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ABSTRACT

A computer system in a fault-tolerant configuration
employs multiple identical CPUs executing the same

‘instruction stream, with multiple, identical memory

modules in the address space of the CPUs storing dupli-

cates of the same data. The system detects faults in the

CPUs and memory modules, and places a faulty unit
offline while continuing to operate using the good units.
The faulty unit can be replaced and reintegrated into
the system without shutdown. The multiple CPUs are
loosely synchronized, as by detecting events such as
memory references and stalling any CPU ahead of oth-
ers until all execute the function simultaneously; inter-

- rupts can be synchronized by ensuring that all CPUs

implement the interrupt at the same point in their in-
struction stream. Memory references via the separate
CPU-to-memory busses are voted at the three separate
ports of each of the memory modules. 1/0 functions are
implemented using two identical 1/0O busses, each of

- which is separately coupled to only one of the memory

modules. A number of 1/O processors are coupled to

‘both 1/0 busses. 1/0 devices are accessed through a

pair of identical (redundant) 1/O processors, but only

-one 1s designated to actively control a given device: in
case of failure of one 1/0 processor, however, an I/0

L
'
L]
1
i

~device can be accessed by the other one without system

shutdown.

29 Claims, 11 Drawing Sheets
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1

FAULT-TOLERANT COMPUTER SYSTEM WITH
ONLINE RECOVERY AND REINTEGRATION OF
~ REDUNDANT COMPONENTS

RELATED CASES

This application is a continuation-in-part of applica-
tion Ser. No. 07/455,218, now abandoned, filed Dec. 22,
- 1989. -

This application discloses subject matter also dis-
closed in copending U.S. patent applications Ser. Nos.
07/455,127, now abandoned and 07/455,065, now aban-
doned, filed Dec. 22, 1989, Ser. Nos. 282,469 , 282,538
now abandoned, 282,540, now abandoned, 282,629, now

abandoned, 283,139, now abandoned, and 283,141, now

abandoned, filed Dec. 9, 1988, and Ser. Nos. 283,573
now U.S. Pat. No. 4,965,717 and 283,574, now aban-
doned, filed Dec. 13, 1988, and further discloses subject
matter also disclosed in prior copending application
Ser. No. 118,503, filed Nov. 9, 1987, now abandoned, all
of said applications being assigned to Tandem Comput-
ers Incorporated, the assignee of this invention.

BACKGROUND OF THE INVENTION

This invention relates to computer systems, and more
particularly to detection and reintegration of faulty
components in a fault-tolerant multiprocessor system.

Highly reliable digital processing is achieved in vari-
ous computer architectures employing redundancy. For
example, TMR (triple modular redundancy) systems
may employ three CPUs executing the same instruction

stream, along with three separate main memory units
~ and separate 1/0 devices which duplicate functions, so
if one of each type of element fails, the system continues
to operate. Another fault-tolerant type of system is
shown in U.S. Pat. No. 4,228,496, issued to Katzman et
al, for “Multiprocessor System”, assigned to Tandem
Computers Incorporated. Various methods have been
used for synchronizing the units in redundant systems;
for example, in said prior application Ser. No. 118,503,
filed Nov. 9, 1987, by R. W. Horst, for “Method and
Apparatus for Synchronizing a Plurality of Proces-
sors”, also assigned to Tandem Computers Incorpo-
rated, a method of “loose” synchronizing is disclosed, in
contrast to other systems which have employed a lock-
step synchronization using a single clock, as shown in
U.S. Pat. No. 4,453,215 for “Central Processing Appa-
ratus for Fault-Tolerant Computing”, assigned to Stra-
tus Computer, Inc. A technique called “synchronization
voting” is disclosed by Davies & Wakerly in “Synchro-
nization and Matching in Redundant Systems”, IEEE
Transactions on Computers June 1978, pp. 531-539. A
method for interrupt synchronization in redundant
fault-tolerant systems is disclosed by Yondea et al in
Proceeding of 15th Annual Symposium on Fault-Toler-
ant Computing, June 1985, pp. 246-251, “Implementa-

tion of Interrupt Handler for Loosely Synchronized

TMR Systems”. U.S. Pat. No. 4,644,498 for “Fault-Tol-
erant Real Time Clock” discloses a triple modular re-
dundant clock configuration for use in a TMR com-
puter system. U.S. Pat. No. 4,733,353 for “Frame Syn-
chronization of Multiply Redundant Computers” dis-
closes a synchronization method using separately-
clocked CPUs which are periodically synchronized by
executing a synch frame. :
As high-performance microprocessor devices have
become available, using higher clock speeds and pro-
viding greater capabilities, and as other elements of
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computer systems such as memory, disk drives, and the
like have correspondingly become less expensive and of
greater capability, the performance and cost of high-
rehability processors have been required to follow the
same trends. In addition, standardization on a few oper-
ating systems in the computer industry in general has
vastly increased the availability of applications soft-
ware, so a similar demand is made on the field of high-
reliability systems; i.e., a standard operating system
must be available.

