R0 Al

United States Patent [

McWilliams et al.

[S4] METHOD AND APPARATUS FOR
TRACKING AN AIMPOINT ON AN
~ ELONGATE STRUCTURE

[75] Inventors: Joel K. McWilliams, Highland
Village; Don R. Van Rheeden,
Lewisville, both of Tex.

[73] Assignee: Texas Instruments Incorporated,

Dallas, Tex.
121] Appl. No.: 752,740
[22] Filed: Aug. 30, 1991
[51] INt. CLS woreerrececererenrcensaresessesssssessesennns F41G 7/30
152] U.S. CL ooveeeeeeesressessessesssnsns . 244/3.15; 382/1
[58] Field of Searchc..n..... 382/1, 48: 244/3.15,
244/3.16; 250/203.1
[56] References Cited
U.S. PATENT DOCUMENTS
4.868.871 9/1989 Watson et al. .oveverrersesseesnenen 382/1
5.211.356 5/1993 McWilliams et al. 244/3.15
5213281 5/1993 McWilliams et al. ...oo....... 244/3.15
OTHER PUBLICATIONS

Blackman, Multiple-Target Tracking with Radar Ap-
plications, Artech House Inc. pp. 309-328, 1986.
Huber, Robust Statistics, John Wiley & Sons, Inc. pp.
107-108, 1981.

Liu, “New Image Tracking Algorithm for Fuz-
zy-Relaxation Matching of Point Patterns”, Hongwai
Yanjiu, vol. 8, No. §, 1989, pp. 349-354.

Mao, “Image Sequence Processing for Target Estima-

MISSLE

US005303878A
[11] Patent Number:

[45) Date of Patent:

5,303,878
Apr. 19, 1994

tion in Forward-Looking Infrared Imagery” Optical
Engineering, vol. 27, No. 7, pp. 541-549, Jul. 1988.
Hayman, “Design and Simulation of an Intelligent Mis-
sile Seeker,” (origin date of article unknown).

Texas Instruments Inc., Defense Systems and Elec-
tronic Groups “Software Functional Specification for
Image Tracking of the Autonomous Guidence for Con-
ventional Weapons Technical Expert”, 3183-S-0008,
Aug. 15, 1989, vol. 6 of 15, Rev. B. Aug. 24, 1990 (pre-
pared for Dept. of the Air Force).

A Collection of Presentation Materials Prepared by the

Applicants on Jun. 26, 1991, for Presentation to the U.S.
Army Technmcal Staff.

Primary Examiner—Ian J. Lobo

Attorney, Agent, or Firm—Rene’ E. Grossman; Richard
L. Donaldson

[57] ABSTRACT

A method is disclosed for tracking an aimpoint on an
elongate target with a set of arbitrarily related subim-
ages in the field of view of the tracker. A dimensional
relationship between the subimages and the aimpoint is
initially determined and saved for later calculations.
Subsequently, at least one of the aimpoints is reac-
quired. The aimpoint at the subsequent time is then
determined using the position of the later acguired
subimage, the saved dimensional relationship and indi-

rectly on the position of the subimage in the field of
view of the tracker.

7 Claims, 2 Drawing Sheets

TARGET AIMPOINT

SUBIMAGE

U.S. Patent Apr. 19, 1994 Sheet 1 of 2 5,303,878

S

0
* TARGET AIMPOINT .
52 ~— —

ACQUIRE SUBIMAGES

o4 CALCULATE
NORMALIZED DISTANCES
56~ REAQUIRE SUBIMAGES

FSTIMATE AIMPOINT
58 _'

ADJUST POINTING
60

- , . 16
& . / N d

A S A S S SR S S R A | P SR A VR T R S g iy R A A S S N e S S S S S e S S S S SR SR S S R Al i S SR A S S S S SR S SN SR S A N S S A S S B S Sl SR e

FIG. 3

= o

»

1 WARHEAD 18 rLATCH E j
'ii,

A e s = .o — s A R g P e R el Gl eih S M SRS AR S S PR AL S RS e S N R SRR e SR S SR BEE R S i i Fhiive sl sl meie ¢ gl M EEES SN EERE B G EEe Juges g Spmm VR el s P

AN

il o el A R e e oumslee A S i

U.S. Patent Apr. 19, 1994 Sheet 2 of 2 5,303,878

7
MISSLE
e
|
|
| | '
""i {1/M FIG. 6
1 ze
i TARGET AIMPOINT
|
y . X
C RT
Y ' SUBIMAGE
7
Mo M,
2.2
_f..#"’
FIG. 6
== 18|
30 -20 -0 0 10 20 30

>,303,878

1

METHOD AND APPARATUS FOR TRACKING AN
AIMPOINT ON AN ELONGATE STRUCTURE

RELATED APPLICATIONS

This Application is related to U.S. Pat. No. 5,211,356,
filed Aug. 30, 1991, entitled “Method and Apparatus for
Rejecting Aimpoint Sublmages and 1s incorporated by
reference herein.

This Application 1s related to U.S. Pat. No. 5,213,281,
filed Aug. 30, 1991, entitled “Method for Tracking an
Aimpoint with Arbitrary Subimages”, and is incorpo-
rated by reference herein.

TECHNICAL FIELD OF THE INVENTION

This invention relates to imaging and guidance sys-
tems and more particularly to tracking an aimpoint on
an elongate structure with arbitrary subimages.

BACKGROUND OF THE INVENTION

In certain computer control applications, it is neces-
sary to track and measure the image of an object pas-
sively. It is especially important in weapons delivery
systems that a target be so tracked. If such a target were
tracked actively, (i.e., using radar or laser range finding
techniques) the target might detect the presence of the
tracker. Once the target has detected the presence of
the tracker, it can respond in one of several ways, all of
which are deleterious to the tracker. For instance, the
target might “jam” the tracker by bombarding it with
signals that are comparable to those which the tracker is
actively using or the target might fire its own weapon at
the tracker, at the source of the tracking signal, or, even
at the launching site of the tracker. In this way, the
target could defeat the tracker, destroy the tracker or
perhaps even destroy the launch site of the tracker,
including the operating personnel.

Passively tracking a target, however, imposes at least
one serious limitation on the tracker. A tracker cannot
accurately determine the distance or “range’ to a target
if it cannot actively sense the object. An active tracker,
for instance, could determine the distance to a target by
measuring the elapsed time from the emission of a radio
frequency signal to the receipt of the signal reflected off
of the target. The absence of a range measurement from
tracker to target limits the passive tracker’s ablhty to
compensate for the apparent change in target image as
the tracker moves in relationship to the target. Without
this ability, a tracker will fail to maintain a constant
target. |

In practice, a tracker benefits by tracking several
subimages of its target’s image. These subimages are
two dimensional representations of structures that are
physically connected to the exact target location or
“aimpoint” in the real three-dimensional world. Multi-
ple subimages are used for redundancy purposes and
because the actual aimpoint of the target is often un-
trackable. As the tracker nears the target, however, the
subimages will appear to move with the respect to each
other. The position of the subimages with respect to one
another may also change in certain situations. For in-
stance, two subimages located on a target may appear to
approach one another if they are located on a face of a
target that is rotating away from the tracker. A tracker
targeting an elongate structure such as a runway or tall
building will sense complex subimage motion due to
closure of the tracker on the target. Certain subimages
will appear to move at rates that are dependent on the

10

15

2

location of the subimage within the tracker’s field of
view.

Prior attempts to passively track an object have re-
sulted in solutions with limited flexibility and poor ac-
curacy. Heretofore, an object once identified as an aim-
point was tracked by tracking a predetermined number
of subimages in a known pattern. Typically, the pattern
chosen was a square with the aimpoint at its center and

four subimages located at the four corners of the square.

That system would track the four subimages located at
the corners of the square and infer the actual aimpoint
using the simple symmetry of the predetermined square.
This method faltered when the geometry of the actual
target resulted in less than four suitable subimages lo-
cated in the requisite pattern. This system also lacked

- the ability to use trackable subimages that were not in

20

25

30

35

4>

50

35

65

the requisite pattern.
Therefore, a need has arisen for a passive subimage
tracker which is able to track an aimpoint or an elongate

target by using any number of subimages arbitrarily
related to the aimpoint without range data.

SUMMARY OF THE INVENTION

In accordance with the present invention, a method
for tracking an aimpoint is provided which substantially
eliminates or reduces disadvantages and probl_ems asso-
ciated with prior trackers.

A method for tracking an almpomt on an elongate
target comprises the steps of acquiring an aimpoint and
a set of subimages in the tracker’s field of view. The
subimages may be arbitrarily associated with the aim-
point. A normalized distance from each subimage to the
aimpoint i1s calculated for use at a later time when at
least one of the subimages is reacquired. Each subse-
quent location of the aimpoint is estimated based on the
subsequent location of the subimages, on the position of
the subimages in the field of view, and on the saved
normalized distances. |

It 1s a technical advantage of the invention that an
aimpoint located on an elongate target may be tracked
without range data using subimages that are arbitrarily
related to the aimpoint. A normalized distance from the
aimpoint to each subimage is calculated at an initial time
and saved for subsequent steps. At each subsequent
time, a vector is calculated which maintains the same
normalized distance from each subimage to the aim-
point. The subsequent location of the aimpoint may be
maintained despite apparent movement of the subim-

ages due to uniform and non-uniform magnification due
to closure.

BRIEF DESCRIPTION OF THE DRAWIiQGS

For a more complete understanding of the present
invention, and the advantages thereof, reference is now
made to the following descriptions taken in conjunction
with the accompanying drawings, in which:

FIG. 1.1s a perspective view of an elongate target
which may be tracked by the disclosed invention;

FI1G. 2 is a part schematic, part cross-sectional dia-
gram of a “fire and forget™ missile which may incorpo-
rate the disclosed invention;

FIG. 3 is a flow chart of a subimage tracker which
incorporates the disclosed invention;

FIGS. 4 and § are one and two-dimensional models,
respectively, of a tracker targeting an aimpoint with one
subimage on an elongate object; and

5,303,878

3

FIG. 6 depicts the magnification of a subimage as a
function of its position in the tracker’s field of view.

DETAILED DESCRIPTION OF THE
INVENTION

The preferred embodiment of the present invention
and its advantages are best understood by referring to
FIGS. 1 through 6 of the drawings like numerals being
used for like and corresponding parts of the various
drawings.

FIG. 1 depicts an elongate target 10, Here target 10 1s
a runway but might also be a bridge, a train or a build-
ing relatively large in the horizontal dimension as com-
pared to the vertical. An operator of the tracker, or an
automatic algorithm, initially selects an aimpoint on
runway 10 such as its geometric center. A tracker tar-
geting runway 10 then acquires trackable subimages
such as control tower 12 or airplane 14 from which it
can track the center of the runway 10. The tracker then
determines range normalized distances from each
subimage to the designated aimpoint and saves these
values for future calculations. This distance may be the
actual number of pixels between the aimpoint and a
subimage as sensed by the tracker’s sensor or may be
further normalized so that at least one subimage 1s a
particular distance, such as “1”, away from the aim-
point.

The tracker reacquires the subimages at subsequent
times and uses the range normalized distances and a
mathematical model as will be explained in connection
with FIGS. 3 through 6 throughout to estimate the
location of the aimpoint at those subsequent times. If the
tracker is part of a device such as a “fire and forget”
missile, it will continually adjust its course to intercept
the initial aimpoint until it reaches the aimpoint.

As the tracker approaches runway 10, the subimages
of runway 10 will exhibit complex motion relative to
one another. This motion may be characterized as com-

10

4
18 so that it is more accessible by central processing unit
(“CPU") 22. CPU 22 might itself comprise various
subsystems (not shown) which may be implemented by
hardware or software, including an aimpoint designator
for initially establishing the aimpoint on the target and a
normalized distance calculator for calculating the dis-
tance between each subimage and the aimpoint. CPU 22
has associated with it a memory 24. Memory 24 may

contain the routines which CPU 22 runs and stores data
necessary to the disclosed invention. CPU 22 controls
the direction of missile 16 through fin control umt 26.
Fin control unit 26 manipulates each fin 28 through a
servo 30. Missile 16 is propelled by rocket motor 32.
FIG. 3 depicts a high level flow chart of a subimage

15 tracker which incorporates the disclosed invention. An

20

25

30

33

prising a uniform and a non-uniform component. The

uniform component of motion will cause the subimages
to radially move away from the aimpoint as the tracker

nears the aimpoint and the target image fills more and

more of the tracker’s field of view. The non-uniform
component causes each subimage to move depending
on its location in the field of view of the sensor. For
instance, if a tracker targets an aimpoint on runway 10
between control tower 12 and airplane 14 and ap-
proaches runway 10 along its longitudinal axis from the
left side of the figure, control tower 12 will appear to
move toward the bottom of the field of view at one rate
while airplane 14 will appear to move toward the top at
a much smaller rate. Without accounting for the non-
uniformities, the aimpoint would likely slide from the
true aimpoint toward the bottom of the field of view as
the tracker attempted to find a compromise position
between control tower 12 and airplane 14. The compro-
mise position would be one that would make the magni-
fication of the subimages appear equal along the length
of runway 10. -
FIG. 2 depicts a “fire and forget” missile 16 which
may incorporate the disclosed invention. Missile 16
delivers a warhead 18 which detonates upon impact
with a target. The missile 16 contains a passive imaging
sensor 19, such as a forward looking infrared camera
(“FLIR"), that is sensitive to radiation emitted by the
missile’s target. The sensor 19 periodically acquires
images within its field of view during operation. A latch
20 temporarily saves the information received by sensor

435

S0

53

65

aimpoint is initially selected on the target in block 50 by
an operator. The tracker then acquires multiple subim-
ages associated with the chosen aimpoint according to
internal criteria such as image contrast or image bright-
ness (block 52). The tracker calculates the normalized
distances between each subimage that it has acquired
and the selected aimpoint in block §4. These values are
saved for later use at each subsequent time, the tracker
reacquires the subimages and estimates the location of
the aimpoint from the previously calculated normalized
distances in blocks 56 and 58 respectively. The math
and the particular normalized distances are more fully
described below. The tracker may then adjust sensor
pointry (block 60) to maintain the aimpoint at the center
of its field of view. These final three steps are repeated
until the missile impacts its target or the tracker other-
wise ends its program.

