Z, W, XHAT, ZHAT, P, NEST, NOBS)

INPUTS:

Least-squares model matrix

NEST - Number of least-squares estimates to compute NOBS - Number of least-squares observations to compute

W - Weight vector

Vector of observations

OUTPUTS:

P - Least-squares estimate normalized covariance matrix

XHAT - Vector of least-squares estimates ZHAT - Vector of predicted observations

DEPENDENCIES:

Subroutines

MATINV - Inverts a matrix

MATMULT - Multiplies two matrices

MATTRAN - Transposes a matrix

```
MVMULT - Multiplies a matrix by a column vector
SIDE EFFECTS:
    If the number of estimates or the number of observations become
     larger than the local matrix dimensions, then the local matrix
     dimensions must be increased.
TARGET PROCESSOR:
     VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
               D. Van Rheeden Initial Release
Local Variables
            Matrix loop indexes
               Product of transposed model matrix and weights
     HTW
                  Inverse of the product HTW * H
     HTWHINV
               Observation estimate model matrix
     OBS
               Least-squares pseudo-inverse matrix
     PSINV
                Transpose of the product HTW
     WTH
Variable Declarations
     IMPLICIT NONE
     INCLUDE 'COMMON:PROCPARM.CMN'! Processing parameters
     INTEGER*2 I, J, NEST, NOBS
                  H(NOBS, NEST), HTW(3,24), HTWH(3,3),
     REAL*4
                OBS(24,24), P(NEST,NEST), PSINV(3,24),
&
                TEMP(3,3), W(NOBS), XHAT(NEST), WTH(24,3),
                Z(NOBS), ZHAT(NOBS)
                          EXECUTABLE CODE
Compute the matrix product HW = H^T * W. Note that W is input as a
vector instead of a matrix to reduce the number of computations.
     CALL MATTRAN (H, HTW, NOBS, NEST)
      DO = 1, NEST
       DOJ = 1, NOBS
        HTW(I,J) = W(J) * HTW(I,J)
       END DO
      END DO
 Compute the matrix product H<sup>T</sup> * W * H and invert. Save the result as
 the normalized covariance matrix of the least-squares estimates.
      CALL MATMULT (HTW, H, HTWH, NEST, NOBS, NOBS, NEST)
      CALL MATINY (HTWH, P, TEMP, NEST, NEST)
```

C	Compute the least-squares pseudo-inverse matrix.									
C	CALL MATMULT (P, HTW, PSINV, NEST, NEST, NEST, NOBS) Compute the least-squares estimates, x. CALL MVMULT (PSINV, Z, XHAT, NEST, NOBS, NOBS) Compute the observation estimates, z.									
							CALL MATTRAN (HTW, WTH, NEST, NOBS) CALL MATMULT (WTH, PSINV, OBS, NOBS, NEST, NEST, NOBS) CALL MVMULT (OBS, Z, ZHAT, NOBS, NOBS, NOBS)			
							RETURN END			
C	Section F									
C	Texas Instruments									
C	T I INTERNAL DATA Property of Texas Instruments ONLY									
C	Property of Texas mistruments ONL i									
C C C C	COMMON BLOCK TKPTPARM									
	MNEUMONIC: TRacKPoinT measurement PARaMeters common block									
C	AUTHOR: Don Van Rheeden									
C	HISTORY: 01/09/91 D. Van Rheeden Initial release									
	VARIABLE DECLARATIONS									
C	COMMON TKPTPARMS/ AMOUNT_SHIFTED, BIAS_COUNT, & BIAS_INTERVAL, & BIASX, BIASY, COMPUTE_SUBPIX, DISP_UPPER, & DISTX, DISTY, DIST2DX, DIST2DY,									
	& INITSIZEX, INITSIZEY, MAGNIFY, MAGVAR,									
	& MODEL, OFFSETX, OFFSETY, RANGEIND, & RECEMTERP, RECENERY, SAVED LOSP,									
	& SUBPIXX, SUBPIXY, TRKMODE, WEIGHTDIST/									
	C INTEGER *2 BIAS COUNT INITSIZEX, INITSIZEY, MODEL, & RECENTERX, RECENTERY, TRKMODE									
	REAL *4 AMOUNT_SHIFTED, BIAS_INTERVAL, BIASX, BIASY, DISP_CORR, DISP_UPPER, DISTX(12), DISTY (12), DIST2DX(12), DIST2DY(12), MAGNIFY, MAGVAR, OFFSETX, OFFSETY, SAVED_LOSP, SUBPIXX(12), SUBPIXY(12)									
	LOGICAL*2 COMPUTE_SUBPIX, RANGEIND, WEIGHTDIST									
	C VARIABLE DESCRIPTIONS									