It 1s therefore the principal object of this invention to
provide an improved high-reliability computer system,
particularly of the fault-tolerant type. Another object is
to provide an improved redundant, fault-tolerant type
of computing system, and one in which high perfor-
mance and reduced cost are both possible; particularly,
it is preferable that the improved system avoid the per-
formance burdens usually associated with highly redun-
dant systems. A further object is to provide a high-relia-
bility computer system in which the performance, mea-
sured in reliability as well as speed and software com-
patibility, is improved but yet at a cost comparable to
other alternatives of lower performance. An additional
object is to provide a high-reliability computer system
which is capable of executing an operating system
which uses virtual memory management with demand
paging, and having protected (supervisory or “kernel”)
mode; particularly an operating system also permitting
execution of multiple processes; all at a high level of
performance. Still another object is to provide a high-
reliability redundant computer system which is capable
of detecting faulty system components and placing
them off-line, then reintegrating repaired system com-
ponents without shutting down the system.

SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention,
a computer system employs three identical CPUs typi-
cally executing the same instruction stream, and has two
identical, self-checking memory modules storing dupli-
cates of the same data. Memory references by the three
CPUs are made by three separate busses connected to
three separate ports of each of the two memory mod-
ules. In order to avoid imposing the performance bur-
den of fault-tolerant operation on the CPUs themselves,
and imposing the expense, complexity and timing prob-
lems of fault-tolerant clocking, the three CPUs each
have their own separate and independent clocks, but are
loosely synchronized, as by detecting events such as
memory references and stalling any CPU ahead of oth-
ers until all execute the function simultaneously; the
interrupts are also synchronized to the CPUs ensuring
that the CPUs execute the interrupt at the same point in
their instruction stream. The three asynchronous mem-
ory references via the separate CPU-to-memory busses
are voted at the three separate ports of each of the
memory modules at the time of the memory request, but
read data 1s not voted when returned to the CPUs.

The two memories both perform all write requests
received from either the CPUs or the I/0 busses, so that
both are kept up-to-date, but only one memory module
presents read data back to the CPUs in response to read
requests; the one memory module producing read data
1s designated the “primary” and the other is the back-
up. Both memories present read data back to the 1/0
processors (IOP’s) in response to I/O requests. The
memory requests to the two memory modules are im-
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plemented while the voting is still going on, so the read
data is available to the CPUs a short delay after the last
one of the CPUs makes the request. Even write cycles

can be substantially overlapped because DRAMSs used
for these memory modules use a large part of the write
access to merely read and refresh, then if not strobed for
the last part of the write cycle the read is non-destruc-
tive, therefore, a write cycle begins as soon as the first
CPU makes a request, but does not complete until the
last request has been received and voted good. These
features of non-voted read-data returns and overlapped
accesses allow fault-tolerant operation at high perfor-
mance, but yet at minimum complexity and expense.
170 functions are implemented using two identical
1/0 busses, each of which is separately coupled to only
one of the memory modules. A number of I/0O proces-
sors are coupled to both I/0 busses, and I/0 devices
are coupled to pairs of the 1/0 processors but accessed
by only one of the I/0 processors at a time. The CPUs
can access the I/O processors through the memory
modules (each access being voted just as the memory
accesses are voted), but the I/O processors can only
access the memory modules, not the CPUs; the 1/0

processors can only send interrupts to the CPUs, and.

these interrupts are collected in the memory modules
before being presented to the CPUs. If an I/0 processor
fails, the other one of the pair can take over control of
the I/0 devices for this I/0 processor via system soft-
ware by manipulating certain control registers resident
on the CPU, memory modules, and remaining 1/0 pro-
cessor and by altering operating system data structures.
In this manner, fault tolerance and reintegration of an
170 device is possible without system shutdown.

The memory system used in the preferred embodi-
ments 1s hierarchical at several levels. Each CPU has its
own cache, operating at essentially the clock speed of
the CPU. Then each CPU has a local memory not ac-
cessible by the other CPUs, and virtual memory man-
agement allows but does not require the kernel of the
operating system and pages for the current task to be in
local memory for all three CPUs, accessible at high
speed without overhead of voting imposed. Next is the
memory module level, referred to as global memory,
where voting and synchronization take place so some
access-time burden is introduced; nevertheless, the
speed of the global memory is much faster than disk
access, so this level is used for page swapping with local
memory to keep the most-used data in the fastest area,
rather than employing disk for the first level of demand
paging. Global memory is also used as a staging area for
DMA accesses from 1/0 controllers.