It should be understood that block 60 may comprise
any number of related steps such as issuing commands
to an operator to follow the aimpoint or displaying
crosshairs to pinpoint the location of the aimpoint in a
display. The tracker may also be mounted in a station-
ary environment where it simply follows an aimpoint in
its field of view without actively pursuing the target.
The imager could, in fact, recede from the target and
the tracker would still maintain the aimpoint properly.

The approach to multiple subimage tracking without
range estimates is based on a generalized geometric
model. This model is based on the assumption that
though the target and thus the subimages will be grow-
ing in the image during closure, the relative dimensions
of the target do not change. This assumes that the angle
of attack between the tracker and target stays fairly
constant, which is common during most of the terminal
phase of the missile flight.

In the generalized geometric approach each tracker
location is related to the aimpoint location using a nor-
malized coordinate frame. An individual subimage i at
image location (x;, y;) can be related to the aimpoint A
at image location (x4, y4) by the following equations:

x;=IA+dxf+ H;ﬁ
Yiz=ya+dy+ny;

where (dx;, dy;) represents the offset in the image plane
of subimage i from the aimpoint A, and (nx;n,;) are
additive noise terms which corrupt measurement of the
true subimage location. These equations can be com-
bined into a single eqguation using vector notation:

X=Xxqdx-+n

5,303,878

S
The key to accurately modeling each subimage position
is the accurate determination of how the offset vector
varies as a tracker approaches an elongate target.

F1G. 4 depicts the mathematical framework for de-
termining the offset vector related to an elongate target 5
in a two-dimensional universe, the vertical plane
through the missile and the aimpoint. Here an aimpoint
A 1s downrange of and below a missile “M” by a dis-
tance “R”. A trackable subimage 1s located at B. B i1s
further downrange of A by a distance “x”. For a large
distance R relative to x, the angle between the subim-
age, missile and aimpoint may be expressed as:

10

x sin ©

dy = R 4+ xcos ©

15

This angle is distance from the aimpoint to the subimage
which a tracker actually “sees” when it acquires an
image. (In FIG. 4 R is shown as on the same order of
magnitude as X for purposes of clarity.)

The vertical “magnification” of a subimage associ-

ated with an elongate target at a particular time may
then be defined as:

20

dyR}) =
1)
M= R0
where d;(Ro) is the distance between the subimage and
aimpoint at an initial range of Ro and dy(R) 1s the dis- 3
tance between the subimage and aimpoint at a subse-
quent range R;. If the tracker 1s a missile designed to
intercept the target, then R; will be less than Rg. The
magnification M may be used to model the behavior of
the subimages between successive times and thus, may 35
be used to predict the subsequent position of the aim-
point. This model will be more fully described in con-
nection with FIGS. § and 6.

FIG. 5 depicts a mathematical framework for deter-
mining the offset vector of a subimage associated with 40
an elongate target in a three-dimensional universe. The

four vectors Ry, R, R7/arand Re/rmay be expressed

45

XC 50
Re/r=1| ye |
O

where X, Y and Z are positive in the directions indi-
cated by the depicted coordinate system. The distances 2>
between the subimage and aimpoint are indicated as x.
and y. for the X and Y dimensions respectively.

The coordinate system in FIG. 5§ may be transformed
to a platform (“(p)”) coordinate system at the missile

position through the transformation: 60

| cos®@ O sinB
0 1 O
-sinB@ O cosB

D 65

where

6

)

The vectors R7/ar and Re/pr may be transformed into

XT — XM

the new coordinate system as:

R;
Ri/Mp) = [O]Rs = Nx7 — xpm)? + K2

0,

xc cos ©

yC
—XcC sin ©

R;
Rempy =1 O |+
4,

The vector Rc/m(p) may be used to calculate the magni-
fication function M as was done in connection with
FIG. 4. The Y and Z platform components correspond
to the distances between the subimage and the aimpoint
in the platform coordinate system. These may be di-
vided by the total platform downrange distance Rs+x¢

cos © to yield angular distances between aimpoint and
subimage:

yC
Rs + xccos ©
—x¢ sin ©
"Rs + xccos ©

Or rearranging,

dxRs+dxxc cos© =yc and dpR;=—(d), cos © +sin
Q)xc

The distances dx and d, correspond to the distances
between the aimpoint and the subimage in the horizon-

tal and vertical axes of the image plane of the passive
Ssensor.

The distances d, and d, may be used to solve f or (xc,
yc) for a given geometry with the series of equations:

""dx cos © 1 xXC dIR.'-'
—dycos® —sin® O || yc_] LdRs

These equations, are used to create test cases for simula-
tion of the tracker and to illustrate the results in the
following paragraph.

FIG. 6 depicts the magnification versus vertical
image position for one particular geometry. Specifi-
cally, the solution is depicted in terms of My and M, as
a function of dy(6000) where Mp=d,(Ri/dx(R,),
M,=dyR1)/d{Ro), R1=3,000 and R,=6,000. The so-
lution indicates that My and M, are identical and are
closely related to d,{Ro) by an equation having the form
of a line, Mg+ bd;{Rg). Mg are b are constants. Combin-
ing these empirical results with the general equations:

5,303,878

Xi=XA+dx;+ Nx;

Yi=ya+dyi+ny;

leads to the set of equations for the location of the image

of the ith subimage at each successive time:
Xi=Xg+Mpdx{Ro)+nx,
Vi=ya+Mdy{Ro)+ny;
or
xi=Xg4+Mddxi+dydxib+ nx;
Yi=ya+Mduy+dydyb+ “y::

where dx;and dy;are understood to be determined when
the aimpoint is first acquired. For N subimages, the
above equations for one subimage may be expanded as:

1 O dx dyxdy
X1 Nxi
' ! dxny dxpdyn || %4 '
N | V.4 RxN
b :
YN HyNn

0 1 d ¥ N dihr

This equation itself can be more conveniently expressed

T1I

AOOONOONNNNNON

10

15

20

25

30

33

as.
£=H6+_n

where 8=[x4 y4 M, b]7 and H is the 2N X4 matrix
depicted above. At each successive time the tracker
reacquires the subimages, all variables are known ex-
cept those in & and the noise vector n.

The vector € and hence the aimpoint may be esti-
mated by several statistical methods, including a least
squares technique:

8=(HTH)~HT%

el

where é is the estimate of 8. This method will minimize

‘the effect of the noise vector n.

Sections A-G below contain FORTRAN computer
code for one embodiment of the disclosed invention. In
particular, Section A discloses subroutine
TRKNORNG2D for computing the aimpoint using a
single magnification model. Section B discloses Subrou-
tine TRKNORNG for computing the location of the
aimpoint using the dual magnification model. Section C
discloses Subroutine INTJITTER for rejecting bad
subimages associated with an aimpoint under the sub-
routine TRKNORNG2D. Section D discloses subrou-
tine JITTER for rejecting bad subimages associated
with an aimpoint under the subroutine TRKNORNG.
Section E discloses Subroutine LEASTSQ for calculat-
ing the least-squares estimate of a parameter vector.
Section F discloses the common block variable declara-
tions TKPTPARM and PROCPARM for the previous
subroutines. Section G discloses a library of subroutines
useful primarily for matrix math called by subroutines
TRKNORNG, TRKNORNG2D, INTJITTER, JIT-
TER and LEASTSQ.

NOTICE: "COPYRIGHT 1991, (TEXAS INSTRUMENTS, INC.) A portion of
the disclosure of this patent document contains material which is subject

to copyright protection. The copyright owner has no objection to the

facsimile reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office patent file

or records, but otherwise reserves all copyright rights whatever.”

Section A

Texas Instruments

INTERNAL DATA
Property of Texas Instruments ONLY

SUBROUTINE TRKNORNG2D

OO0

NAME: TRKNORNG2D

FUNCTION:

DESCRIPTION: -

OOOOO0O0O0O0000

Computes the aimpoint and trackpoint when no range
estimates are available. A least-square estimator
calculates aimpoint and target magnification by
assuming magnification is the same in each dimension.
A single magnification factor 1s used.

(}OOGOOOOOOOﬁ(')(')0ﬁﬁﬁ000000()00000000000_0000000OOOOOOOOOOOO(‘)(')ﬁ("]t")(')

- 5,303,878
9 10
Initialize the trackpoint measurement variances, the number of good
trackers, and the standard deviation for one tracker
Set the tracker mode to locked on and the breaklock flag to false

Do {for all trackers
If a tracker Is active and 1s at least one cycle old Then
Assign mode] matrices and observation vectors used to
compute least-squares target aimpoint and size estimates
If weight trackers by distance from the aimpoint Then
| Assign X distance weights
Assign Y distance weights
~ Else
Assign all weights 1o unity
End of If weight trackers by distance from the aimpoint
Increment the number of trackers counter
Else this tracker is not active or at least one cycle old

Zero the least-squares weights for this tracker
End of If a tracker is active and at least 1 cycle old

End of Do for all trackers

If there are at least two valid trackers Then
Use least-squares to estimate aimpoint location and target size
Run the jitter test to delete trackers with bad measurements
Recompute the estimated trackpoint location and target size
' after removing the bad measurements
Compute track errors and measurement variances
Update the aimpoint and trackpoint by adding in track errors
Save the estimated target sizes
Set the tracker mode to locked on
Else if there is one valid tracker Then
Find the tracker measurement of the good tracker
Compute the aimpoint as the offset from the tracker
Set the tracker mode to locked on
Else there are no valid trackers
Set the breaklock flag
Set the tracker mode to rate coast
End of If there are valid trackers

REFERENCES:

None

CALLING SEQUENCE:

CALL TRKNORNG2D
INPUTS:
None
OUTPUTS:
None
DEPENDENCIES:
Common Blocks
PROCPARMS - Processing parameters
TKPTPARMS - Trackpoint/aimpoint related parameters
Subroutines
| INTIITTER - Integrating jitter test
LEASTSQ - Weighted least-squares estimator

 5.303.878
11 12
SIDE EFFECTS: '
None

TARGET PROCESSOR:
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

HISTORY: |
05/29/91 D. Van Rheeden Initial Release

OO0O0OO00O0n0n

Local Vanables

FACITOR Normalized magnification factor

H Least-squares model matrix

MAXEST Maximum number of least-squares parameter estimates
MAXOBS Maximum number of least-squares observations
NTRACKERS Number of trackers whose errors are being averaged
P Least-squares estimate covariance matrix

SIGMA Measurement standard deviation of one tracker
TRACKER Tracker index 1nto data arrays

W Least-squares weighting vector

XHAT Least-squares estimate vector

V4 I east-squares observation vector

ZHAT Least-squares estimates of tracker locations

Variable Declarations

IMPLICIT NONE

O OO0 00O00000000

INCLUDE 'COMMON:PROCPARM.CMN’ ! Processing parameters
INCLUDE 'COMMON:TKPTPARM.CMN’ ! Processing parameters

C
INTEGER?*2 MAXEST/3/, MAXOBS/24/, NTRACKERS,
& TRACKER
C
REAL*®*4 FACTOR, H(24,3), P(3,3), SIGMA, W(24),
& XHAT(3), ZHAT(24), Z(24)
C .
C |
C EXECUTABLE CODE
C
C
C Initialize the trackpoint measurement variances, the number of good
C trackers, and the standard deviation for one tracker.
C
TPVARX = 0.0
TPVARY = 0.0
NTRACKERS = 0.0
SIGMA = 0.5
C
C Set the tracker mode to locked on and the breaklock flag to false.
C
TRKMODE =1
BRKLCK = .FALSE.
C
C For each good tracker at least one cycle old...
C

DO TRACKER = 1, MAXT

NOOO

)

O 0000

P,

NONO O00

NOO 000 000

&

d,303,878 '
13 - 14
IF (DBASE(TRACKER,1) .EQ. 2 .AND. DBASE(TRACKER,9) .GE. 1)
THEN

Assign model matrices and observation vectors used to compute
least-squares target aimpoint and size estimates.