•

	\mathbf{C}	AMOUNT SHIFTED Number of meters shifted on target by aimpoint bias	
	<u> </u>		
•	Č	BIAS_COUNT Aimpoint bias counter	
	C	BIAS_INTERVAL Number of seconds between aimpoint biases	
•	С	BIAS X, Y Aimpoint biasing weights:	
	С	BIASX = 0.0 -bias left BIASY = 0.0 -bias down	
•	C	BIASX=0.5 -no bias BIASY=0.5 -no bias	
	Č	BIASX = 1.0 -bias rightBIASY = 1.0 -bias up	
	<u> </u>		
	C	COMPUTE SUBPIX Compute subpixel esteimate flag	
	C	DIST2DX,Y Distances normalized by 2-D magnification	
•	С	INITSIZEX,Y Target size at tracker initialization	
	C	MAGNIFY Estimated magnifications factor	
	č	MAGVAR Variance of the magnification factor estimate	
•	<u> </u>		
	C	MODEL Range independent tracking model:	
	C	1- 1-D Model (X & Y estimated independently)	
	C	2- 2-D Model (X & Y estimated simultaneously)	
	C	OFFSETX,Y Offset of aimpoint from trackpoint	
	C	RANGEIND Range independent tracking flag	
	Č	RECENTERP, Y Aimpoint recenter values (PITCH, YAW)	
	Č		
	<u>C</u>	SAVED LOSP Line-of-sight pitchsaved from last aimpoint bias	
	C	SUBPIXX,Y Trackpoint subpixel shift estimates	
	C	TRKMODE Integer tracker mode:	
	C	0 - rate coast (breaklock)	
	C	1 - locked on (confident track)	
	Č	WEIGHTDIST Flag to weight each tracker measurement by its distance from	
	<u> </u>		
	C	the aimpoint	
	C	DISP_CORR Average displacement all correlators	
	С	DISP UPPER Average displacement of upper correlators	
	С	DISTX,Y Distances from trackpoint normalized by size	
s.			
	\mathbf{C}		
	C	Tayor Instruments	
•	C	Texas Instruments	
	C C	TI INTERNAL DATA	
	C C C		
	C	TI INTERNAL DATA	
	C	TI INTERNAL DATA	
		TI INTERNAL DATA Property of Texas Instruments ONLY	
		TI INTERNAL DATA	
		TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM	
		TI INTERNAL DATA Property of Texas Instruments ONLY	
		TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM	
		TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM	
		TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block	
	C	TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard	
	CCC	TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY:	
	CCCC	TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by	
	0000	TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program	
	CCCC	TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images	
	0000	TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program	
	CCCCCC	TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Removed oresight jutter: XTRAN, YTRAN	
		TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Removed oresight jutter: XTRAN, YTRAN 4/15/91 D. Van Rheeden Added image dimensions: IMGROWS,	
	COCCCCC	TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Removed oresight jutter: XTRAN, YTRAN 4/15/91 D. Van Rheeden Added image dimensions: IMGROWS, IMGCOLS	
		TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Removed oresight jutter: XTRAN, YTRAN 4/15/91 D. Van Rheeden Added image dimensions: IMGROWS, IMGCOLS 4/17/91 D. Van Rheeden Added max limits; MAXACF, MAXCONT	
		TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Removed oresight jutter: XTRAN, YTRAN 4/15/91 D. Van Rheeden Added image dimensions: IMGROWS, IMGCOLS 4/17/91 D. Van Rheeden Added max limits; MAXACF, MAXCONT 4/22/91 D. Van Rheeden Added screen limits: MINX, Y and MAXX,Y	
		TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Removed oresight jutter: XTRAN, YTRAN 4/15/91 D. Van Rheeden Added image dimensions: IMGROWS, IMGCOLS 4/17/91 D. Van Rheeden Added max limits; MAXACF, MAXCONT 4/22/91 D. Van Rheeden Added screen limits: MINX, Y and MAXX,Y 5/20/91 D. Van Rheeden Added CONTTH MIN: removed HSKIP, VSKIP	
		TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Removed oresight jutter: XTRAN, YTRAN 4/15/91 D. Van Rheeden Added image dimensions: IMGROWS, IMGCOLS 4/17/91 D. Van Rheeden Added max limits; MAXACF, MAXCONT 4/22/91 D. Van Rheeden Added screen limits: MINX, Y and MAXX,Y	
		TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Removed oresight jutter: XTRAN, YTRAN 4/15/91 D. Van Rheeden Added image dimensions: IMGROWS, IMGCOLS 4/17/91 D. Van Rheeden Added max limits; MAXACF, MAXCONT 4/22/91 D. Van Rheeden Added screen limits: MINX, Y and MAXX,Y 5/20/91 D. Van Rheeden Added CONTTH MIN: removed HSKIP, VSKIP	
		TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Removed oresight jutter: XTRAN, YTRAN 4/15/91 D. Van Rheeden Added image dimensions: IMGROWS, IMGCOLS 4/17/91 D. Van Rheeden Added max limits; MAXACF, MAXCONT 4/22/91 D. Van Rheeden Added Screen limits: MINX, Y and MAXX,Y 5/20/91 D. Van Rheeden Added CONTTH MIN: removed HSKIP, VSKIP 5/24/91 D. Van Rheeden Added trackability/ update to REASONS 5/24/91 D. Van Rheeden Added reference update age threshold	•
		TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Added image dimensions: IMGROWS, IMGCOLS 4/17/91 D. Van Rheeden Added max limits; MAXACF, MAXCONT 4/22/91 D. Van Rheeden Added CONTTH MIN: removed HSKIP, VSKIP 5/24/91 D. Van Rheeden Added trackability/ update to REASONS 5/24/91 D. Van Rheeden Added reference update age threshold 5/28/91 D. Van Rheeden Added real target, noisex,	
	0000000000000000	TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Removed oresight jutter: XTRAN, YTRAN 4/15/91 D. Van Rheeden Added image dimensions: IMGROWS, IMGCOLS 4/17/91 D. Van Rheeden Added max limits; MAXACF, MAXCONT 4/22/91 D. Van Rheeden Added Screen limits: MINX, Y and MAXXX, Y 5/20/91 D. Van Rheeden Added CONTTH MIN: removed HSKIP, VSKIP 5/24/91 D. Van Rheeden Added CONTTH MIN: removed HSKIP, VSKIP 5/24/91 D. Van Rheeden Added trackability/ update to REASONS 5/24/91 D. Van Rheeden Added reference update age threshold 5/28/91 D. Van Rheeden Added real target, noisex, 6/13/91 D. Van Rheeden Added line of sight angles, LOSP, Y	
		TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Removed oresight jutter: XTRAN, YTRAN 4/15/91 D. Van Rheeden Added image dimensions: IMGROWS, IMGCOLS 4/17/91 D. Van Rheeden Added max limits; MAXACF, MAXCONT 4/22/91 D. Van Rheeden Added CONTTH MIN: removed HSKIP, VSKIP 5/24/91 D. Van Rheeden Added CONTTH MIN: removed HSKIP, VSKIP 5/24/91 D. Van Rheeden Added trackability/ update to REASONS 5/24/91 D. Van Rheeden Added real target, noisex, 6/13/91 D. Van Rheeden Added line of sight angles, LOSP, Y 6/17/91 D. Van Rheeden Replaced IRRES with RAD_TO_PIX,	
	0000000000000000	COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Added image dimensions: IMGROWS, IMGCOLS 4/17/91 D. Van Rheeden Added max limits; MAXACF, MAXCONT 4/22/91 D. Van Rheeden Added contributes MINX, Y and MAXX,Y 5/20/91 D. Van Rheeden Added CONTTH MIN: removed HSKIP, VSKIP 5/24/91 D. Van Rheeden Added trackability/ update to REASONS 5/24/91 D. Van Rheeden Added reference update age threshold 5/28/91 D. Van Rheeden Added right angles, LOSP, Y 6/17/91 D. Van Rheeden Replaced IRRES with RAD_TO_PIX, PIX_TO_RAD	
	0000000000000000	TI INTERNAL DATA Property of Texas Instruments ONLY COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Removed oresight jutter: XTRAN, YTRAN 4/15/91 D. Van Rheeden Added image dimensions: IMGROWS, IMGCOLS 4/17/91 D. Van Rheeden Added max limits; MAXACF, MAXCONT 4/22/91 D. Van Rheeden Added CONTTH MIN: removed HSKIP, VSKIP 5/24/91 D. Van Rheeden Added CONTTH MIN: removed HSKIP, VSKIP 5/24/91 D. Van Rheeden Added trackability/ update to REASONS 5/24/91 D. Van Rheeden Added real target, noisex, 6/13/91 D. Van Rheeden Added line of sight angles, LOSP, Y 6/17/91 D. Van Rheeden Replaced IRRES with RAD_TO_PIX,	
	0000000000000000	COMMON BLOCK PROCPARM MNUEMONIC: PROCessing PARaMeters common block AUTHOR: Roger Broussard HISTORY: 10/31/88 R. Broussard Generated from program TRACK written by Cam Kaszas for AGB program 1/09/90 D. Van Rheeden Added variables to run AAWS-M images 4/11/91 D. Van Rheeden Added image dimensions: IMGROWS, IMGCOLS 4/17/91 D. Van Rheeden Added max limits; MAXACF, MAXCONT 4/22/91 D. Van Rheeden Added contributes MINX, Y and MAXX,Y 5/20/91 D. Van Rheeden Added CONTTH MIN: removed HSKIP, VSKIP 5/24/91 D. Van Rheeden Added trackability/ update to REASONS 5/24/91 D. Van Rheeden Added reference update age threshold 5/28/91 D. Van Rheeden Added right angles, LOSP, Y 6/17/91 D. Van Rheeden Replaced IRRES with RAD_TO_PIX, PIX_TO_RAD	

```
VARIABLE DECLARATIONS
         COMMON /PROCPARMS/ACOR, AGETH, AIMX, AIMY, ALTITUDE,
                   APMODE, BRKLCK, CCOR, CFT, CHECKS, COLOR,
                   CONT. CONTTH, CONTTH MIN, CYCLE, DBASE,
                   DCHISL, DCHISU, DCREFX, DCREFY, DCSERX,
                   DCSERY, DRANGE, FRATE, HGREFX, HGREFY,
     &
                   IMGCOLS, IMGGAIN, IMGROWS, LOSP, LOSY LOSRP,
                   LOSRY, LUNN, MAXACF, MAXCONT, MAXP, MAXT,
                   MAXX, MAXY, MINX, MINY, NZSIGMA, OLDRNG,
                   PIX TO RAD, PREDX, PREDY, RAD TO PIX,
                  RANGE, RANGE GOOD, REASONS, RESERRX, RESERRY,
                   RSIZEX, RSIZEY, SR, SRTH, TGTSZX, TGTSZY, TPVARX,
                    TPVARY, TRACKX, TRACKY, TRLUN, VELOCITY
          INTEGER*2 AGETH, CHECKS, CONT, CONITH, CONTTHIN, CYCLE,
             DBASE(12,17), DCHISL, DCHISU, DCREFX, DCREFY,
             DCSERX, DCSERY, HGREFX, HGREFY, IMGCOLS,
             IMGROWS, LUNN, MAXACF, MAXCONT, MAXP, MAXT,
             MAXX, MAXY, MINX, MINY, SR, SRTH, TRLUN(12)
          INTEGER*4 ACOR(25,25), APMODE, CCOR(25,25), COLOR(12)
          REAL*4 AIMX, AIMY, ALTITUDE, DRANGE, FRATE,
             IMGGAIN, LOSP, LOSY, LOSRP, LOSRY, NZSIGNMA,
             OLDRNG, PIX TO RAD, PREDX(12), PREDY(12),
             RAD TO PIX, RANGE, RESERRX, RESERRY, RSIZEX,
             RSIZEY, SUMP, SUMY, TGRSZX, TGTSZY, TPVARX,
     &
             TPVARY, TRACKX, TRACKY, VELOCITY
     &
          LOGICAL*2 BRKLCK, CFT/.TRUE./, RANGE GOOD, REASONS(4,12)
                          VARIABLE DESCRIPTIONS
C ACOR,CCOR
                Auto-correlation and cross-correlation matrices
             Reference update tracker age threshold
C AGETH
                Horizontal and vertical position of the aimpoint (0.0,0.0 in upper left)
C AIMX, AIMY
                Autopilot mode
C APMODE
C ALTITUDE Altitude of the platform (meters)
                 Breaklock flag (no good tackers in database)
C BRKLCK
                Total number of checks allowed this cycle
C CHECKS
C CFT
             Captive flight test indicator
             The color index used to identify trackers
C COLOR
C CONT, SR
                Current local contrast and sharpness ratio scores
                    Local contract and sharpness ratio thresholds
C CONTTH, SRTH
C CONNTH MIN Minimum allowed local contrast threshold
C CYCLE
             Track cycle number, 0 = Initialization cycle
C DBAS(j,k)
                 Tracker data base
                              -1 = slot free, 2 = = > slot full
                 DBASE(j,1):
                DBASE(j,2):
                              X coordinate for tracker j
                DBASE(j,3):
                               Y coordinate for tracker j
                 DBASE(j,4):
                              Local contrast score
                DBASE(j,5):
                               Sharpness ratio score
                 DBASE(j,6):
                               Zone number
                DBASE(j,7):
                               -1 = = > outside OSR (needs replacement)
                               2 = = > in bounds
                DBASE(j,8):
                               Reference update threshold
                 DBASE(j,9):
                              Cycles active
                 DBASE(j,10): Cross correlation score at best match
                 DBASE(j,11): X predicted position
                 DBASE(j,12): Y predicted position
```