One of the features of the disclosed embodiment of
the invention is the ability to replace faulty redundant
units or FRU’s (CPUs, Memory Modules, I0Ps, Bat-
tery Modules, 1/0 Controllers, etc.) without shutting
down the system. Thus, the system is available for con-
tinuous use even though components may fail and have
to be replaced. In addition, the ability to obtain a high
level of fault tolerance with fewer system components,
e.g., no fault-tolerant clocking needed, only two mem-
ory modules needed instead of three, voting circuits
minimized, etc., means that there are fewer components
to fail, and so the reliability is enhanced. That is, there
are fewer failures because there are fewer components,
and when there are failures to components are isolated
to allow the system to keep running, while the compo-
nents can be replaced without system shut-down.
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The system in a preferred embodiment provides a
high degree of fault tolerance and data integrity for
applications that require very high system availability.

 Fault tolerance is achieved through a combination of

redundant processors and memory along with dual I/0
and mass storage systems (including mirrored disk vol-
umes, for example), and redundant uninterruptable
power supplies with redundant battery backup. Failure
detection and methods for disabling and reintegrating
modules permit continued operation without compro-
mising data integrity during the presence of hardware
faults.

Before a replacement module is reintegrated, the
condition of the replacement may be verified by run-
ning a power-on self-test on that module and then per-
forming module-dependent synchronization activites
including: (1) for CPUs, the current state of the two
good CPU modules is saved and all three modules are
synchronized to begin executing the same instruction
stream out of global memory, this instruction stream
being a copy routine that reads the local memory con-
tents of the two good CPUs to global memory and then
writes the local memory data back to all three CPUs; (2)
for memory modules, a replacement module is reinte-
grated by copying the contents of the good memory to
local memory on the CPUs and recopying those con-
tents back to both memory modules, this function being

- performed in block transfers and time shared with nor-
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mal system processing, while any CPU or 1/0 proces-
sor writes that occur during the reintegrated are also
performed on both memory modules; (3) an I/0 proces-
sor 1s reintegrated by initializing the I/O processor
registers and interfaces on the new I/0 processor, then
reassigning I/O controllers to the replacement 1/0
processor; (4) reintegration of replacement 1/0 control-
lers involves powering up, assignment to an I/O proces-
sor, and reinitializing host and controller data struc-
tures; (5) reintegration of I/0 devices involves device-
specific activities performed by the operating system
device drivers assigned to the I/0 controller to which
the device is attached (and possibly user level software).

The system can continue to function in the presence
of multiple hardware faults as long as the following
minimum configuration is maintained: (1) two of three
CPUs; (2) one of two memory modules; (3) one of the
170 processors; (4) one of its disk subsystems; and (5)
the appropriate power subsystem modules to support
the above configuration.

A fault monitoring and detection system may be used
for detecting corrupted data and automatically inhibit-
ing permanent storage of corrupted data. A variety of
fault detection mechanisms are used in the system in-
cluding: (1) replicated operations (in CPU and memory
areas) are voted to reduce number of checking circuits
needed to ensure high data integrity; (2) error detecting
codes may be used for data storage and transfer (in-
cludes parity, checksums on blocks of data, etc.); (3)
checks on timing of communications between hardware
modules (requests for service are monitored and timed
and status reported); (4) self checking circuits are used;
(5) soft errors are monitored and reported.

BRIEF DESCRIPTION OF THE DRAWINGS

The features believed characteristic of the invention
are set forth in the appended claims. The invention
itself, however, as well as other features and advantages
thereof, may best be understood by reference to the
detailed description of a specific embodiment which
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follows, when read in conjunction with the accompany-
ing drawings, wherein:

FIG. 1 is an electrical diagram in block form of a
computer system according to one embodiment of the
invention; |

FIG. 2 is an electrical schematic diagram in block
form of one of the CPUs of the system of FIG. 1:

FIG. 3 is an electrical schematic diagram in block

form of one of the microprocessor chips used in the .