H(TRACKER,1) = 1.0

H(TRACKER,2) = 0.0

H(TRACKER,3) = DIST2DX(TRACKER)
H(TRACKER + MAXT,1) = 0.0
H(TRACKER + MAXT.2) = 1.0
H(TRACKER + MAXT,3) = DIST2DY(TRACKER)

Z(TRACKER)
Z(TRACKER + MAXT)

DBASE(TRACKER2)
DBASE(TRACKER,3)

If selected, assign least-squares weights based on the distance of the
tracker from the aimpoint.

IF (WEIGHTDIST) THEN

IF (DISTX(TRACKER) .GT. 0.1) THEN
W(TRACKER)= 1.0 / DISTX(TRACKER)
ELSE
W(TRACKER) = 10.0
END IF ! X normalized distance > 0.1

IF (DISTY(TRACKER) .GT. 0.1) THEN
W(TRACKER + MAXT) = 1.0 / DISTY(TRACKER)
EISE '
W(TRACKER + MAXT) = 10.0
END IF ! Y normalized distance > 0.1

ELSE ! Don’t assign distance weights

W(TRACKER) 1.0
W(TRACKER + MAXT) = 1.0
END IF ! Assign distance weights

Increment the number of trackers counter.
NTRACKERS = NTRACERS + 1
Else, zero the least-squares weights for this tracker.

ELSE
W(TRACKER) = 0.0
W(TRACKER+MAXT) = 0.0
_ END IF ! This tracker is good and at least 1 cycle old
End DO ! For all good trackers

If there are at least two trackers . . .

IF (NTRACKERS .GT. 1) THEN
Use least-squares to estimate aimpoint location and target size.

CALL LEASTSQ (H, Z, W, XHAT, ZHAT, P, MAXEST, MAXOBS)
Run the integrating jitter test to delete trackers with bad measurements.

DO TRACKER = 1, MAXT

OO 00

O O OO0

OO0, OO0 SEOED MO0

OOO0O0O

5,303,878
135 o 16
PREDX(TRACKER) = ZHAT(TRACKER)
PREDY(TRACKER) = ZHAT(TRACKER + MAXT)
END DO
CALL INTJITTER

Recompute the estimated trackpoint location and target size
after removing the bad measurements.

DO TRACKER = 1, MAXT
IF (DBASE(TRACKER,1) .EQ. -1) THEN
W(TRACKER) = 0.0
W(TRACKER + MAXT) = 0.0
- END IF ! A tracker is not valid.
END DO ! For all trackers

CALL LEASTSQ (H, Z, W, XHAT, ZHAT, P, MAXEST, MAXOBS)
Compute- track errors and measurement variances.

RESERRX = XHAT(1) - AIMX
RESERRY = XHAT(2) - AIMY
MAGNIFY = XHAT(3)

TPVARX = SIGMA**2 * P(1,1)
TPVARY = SIGMA**2 * P(2,2)
MAGVAR = SIGMA**2 * P(3,3)

Compute the aimpoint and trackpoint.

AIMX = XHAT (1)
AIMY = XHAT (2)

TRACKX = AIMX + MAGNIFY * OFFSETX
TRACKY = AIMY + MAGNIFY * OFFSETY

Compute the estimated target sizes based on magnification.

FACTOR = MAGNIFY / INITSIZEX
RSIZEX = FACTOR * INITSIZEX
RSIZEY = FACTOR * INITSIZEY

Else, if there is one tracker ...

ELSE IF (NTRACKERS .GT. 0) THEN
Find the tracker measurement of the good tracker.

TRACKER =1
DO WHILE (W(TRACKER) .EQ. 0.0)
TRACKER = TRACKER + 1
END DO ! while searching for the good tracker measurement

Compute the aimpaoint as the offset from the tracker. Use the estimated
magnification from the previous tracker frame.

RESERRX = (Z(TRACKER) - DIST2DX(TRACKER)*MAGNIFY) - AIMX

RESERRY = (Z(TRACKER + MAXT)-DIST2DY(TRACKER)*MAGNIFY) - AIMY
TPVARX = SIGMA**2

TPVARY = SIGMA*®**2

AIMX = AIMX + RESERRX

OO0

O

OO ONONOONONOOOONOOONOONOOONOOOO0O0OO0O00O0000

Y,303,878
17 . |
AIMX = AIMY + RESERRY
TRACKX = TRACKX + RESERRX
TRACKY = TRACKY + RESERRY

Else, set the breaklock flag to true and tracker mode to rate coast.

ELSE
BRKI.CK = .-TRUE.
TRKMODE = 0

END IF ! There are any trackers

RETURN

END .
action E

Texas Instruments
TI STRICTLY PRIVATE
Property of Texas Instruments ONLY

SUBROUTINE TRKNORNG

NAME: TRKNORNG

FUNCTION: Computes the aimpoint and trackpoint when no range
estimates are available. A least-squares estimator
calculates aimpoint and target size estimates.
Separate X and Y magnification factors are used.

DESCRIPTION:

Initialize the trackpoint measurement variances, the number of
good trackers, and the standard deviation for one tracker
Set the tracker mode 10 locked on and the breaklock flag to false

Do for all trackers |
If a tracker is active and is at least one cycle old Then

Assign model matrices and observation vectors used to compute

least-squares target aimpoint and size estimates
If weight trackers by distance from the aimpoint Then
Assign X distance weights
Assign Y distance weights
Else
Assign all weights to unity
End of If weight trackers by distance from the aimpoint
Increment the number of trackers counter
Else this tracker is not active or at least one cycle old
Zero the least-squares weights for this tracker

End of If a tracker is active and at least 1 cycle old
End of Do for all trackers '

If there are at least two valid trackers Then
Use least-squares to estimate trackpoint location and target size
Run the jitter test to delete trackers with bad measurements
Recompute the estimated trackpoint location and target size
after removing the bad measurements
Compute track errors and measurement variances

Update the aimpoint and trackpoint by adding in track errors

18

OO0 NNONONONNOONOO0OONOO0OO0O00O00O0O0O0

O 000000000000 NNN0N

| 5,303,878
19 20
Save the estimated target sizes
Else if there is one valid tracker Then
Find the tracker measurement of the good tracker
Compute the aimpoint as the offset from the tracker
Else there are no valid trackers
Set the breaklock flag to true |
Set the tracker mode to rate coast
End of If there are valid trackers

REFERENCES:
None

CALLING SEQUENCE:
Call TRKNORNG

INPUTS:
None

OUTPUTS:
None

DEPENDENCIES:
Common Blocks

PROCPARMS - Processing parameters

TKPTPARMS - Trackpoint/aimpoint related parameters
Subroutines

LEASETSQ - Weighted least-squares estimator
JITTER - Robust JITTER test

SIDE EFFECTS:
None

TARGET PROCESSOR:
VAX 8000 Series VMS 4.5, Fortran Compiler 4.5-219

HISTORY: -
05/29/91 D. Van Rheeden Initial Release

07/29/91 D. Van Rheeden Added subpixel estimates

Local Variables

HX, HY Least-squares model matrices

MAXEST Maximum number of least-squares parameter estimates
MAXOBS Maximum number of least-squares observations
NTRACKERS Number of trackers whose errors are being averaged
PX, PY Least-squares estimate covariance matrices

SIGMA Measurement standard deviation of one tracker
SUMWX, SUMWY Sum of weight values

TRACKER Tracker index into data arrays

WX, WY Least-squares weighting vectors

XHAT, YHAT Least-squares estimate vectors

ZX, ZY I east-squares observation vectors

ZXHAT, ZYHAT Least-squares predicted observation vectors

Variable Declarations

IMPLICIT NONE

)OO OO0 00 @

OO0

OO0O0

OO0 O0O0O0

) ,303,878
21 22
INCLUDE ‘COMMON:PROCPARM.CMN’ ! Processing parameters
INCLUDE ‘COMMON:TKPTPARM.CMN’ ! Trackpoint parameters

INTEGEFE - MAXEST/2/, MAXOBS/12/, NTRACKERS, TRACKER
REAL*4 HX(12,2), HY(12,2), PX(2,2), PY(2,2), SIGMA,

WX(12), WY(12), XHAT(12), YHAT(12),
ZX(12), ZY(12), ZXHAT(12), ZYHAT(12)

R P

EXECUTABLE CODE

Initialize the trackpoint measurement variances, the number of
good trackers, and the standard deviation for one tracker.

TPVARX = 0.0
TPVARY = 0.0
NTRACKERS = (
SIGMA = 0.5

Set the tracker mode to locked on and the breaklock flag to false.

TRKMODE = 1
BRKLCK = .FALSE.

For each good tracker at least one cycle old ...

DO TRACKER = 1, MAXT
IF (DBASE(TRACKER,1) .EQ. 2 .AND. DBASE(TRACKER 9) .GE. 1) THEN

Assign model matrices and observation vectors used to compute
least-squares target aimpoint and size estimates.

HX(TRACKER,1) = 1.0
HX(TRACKER,2) = DISTX(TRACKER)
HY(TRACKER,1) = 1.0
HY(TRACKER,2) = DISTY(TRACKER)

ZX(TRACKER) = DBASE(TRACKER,2) + SUBPIXX(TRACKER)
ZY(TRACKER) = DBASE(TRACKER,3) + SUBPIXY(TRACKER)

If selected, assign least-squares weights based on the distance of the
tracker from the aimpoint.

IF (WEIGHTDIST) THEN

IF (DISTX(TRACKER) .GT. 0.1) THEN
WX(TRACKER) = 1.0 / DISTX(TRACKER)
ELSE |
WX(TRACKER) = 10.0
END IF ! X normalized distance > 0.1

IF (DISTY(TRACKER) .GT. 0.1) THEN
WY(TRACKER) = 1.0 / DISTY(TRACKER)

ELSE |

- WY(TRACKER) = 10.0

END IF ! Y normalized distance > 0.1

ELSE ! Don’t assign distance weights

OO0 o000 O

QOO0 0O SNON®. OO0 OO0

OO0

OO0

5,303,878
23 | 24
WX(TRACKER) = 1.0
WX(TRACKER) = 1.0

END IF ! Assign distance weights

Increment the number of trackers counter.

NTRACKERS = NTRACKERS + 1

Else, zero the least-squares weights for this tracker.

ELSE
WX(TRACKER) = 0.0
WY(TRACKER) = 0.0
END IF ! This tracker is good and at least 1 cycle old
END DO ! For all good trackers

If there are at least two trackers ...
IF (NTRACKERS .GT. 1) THEN

Use least-squares to estimate aimpoint location and target size.

CALL LEASTSQ (HX, ZX, WX, XHAT, PX, ZXHAT, MAXEST, MAXOBS)
CALL LEASTSQ (HY, ZY, WY, YHAT, PY, ZYHAT, MAXEST, MAXOBS)

Run the jitter test to delete trackers with bad measurements.

DO TRACKER = 1, MAXT
PREDX(TRACKER) = ZXHAT(TRACKER)
PREDY(TRACKER) = ZYHAT(TRACKER)

END DO

CALL JITTER

Recompute the estimated trackpoint location and target size
after removing the bad measurements.

DO TRACKER = 1, MAXT
IF (DBASE(TRACKER,1) .EQ. -1) THEN
WX(TRACKER) = 0.0
WY(TRACKER) = 0.0
END IF ! A tracker is not valid.

END DO ! For all trackers
CALL LEASTSQ (HX, ZX, WX, XHAT, PX, ZXHAT, MAXEST, MAXOBS)
CALL LEASTSQ (HY, ZY, WY, YHAT, PY, ZYHAT, MAXEST, MAXOBS)

Compute track errors and measurement variances.

RESERRX = XHAT(1) - AIMX
RESERRY = YHAT(1) - AIMY

TPVARX = SIGMA**2 * PX(1,1)
TPVARY = SIGMA*®**2 * PY(1,1)

Update the aimpoint and trackpoint by adding track errors.

AIMX = AIMX + RESERRX
AIMY = AIMY + RESERRY

OO0

nNnon N0nn

QOO0

eoleXeR

®

NOOON0N0NNNN0NNNONNONONO

| 5,303,878

25 - 26
TRACKX = TRACKX + RESERRX
TRACKY = TRACKY + RESERRY

Save the estimated target sizes.

RSIZEX = XHAT(2)
RSIZEY = YHAT(2)

Else, if there is one tracker ...

ELSE IF (NTRACKERS .GT. 0) THEN
Find the tracker measurement of the good tracker.

TRACKER = 1
DO WHILE (WX(TRACKER) .EQ. 0.0)
TRACKER = TRACKER + 1
END DO ! while searching for the good tracker measurement

Compute the aimpoint as the offset from the tracker.