DBDEL

NAME:

51

```
FUNCTION:
               Deletes a tracker from the database
DESCRIPTION:
Set the values of the tracker location to -1
Compute the location of the reference subimage in B memory
Clear the region of B memory used for the reference subimage
REFERENCES:
None
CALLING SEQUENCE:
     Call DBDEL (TRACKER)
INPUTS:
     TRACKER - Index of tracker to delete
OUTPUTS:
     Mone
DEPENDENCIES:
     Common Blocks
        ASPMEMYS - APAP A and B memories
        PROCPARMS - Processing parameters
SIDE EFFECTS:
     None
TARGET PROCESSOR:
     VAX 8000 series VMS 4.5, Fortran Compiler 4.5 -219
HISTORY:
     11/08/88 R. Broussard Initial Release
            Local Variables
            Loop counters
               Starting column of reference subimage in B memory
               Starting row of reference subimage in B memory
Variable Declarations
IMPLICIT NONE
INCLUDE 'COMMON: APMEMY. CMN! ' APAP A and B memories
INCLUDE 'COMMON:PROGPARM. CMN!' Processing parameters
                 I, J, MXSTRT, MYSTRT, TRACKER
INTEGER*2
                         EXECUTABLE CODE
Set the tracker indicator in the database to indicate available.
DBASE( TRACKER,1) = -1
Determine the location of the tracker in B memory.
     MXSTRT = MOD(TRACKER-1, 8) *16 + 1
     MYSTRT = ((TRACKER-1)/8 * 16 + 1
Erase reference im: and label from B memory.
```

```
DOJ = 1, 16
      DO I = 1, 16
       DMEMYB( MXSTRT+I-1, MYSTRT+J-1) = 0
      END DO
    END DO
For Debugging . . .
    CLOSE( UNIT=TRLUN( TRACKER))
RETURN
END
                          Texas Instruments
                        TI INTERNAL DATA
                  Property of Texas Instruments ONLY
    REAL*4 FUNCTION MEDIAN (VECTOR, NSAMPLES)
           MEDIAN
NAME:
               Computes the median of a vector of numbers.
FUNCTION:
DESCRIPTION:
     Sort the input vector from smallest to largest
     If the number of input samples is even Then
      Median = average of two middle samples
     Else the number of input samples is odd
      Median = middle sample
     End If
REFERENCES:
     None
 CALLING SEQUENCE:
     MEDIAN_VALUE = MEDIAN (VECTOR, NSAMPLES)
 INPUTS:
     VECTOR - Input vector containing samples to process
     NSAMPLES - Number of samples in VECTOR
 OUTPUTS:
      MEDIAN - Output median value
 DEPENDENCIES:
      None
 SIDE EFFECTS:
      None
 TARGET PROCESSOR:
      VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
```

```
HISTORY:
                   D. Van RheedenInitial Release
         01/28/91
                   D. Van RheedenReduced outer sorting loop from N-1
         06/20/91
                         samples to N/2+1 samples
    Local Variables
                   Sorting loop counters
                      Address of middle value in the sorted input vector
         MIDDLE
                   Temporary storage used by sorting loops
         TEMP
    Variable Declarations
         IMPLICIT NONE
         INTEGER*2 I, J, MIDDLE, NSAMPLES
                     TEMP, VECTOR (NSAMPLES)
         REAL*4
                             EXECUTABLE CODE
     Sort the input vector from smallest to largest values.
         DO I = 1,NSAMPLES/2+1
           DOJ = 2,NSAMPLES
            IF ( VECTOR(J) .LT. VECTOR(J-1) ) THEN
             TEMP = VECTOR(J-1)
             VECTOR(J-1) = VECTOR(J)
             VECTOR(J) = TEMP
            END IF
           END DO
          END DO
     Compute the median. If the number of input samples is even, the
     median is the average of the two middle samples. If the number of
     samples is odd, the median is the middle sample.
\mathbf{C}
          IF (MOD(NSAMPLES,2) .EQ. 0) THEN
           MIDDLE = NSAMPLES/2
           MEDIAN = (VECTOR(MIDDLE) + VECTOR(MIDDLE+1)) / 2.0
          ELSE
           MIDDLE = NSAMPLES/2 + 1
           MEDIAN = VECTOR(MIDDLE)
          END IF
          RETURN
          END
                                 Texas Instruments
                               TI INTERNAL DATA
                        Property of Texas Instruments ONLY
```

```
SUBROUTINE MATADD (M1, M2, SUM, ROWS, COLS)
NAME:
          MATADD
FUNCTION:
             Adds two matrices.
DESCRIPTION:
    Sum = matrix #1 + matrix #2.
REFERENCES:
CALLING SEQUENCE:
    CALL MATADD (M1, M2, SUM, ROWS, COLS)
INPUTS:
    M1, M2
                - Input matrices
    ROWS, COLS - Matrix dimensions
OUTPUTS:
    SUM - Output matrix sum
DEPENDENCIES:
    None
TARGET PROCESSOR:
    VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
                  D. Van RheedenInitial Release
    02/18/91
Local Variables
           Matrix indexes
Variable Declarations