CPU of FIG. 2

F1G. 4 is an electrical schematic diagram in block
form of one of the memory modules in the computer
system of FIG. 1; |

FI1G. § is a timing diagram showing events occurring
on the CPU to memory busses in the system of FIG. 1;

FIG. 6 is an electrical schematic diagram in block
form of one of the I/0 processors in the computer sys-
tem of FIG. 1;

FIG. 7 is a timing diagram showing events vs. time
for the transfer protocol between a memory module and
an I/0 processor in the system of FIG. 1;

FIG. 8 is an electrical schematic diagram in block

form of the interrupt synchronization circuit used in the
CPU of FIG. 2; |

FIG. 9 1s a physical memory map of the memories
used in the system of FIGS. 1, 2, 3 and 4:

FIG. 10 is a virtual memory map of the CPUs used in
the system of FIGS. 1, 2, 3 and 4:

FIG. 11 is a diagram of the format of the virtual
address and the TLB entries in the microprocessor
chips in the CPU according to FIG. 2 or 3;

FIG. 12 1s an illustration of the private memory loca-
tions in the memory map of the global memory modules
in the system of FIGS. 1, 2, 3 and 4;

F1G. 13 is a schematic diagram in block form of the
system of one embodiment of the invention including a
fault-tolerant power supply;

FIG. 14 is a flow chart showing the process of detect-

Ing an error, isolating the error to a faulty module and

placing the module offline; and
FIG. 15 is a flow chart showing the system recovery
process when a replacement module is installed.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENT

With reference to FIG. 1, a computer system using
features of the invention is shown in one embodiment
having three identical processors 11, 12 and 13, referred
to as CPU-A, CPU-B and CPU-C, which operate as one
logical processor, all three typically executing the same
instruction stream; the only time the three processors
are not executing the same instruction stream is in such
operations as power-up self test, diagnostics and the
like. The three processors are coupled to two memory
modules 14 and 18, referred to as Memory-#1 and
Memory-#2, each memory storing the same data in the
same logical address space. In a preferred embodiment,
each one of the processors 11, 12 and 13 contains its
own local memory 16, as well, accessible only by the
processor containing this memory.

Each one of the processors 11, 12 and 13, as well as
each one of the memory modules 14 and 185, has its own
separate clock oscillator 17; in this embodiment, the
processors are not run in “lock step”, but instead are
loosely synchronized by a method such as is set forth in
the above-mentioned application Ser. No. 118,503, i.e.,
using events such as external memory references to
bring the CPUs into synchronization. External inter-
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rupts are synchronized among the three CPUs by a
technique employing a set of busses 18 for coupling the
interrupt requests and status from each of the processors
to the other two; each one of the processors CPU-A,
CPU-B and CPU-C is responsive to the three interrupt
requests, its own and the two received from the other
CPUs, to present an interrupt to the CPUs at the same
point in the execution stream. The memory modules 14
and 15 vote the memory references, and allow a2 mem-
ory reference to proceed only when all three CPUs
have made the same request (with provision for faults).
In this manner, the processors are synchronized at the
time of external events (memory references), resulting
in the processors typically executing the same instruc-
tion stream, in the same sequence, but not necessarily
during aligned clock cycles in the time between syn-
chronization events. In addition, external interrupts are
synchronized to be executed at the same point in the
instruction stream of each CPU.

The CPU-A processor 11 is connected to the Memo-
ry-#1 module 14 and to the Memory-#2 module 15 by
a bus 21; likewise the CPU-B is connected to the mod-
ules 14 and 15 by a bus 22, and the CPU-C is connected
to the memory modules by a bus 23. These busses 21, 22,
23 each include a 32-bit multiplexed address/data bus, a
command bus, and control lines for address and data
strobes. The CPUs have control of these busses 21, 22
and 23, so there is no arbitration, or bus-request and
bus-grant.

Each one of the memory modules 14 and 15 is sepa-
rately coupled to a respective input/output bus 24 or 25,
and each of these busses is coupled to two (or more)
input/output processors 26 and 27. The system can have
multiple I/0O processors as needed to accommodate the
1/0 devices needed for the particular system configura-
tion. Each one of the input/output processors 26 and 27
is connected to a bus 28, and each bus 28 is connected to
one or more bus interface modules 29 for interface with
a standard 1/0 controller 30 which may be of the
VMEDbus TM type. Each bus interface module 29 is
connected to two of the busses 28, so failure of one 1/0
processor 26 or 27, or failure of one of the bus channels
28, can be tolerated. The 1/0 processors 26 and 27 can
be addressed by the CPUs 11, 12 and 13 through the
memory modules 14 and 15, and can signal an interrupt
to the CPUs via the memory modules. Disk drives,
terminals with CRT screens and keyboards, and net-
work adapters, are typical peripheral devices operated
by the controllers 30. The controllers 30 may make
DMA-type references to the memory modules 14 and
15 to transfer blocks of data. Each one of the 1/0 pro-
cessors 26, 27, etc., has certain individual lines directly
connected to each one of the memory modules for bus
request, bus grant, etc.; these point-to-point connections
are called “radials” and are included in a group of radial
lines 31. |

A system status bus 32 is individually connected to
each one of the CPUs 11, 12 and 13, to each memory
module 14 and 15, and to each of the 1/0 processors 26
and 27, for the purpose of providing information on the
status of each element. This status bus provides informa-
tion about which of the CPUs, memory modules and
I/0 processors is currently in the system and operating
properly. | |