RESERRX = (ZX(TRACKER) - DISTX(TRACKER) * RSIZEX) - AIMX
RESERRY = (ZY(TRACKER) - DISTY(TRACKER) * RSIZEY) - AIMY
TPVARX = SIGMA**2 -

TPVARY = SIGMA**2

AIMX = AIMX + RESERRX
AIMY = AIMY + RESERRY
TRACKX = TRACKX + RESERRX
TRACKY = TRACKY + RESERRY

Else, set the breaklock flag to true and tracker mode to rate coast.

ELSE
BRKLCK = .TRUE.
TRKMODE = 0
END IF ! There are any trackers
RETURN
END

ion
Texas Instruments
TI1 STRICTLY PRIVATE
Property of Texas Instruments ONLY

SUBROUTINE INTIITTER

NAME: INTIJITTER

FUNCTION: Performs the integrating robust jitter test for the 2-D range
independent track model. |

DESCRIPTION:
Initialize the number of trackers to zero
For each good tracker at least one cycle old
| Increment the number of trackers counters
Compute the difference between found and predicted
Save the difference 1n a temporary vector
End of loop

5,303,878
27 28

If at least 3 trackers are present then
Compute the median of the difference values
Compute the median absolute deviations of the difference values
For each good tracker at least one cycle old
Jitter value = ((Difference - Median) / MAD)**2
If the either jitter value > threshold then
Execute routine to delete the tracker
Set the appropriate reason for deletion flag to true
End of if
End of loop
End of if

REFERENCES:
None

AOOOOONOONOOOOOO0OO0O0O

M

CALLING SEQUENCE:
CALL INTIJITTER

INPUTS:
None

OUTPUTS:
None

DEPENDENCIES:
Common Blocks
PROCPARMS - Processing parameters

Functions
MEDIAN - Calculates median of a vector of samples

SIDE EFFECTS:
None

TARGET PROCESSOR:
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

HISTORY:
06/20/91 D. Van Rheeden Initial Release

A0 NNONOO0NONOONON0N

m_________—_—_—-—-p_—--—_—__——__-_—_—‘m

Variable Declarations

C

C Local Variabies

C

C DIFF Differences between the found and predicted locations
C ERROR Vertical and horizontal errors of good trackers only
C JITRX,JITRY Vertical and horizontal jitter scores

C MAD ERROR Median absolute deviation of track errors

C MEDIAN ERROR Median of track errors '

C MINMAD Minimum allowed median absolute deviation

C NTRACKERS Number of good trackers

C NSAMPLES Number of samples to compute median/MAD

C THRESH ~ Threshold for the jitter test

C TRKR Tracker index (position in the databases)

C

C

C

C

IMPLICIT NONE

- 0O0

OOONNOOOONONON0O 0O

OOn OO0 000

5,303,878 _
29 * 30

INCLUDE "COMMON:PROCPARM.CMN'" ! Processing parameters
INTEGER*2 NSAMPLES, NTRACKERS, TRKR

REAL*4 DIFF(24), ERROR(24), JITRX, JITRY, MAD_ERROR,
& . MEDIAN, MEDIAN_ERROR, MINMAD /0.5/

REAL*4 THRESH(24) /0.0, 0.0,18.5,20.6,21.2,16.3,
13.7, 12.3,12.3,12.3,12.3,12.3,
12.3, 12.3,12.3,12.3,12.3,12.3,
12.3, 12.3,12.3,12.3,12.3,12.3/

e R @

REAL*4 THRESH(24) /0.0,0.0,5.0,5.0,5.0,5.0,
5.0,5.0,5.0,5.0,5.0,5.0,
5.0,5.0,5.0,5.0,5.0,5.0,
5.0,5.0,5.0,5.0,5.0,5.0/

o R Re

EXTERNAL MEDIAN

EXECUTABLE CODE

Count the number of good trackers and compute the differences between the
predicted and the found locations. '

- NTRACKERS =0
DO TRKR = 1, MAXT

IF (DBASE(TRKR,1) .EQ. 2) THEN
NTRACKERS = NTRACKERS + 1 |

- DIFF (2*TRKR-1) = FLOAT(DBASE)(TRKR,2)) - PREDX(TRKR)
DIFF (2*TRKR) = FLOAT(DBASE(TRKR,3)) - PREDY(TRKR)
ERROR(2*NTRACKERS-1) = DIFF(2*TRKR-1)
ERROR(2*NTRACKERS) = DIFF(2*TRKR)

END IF
END DO

NSAMPLES = 2 * NTRACKERS

If there are at least three good trackers Then do the jitter test.
IF (NSAMPLES .GE. 3) THEN

Compute the jitter median.
MEDIAN ERROR = MEDIAN (ERROR, NSAMPLES)

Compute the jitter median absolute deviation (MAD).

NTRACKERS = 0
DO TRKR = 1, MAXT
IF (DBASE(TRKR,1) .EQ. 2) THEN
NTRACKERS = NTRACKERS + 1
ERROR(2*NTRACKERS-1) = ABS (DIFF(2*TRKR-1) - MEDIAN_ERROR)
'~ ERROR(2*NTRACKERS) = ABS (DIFF(2*TRKR) - MEDIAN_ERROR)
END IF '
END DO

| 5,303,878 -
31 32
MAD ERROR = MAX ((MEDIAN (ERROR, NSAMPLES) / 0.6745), MINMAD)

C
C For each good tracker compute the jitier test scores.
C

DO TRKR = 1, MAXT
IF (DBASE(TRKR,1) .EQ. 2 .AND. DBASE(TRKR,9) .GT. 0) THEN
JITRX = ((DIFF(2*TRKR-1) - MEDIAN ERROR) / MAD ERROR)**2

JITRY = ((DIFF(2*TRKR) - MEDIAN ERROR) / MAD ERROR)**2

WRITE (TRLUN(TRKR), *)
WRITE (TRLUN(TRKR), 10) "JITRX =’, JITRX, "JITRY =, JITRY
10 FORMAT(2(5X,A7,F6.2))

If the jitter scores fail, delete the tracker from the database and set the
reason flag. Scale the jitter values to save 1n integer database.

oXeloloRvAvivi®

IF JITRX .GT. THRESH(NSAMPLES) .OR.
JITRY .GT. THRESH(NSAMPLES)) THEN
CALL DBDEL(TRKR)

REASONS(2,TRKR) = .TRUE.
END IF

fo

100 * JITRX
100 * JITRY

DBASE(TRKR,14)
DBASE(TRKR, 15)

END IF ! good tracker

END DO ! trkr = 1 to maxt

Else, if not enough trackers, set the jitter values to zero

. O00 O O

ELSE
DO TRKR = 1, MAXT
I[F (DBASE(TRKR,1) .EQ. 2) THEN
DBASE(TRKR,14) = 0
DBASE(TRKR,15) = ¢
WRITE (TRLUN(TRKR), *) _ -
WRITE (TRLUN(TRKR), *) JJITRX = 0.0JITRY = 0.0°
END IF ! existing tracker
END DO !1 = 1, maxt

wiw,

END IF | ntrackers >= 3

RETURN
END
Section D

@

Texas Instruments
TIINTERNAL DATA
Property of Texas Instruments ONLY

OO0

NAME: JITTER

FUNCTION: Performs the robust jitter test

"DESCRIPTION:
Initialize the number of trackers to zero
For each good tracker at least one cycle old

ololokeinioloke:

| - 5,303,878 ,

33 ' 34
Increment the number of trackers counters
Compute the difference between found and predicted

Save the difference in a temporary vector
End of loop

C

C

C

C

C

C If at least 3 trackers are present then

C Compute the median of the difference values
C Compute the median absolute deviation of the difference values
C For each good tracker at least one cycle old
C Jitter value = (Difference - Median)**2 / MAD **2
C If the either jitter value > threshold then
Cc ‘Execute routine to delete the tracker

C Set the appropriate reason for deletion flag to true
C End of if
C End of loop
C End of if

C

C

C

C

C

REFERENCES:
None

C

C CALLING SEQUENCE:

C CALL JITTER

C

C INPUTS:

C None

C

C OUTPUTS:

C None

C

C DEPENDENCIES:

C Common Blocks

C PROCPARMS - Processing parameters

C Functions

C - - MEDIAN - Calculates median of a vector of samples

C

C SIDE EFFECTS:

C None

C

C TARGET PROCESSOR:

C VAX 8000 series VMS 4.5, Fortran Compiler 4.3-219

C |

C HISTORY:

C 11/03/88 R. Broussard Initial Release

C 01/28/91 D. Van Rheeden Replaced mean and standard deviation with median
C and median abs deviation

C

c .

C Local Variables

C

C NTRACKERS ~ Number of good trackers

C DIFFX, DIFFY Differences between the found and predlcted locations
C ERRX, ERRY Vertical and horizontal errors of good trackers only
C JITRX, JITRY Vertical and horizontal jitter scores

C MADX, MADY Median absolute deviation of X and Y track errors
C MEDIANX, MEDIANY Median of X and Y track errors

C MINMAD Minimum allowed median absolute deviation

C THRESH Threshold for the jitter test

C TRKR - Tracker index (position in the database)

5,303,878
33 | 36

-_“_—__*_-————-———————_—_-____________________—

Variable Declarations

IMPLICIT NONE
INCLUDE '"COMMON:PROCPARM.CMN' ! Processing parameters

INTEGER®*2 NTRACKERS, TRKR

O O O O0O000

REAL®4 DIFFX (12), DIFFY(12), ERRX(12), ERRY(12), JITRX,
" JITRY, MADX, MADY, MEDIAN, MEDIANX, MEDIANY,
MINMAD /0.5/

@
Po Ro

REAL®*4 THRESH(12) /0.0, 0.0, 18.5, 20.6, 21.2, 16.3,

& 13.7, 12.3, 12.3, 12.3, 12.3, 12.3 /
REAL*4 THRESH(12) /0.0, 0.0, 5.0, 5.0, 5.0, 5.0,

& 5.0, 5.0, 5.0, 5.0, 5.0, 5.0 /

EXTERNAL MEDIAN

OO SEOR®

EXECUTABLE CODE

Count the number of good trackers and compute the difference between the
predicted and the found locations.

OO0 0O0O0

NTRACKERS = 0
DO TRKR = 1, MAXT
IF (DBASE(TRKR,1) .EQ. 2) THEN
NTRACKERS = NTRACKERS + 1
DIFFX(TRKR) = FLOAT (DBASE(TRKR, 2)) - PREDX(TRKR)
DIFFY(TRKR) = FLOAT (DBASE(TRKR,3)) - PREDY(TRKR)
ERRX (NTRACKERS) = DIFFX (TRKR)
ERRY (NTRACKERS) = DIFFY (TRKR)
END IF
END DO

If there are at least three good trackers Then do the jitter test.

IF (NTRACKERS .GE. 3) THEN

Compute the jitter median.

OO OO0

MEDIANX = MEDIAN (ERRX, NTRACKERS)
MEDIANY = MEDIAN (ERRY, NTRACKERS)

Compute the jitter median absolute deviation (MAD).

OO0

NTRACKERS = 0
DO TRKR = 1, MAXT
IF (DBASE(TRKR,1) .EQ. 2) THEN
NTRACKERS = NTRACKERS + 1
ERRX (NTRACKERS) = ABS (DIFFX(TRKR) - MEDIANX)

ERRY (NTRACKERS) = ABS (DIFFY(TRKR) - MEDIANY)
END IF |

END DO

OO0

ANOODDT0O

OO 0O O

® whw

OO0O0O00n

5,303,878
37 | 38

MADX = MAX ((MEDIAN(ERRX, NTRACKERS) / 0.6745), MINMAD)
MADY = MAX ((MEDIAN(ERRY, NTRACKERS) / 0.6745), MINMAD)

For each good tracker compute the jitter test scores.

DO TRKR = 1, MAXT
IF (DBASE(TRKR,1) .EQ. 2 .AND. DBASE (TRKR, 9) .GT. 0) THEN
JITRX = (DIFFX(TRKR) - MEDIANX)**2 / MADX**2
JITRY = (DIFFY(TRKR) - MEDIANY)**2 / MADY**2

WRITE (TRLUN(TRKR), *)
WRITE (TRLUN(TRKR), 10) 'JITRX =", JITRX, JITRY ="', JITRY
10 FORMAT (2(5X,A7,F6.2))

If the jitter scores fail, delete the tracker from the database and set the
reason flag. Scale the *i:1er values to save in integer database.