     IMPLICIT NONE
                  COLS, I, J, ROWS
     INTEGER*2
                M1(ROWS,COLS), M2(ROWS,COLS),
     REAL*4
              SUM(ROWS,COLS)
&
                       EXECUTABLE CODE
Add the two input matrices.
```

```
DOI = 1, ROWS
     DOJ = 1, COLS
      SUM(I,J) = M1(I,J) + M2(I,J)
     END DO
    END DO
    RETURN
    END
    SUBROUTINE MATSUB (M1, M2, DIFF, ROWS, COLS)
          MATSUB
NAME:
FUNCTION: Subtracts two matrices.
DESCRIPTION:
    Difference = matrix #1 - matrix #2.
REFERENCES:
CALLING SEQUENCE:
    CALL MATSUB (M1, M2, DIFF, ROWS, COLS)
INPUTS:
    M1, M2 - Input matrices
    ROWS, COLS - Matrix dimensions
OUTPUTS:
    DIFF - Output matrix difference
DEPENDENCIES:
    None
SIDE EFFECTS:
    None
TARGET PROCESSOR:
    VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
                D. Van RheedenInitial Release
    02/18/91
Local Variables
           Matrix indexes
Variable Declarations
```

```
IMPLICIT NONE
     INTEGER*2
                   COLS, I, J, ROWS
     REAL*4
                 M1(ROWS,COLS), M2(ROWS,COLS), DIFF(ROWS,COLS)
                        EXECUTABLE CODE
 Subtract the two input matrices.
     DOI = 1, ROWS
      DOJ = 1, COLS
        DIFF(I,J) = M1(I,J) + M2(I,J)
      END DO
     END DO
     RETURN
     END
     SUBROUTINE MATMULT (M1, M2, PROD, ROW1, COL1, ROW2, COL2)
NAME:
            MATMULT
FUNCTION:
               Multiplies two matrices.
 DESCRIPTION:
     If inner matrix dimensions do not match Then
       Write status message to the user.
      Exit from the program.
     End if inner matrix dimensions do not match.
     Product = matrix #1 * matrix #2.
REFERENCES:
 CALLING SEQUENCE:
     CALL MATMULT (M1, M2, PROD, ROW1, COL1, ROW2, COL2)
 INPUTS:
      M1, M2
                  - Input matrices
      ROW1, COL1 - Input matrix M1 dimensions
                    - Input matrix M2 dimensions
      ROW2, COL2
 OUTPUTS:
      PROD - Output matrix product
 DEPENDENCIES:
      EXIT - System exit routine
 SIDE EFFECTS:
      None
```

```
TARGET PROCESSOR:
    VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
                                  Initial Release
                D. Van Rheeden
    02/18/91
Local Variables
              Matrix indexes
    I, J, K
    SUM
                Product accumulator
Variable Declarations
    IMPLICIT NONE
    INTEGER*2 COL1, COL2, I, J, K, ROW1, ROW2
              M1(ROW1,COL1), M2(ROW2,COL2), PROD(ROW1,COL2),
    REAL*4
              SUM
&
                        EXECUTABLE CODE
If the inner matrix dimensions do not agree, write a status message
and exit the program.
    IF (COL1 .NE. ROW2) THEN
      WRITE(6,*) 'Error in MATMULT'
      'Inner matrix dimensions do not agree.'
&
      CALL EXIT (0)
     END IF
Multiply the two input matrices.
     DOI = 1, ROW1
      DOJ = 1, COL2
       SUM = 0.0
       DO K = 1, COL1
        SUM = SUM + M1(I,K) * M2(K,J)
       END DO
       PROD(I,J) = SUM
      END DO
     END DO
     RETURN
     END
     SUBROUTINE MATCOPY (M, COPY, ROWS, COLS)
```

```
NAME:
           MATCOPY
FUNCTION:
              Copies a matrix.
DESCRIPTION:
    Copy the input matrix to the output matrix.
REFERENCES:
CALLING SEQUENCE:
    CALL MATCOPY (M, COPY, ROWS, COLS)
INPUTS:
         - Input matrix
    ROWS, COLS - Matrix dimensions
OUTPUTS:
    COPY - Copy of the input matrix
DEPENDENCIES:
    None
SIDE EFFECTS:
    None
TARGET PROCESSOR:
    VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
    02/18/91
              D. Van Rheeden
                                Initial Release
Local Variables
    I, J
           Matrix indexes
Variable Declarations
    IMPLICIT NONE
     INTEGER*2
                   COLS, I, J, ROWS
                 M(ROWS,COLS), COPY(ROWS,COLS)
    REAL*4
                        EXECUTABLE CODE
Copy the input matrix into the output matrix.
    DOI = 1, ROWS
     DOJ = 1, COLS
```

```
COPY(I,J) = M(I,J)
     END DO
    END DO
    RETURN
    END
    SUBROUTINE MATTRAN (M, TRANS, ROWS, COLS)
NAME:
             MATTRAN
FUNCTION:
             Transposes a matrix.
DESCRIPTION: Transpose the input matrix.
REFERENCES:
CALLING SEQUENCE:
    CALL MATTRAN (M, TRANS, ROWS, COLS)
INPUTS:
              - Input matrix
    ROWS, COLS - Matrix dimensions
OUTPUTS:
     TRANS - Output matrix difference
DEPENDENCIES:
     None
SIDE EFFECTS:
     None
TARGET PROCESSOR:
     VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
             D. Van RheedenInitial Release
     02/18/91
Local Variables
           Matrix indexes
Variable Declarations
     IMPLICIT NONE
     INTEGER*2 COLS, I, J, ROWS
```