An acknowledge/status bus 33 connecting the three

CPUs and two memory modules includes individual

lines by which the modules 14 and 15 send acknowledge

-signals to the CPUs when memory requests are made by
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the CPUs, and at the same time a status field is sent to
report on the status of the command and whether it
executed correctly. The memory modules not only
check parity on data read from or written to the global
memory, but also check parity on data passing through
the memory modules to or from the 1/0 busses 24 and
25, as well as checking the validity of commands. It is
through the status lines in bus 33 that these checks are
reported to the CPUs 11, 12 and 13, so if errors occur a

fault routine can be entered to isolate a faulty compo-
nent. '

Even though both memory modules 14 and 15 are
storing the same data in global memory, and operating
to perform every memory reference in duplicate, one of
these memory modules is designated as primary and the
other as back-up, at any given time. Memory write
operations are executed by both memory modules so
both are kept current, and also a memory read operation
1s executed by both, but only the primary module actu-
ally loads the read-data back onto the busses 21, 22 and
23, and only the primary memory module controls the
arbitration for multi-master busses 24 and 25. To keep
the primary and back-up modules executing the same
operations, a bus 34 conveys contro! information from
primary to back-up. Either module can assume the role
of primary at boot-up, and the roles can switch during
operation under software control; the roles can also
switch when selected error conditions are detected by
the CPUs or other error-responsive parts of the system.

Certain interrupts generated in the CPUs are also
voted by the memory modules 14 and 15. When the
CPUs encounter such an interrupt condition (and are
not stalled), they signal an interrupt request to the mem-
ory modules by individual lines in an interrupt bus 35, so
the three interrupt requests from the three CPUs can be
voted. When all interrupts have been voted, the mem-
ory modules each send a voted-interrupt signal to the
three CPUs via bus 35. This voting of interrupts also
functions to check on the operation of the CPUs. The
three CPUs synch the voted interrupt CPU interrupt
signal via the inter-CPU bus 18 and present the inter-
rupt to the processors at a common point in the instruc-
tion stream. This interrupt synchronization is accom-
plished without stalling any of the CPUs.

CPU Module:

Referring now to FIG. 2, one of the processors 11, 12
or 13 1s shown in more detail. All three CPU modules
are of the same construction in a preferred embodiment,
so only CPU-A will be described here. In order to keep
costs within a competitive range, and to provide ready
access to already-developed software and operating
systems, it is preferred to use a commercially-available
microprocessor chip, and any one of a number of de-
vices may be chosen. The RISC (reduced instruction
set) architecture has some advantage in implementing
the loose synchronization as will be described, but
more-conventional CISC (complex instruction set) mi-
croprocessors such as Motorola 68030 devices or Intel
80386 devices (available in 20-Mhz and 25-Mhz speeds)
could be used. High-speed 32-bit RISC microprocessor
devices are available from several sources in three basic
types; Motorola produces a device as part number
88000, MIPS Computer Systems, Inc. and others pro-
duce a chip set referred to as the MIPS type, and Sun
Microsystems has announced a so-called SPARC ™
type (scalable processor architecture). Cypress Semi-
conductor of San Jose, Calif,, for example, manufac-
tures a microprocessor referred to as part number

10

15

20

25

30

35

45

50

55

635

8
CY7C601 providing 20-MIPS (million instructions per
second), clocked at 33-MHz, supporting the SPARC
standard, and Fujitsu manufactures a CMOS RISC
microprocessor, part number S-25, also supporting the
SPARC standard.

The CPU board or module in the illustrative embodi-
ment, used as an example, employs a microprocessor
chip 40 which 1s in this case an R2000 device designed
by MIPS Computer Systems, Inc., and also manufac-

tured by Integrated Device Technology, Inc. The
R2000 device is a 32-bit processor using RISC architec-

ture to provide high performance, e.g., 12-MIPS at
16.67-MHz clock rate. Higher-speed versions of this
device may be used instead, such as the R3000 that
provides 20-MIPS at 25-MHz clock rate. The processor
40 also has a co-processor used for memory manage-
ment, including a translation lookaside buffer to cache
translations of logical to physical addresses. The proces-
sor 40 1s coupled to a local bus having a data bus 41, an
address bus 42 and a control bus 43. Separate instruction
and data cache memories 44 and 45 are coupled to this
local bus. These caches are each of 64K-byte size, for
example, and are accessed within a single clock cycle of
the processor 40. A numeric or floating point co-proces-
sor 46 1s coupled to the local bus if additional perfor-
mance 15 needed for these types of calculations: this
numeric processor device is also commercially available
from MIPS Computer Systems as part number R2010.
The local bus 41, 42, 43, is coupled to an internal bus
structure through a write buffer 50 and a read buffer 51.
The write buffer is a commercially available device,
part number R2020, and functions to allow the proces-
sor 40 to continue to execute Run cycles after storing
data and address in the write buffer 50 for a write opera-

tion, rather than having to execute stall cycles while the

write is completing.