IF (JITRX .GT. THRESH (NTRACKERS) .OR.
& ~ JITRY .GT. THRESH (NTRACKERS)) THEN
' CALL DBDEL (TRKR)
REASONS (2,TRKR) = .TRUE.
END IF

IF (JITRX .LT. (2**15-1) /100) THEN
DBASE (TRKR,14) = 100 * JITRX
ELSE
DBASE (TRKR,14) = (2**15-1) /100
END IF

IF (JITRY .LT. (2**15-1) /100) THEN
DBASE (TRKR, 15) = 100 * JITRY
ELSE
DBASE (TRKR,15) = (2**15-1) / 100
END IF

END IF ! good tracker

END DO ! trkr = 1 to maxt

Else, if not enough trackers, set the jitter values to zero

ELSE
DO TRKR = 1, MAXT
IF (DBASE (TRKR,1) .EQ. 2) THEN
DBASE (TRKR14) = 0
DBASE (TRKR,15) = 0
WRITE (TRLUN (TRKR), *)
WRITE (TRLUN (TRKR), *)' JITRX = 0.0 JITRY = 0.0’
END IF ! existing tracker
END DO !i = 1, maxt

END IF ! ntrackers > =3

RETURN
 END
21100

Texas Instruments
TIINTERNAL DATA
Property of Texas Instruments ONLY

l")(')0(')00000000000606000000000f')t")OOOOO(’)OOO(’)OOOOOOOO0.0000000000 O O

5,303,878 _
39 - 40

SUBROUTINE LEASTSQ (H, Z, W, XHAT, ZHAT, P, NEST, NOBS)

NAME: LEASTSQ

FUNCTION: Weighted least-squares estimator. The estimator uses
the standard form:

x=(HT*W*H)'*HT*W*2

where
x = vector of least-squares estimates
z = vector of input observations

H = least-squares model matrix
W = weighting matrix

The predicted observations are computed by:

Z=W'H'(HT'W'H)'1 s HT = W = -

DESCRIPTION:

Compute the matrix product HW = H' * W

Compute the matrix product HW * H and invert the result
Save the least-squares estimate covariance matrix
Compute the least-squares pseudo-inverse matrix
Computer the least-squares estimates

Compute the observation esumates

REFERENCES:
Elbert, T. F., Estimation and Control of Systems, Van Nostrand
Reinhold Co., 1984, pp. 367-369.

CALLING SEQUENCE: ,
CALL LEASTSQ (H, Z, W, XHAT, ZHAT, P, NEST, NOBS)

INPUTS:
H - Least-squares model matrix
NEST - Number of least-squares estimates to compute
NOBS - Number of least-squares observations to compute
W - Weight vector
Z - Vector of observations
OUTPUTS:
P - Least-squares estimate normalized covariance matrix

XHAT - Vector of least-squares estimates
ZHAT - Vector of predicted observations

DEPENDENCIES:
Subroutines
MATINV - Inverts a matrix
MATMULT - Muluplies two matrices
MATTRAN - Transposes a matrix

.- 3,303,878
41 | ' 42

MVMULT - Multiplies a matrix by a column vector

SIDE EFFECTS:

If the number of estimates or the number of observations bevume

larger than the local matrix dimensions, then the local matrix
dimensions must be increased. -

TARGET PROCESSOR:
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

HISTORY: -
05/30/91 D. Van Rheeden Initial Release

Local Variables

I,J Matrix loop indexes

HTW Product of transposed model matrix and weights
HTWHINV Inverse of the product HITW * H
OBS Observation estimate model matrix
PSINV Least-squares pseudo-inverse matrix

WTH Transpose of the product HTW

OOOOOOOOO(")OOOOOOGOOOO0000

”wﬂ—mm_ﬂmw

C
C Variable Declarations
C
IMPLICIT NONE
C ' |
_ INCLUDE 'COMMON:PROCPARM.CMN’ ! Processing parameters
C
INTEGER®*2 1, J, NEST, NOBS
C ~,
REAL*4 = H(NOBSNNEST), HTW(3,24), HTWH(3,3),
& OBS(24,24), P(NEST,NEST), PSINV(3,24),
& TEMP(3,3), W(NOBS), XHAT(NEST), WTH(24,3),
& Z(NOBS), ZHAT(NOBS)
C
C
C .
C EXECUTABLE CODE
c .
C
C
c _
C Compute the matrix product HW = H' * W. Note that W is input as a
C vector instead of a matrix to reduce the number of computations.
C .
CALL MATTRAN (H, HTW, NOBS, NEST)
DO = 1, NEST
DO J = 1, NOBS
HTW(LJ) = W({J) * HTW(L,J)
END DO
END DO
C
C
C Compute the matrix product H' * W * H and invert. Save the result as
C the normalized covariance matrix of the least-squares estimates.
C

CALL MATMULT (HTW, H, HTWH, NEST, NOBS, NOBS, NEST)
CALL MATINV (HTWH, P, TEMP, NEST, NEST)

OO0 OO0 OO0

ON®.

OO0

ONOOOOOOOO0O00O0O0O0O0n

5,303,878
43 | 44

Compute the least-squares pseudo-inverse matrix.

CALL MATMULT (P, HTW, PSINV, NEST, NEST, NEST, NOBS)
Compute the least-squares estimates, X.

CALL MVMULT (PSINV, Z, XHAT, NEST, NOBS, NOBS)

Compute the observation estimates, z.

CALL MATTRAN (HTW, WTH, NEST, NOBS)

CALL MATMULT (WTH, PSINV, OBS, NOBS, NEST, NEST, NOBS)

CALL MVMULT (OBS, Z, ZHAT, NOBS, NOBS, NOBS)

RETURN
END

Section F
Texas Instruments

T I INTERNAL DATA
Property of Texas Instruments ONLY

COMMON BLOCK TKPTPARM

MNEUMONIC: TRacKPoinT measurement PARaMeters common block
AUTHOR: Don Van Rheeden

HISTORY: -
01/09/91 D. Van Rheeden Initial release

O 0O

Rofofo o Pr R

o

Po o Ro P

VARIABLE DECLARATIONS

COMMON TKPTPARMS/ AMOUNT SHIFTED, BIAS COUNT,
BIAS INTERVAL,

BIASX, BIASY, COMPUTE_SUBPIX, DISP_UPPER,

DISTX, DISTY, DIST2DX, DIST2DY,

INITSIZEX, INITSIZEY, MAGNIFY, MAGVAR,

MODEL, OFFSETX, OFFSETY, RANGEIND,

RECEMTERP, RECENERY, SAVED LOSP,

SUBPIXX, SUBPIXY, TRKMODE, WEIGHTDIST/

INTEGER *2 BIAS COUNT INITSIZEX, INITSIZEY, MODEL,
RECENTERX, RECENTERY, TRKMODE

REAL *4 AMOUNT SHIFTED, BIAS INTERVAL, BIASX,
BIASY, DISP_CORR, DISP UPPER, DISTX(12),
DISTY (12), DIST2DX(12), DIST2DY(12), MAGNIFY,
MAGVAR, OFFSETX, OFFSETY, SAVED LOSP,
SUBPIXX(12), SUBPIXY(12)

LOGICAL*2 COMPUTE SUBPIX, RANGEIND, WEIGHTDIST

VARIABLE DESCRIPTIONS

AOOOOOONOOOO0O0O0O0ONO0OO00O0O0O00000

NONONOONONNONNANONNANONNNNNNONNON

5,303,878
45 : 46

AMOUNT SHIFTED Number of meters shifted on target by aimpoint bias
BIAS COUNT Aimpoint bias counter _
BIAS INTERVAL Number of seconds between aimpoint biases
BIAS X, Y Aimpoint biasing weights:
BIASX =0.0 -bias left BIASY =0.0 -bias down
BIASX=0.5 -no bias BIASY =0.5 -no bias
BIASX=1.0 -bias rightBIASY =1.0 -bias up
COMPUTE _SUBPIX Compute subpixel esteimate flag

DIST2DX,Y Distances normalized by 2-D magnification
INITSIZEX,)Y Target size at tracker initialization
MAGNIFY ~ Estimated magnifications factor

MAGVAR Variance of the magnification factor estimate
MODEL ‘Range independent tracking model:

1- 1-D Model (X & Y estimated independently)

2- 2-D Model (X & Y estimated simultaneously)
OFFSETX)Y Offset of aimpoint from trackpoint
RANGEIND Range independent tracking flag
RECENTERP, Y Aimpoint recenter values (PITCH, YAW)
SAVED LOSP Line-of-sight pitchsaved from last aimpoint bias
SUBPIXX,Y Trackpoint subpixel shift estimates '
TRKMODE Integer tracker mode:

0 - rate coast (breaklock)

1 - locked on (confident track)

- WEIGHTDIST Flag to weight each tracker measurement by its distance from

the aimpoint

DISP CORR Average displacement all correlators

DISP:UPPER Average displacement of upper correlators
DISTX,Y Distances from trackpoint normalized by size

Texas Instruments
- TIINTERNAL DATA
Property of Texas Instruments ONLY
COMMON BLOCK PROCPARM
MNUEMONIC: PROCessing PARaMeters common block
AUTHOR: Roger Broussard

HISTORY:

10/31/88 R. Broussard Generated from program TRACK written by
Cam Kaszas for AGB program

1/09/90 D. Van Rheeden Added variables to run AAWS-M images
'4/11/91 D. Van Rheeden Removed oresight jutter: XTRAN, YTRAN
4/15/91 D. Van Rheeden Added image dimensions: IMGROWS,
IMGCOLS |
4/17/91 D. Van Rheeden Added max limits; MAXACF, MAXCONT
4/22/91 D. Van Rheeden Added screen limits: MINX, Y and MAXX,Y
5/20/91 D. Van Rheeden Added CONTTH MIN: removed HSKIP, VSKIP
$/24/91 D. Van Rheeden Added trackability/ update to REASONS
5/24/91 D. Van Rheeden Added reference update age threshold
5/28/91 D. Van Rheeden Added real target, noisex,
6/13/91 D. Van Rheeden Added line of sight angles, LOSP, Y
6/17/91 D. Van Rheeden Replaced IRRES with RAD TO _PIX,
PIX_TO RAD
- 6/17/91 D. Van Rheeden Added last fram X|Y coordinates to DBASE

C

C
&
&
&
&
&
&
&
&
&
&
&

C
&
&
&
&

C

C
&
&
&
&
&

C

C

C

C

5,303,878
47 | 48
VARIABLE DECLARATIONS

COMMON /PROCPARMS/ACOR, AGETH, AIMX, AIMY, ALTITUDE,
 APMODE, BRKLCK, CCOR, CFT, CHECKS, COLOR,
CONT, CONTTH,CONTTH_MIN, CYCLE, DBASE,

DCHISL, DCHISU, DCREFX, DCREFY, DCSERX,
DCSERY, DRANGE, FRATE, HGREFX, HGREFY,

IMGCOLS, IMGGAIN, IMGROWS, LOSP, LOSY LOSRP,
LOSRY, LUNN, MAXACF, MAXCONT, MAXP, MAXT,
MAXX, MAXY, MINX, MINY, NZSIGMA, OLDRNG,
PIX TO RAD, PREDX, PREDY, RAD TO PIX,

'RANGE, RANGE GOOD, REASONS, RESERRX, RESERRY,
RSIZEX, RSIZEY, SR, SRTH, TGTSZX, TGTSZY, TPVARX,
TPVARY, TRACKX, TRACKY, TRLUN, VELOCITY

INTEGER*2 AGETH, CHECKS, CONT, CONITH, CONTTHIN, CYCLE,
DBASE(12,17), DCHISL, DCHISU, DCREFX, DCREFY,
DCSERX, DCSERY, HGREFX, HGREFY, IMGCOLS,
IMGROWS, LUNN, MAXACF, MAXCONT, MAXP, MAXT,
MAXX, MAXY, MINX, MINY, SR, SRTH, TRLUN(12)

INTEGER®*4 ACOR(25,25), APMODE, CCOR(25,25), COLOR(12)

REAL*4 AIMX, AIMY, ALTITUDE, DRANGE, FRATE,
IMGGAIN, LOSP, LOSY, LOSRP, LOSRY, NZSIGNMA,
OLDRNG, PIX TO RAD, PREDX(12), PREDY(12),
RAD TO PIX, RANGE, RESERRX, RESERRY, RSIZEX,
RSIZEY, SUMP, SUMY, TGRSZX, TGTSZY, TPVARX,
TPVARY, TRACKX, TRACKY, VELOCITY

LOGICAL*2 BRKLCK, CFT/.TRUE./, RANGE GOOD, REASONS(4,12)

VARIABLE DESCRIPTIONS

C ACOR,CCOR Auto-correlation and cross-correlation matrices

C AGETH

Reference update tracker age threshold

C AIMX, AIMY Horizontal and vertical position of the aimpoint (0.0,0. 0 in upper left)
C APMODE Autopilot mode
C ALTITUDE Altitude of the platform (meters)

C BRKLCK Breaklock flag (no good tackers in database)

C CHECKS Total number of checks aliowed this cycle
CCFT Captive flight test indicator

C COLOR The color index used to identify trackers

C CONT, SR Current local contrast and sharpness ratio scores

C CONTTH, SRTH Local contract and sharpness ratio thresholds
C CONNTH MIN Minimum allowed local contrast threshold