69

```
M(ROWS,COLS), TRANS(ROWS,COLS)
    REAL*4
                        EXECUTABLE CODE
Transpose the input matrix.
    DO I = 1, ROWS
     DOJ = 1, COLS
       TRANS(J,I) = M(I,J)
     END DO
    END DO
    RETURN
    END
    SUBROUTINE MATDET (M, DET, WORK, ROWS, COLS)
               MATDET
NAME:
FUNCTION:
               Computes the determinant of a square matrix.
DESCRIPTION:
    If the input matrix is not square Then
      Write status message to the user.
      Exit from the program.
     End if input matrix is not square.
     Copy input matrix into temporary work array.
     Decompose the matrix into lower/upper (LU) form.
     Determinant = product of LU matrix diagonal elements.
REFERENCES:
CALLING SEQUENCE:
     CALL MATDET (M, DET, WORK, ROWS, COLS)
INPUTS:
               - Input matrix
     ROWS, COLS - Matrix dimensions
     WORK
                 - Temporary work array
OUTPUTS:
     DET - Output matrix determinant
DEPENDENCIES:
                 - System exit routine
     EXIT
                    - Lower/Upper (LU) matrix decomposition
     MATLUD
```

71 .

```
SIDE EFFECTS:
    A copy should be made of the input matrix unless the user
    desires to use the LU decomposed matrix.
TARGET PROCESSOR:
    VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
               D. Van Rheeden Initial Release
Local Variables
              Matrix indexes
             LU decomposition backsubstitution index vector
     INDX
Variable Declarations
     IMPLICIT NONE
                    COLS, I, INDX(50), J, ROWS
     INTEGER*2
                  DET, M(ROWS,COLS), WORK(ROWS,COLS)
     REAL*4
                  EXECUTABLE CODE
If the input matrix is not square then write a status message and
exit the program.
     IF (ROWS .NE. COLS) THEN
      WRITE (6,*) 'Error in MATDET ...
  & 'Cannot compute determinant of a 'nonsquare matrix.'
     CALL EXIT (0)
     END IF
Copy input matrix into temporary work array.
     CALL MATCOPY (M, WORK, ROWS, COLS)
Decompose the input matrix into lower/upper (LU) form.
     CALL MATLUD ( WORK, ROWS, COLS, INDX, DET )
Compute determinant as the product of the diagonal elements of
 the LU decomposed matrix. The return value DET from MATLUD
determines the sign of the determinant.
     DOJ = 1, ROWS
       DET = DET + WORK(J,J)
     END DO
     RETURN
      END
```

```
SUBROUTINE MATINY (M, INV, WORK, ROWS, COLS)
NAME:
               MATINV
FUNCTION:
               Inverts a square matrix.
DESCRIPTION:
    If the input matrix is not square Then
      Write status message to the user.
      Exit from the program.
     End if input matrix into the work array.
     Copy input matrix into the work array.
     Decompose the matrix into lower/upper (LU) form.
     Do backsubstitution of the LU decomposed matrix one row
      at a time.
REFERENCES:
CALLING SEQUENCE:
     CALL MATINY (M, INV, WORK, ROWS, COLS)
INPUTS:
               - Input matrix
     ROWS, COLS - Matrix dimensions
                  - Temporary work space matrix
     WORK
OUTPUTS:
               - LU decomposition of the input matrix
     M
     INV
                  - Output inverse matrix
DEPENDENCIES:
     EXIT
                  - System exit routine
                  - Lower/Upper (LU) matrix backsubstitution
     MATLUB
                  - Lower/Upper (LU) matrix decomposition
     MATLUD
SIDE EFFECTS:
     None
TARGET PROCESSOR:
     VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
     02/18/91
                D. Van Rheeden Initial Release
Local Variables
                  Matrix indexes
```

```
75
                                                             76
    INDX
                 LU decomposition backsubstitution index vector
                 LU decomposition return sign
    SIGN
               LU backsubstitution solution vector
Variable Declarations
    IMPLICIT NONE
                   COLS, I, INDX(50), J, ROWS
    INTEGER*2
                 INV(ROWS,COLS), M(ROWS,COLS), SIGN, V(50),
    REAL*4
              WORK(ROWS,COLS)
                 EXECUTABLE CODE
If the input matrix is not square then write a status message and
exit the program.
    IF (ROWS .NE. COLS) THEN
      WRITE(6,*) 'Error in MATINV...',
      'Cannot invert a nonsquare matrix.'
      CALL EXIT (0)
    END IF
Copy input matrix into the work array.
     CALL MATCOPY (M, WORK, ROWS, COLS, )
Decompose the input matrix into lower/upper (LU) form.
    CALL MATLUD ( WORK, ROWS, COLS, INDX, SIGN )
Perform backsubstitution of the LU decomposed matrix one row
at a time.
     DOJ = 1, COLS
      DOI = 1, ROWS
       V(I) = 0
      END DO
      V(J) = 1.0
      CALL MATLUB ( WORK, ROWS, COLS, INDX, V )
      DO I = 1, ROWS
        INV(I,J) = V(I)
      END DO
     END DO
     RETURN
     END
        SUBROUTINE MATLUD (M, ROWS, COLS, INDX, SIGN)
```

```
78
NAME:
         MATLUD
FUNCTION: Matrix Lower/Upper (LU) decomposition.
DESCRIPTION:
     If the input matrix is not square Then
      Write status message to the user.
      Exit from the program.
     End if input matrix is not square.
     Decompose the matrix into lower/upper (LU) form.
REFERENCES:
CALLING SEQUENCE:
     CALL MATLUD (M, ROWS, COLS, INDX, SIGN)
INPUTS:
               - Input matrix
     ROWS, COLS - Matrix dimensions
OUTPUTS:
               - LU decomposition of the input matrix
     M
                  - Backsubstitution index vector
     INDX
     SIGN
                  - LU decomposition return sign (+-1)
DEPENDENCIES:
     EXIT
                  - System exit routine
SIDE EFFECTS:
     None
TARGET PROCESSOR:
     VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
               D. Van Rheeden
     02/18/91
                                  Initial Release
Local Variables
                Input matrix element with largest magnitude
     BIG
                Dummy argument used for temporary storage
     DUM
     I, J, K Matrix loop indexes
     IMAX Decomposition index values saved in INDX vector
                Intermediate sum
     SUM
     TINY
                Small number used to prevent divides by zero
                Pivot vector