In addition to the path through the write buffer 50, a
path is provided to allow the processor 40 to execute
write operations bypassing the write buffer 50. This
path is a write buffer bypass 52 allows the processor,
under software selection, to perform synchronous
writes. If the write buffer bypass 52 is enabled (write
buffer 50 not enabled) and the processor executes a
write then the processor will stall until the write com-
pletes. In contrast, when writes are executed with the
write buffer bypass 52 disabled the processor will not
stall because data is written into the write buffer 50
(unless the write buffer is full). If the write buffer 50 is
enabled when the processor 40 performs a write opera-
tion, the write buffer 50 captures the output data from
bus 41 and the address from bus 42, as well as controls
from bus 43. The write buffer 50 can hold up to four
such data-address sets while it waits to pass the data on
to the main memory. The write buffer runs synchro-
nously with the clock 17 of the processor chip 40, so the
processor-to-buffer transfers are synchronous and at the
machine cycle rate of the processor. The write buffer 50
signals the processor if it is full and unable to accept
data. Read operations by the processor 40 are checked
against the addresses contained in the four-deep write
buffer §0, so if a read is attempted to one of the data
words waiting in the write buffer to be written to mem-
ory 16 or to global memory, the read is stallied until the
write is completed.

The write and read buffers 50 and 51 are coupled to
an internal bus structure having a data bus 53, an ad-
dress bus 54 and a control bus 55. The local memory 16
1s accessed by this internal bus, and a bus interface 56
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coupled to the internal bus is used to access the system
bus 21 (or bus 22 or 23 for the other CPUs). The sepa-
rate data and address busses 53 and 54 of the internal bus
(as denived from busses 41 and 42 of the local bus) are
converted to a multiplexed address/data bus 57 in the
system bus 21, and the command and control lines are

correspondingly converted to command lines 58 and
~control lines 59 in this external bus.

The bus interface unit 56 also receives the
acknowledge/status lines 33 from the memory modules

14 and 15. In these lines 33, separate status lines 33-1 or

33-2 are coupled from each of the modules 14 and 15, so
the responses from both memory modules can be evalu-
ated upon the event of a transfer (read or write) be-
tween CPUs and global memory, as will be explained.

The local memory 16, in one embodiment, comprises
about 8-Mbyte of RAM which can be accessed in about
three or four of the machine cycles of processor 40, and
this access is synchronous with the clock 17 of this
CPU, whereas the memory access time to the modules
14 and 15 is much greater than that to local memory,
and this access to the memory modules 14 and 15 is
asynchronous and subject to the synchronization over-
head imposed by waiting for all CPUs to make the
request then voting. For comparison, access to a typical
commercially-available disk memory through the 1/0
processors 26, 27 and 29 is measured in milliseconds,
1.e., considerably slower than access to the modules 14
and 15. Thus, there is a hierarchy of memory access by
the CPU chip 40, the highest being the instruction and
data caches 44 and 45 which will provide a hit ratio of
perhaps 95% when using 64-KByte cache size and suit-
able fill algorithms. The second highest is the local
memory 16, and again by employing contemporary
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virtual memory management algorithms a hit ratio of 35

perhaps 95% is obtained for memory references for
which a cache miss occurs but a hit in local memory 16
1s found, in an example where the size of the local mem-
ory i1s about 8-MByte. The net result, from the stand-
point of the processor chip 40, is that perhaps greater
than 99% of memory references (but not 1/Q refer-
-ences) will be synchronous and will occur in either the
same machine cycle or in three or four machine cycles.

The local memory 16 is accessed from the internal
bus by a memory controller 60 which receives the ad-
dresses from address bus 54, and the address strobes
from the control bus 55, and generates separate row and
column addresses, and RAS and CAS controls, for
example, if the local memory 16 employs DRAMs with
multiplexed addressing, as is usually the case. Data is
written to or read from the local memory via data bus
53. In addition, several local registers 61, as well as
non-volatile memory 62 such as NVRAMs, and high-
speed PROMs 63, as may be used by the operating
system, are accessed by the internal bus; some of this
part of the memory is used only at power-on, some is
used by the operating system and may be almost contin-
uously within the cache 44, and other may be within the
- non-cached part of the memory map.