C CYCLE Track cycle number, 0 = Initialization cycle

C DBAS(J,k) Tracker data base

C DBASE(},1): -1 = slot free, 2==> slot full

C DBASE(,2): X coordinate for tracker j

C DBASE(j,3): Y coordinate for tracker j

C DBASE(j,4): Local contrast score

C DBASE(],5): Sharpness ratio score

C DBASE(,6): Zone number

C DBASE(],7): = > outside OSR (needs replacemem)
C 2 = > in bounds

C DBASE(,8): Reference update threshold

C DBASEC(,9): Cycles active

C DBASE(},10): Cross correlation score at best match
C DBASE(,11): X predicted position

C DBASE(,12): 'Y predicted position

5,303,878
49 g 50

DBASE(],13): Reference update flag:

-1 ==> reset |

2 ==> set (perform reference update)
DBASE(j,14): Jitter test X score
DBASE(,15): Jitter text Y score
DBASE(,16): X coordinate from last frame
DBASE(},17): Y coordinate from last frame
C DCHISL, DCHISU Lower and upper thresholds for the local contrast histogram
C computation
C DCREFX, DCREFY Horizontal and vertical size of the reference array
C DCSERX, DCSERY Horizontal and vertical size of the search array

OOOO0O0O0

C DRANGE Change in slant range between each image (meters/trame)
C FRATE - Frame rate (seconds/frame)

C HGREFX, HGREFY Horizontal and vertical size of the reference are used
C to compute the local contrast

C IMGCOLS, IMGROWS Image horizontal and vertical dimensions

C IMGGAIN Image global gain

C LOSP, LOSY Pitch/Yaw line-of-sight angles (radians)

C LOSRP, LOSRY Pitch/Yaw line-of-sight rates (radians/sec)

C LUNN Logical unit number counter for tracker output

C MAXACF Maximum number of autocorrelation function shape tests
C MAXCONT = Maximum number of local contrast tests

C MAXP Number of parameters per tracker (= => DBASE(i,MAXP))
C MAXT Maximum number of trackers allowed

C (= = >DBASE(MAXT,j))

C MAXX, MAXY Maximum horizontal and vertical search area boundaries
C MINX, MINY Minimum horizontal and vertical search area boundaries
C NZSIGMA - Standard deviation of the image noise

C OLDRNG Previous target range

CPIX TO RAD = Pixels to radians conversion factor

C PREDX, PREDY Floating point values for predicted tracker locations

C RAD TO PIX Radians to pixels conversion factor

C RANGE Slant range (meters)

C RANGE GOOD Range good indicator

C REASONS Reason flags for why tracker was deleted or updated:

C REASONS(1,x)- Tracker is out-of-bounds,

C REASONS(2,x)- Tracker failed jitter test

C REASONS(3,x)- Tracker failed trackability tests

C REASONS(4,x)- Tracker reference update occurred

C RESERRX,RESERRY Correlation residual error (pixels)

C RSIZEX, RSIZEY Real-value target size for limiting subimage search
C SUMP, SUMY Pitch/ Yaw integrated line-of-sight (radians)_

C TGTSZX, TGTSZY Target size for limiting subunage search region

C TPVARX, TPVARY Trackpoint measurement variance

C TRACKX, TRACKY Horizontal and vertical position of the trackpoint
C (0.0, 0.0 in upper left)

C TRLUN Logical unit numbers for the existing trackers

C VELOCITY Velocity of the platform (meters/second)

Section G
Texas Instruments

TI INTERNAL DATA _
Property of Texas Instruments ONLY

SUBROUTINE DBDEL (TRACKER)

NAME: DBDEL

OOO0O0NNOOONONO

O O00NOOOOOONONOOOONO00ONONNOOOOO0OO0O0O0ONO0O0O0O0000

OO0 oO0O0n0n 000 o0

®

5,303,878
51
FUNCTION: Deletes a tracker from the database

DESCRIPTION:

Set the values of the tracker location to -1

Compute the location of the reference subimage in B memory
Clear the region of B memory used for the reference subimage

REFERENCES:
None

CALLING SEQUENCE:
Call DBDEL (TRACKER)

INPUTS: |
TRACKER - Index of tracker to delete

OUTPUTS:
Mone

DEPENDENCIES:
Common Blocks
ASPMEMYS - APAP A and B memories
PROCPARMS - Processing parameters

SIDE EFFECTS:
None

TARGET PROCESSOR:
VAX 8000 series VMS 4.5, Fortran Compiler 4.5 -219

H_ISTORY:

11/08/88 R. Broussard Initial Release
Local Variables
1,J Loop counters
MXSTRT Starting column of reference subimage in B memory
MYSTRT Stuarting row of reference subimage in B memory

Variable Declarations

IMPLICIT NONE

INCLUDE 'COMMON: APMEMY. CMN! ° APAP A and B memories
INCLUDE 'COMMON:PROGPARM. CMN! "’ Processing parameters

INTEGER?*2 I, J, MXSTRT, MYSTRT, TRACKER

EXECUTABLE CODE

Set the tracker indicator in the database to indicate available.
DBASE(TRACKER,1) = -1
Determine the location of the tracker in B memory.

MXSTRT = MOD(TRACKER-1, 8) *16 +1
MYSTRT = ((TRACKER-1)/8 * 16 +1
Erase reference im.:. : and label from B memory.

52

5,303,878

53

C |

DOJ =116

DOI =1, 16
DMEMYB(MXSTRT+I-1, MYSTRT+J-1) = 0
END DO '

END DO
C
C For Debugging . . .
C
D CLOSE(UNIT=TRLUN(TRACKER))
C

RETURN
END

C . . - |
CM“M‘“‘"‘M
C Texas Instruments
C TI INTERNAL DATA
C Property of Texas Instruments ONLY
C
C . - .
C o

REAL *4 FUNCTION MEDIAN (VECTOR, NSAMPLES)
C
C

NAME: MEDIAN

FUNCTION: Computes the median of a vector of numbers.

C

C

C

C

C

C DESCRIPTION:

C Sort the input vector from smallest to largest
C If the number of input samples 1s even Then
C Median = average of two middle samples
C Else the number of input samples is odd

C

C

C

C

C

C

C

Median = middle sample
~End If

REFERENCES:
None

CALLING SEQUENCE:
MEDIAN VALUE = MEDIAN (VECTOR, NSAMPLES)

- INPUTS:

VECTOR - Input vector containing samples to process
NSAMPLES - Number of samples in VECTOR

OUTPUTS:
MEDIAN - Output median value

DEPENDENCIES:
None

SIDE EFFECTS:
~ None

TARGET PROCESSOR:
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

54

),303,878

55 - 56
C HISTORY:
C 01/28/91 D. Van Rheedenlntial Release
C 06/20/91 D. Van RheedenReduced outer sorting loop from N-1
C samples to N/2+1 samples
C
C

e ———— e ——————————————————————

Local Variables

C
C
C
C I,J Sorting loop counters

C MIDDLE Address of middle value in the sorted input vector
C TEMP Temporary storage used by sorting loops

C .

C

e e et

Variable Declarations

IMPLICIT NONE
INTEGER*2 1, J, MIDDLE, NSAMPLES

C
C
C
C
C
REAL*4 TEMP, VECTOR (NSAMPLES)
C
C

s e

C
C EXECUTABLE CODE

C

c______

C
C Sort the input vector from smallest to largest values.
C

DO 1 = 1,NSAMPLES/2+1
DO J = 2NSAMPLES
IF (VECTOR(J) .LT. VECTOR(J-1)) THEN
TEMP = VECTOR(J-1)
VECTOR(J-1) = VECTOR(J)
VECTOR(J) = TEMP
END IF
END DO
END DO

Compute the median. If the number of input samples is even, the
median is the average of the two middle samples. If the number of
samples is odd, the median is the middle sample.

OO0 0O

IF (MOD(NSAMPLES,?2) .EQ. 0) THEN
MIDDLE = NSAMPLES/2 _
MEDIAN = (VECTOR(MIDDLE) + VECTOR(MIDDLE+1)) / 2.0
ELSE
MIDDLE = NSAMPLES/2 + 1
MEDIAN = VECTOR(MIDDLE)
END IF -

-

RETURN
END

*®

Texas Instruments
TI INTERNAL DATA
Property of Texas Instruments ONLY

NOO0NOO

5,303,878
S7

@,

SUBROUTINE MATADD (M1, M2, SUM, ROWS, COLS)

NAME: MATADD

FUNCTION; Adds two matrices.

DESCRIPTION:
Sum = matrix #1 + matrix #2.

REFERENCES:

' CALLING SEQUENCE: _
CALL MATADD (M1, M2, SUM, ROWS, COLS)

INPUTS:
Mi, M2 - Input matrices
ROWS, COLS - Matrix dimensions
OUTPUTS:
SUM - Output matrix sum
DEPENDENCIES:
None
TARGET PROCESSOR: ,
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY:

02/18/91 D. Van Rheedenlnitial Release

" Local Variables

I J Matrix indexes

Variable Declarations
IMPLICIT NONE

INTEGER®*2 COLS, I, J, ROWS

A O 00NN NNOODOONOOOOO0ONO0OOOONOO0OOOnOOO0O0OO0O0O0O0O0O000 0

REA]L *4 M1(ROWS,COLS), M2(ROWS,COLS),
& SUM(ROWS,COLS)

EXECUTABLE CODE

NnOOOOOnn

Add the two 1nput matrices.

®

ﬁOOOGOOOOOOOOOOOGOOOOGOOOOOOOOOOOOOOOOOOOOOOOO ONaOo

Y,303,878
S9

DO = 1, ROWS
DOJ = 1, COLS
SUM(LJ) = MI(LJ) + M2(LJ)
END DO
END DO

RETURN
END

SUBROUTINE MATSUB (M1, M2, DIFF, ROWS, COLS)

NAME: MATSUB
FUNCTION: Subtracts two matrices.

DESCRIPTION:
Difference = matrix #1 - matrix #2.

REFERENCES:

CALLING SEQUENCE:
CALL MATSUB (M1, M2, DIFF, ROWS, COLS)

INPUTS:
M1, M2 - Input matrices
ROWS, COLS - Matrix dimensions

OUTPUTS:
DIFF - Output matrix difference

DEPENDENCIES:
None

SIDE EFFECTS:
None

TARGET PROCESSOR:
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

HISTORY:
02/18/91 D. Van Rheedenlnitial Release

L.ocal Variables

I, J Matrix indexes

Variable Declarations

60

5,303,878

61 _ _ 62

IMPLICIT NONE '
C

INTEGER*2 COLS, 1, J, ROWS
C . | _

REAL*4 M1(ROWS,COLS), M2(ROWS,COLS), DIFF(ROWS,COLS)
C |
C
C o |
C EXECUTABLE CODE
C
C
C .
C Subtract the two input matrices.
C

DOI =1, ROWS

DOJ = 1, COLS
DIFF(LJ) = M1(1,J) + M2(1,J)
END DO

END DO
C

RETURN

END
C
C
C
C _

SUBROUTINE MATMULT (M1, M2, PROD, ROW1, COL1, ROW2, COL2)
C
C

- NAME: MATMULT
FUNCTION: Multiplies two matrices.

DESCRIPTION:

If inner matrix dimensions do not match Then
Write status message to the user. |

Exit from the program.
End if inner matrix dimensions do not match.
Product = matrix #1 * matrix #2.

REFERENCES:

CALLING SEQUENCE:
CALL MATMULT (M1, M2, PROD, ROW1, COL1, ROW2, COL2)

INPUTS:
M1, M2 - Input matrices

ROW1, COL1 - Input matrix M1 dimensions
ROW2, COL2 - Input matrix M2 dimensions

OUTPUTS:
PROD - Output matrix product

DEPENDENCIES:
EXIT - System exit routine

SIDE EFFECTS:
None

OOOOOONNONOONNONNOOONNOO0O0O0OO0O0O0O0O000

5,303,878
63 - 64

TARGET PROCESSOR: |
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

HISTORY:
02/18/91 D. Van Rheeden Initial Release

Local Variables

I J K ‘Matrix indexes
SUM + Product accumulator

Variable Declarations
IMPLICIT NONE

INTEGER®*2 COL1, COL2, [, J, K, ROW1, ROW2

O O O000O0000000O0000000

REAL®4 M1(ROW1,COL1), M2(ROW2,COL2), PROD(ROW1,COL2),
& SUM

EXECUTABLE CODE

O0O0O0O0O0

If the inner matrix dimensions do not agree, write a status message
and exit the program.

OO 0O0

1IF (COL1 .NE. ROW2) THEN
WRITE(6,*) ’ Error in MATMULT
& ’ Inner matrix dimensions do not agree.’
CALL EXIT (0)
END IF

Multiply the two input matrices.

SEORS®.

DO = 1, ROWI
DO J = 1, COL2
SUM = 0.0
DOK = 1, COL1
SUM = SUM + M1(LK) * M2(K.J)
END DO
PROD(1J) = SUM
END DO
END DO

®.