Variable Declarations
     IMPLICIT NONE
     INTEGER*2 COLS, I, IMAX, INDX(50), J, K, ROWS
```

```
BIG, DUM, M(ROWS,COLS), SIGN, SUM, TINY/1.0e-20/, VV(50)
    REAL*4
               EXECUTABLE CODE
If the input matrix is not square then write a status message and
exit the program.
    IF (ROWS .NE. COLS) THEN
       WRITE(6,*) 'Error in MATLUD...',
      'Cannot decompose a nonsquare matrix.'
      CALL EXIT (0)
     END IF
Decompose the input matrix into lower/upper (LU) form.
     SIGN = 1.0
     DO 1 = 1, ROWS
      BIG = 0.0
      DOJ = 1, COLS
        IF ( ABS(M(I,J)) .GT. BIG) BIG = ABS(M(I,J))
      END DO
      IF (BIG .EQ. 0.0) THEN
        WRITE(6,*) 'Error in MATLUD...',
        ' Matrix is singular.'
&
        CALL EXIT (0)
      END IF
      VV(I) = 1.0 / BIG
     END DO
     DOJ = 1, ROWS
      IF (J.GT. 1) THEN
        DO I = 1, J-1
          SUM - M(I,J)
          IF (I.GT. 1) THEN
           DO K = 1, I-1
            SUM = SUM - M(I,K) + M(K,J)
           END DO
           M(I,J) = SUM
          END IF
        END DO
      END IF
      BIG = 0.0
      DOI = J, ROWS
        SUM = M(I,J)
     IF (J.GT. 1) THEN
      DO K = 1, J-1
        SUM = SUM - M(I,K) + M(K+J)
      END DO
      M(I,J) = SUM
     END IF
```

```
DUM = VV(I) * ABS(SUM)
    IF (DUM .GT. BIG) THEN
     BIG = DUM
     IMAX = I
    END IF
 END DO
 IF (J.NE. IMAX) THEN
  DOK = 1, ROWS
     DUM = M(IMAX,K)
     M(IMAX,K) = M(J,K)
     M(J,K) = DUM
  END DO
  SIGN = -SIGN
  VV(IMAX) = VV(J)
 END IF
 INDX(J) = IMAX
 IF (J.LT. COLS) THEN
    IF (M(J,J) .EQ. 0.0) M(J,J) = TINY
    DUM - 1.0 / M(J,J)
    DO I = J+1, ROWS
     M(I,J) = M(I,J) \cdot DUM
    END DO
 END IF
END DO
    (M(ROWS,COLS).EQ. 0.0) M(ROWS,COLS) = TINY
RETURN
END
SUBROUTINE MATLUB (M, ROWS, COLS, INDX, BCK)
         MATLUB
NAME:
FUNCTION: Lower/Upper (LU) decomposed matrix backsubstitution
DESCRIPTION:
    If the input matrix is not square Then
      Write status message to the user.
      Exit from the program.
    End if input matrix is not square.
     Perform the backsubstitution.
REFERENCES:
CALLING SEQUENCE:
     CALL MATLUB (M, ROWS, COLS, INDX, BCK)
```

```
INPUTS:
               - Input matrix
    ROWS, COLS - Matrix dimensions
OUTPUTS:
                - LU decomposition of the input matrix
                  - Backsubstitution index vector
     INDX
                  - Backsubstitution vector for current row
     BCK
DEPENDENCIES:
                  - System exit routine
     EXIT
SIDE EFFECTS:
     The input matrix must be an LU decomposed matrix.
TARGET PROCESSOR:
     VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
                                  Initial Release
                D. Van Rheeden
     02/18/91
Local Variables
            Matrix/vector indexes
             Nonzero backsubstitution sum index
            Pointer into the INDX vector
                Intermediate sum
     SUM
 Variable Declarations
     IMPLICIT NONE
     INTEGER*2 COLS, I, II, IP, INDX(50), J, ROWS
               BCK(50), M(ROWS,COLS), SUM
     REAL*4
                 EXECUTABLE CODE
 If the input matrix is not square then write a status message and
 exit the program.
          IF (ROWS .NE. COLS) THEN
           WRITE (6,*) 'Error in MATLUB...',
          'Cannot do backsubstitution on a nonsquare matrix.'
           CALL EXIT (0)
          END IF
 Perform the backsubstitution.
          II = 0
```

```
DO I = 1, ROWS
       IP = INDX(I)
        SUM = BCK(IP)
        BCK(IP) = BCK(I)
        IF (II.NE. 0) THEN
          DO J. = II, I-1
           SUM = SUM - M(I,J) * BCK(J)
          END DO
        ELSE IF (SUM .NE. 0.0) THEN
         II = I
        END IF
        BCK(I) = SUM
       END DO
       DO 1 = ROWS, 1, -1
        SUM = BCK(I)
        IF (I.LT. ROWS) THEN
          DOJ = I+1, COLS
           SUM = SUM - M(I,J) * BCK(J)
          END DO
        END IF
        BCK(I) = SUM / M(I,I)
       END DO
       RETURN
       END
                         Texas Instruments
                       TI INTERNAL DATA
                  Property of Texas Instruments ONLY
    SUBROUTINE VECADD (V1, V2, SUM, COLS)
NAME: VECADD
             Adds two vectors.
FUNCTION:
DESCRIPTION:
    Sum = vector #1 + vector #2.
REFERENCES:
CALLING SEQUENCE:
    CALL VECADD (V1, V2, SUM, COLS)
INPUTS:
    V1, V2 - Input vectors
COLS - Vector dimensions
OUTPUTS
     SUM
            - Output vector sum
DEPENDENCIES:
     None
```

```
SIDE EFFECTS:
    None
TARGET PROCESSOR:
    VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
              D. Van Rheeden Initial Release
    02/18/91
Local Variables
                Vector index
Variable Declarations
IMPLICIT NONE
INTEGER*2
                   COLS, I
              V1(COLS), V2(COLS), SUM(COLS)
REAL*4
                       EXECUTABLE CODE
Add the two input vectors.
    DO I = 1, COLS
      SUM(I) = V1(I) + V2(I)
    END DO
    RETURN
    END
    SUBROUTINE VECSUB (V1, V2, DIFF, COLS)
NAME:
          VECSUB
FUNCTION:
                Subtracts two vectors.
DESCRIPTION:
    Difference = vector #1 - vector #2.
REFERENCES:
CALLING SEQUENCE:
     CALL VECSUB (V1, V2, DIFF, COLS)
```

```
INPUTS:
    V1, V2 - Input vectors
    COLS - Vector dimensions
OUTPUTS:
            - Output vector difference
DEPENDENCIES:
    None
SIDE EFFECTS:
     None
TARGET PROCESSOR:
     VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219C
HISTORY:
     02/18/91 D. Van Rheeden Initial Release
Local Variables
               Vector index
Variable Declarations
IMPLICIT NONE
                    COLS, I
 INTEGER*2
                V1(COLS), V2(COLS), DIFF(COLS)
 REAL*4
                         EXECUTABLE CODE
 Subtract the two input vectors.
      DO I = 1, COLS
       DIFF(I) = V1(I) - V2(I)
      END DO
      RETURN
      END
      SUBROUTINE VECMULT (V1, V2, PROD, COL1, COL2)
            VECMULT
  NAME:
                  Multiplies two vectors to give the inner product.
  FUNCTION:
  DESCRIPTION:
      If inner vector dimensions do not match Then
        Write status message to the user.
        Exit from the program.
```