External interrupts are applied to the processor 40 by
one of the pins of the control bus 43 or 55 from an
interrupt circuit 65 in the CPU module of FIG. 2. This
type of interrupt is voted in the circuit 65, so that before
an interrupt is executed by the processor 40 it is deter-
mined whether or not all three CPUs are presented with
the interrupt; to this end, the circuit 65 receives inter-
rupt pending inputs 66 from the other two CPUs 12 and
13, and sends an interrupt pending signal to the other
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two CPUs via line 67, these lines being part of the bus 18
connecting the three CPUs 11, 12 and 13 together. Also,
for voting other types of interrupts, specifically CPU-
generated interrupts, the circuit 65 can send an interrupt
request from this CPU to both of the memory modules
14 and 15 by a line 68 in the bus 35, then receive sepa-
rate voted-interrupt signals from the memory modules
via lines 69 and 70; both memory modules will present
the external interrupt to be acted upon. An interrupt
generated in some external source such as a keyboard or
disk drive on one of the 1/0 channels 28, for example,
will not be presented to the interrupt pin of the chip 40
from the circuit 65 until each one of the CPUs 11, 12
and 13 1s at the same point in the instruction stream, as
will be explained.

Since the processors 40 are clocked by separate clock
osciliators 17, there must be some mechanism for peri-
odically bringing the processors 40 back into synchroni-
zation. Even though the clock oscillators 17 are of the
same nominal frequency, e.g., 16.67-MHz, and the toler-
ance for these devices is about 25-ppm (parts per mil-
hon), the processors can potentially become many cy-
cles out of phase unless periodically brought back into
synch. Of course, every time an external interrupt oc-
curs the CPUs will be brought into synch in the sense of
being interrupted at the same point in their instruction
stream (due to the interrupt synch mechanism), but this
does not help bring the cycle count into synch. The
mechanism of voting memory references in the memory
modules 14 and 15 will bring the CPUs into synch (in
real time), as will be explained. However, some condi-
tions result in long periods where no memory reference
occurs, and so an additional mechanism is used to intro-
duce stall cycles to bring the processors 40 back into
synch. A cycle counter 71 is coupled to the clock 17 and
the control pins of the processor 40 via control bus 43 to
count machine cycles which are Run cycles (but not
Stall cycles). This counter 71 includes a count register
having a maximum count value selected to represent the
period during which the maximum allowable drift be-
tween CPUs would occur (taking into account the spec-
ified tolerance for the crystal oscillators); when this
count register overflows action is initiated to stall the
faster processors until the slower processor or proces-
sors catch up. This counter 71 is reset whenever a syn-
chronization is done by a memory reference to the
memory modules 14 and 15. Also, a refresh counter 72
1s employed to perform refresh cycles on the local mem-
ory 16, as will be explained. In addition, a counter 73
counts machine cycle which are Run cycles but not
Stall cycles, like the counter 71 does, but this counter 73

'1s not reset by a memory reference; the counter 73 is
used for interrupt synchronization as explained below,

and to this end produces the output signals CC-4 and
CC-8 to the interrupt synchronization circuit 65.

‘The processor 40 has a RISC instruction set which
does not support memory-to-memory instructions, but
Instead only memory-to-register or register-to-memory

nstructions (i.e., load or store). It is important to keep

frequently-used data and the currently-executing code
in local memory. Accordingly, a block-transfer opera-
tion is provided by a DMA state machine 74 coupled to
the bus interface §6. The processor 40 writes a word to
a register in the DMA circuit 74 to function as a com-
mand, and writes the starting address and length of the
block to registers in this circuit 74. In one embodiment,
the microprocessor stalls while the DMA circuit takes
over and executes the block transfer, producing the
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necessary addresses, commands and strobes on the bus-
ses 33-35 and 21. The command executed by the pro-
cessor 40 to initiate this block transfer can be a read
from a register in the DMA circuit 74. Since memory
management in the Unix operating system relies upon 5
demand paging, these block transfers will most often be
pages being moved between global and local memory
and 1/0 traffic. A page is 4-KBytes. Of course, the
busses 21, 22 and 23 support single-word read and write
transfers between CPUs and global memory; the block 10
transfers referred to are only possible between local and
global memory.