RETURN
END

OO0

SUBROUTINE MATCOPY (M, COPY, ROWS, COLS)

O O

3,303,878
65 S 66

NAME: MATCOPY

O O

FUNCTION: Copies a matrix.

- DESCRIPTION:
Copy the input matrix to the output matrix.

REFERENCES:

CALLING SEQUENCE:
" CALL MATCOPY (M, COPY, ROWS, COLS)

INPUTS:
M - Input matrix
ROWS, COLS - Matrix dimensions

OUTPUTS:
COPY - Copy of the input matrix

DEPENDENCIES:
None

SIDE EFFECTS:
None

TARGET PROCESSOR:
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

OOOOO0O00O000000O0000O0000O0O0O0O0OO0O00O000

HISTORY:
02/18/91 D. Van Rheeden Initial Release

OOt

Local Variables

1.J Mairix indexes

aOO0O0 00

Variable Declarations

IMPLICIT NONE

INTEGER*2 COLS, I, J, ROWS

REAL*4 M(ROWS,COLS), COPY(ROWS,COLS)

N0 O O O00

EXECUTABLE CODE

OO(}OOO

Copy the input matrix into the output matrix.

DOI = 1, ROWS
DO J = 1, COLS

5,303,878

67 . 68
COPY(LJ) = M(LJ)
END DO

END DO
C
C

RETURN _

END
C
C
C |

SUBROUTINE MATTRAN (M, TRANS, ROWS, COLS)

NAME: MATTRAN

DESCRIPTION: Transpose the input matrix.

C

C

C

C

C

C

C FUNCTION: Transposes a matrix.-
C

C

C

C REFERENCES:
C

C

CALLING SEQUENCE:
CALL MATTRAN (M, TRANS, ROWS, COLS)

INPUTS:
M - Input matrix
ROWS, COLS - Matrix dimensions

OUTPUTS:
TRANS - Output matrix difference

None

SIDE EFFECTS:
None

TARGET PROCESSOR:
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

HISTORY:

C

C

C

C

C

C

C

C

C

C

C

C DEPENDENCIES:
C .

C

C

C

C

C

C

C

C

C 02/18/91 D. Van Rheedenlnitial Release
C
C

W

C
C Local Variables
C
C IJ Matrix indexes
C
C
C
C Variable Declarations
C
IMPLICIT NONE
C

INTEGER®*2 COLS, I, J, ROWS

5,303,878
69

REAL *4 M(ROWS,COLS), TRANS(ROWS,COLS)

EXECUTABLE CODE

Transpose the input matrix.

NONNNONONO O

DOI = 1, ROWS
DO J = 1, COLS
TRANS(A,I) = M(1L,J)
END DO
END DO

0

RETURN
END

00

SUBROUTINE MATDET (M, DET, WORK, ROWS, COLS)

OO0 O

NAME.: MATDET
FUNCTION: Computes the determinant of a square matrix.

DESCRIPTION:
If the input matrix is not square Then
Write status message to the user.
Exit from the program.
End if input matrix i1s not square.
Copy input matrix into temporary work array.
Decompose the matrix into lower/upper (LU) form.
Determinant = product of LU wu.atrix diagonal elements.

REFERENCES:

AOOOOOOOO0OOO0OO0O0O0O0

CALLING SEQUENCE: -
CALL MATDET (M, DET, WORK, ROWS, COLS)

INPUTS:
' M - Input matrix
ROWS, COLS - Matrix dimensions

NAOOONNOOOOOONOOO0O0

‘WORK - Temporary work array
OUTPUTS:
DET - Output matrix determinant
DEPENDENCIES: |
EXIT - System exit routine
MATLUD - Lower/Upper (LU) matrix decomposition

70

OOOOOOOO0O0non

M

NOOOO0OO

QO 0O O OO0

QOO0

NnO0OoO

OOOOnNn OO0 000

J,303,878
71

SIDE EFFECTS:

A copy should be made of the input matrix unless the user
desires to use the LU decomposed matrix.

TARGET PROCESSOR:
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

HISTORY:
02/18/91 D. Van Rheeden Initial Release

Local Variables

L] Matrix indexes
INDX LU decomposition backsubstitution 1ndex vector

Variable Declarations
IMPLICIT NONE
INTEGER*2 COLS, I, INDX(50), J, ROWS

REAIL *4 DET, M(ROWS,COLS), WORK(ROWS,COLS)
EXECUTABLE CODE

If the input matrix is not square then write a status message and
exit the program.

IF (ROWS NE. COLS) THEN :
WRITE (6,*) ° Error in MATDET .. ,
& ’ Cannot compute determinant of a ‘nonsquare matrix. ’
CALL EXIT (0)
END IF

Copy input matrix into temporary work array.
CALL MATCOPY (M, WORK, ROWS, COLS)
Decompose the input matrix into lower/upper (LU) form.
CALL MATLUD (WORK, ROWS, COLS, INDX, DET)

Compute determinant as the product of the diagonal elements of
the LU decomposed matrix. The return value DET from MATLUD
determines the sign of the determinant.

DOJ = 1, ROWS
DET = DET + WORK(J.J)
END DO

RETURN
END

712

o

OOOOOOO(’)OOO'OOOOOOOOOGOOO(‘)O00000000000000000000OGOOOOOOO_OO OO0

5,303,878
73

SUBROUTINE MATINV (M, INV, WORK, ROWS, COLS)

NAME: MATINV
FUNCTION: Inverts a square matrix.

DESCRIPTION:
If the input-matrix is not square Then
Write status message to the user.
Exit from the program.
End if input matrix into the work array.
Copy input matrix into the work array.
Decompose the matrix into lower/upper (LU) form.

Do backsubstitution of the LU decomposed matrix one row
at a time.

REFERENCES:

CALLING SEQUENCE: _
CALL MATINV (M, INV, WORK, ROWS, COLS)

INPUTS:

M - Input matrix

ROWS, COLS - Matrix dimensions

WORK - Temporary work space matrix
OUTPUTS:

M - LU decomposition of the input matrix

INV - Output inverse matrix
DEPENDENCIES:

EXIT - System exit routine

MATLUB - Lower/Upper (LU) matrix backsubstitution
MATLUD - Lower/Upper (LU) matrix decomposition

SIDE EFFECTS:
None

TARGET PROCESSOR:
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

HISTORY:

02/18/91 D. Van Rheeden Initial Release

Local Variables

L.J Matrix indexes

74

O O O0O0O00O0000

OO0O0 OO0 OO0 OOOOOO0O0O00

@,

OO0 OO0

5,303,878

75
INDX LU decomposition backsubstitution index vector
SIGN LU decomposition return sign
V LU backsubstitution solution vector

Variable Declarations

IMPLICIT NONE

INTEGER®2 COLS, I, INDX(50), J, ROWS

76

REA]L *4 INV(ROWS,COLS), M(ROWS,COLS), SIGN, V(50),

& - WORK(ROWS,COLS)
EXECUTABLE CODE

If the input matrix is not square then write a status message and
exit the program.

IF (ROWS NE. COLS) THEN
WRITE(6,*) ’ Error in MATINV..,
* Cannot invert a nonsquare matrix. ’
CALL EXIT (0)

END IF

Copy input matrix into the work array.

CALL MATCOPY (M, WORK, ROWS, COLS,)
Decompose the input matrix into lower/upper (LU) form.

CALL MATLUD (WORK, ROWS, COLS, INDX, SIGN)

Perform backsubstitution of the LU decomposed matrix one row
at a time. '

DO J = 1, COLS
DO = 1, ROWS
V(1) = 0
END DO
V({J) = 1.0
CALL MATLUB (WORK, ROWS, COLS, INDX, V)
DO1I = 1, ROWS
INV(L]) = V()
END DO
END DO

RETURN
END

SUBROUTINE MATLUD (M, ROWS, COLS, INDX, SIGN)

5,303,878
| 77 ‘ 78
NAME: MATLUD |

FUNCTION: Matrix Lower/Upper (LU) dcconiposition.

DESCRIPTION:
- If the input matrix is not square Then
Write status message to the user.
Exit from the program.
End if input matrix is not square.
Decompose the matrix into lower/upper (LU) form.

REFERENCES:

NOOOOOO0O0OO0O000n

CALLING SEQUENCE:
CALL MATLUD (M, ROWS, COLS, INDX, SIGN)

INPUTS:

M - Input matrix
ROWS, COLS - Matrix dimensions

OUTPUTS:
M - LU decomposition of the input matrix
INDX - Backsubstitution index vector
SIGN - LU decomposition return sign (+-1)
DEPENDENCIES:
- EXIT - System exit routine

SIDE EFFECTS:
None

TARGET PROCESSOR: -
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

HISTORY:

02/18/91 D. Van Rheeden Imtial Release

Local Variables

BIG Input matrix element with largest magnitude
DUM Dummy argument used for temporary storage
I, J, K Matrix loop indexes

IMAX Decomposition index values saved in INDX vector

SUM Intermediate sum
TINY Small number used to prevent divides by zero

VV Pivot vector

Variable Declarations

IMPLICIT NONE

O ONOOOOOOOOOOONOOOOONOOOOOOO0O00O0O0O00O00000O000O00O000000

INTEGER*2 COLS, I, IMAX, INDX(50), J, K, ROWS

5,303,878
79 | 80

REAL*4 BIG, DUM, M(ROWS,COLS), SIGN, SUM, TINY/1.0e-20/, VV(50)

O O

EXECUTABLE CODE >

OO0 0

If the input matrix is not square then write a status message and
exit the program.

QOO0

IF (ROWS .NE. COLS) THEN
WRITE(6,*) * Error in MATLUD...,
& * Cannot decompose a nonsquare matrix. ’
CALL EXIT (0)
END IF

Decompose the input matrix into lower/upper (LU) form.

SIGN = 1.0

0 OO0

DO 1 = 1, ROWS
BIG = 0.0
DO J = 1, COLS
IF (ABS(M(1J)) .GT. BIG) BIG = ABS(M(1,J))
END DO
IF (BIG .EQ. 0.0) THEN
WRITE(6,*) * Error in MATLUD...
& ’ Matrix is singular.’
CALL EXIT (0)
END IF
VV() = 1.0 / BIG
END DO

DO J = 1, ROWS
IF (J .GT. 1) THEN
DOI = 1, J-1

SUM - M(L,J)

IF (I .GT. 1) THEN
DOK = 1, I]
SUM = SUM - M(LK) + M(K.JJ)
END DO
M(L,]) = SUM

END IF

END DO
END IF

BIG = 0.0
DO 1 = J, ROWS

SUM = M(1,J)

O O 0O 6

IF (J .GT. 1) THEN
DOK = 1, J-]
SUM = SUM - M(LK) + M(K+J)
END DO
M(L]) = SUM
END IF

9.

SRS

On 0O

SNOERE®

OOONOOOOOOOO0ONO 0

5,303,878
81

DUM = VV(I) * ABS(SUM)
IF (DUM .GT. BIG) THEN

BIG = DUM
IMAX = 1
END IF

END DO

IF (J NE. IMAX) THEN
DOK = 1, ROWS
DUM = M(IMAXK)
M(IMAX.K) = M(J,K)
M(J,K) = DUM
END DO
SIGN = -SIGN
VV(IMAX) = VV(J)
END IF

INDX(J) = IMAX

IF (J .LT. COLS) THEN
IF (M(@J,)) .EQ. 0.0) M(J,J) = TINY
DUM - 1.0 / M(J.J)
DO1 = J+1, ROWS
M(LJ) = M(LJ) * DUM
END DO
END IF

" END DO

I[F (M(ROWS,COLS) .EQ. 0.0) M(ROWS,COLS) = TINY

RETURN
END

SUBROUTINE MATLUB (M, ROWS, COLS, INDX, BCK)

NAME: MATLUB

FUNCTION: Lower/Uppér (LU) decomposed matrix backsubstitution

DESCRIPTION:
If the input matrix is not square Then
Write status message to the user.
Exit from the program.
End if input matrix is not square.
Perform the backsubstitution.

REFERENCES:

CALLING SEQUENCE: _
CALL MATLUB (M, ROWS, COLS, INDX, BCK)

82

. 5,303,878
83 84
INPUTS: |

M - Input matrix
ROWS, COLS - Matrix dimensions

OUTPUTS:

M - LU decomposition of the input matrix
INDX - Backsubstitution index vector

BCK - Backsubstitution vector for current row

EXTT - System exit routine

SIDE EFFECTS:
The input matrix must be an LU decomposed matrix.

TARGET PROCESSOR:
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

HISTORY:

C

C

C

C

C

C

C

C

C

C

cC

C DEPENDENCIES:
C

C

C

C

C

C

C

C

C

C 02/18/91 D. Van Rheeden Initial Release
C .

C

M

M

C
C Local Variables
C
C I, J Matrix/vector indexes
C I Nonzero backsubstitution sum index
C IP Pointer into the INDX vector
C SUM Intermediate sum
C
C—.
C
C Variable Declarations
C

IMPLICIT NONE
C

| INTEGER*2 COLS, I, II, IP, INDX(50), J, ROWS

C

REAL*4 BCK(50), M(ROWS,COLS), SUM
C
C
C »
C EXECUTABLE CODE | *
C x
C
C
C If the input matrix is not square then write a status message and
C exit the program.