92

```
91
```

```
End if inner vector dimensions do not match.

Inner product = vector #1 (transposed) * vector #2.
```

REFERENCES:

CALLING SEQUENCE: CALL VECMULT (V1, V2, PROD, COL1, COL2)

INPUTS:

V1, V2 - Input vectors

COL1 - Input vector V1 dimensions

COL2 - Input vector V2 dimensions

OUTPUTS:

PROD - Output vector inner product

DEPENDENCIES:

EXIT - System exit routine

SIDE EFFECTS:

None

TARGET PROCESSOR:

VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

HISTORY:

02/18/91 D. Van Rheeden Initial Release

Local Variables

Vector index

Variable Declarations

IMPLICIT NONE

INTEGER*2 COL1, COL2, I

REAL*4 V1(COL1), V2(COL2), PROD

EXECUTABLE CODE

C If the vector dimensions do not agree, write a status message C and exit the program.

IF (COL1.NE. COL2) THEN

WRITE (6,*) 'Error in VECMULT...',

'Vector dimensions do not agree.'

CALL EXIT (0)

END IF

&

```
Multiply the two input vectors.
    PROD = 0.0
    DOI = 1, COL1
     PROD = PROD + V1(I) * V2(I)
    END DO
    RETURN
    END
     SUBROUTINE MVMULT (M, V, PROD, ROW1, COL1, COL2)
          MVMULT
NAME:
                 Multiplies a matrix by a vector.
FUNCTION:
DESCRIPTION:
     If matrix column dimension does not match vector
     dimension Then
     Write status message to the user.
     Exit from the program.
     End if dimensions do not match.
     Product = matrix * vector.
REFERENCES:
CALLING SEQUENCE:
     CALL MVMULT (M, V, PROD, ROW1, COL1, COL2)
INPUTS:
               - Input matrix
               - Input vector
     ROW1, COL1 - Input matrix M dimensions
                  - Input vector V dimensions
     COL2
OUTPUTS:
             - Output vector = M * V
     PROD
 DEPENDENCIES:
            - System exit routine
     EXIT
 SIDE EFFECTS:
     None
 TARGET PROCESSOR:
      VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
 HISTORY:
     02/18/91 D. Van Rheeden Initial Release
 Local Variables
```

```
95
                                                                    96
                     Matrix/vector index
          I, J
                       Product accumulator
          SUM
     Variable Declarations
          IMPLICIT NONE
\mathbf{C}
                         COL1, COL2, I, J, ROW1
          INTEGER*2
                      · M(ROW1,COL1), V(COL2), PROD(ROW1), SUM
          REAL*4
                               EXECUTABLE CODE
      If the matrix column dimension do not match the vector
      dimension, write a status message and exit the program.
           IF (COL1.NE. COL2) THEN
            WRITE (6,*) 'Error in MVMULT...',
            ' Matrix column and vector dimensions do not agree.'
      &
            CALL EXIT (0)
           END IF
      Multiply the input matrix by the input vector.
           DOI = 1, ROW1
            SUM = 0.0
            DOJ = 1, COL1
               SUM = SUM + M(I,J) * V(J)
            END DO
            PROD(I) = SUM
           END DO
           RETURN
           END
           SUBROUTINE VMMULT (V, M, PROD, ROW1, ROW2, COL2)
      NAME:
                VMMULT
      FUNCTION:
                       Multiplies a vector by a matrix.
      DESCRIPTION:
           If vector dimension does not match matrix row dimension C Then
              Write status message to the user.
            Exit from the program.
           End if dimensions do not match.
           Product = vector * matrix.
      REFERENCES:
```

```
CALLING SEQUENCE:
     CALL VMMULT (V, M, PROD, ROW1, ROW2, COL2)
INPUTS:
                          Input vector
                       Input matrix
     M
     ROW1
                     - Input vector V dimension
                       Input matrix M dimensions
     ROW 2, COL2
OUTPUTS:
     PROD
              - Output vector = V^T * M
DEPENDENCIES:
     EXIT
             - System exit routine
SIDE EFFECTS:
     None
TARGET PROCESSOR:
     VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:
     02/18/91 D. Van Rheeden Initial Release
Local Variables
                Matrix/vector indexes
     I, J
                  Product accumulator
     SUM
Variable Declarations
     IMPLICIT NONE
                     COL2, I, J, ROW1, ROW2
     INTEGER*2
                   V(ROW1), M(ROW2,COL2), PROD(COL2), SUM
     REAL*4
                           EXECUTABLE CODE
If the vector dimension does not match the matrix row C dimension, then write a status
message and exit the program.
  IF (ROW1.NE. ROW2) THEN
WRITE (6,*)' Error in VMMULT...'
'Vector dimension does not agree with matrix" row dimension.'
     CALL EXIT (0)
  END IF
Multiply the input vector by the input matrix.
      DOJ = 1, COL2
       SUM = 0.0
       DO I = 1, ROW1

SUM = SUM + V(I) * M(I,J)
       END DO
       PROD(J) = SUM
      END DO
      RETURN
      END
```

99

Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended 5 claims.

What is claimed is:

- 1. A method for estimating the location of an aimpoint on an elongate target comprising the steps of:
 - acquiring an aimpoint and a set of related subimages 10 on an elongate target at a first time with a sensor; calculating the normalized distance in a first dimension d_x and in a second dimension d_y from each subimage to the aimpoint;
 - at a second time reacquiring at least one of the subimages at an image position (x,y); and
 - estimating the position of the aimpoint at an aimpoint image position (x_Ay_A) wherein the position (x,y) of each subimage at the second time is related to the aimpoint position (x_A,y_A) by the formulas:

$$x = x_A + M_0 d_x + b d_x d_y$$

$$y = y_A + M_0 d_y + b d_y^2$$

where M_o b are constants determined at each periodic time.

- 2. The method of claim 1 wherein said estimating step further comprises the step of calculating the subsequent 30 location of the aimpoint using a least squares technique on a matrix of normalized subimage distances.
- 3. The method of claim 1 wherein said selecting step further comprises the step of selecting a subimage using 35 the criteria of subimage contrast.
- 4. The method of claim 1 wherein said selecting step further comprises the step of selecting a subimage using the criteria of subimage brightness.
- 5. A tracker for tracking the location of an aimpoint 40 on an elongate target comprising:
 - an aimpoint designator for establishing an aimpoint at an image position (x_A, y_A) on an elongate target;
 - a sensor for periodically acquiring a set of subimages at an image position (x,y) arbitrarily associated with the aimpoint;
 - a normalized distance calculator responsive to the

100

aimpoint designator and the sensor for calculating the distance in a first dimension d_x and in a second dimension d_y from each subimage of a first set of subimages from the established aimpoint;

a processor coupled to the aimpoint designator, the sensor and the normalized distance calculator for periodically estimating the subsequent location of the aimpoint based upon the formulas:

$$x = x_A + M_0 d_x + b d_x d_y$$
$$y = y_A + M_0 d_y + b d_y^2$$

where M₀ and b are constants determined at each periodic time; and

memory for storing the normalized distances.

- 6. The guidance system of claim 5, further comprising a control system for moving the sensor towards each of the subsequent locations of the aimpoint.
 - 7. A missile comprising:
 - an aimpoint designator for establishing an aimpoint at an image position (x_A, y_A) on an elongate target;
 - a sensor for periodically acquiring a set of subimages at an image position (x,y) arbitrarily associated with the aimpoint;
 - a normalized distance calculator responsive to the aimpoint designator and the sensor for calculating the distance in a first dimension d_x and in a second dimension d_y from each subimage of a first set of subimages from the established aimpoint:
 - a processor coupled to the aimpoint designator, the sensor and the normalized distance calculator for periodically estimating the subsequent location (x_A, y_A) of the aimpoint based upon the formulas:

$$x = x_A + M_0 d_x + b d_x d_y$$
$$y = y_A + M_0 d_y + b d_y^2$$

where M_0 and b are constants determined at each periodic time;

memory coupled to the processor for storing the normalized distances;

movable fins for guiding the missile responsive to the estimated aimpoints; and

.

a motor for propelling the missile.

·

50

55

60