IF (ROWS .NE. COLS) THEN
WRITE (6,*) ’ Error in MATLUB... ',
& ' Cannot do backsubstitution on a nonsquare matrix. ’
CALL EXIT (0)
END IF

C
C Perform the backsubstitution.
C

=20

5,303,878 |
85 | 86

DO I = 1, ROWS
IP = INDX(I)
SUM = BCK(IP)
BCK(IP) = BCK(I)
IF (Il .NE. 0) THEN
DO J. = II, I-1
SUM = SUM - M(LJ) * BCK(J)
END DO

ELSE IF (SUM .NE. 0.0) THEN
I =1
END IF
BCK(I) = SUM
END DO

DO 1 = ROWS, 1, -1
'SUM = BCK(])
IF (1.LT. ROWS) THEN
DOJ =1+1, COLS
SUM = SUM - M(1J) * BCK({J)
END DO
END IF
BCK(I) = SUM / M(1,1)
END DO

RETURN
END

C

C

C Texas Instruments
C TI INTERNAL DATA
C
C

» " » N

Property of Texas Instruments ONLY

W

C _
SUBROUTINE VECADD (V1, V2, SUM, COLS)

C

c

NAME: VECADD

FUNCTION: Adds two vectors.

C

C

C

C

C

C DESCRIFT'ION
C Sum = vector #1 + vector #2.
C

C

C

C

REFERENCES:
e
C
C CALLING SEQUENCE:
C CALL VECADD (V1, V2, SUM, COLS)
C
C INPUTS:
C V1, V2 - Input vectors
C COLS - Vector dimensions
C .
C OUTPUTS
C SUM - Qutput vector sum
C
C DEPENDENCIES:
C None

ANOO0ONO0 O O O0O00000O0O00O0O0O0O O0O0O00O000

@,

OOO0OO00O0O0O0O0O00000O00 000

5,303,878
87

SIDE EFFECTS:
None

TARGET PROCESSOR:

VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

HISTORY:
02/18/91 D. Van Rheeden Initial Release

Local Varables

I - Vector index

Variable Declarations

IMPLICIT NONE
INTEGER*2 COLS, 1

REAI *4 V1(COLS), V2(COLS), SUM(COLS)

EXECUTABLE CODE

Add the two input vectors.

DOI = 1, COLS
SUM(I) = Vi) + V2(I)
END DO

RETURN
END

SUBROUTINE VECSUB (V1, V2, DIFF, COLS)

NAME.: VECSUB

FUNCTION: Subtracts two vectors.

DESCRIPTION:
Difference = vector #1 - vector #2.

REFERENCES:

CALLING SEQUENCE:
CALL VECSUB (V1, V2, DIFF, COLS)

88

| 5,303,878
. 89 90
INPUTS: o
V1, V2 - Input vectors
COLS - Vector dimensions

OUTPUTS:
- DIFF - Output vector difference
DEPENDENCIES:
None
SIDE EFFECTS:
None
TARGET PROCESSOR:

VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219C

HISTORY:
02/18/91 D. Van Rheeden Initial Release

Local Vanables

Vector index

e YoXaloleloleleisieleXeeleXekeke 0OONO0N0

C
C Variable Declarations
C
' IMPLICIT NONE
C 0
INTEGER?*2 COLS, 1
C ' -
REAL*4 V1(COLS), V2(COLS), DIFF(COLS)

C_ | _
C *
C EXECUTABLE CODE *
C 3
C
C
C Subtract the two input vectors.
c .

DOI = 1, COLS

DIFF(I) = V1(I) - V2(I)

END DO
C |

RETURN

END
C
R U E——————
C o

SUBROUTINE VECMULT (V1, V2, PROD, COL], COL2)
C - -
o ——————————

'C NAME: VECMULT

C
C FUNCTION: Multiplies two vectors to give the inner product.
C DESCRIPTION:
C If inner vector dimensions do not match Then
C Write status message to the user.
C

Exit from the program.

| 5,303,878
o1 92
End if inner vector dimensions do not match.
Inner product = vector #1 (transposed) * vector #2.

C
C
C
C REFERENCES:
C
C

.

CALLING SEQUENCE:
CALL VECMULT (V1, V2, PROD, COL1, COL2)

INPUTS:
V1, V2 - Input vectors
COL1 - Input vector V1 dimensions
COL2 - Input vector V2 dimensions

OUTPUTS:
PROD - Output vector inner product

EXIT - System exit routine

SIDE EFFECTS:
None

TARGET PROCESSOR:
VAX 8000 series VMS 4.5, Fortran Compiler 4. S 219

HISTORY:

C

C

C

C

C

C

C

C

C

C

C

C

C DEPENDENCIES:
C

C

C

C

C

C

C

C

C .
C 02/18/91 D. Van Rheeden Initial Release
C .

C

.

C
C Local Variables
C |
C I Vector index
C
oI ————————
C
C Vanable Declarations
C

IMPLICIT NONE
C

INTEGER*2 COL1, COL2, 1
C

REAL*4 V1(COL1), V2(COL2), PROD
C
c
C . .
C EXECUTABLE CODE >
C »
c .
C

C If the vector dimensions do not agree, write a status message
C and exit the program.

C

IF (COL1 .NE. COL2) THEN

WRITE (6,*) ' Error in VECMULT...’,
& ' Vector dimensions do not agree. ’
CALL EXIT (0)
END IF

.),303,878
93 94

OO0

Multiply the two input vectors.

PROD = 0.0
DO = 1, COLI
PROD = PROD + Vi(I) * V2(I)
END DO

®

RETURN
END

C

c

C
C

SUBROUTINE MVMULT (M, V, PROD, ROW1, COL1, COL2)

NAME: ~ MVMULT

FUNCTION: Multiplies a matrix by a vector.

DESCRIPTION:
If matrix colt- 1 dimension does not match vector
dimension Then
Write status message to the user.
Exit from the program.
‘End if dimensions do not match.
Product = matrix * vector.

\

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C REFERENCES:
C

CALLING SEQUENCE:

CALL MVMULT (M, V, PROD, ROW1, COL1, COL2)
INPUTS: |

M - Input matrix

Vv - Input vector

ROW1, COL1 - Input matrix M dimensions

COlL2 - Input vector V dimensions

C

C

C

C

C

C

C

C

C

C .
C OUTPUTS: _

C PROD - Outputvector =M *V
C

C DEPENDENCIES:

C EXIT - System exit routine
C
C
C
C
C
C
C
C

SIDE EFFECTS:
None

TARGET PROCESSOR:
VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219

HISTORY: _
02/18/91 D. Van Rheeden Imitial Release

me

C
C
C
C
C Local Variables
C

5,303,878

95 | 96

C 1] Matrix/vector index
C SUM Product accumulator
C
C .
C
C Variable Declarations
C

IMPLICIT NONE
C

INTEGER*2 COL1, COL2 1. J, ROWI
C

REAL*4 - M(ROW1,COL1), V(COL2), PROD(ROW1), SUM
C
C
C
C EXECUTABLE CODE
C

C

C |

C If the matrix column dimension do not match the vector
C dimension, write a status message and exit the program.
e _
C
C

IF (COL1 .NE. COL2) THEN
WRITE (6,*) ’ Error in MVMULT...’,
& * Matrix column and vector dimensions do not agree.’
CALL EXIT (0)
END IF

Multiply the input matrix by the input vector.

OO0

DO1 = 1, ROW1
SUM = 0.0
DOJ = 1, COL1
SUM = SUM + M(LJ) * V(J)
END DO
PROD(I) = SUM
END DO

@

RETURN
END

SUBROUTINE VMMULT (V, M, PROD, ROW], ROW2, COL2)

NAME: VMMULT
FUNCTION: Multiplies a vector by a matrix.

DESCRIPTION:

If vector dimension does not match matrix row dimension C Then
Write status message to the user.
Exit from the program.
End if dimensions do not match.

Product = vector * matrix.

REFERENCES:

OOOOOO0O0OO0O0O0O00O00 0000

5,303,878
97 _ , J 98

CALLING SEQUENCE: '
CALL VMMULT (V, M, PROD, ROW1, ROW2, COL2)

INPUTS:

V - Input vector

M - Input matrix

ROWI1 - Input vector V dimension

ROW 2, COL2 - Input matrix M dimensions
OUTPUTS: o

PROD - Output vector = VI * M
DEPENDENCIES:

EXIT - System exit routine
SIDE EFFECTS:

None
TARGET PROCESSOR:

VAX 8000 series VMS 4.5, Fortran Compiler 4.5-219
HISTORY: |

02/18/91 D. Van Rheeden Initial Release

Local Vanables

I,] Matrix/vector indexes
SUM Product accumulator

Variable Declarations
~ IMPLICIT NONE
INTEGER*2 COL2, 1, J, ROW1, ROW2
REAL*4 V(ROW1), M(ROW2,COL2), PROD(COL2), SUM

A OO O0OO0OOONOONNONNNNNNNNN OODANNNNONONOON

C - e
C EXECUTABLE CODE
C
C
C If the vector dimension does not match the matrix row C dimension, then write a status
C message and exit the program.
C
g |
IF (ROW1 NE. ROW2) THEN
ITE (6,*) ' Error in VMMULT...’ |
& ’Vector dimension does not agree with matrix” row dimension.’
CALL EXIT (0) '
- END IF
C Multiply the input vector by the input matrix.
C
DOJ =1, COL2
SUM = 0.0
DOI = 1, ROW1
SUM = SUM + V(1) * M(1,J)

END DO
C _

PROD(J) = SUM
- END DO

RETURN
END

5,303,878

99

Although the present invention and its advantages
have been described in detail, it should be understood
that various changes, substitutions and alterations can
be made herein without departing from the spirit and

scope of the invention as defined by the appended
claims.

What is claimed is:
1. A method for estimating the location of an aim-
point on an elongate target comprising the steps of:

acquiring an aimpoint and a set of related subimages
on an elongate target at a first time with a sensor;

calculating the normalized distance in a first dimen-
sion dx and in a second dimension d, from each
subimage to the aimpoint;

at a second time reacquiring at least one of the subim-
ages at an image position (X,y); and

estimating the position of the aimpoint at an aimpoint

image position (x4y4) wherein the position (x,y) of

each subimage at the second time is related to the
aimpoint position (x4,y4) by the formulas:

x=xA+Modx+bdxdy
y=ya+Mody-+ bdyz

where M, b are constants determined at each peri-
odic time.

2. The method of claim 1 wherein said estimating step
further comprises the step of calculating the subsequent
location of the aimpoint using a least squares technique
on a matrix of normalized subimage distances.

3. The method of claim 1 wherein said selecting step
further comprises the step of selecting a subimage using
the criteria of subimage contrast.

4. The method of claim 1 wherein said selecting step
further comprises the step of selecting a subimage using
the criteria of subimage brightness.

5. A tracker for tracking the location of an aimpoint
on an elongate target comprising:

an aimpoint designator for establishing an aimpoint at

an image position (x4, Y4) on an elongate target;

a sensor for periodically acquiring a set of subimages

at an image position (x,y) arbitrarily associated
with the aimpoint;

a normalized distance calculator responsive to the

10

15

20

25

30

33

45

50

33

.65

100

aimpoint designator and the sensor for calculating
the distance in a first dimension dx and in a second
dimension d, from each subimage of a first set of
subimages from the established aimpoint;

a processor coupled to the aimpoint designator, the

sensor and the normalized distance calculator for

periodically estimating the subsequent location of
the aimpoint based upon the formulas:

I=IA+Mﬂx+bdxdy |
y=ya+Mody+bd)?

where Mg and b are constants determined at each
periodic time; and

memory for storing the normalized distances.

6. The guidance system of claim §, further comprising
a control system for moving the sensor towards each of
the subsequent locations of the aimpoint.

7. A missile comprising:

an almpomt designator for establishing an aimpolnt at
an image position (x4, y4) on an elongate target;

a sensor for periodically acquiring a set of subimages
at an image position (x,y) arbitrarily associated
with the aimpoint;

a normalized distance calculator responsive to the
aimpoint designator and the sensor for calculating
the distance in a first dimension dx and 1n a second
dimension dy, from each subimage of a first set of
subimages from the established aimpoint:

a processor coupled to the aimpoint designator, the
sensor and the normalized distance calculator for
periodically estimating the subsequent location (X4,
y 4) of the aimpoint based upon the formulas:

x—_—x,{‘*‘Mgdx-I'bdxdy
y=yA+Mgdy+bdy2 |

where Mg and b are constants determined at each
periodic time;

memory coupled to the processor for storing the
normalized distances;

movable fins for guiding the missile responsive to the
estimated aimpoints; and -

a motor for propelling the missile.

* X% * x %

	Front Page
	Drawings
	Specification
	Claims