The Processor:

Referring now to FIG. 3, the R2000 or R3000 type of
microprocessor 40 of the example embodiment is shown 15
in more detail. This device includes a main 32-bit CPU
75 containing thirty-two 32-bit general purpose regis-
ters 76, a 32-bit ALLU 77, a zero-to-64 bit shifter 78, and
a 32-by-32 multiply/divide circuit 79. This CPU also
‘has a program counter 80 along with associated incre- 20
menter and adder. These components are coupled to a
processor bus structure 81, which is coupled to the local
data bus 41 and to an instruction decoder 82 with associ-
ated control logic to execute instructions fetched via
data bus 41. The 32-bit local address bus 42 is driven by 25
a virtual memory management arrangement including a
translation lookaside buffer (TL.B) 83 within an on-chip
memory-management coprocessor. The TLB 83 con-
tains sixty-four entries to be compared with a virtual
address received from the microprocessor block 75 via 30
virtual address bus 84. The low-order 16-bit part 85 of
the bus 42 is driven by the low-order part of this virtual
address bus 84, and the high-order part is from the bus
84 1f the virtual address is used as the physical address,
or is the tag entry from the TLB 83 via output 86 if 35
virtual addressing is used and a hit occurs. The control
lines 43 of the local bus are connected to pipeline and
bus control circuitry 87, driven from the internal bus
structure 81 and the control logic 82.

‘The microprocessor block 75 in the processor 40 is of 40
the RISC type in that most instructions execute in one
machine cycle, and the instruction set uses register-to-
register and load/store instructions rather than having
complex instructions involving memory references
along with ALLU operations. The main CPU 75 is highly 45
pipelined to facilitate the goal of averaging one instruc-
tion execution per machine cycle. A single instruction is
executed over a period including five machine cycles,
where a machine cycle is one clock period or 60-nsec
for a 16.67-MHz clock 17. Construction and operation 50
of the R2000 processor is disclosed in Kane, “MIPS
R2000 RISC Architecture”, Prentice Hall, 1987.

Memory Module:

With reference to FIG. 4, one of the memory mod-
ules 14 or 15 is shown in detail. Both memory modules 55
are of the same construction in a preferred embodiment,
so only the Memory #1 module is shown. The memory
module includes three input/output ports 91, 92 and 93
coupled to the three busses 21, 22 and 23 coming from
the CPUs 11, 12 and 13, respectively. Inputs to these 60
ports are latched into registers 94, 95 and 96 each of
which has separate sections to store data, address, com-
mand and strobes for a write operation, or address,
command and strobes for a read operation. The con-
tents of these three registers are voted by a vote circuit 65
100 having inputs connected to all sections of all three
registers. If all three of the CPUs 11, 12 and 13 make the
same memory request (same address, same command),
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as should be the case since the CPUs are typically exe-

cuting the same instruction stream, then the memory
request 1s allowed to complete; however, as soon as the
first memory request is latched into any one of the three
latches 94, 95 or 96, it is passed on immediately to begin
the memory access. To this end, the address, data and
command are applied to an internal bus including data
bus 101, address bus 102 and control bus 103. From this
internal bus the memory request accesses various re-
sources, depending upon the address, and depending
upon the system configuration. |

In one embodiment, a large DRAM 104 is accessed
by the internal bus, using a memory controller 105
which accepts the address from address bus 102 and
memory request and strobes from control bus 103 to
generate multiplexed row and column addresses for the
DRAM so that data input/output is provided on the
data bus 101. This DRAM 104 is also referred to as
global memory, and is of a size of perhaps 32-MByte in
one embodiment. In addition, the internal bus 101-103
can access control and status registers 106, a quantity of
non-volatile RAM 107, and write-protect RAM 108.
The memory reference by the CPUs can also bypass the
memory in the memory module 14 or 15 and access the
170 busses 24 and 25 by a bus interface 109 which has
inputs connected to the internal bus 101-103. If the
memory module 1s the primary memory module, a bus
arbitrator 110 in each memory module controls the bus
interface 109. If a memory module is the backup mod-
ule, the bus 34 controls the bus interface 109.

A memory access to the DRAM 104 is initiated as
soon as the first request is latched into one of the latches

94, 95 or 96, but is not allowed to complete unless the

vote circuit 100 determines that a plurality of the re-
quests are the same, with provision for faults. The ar-
rival of the first of the three requests causes the access
to the DRAM 104 to begin. For a read, the DRAM 104
1s addressed, the sense amplifiers are strobed, and the
data output 1s produced at the DRAM outputs, so if the
vote 1s good after the third request is received then the
requested data is ready for immediate transfer back to
the CPUs. In this manner, voting is overlapped with
DRAM access.

Referring to FIG. 5, the busses 21, 22 and 23 apply
memory requests to ports 91, 92 and 93 of the memory
modules 14 and 15 in the format illustrated. Each of

‘these busses consists of thirty-two bidirectional multi-

plexed address/data lines, thirteen unidirectional com-
mand lines, and two strobes. The command lines in-
clude a field which specifies the type of bus activity,
such as read, write, block transfer, single transfer, 1/0
read or write, etc. Also, a field functions as a byte en-
able for the four bytes. The strobes are AS, address
strobe, and DS, data strobe. The CPUs 11, 12 and 13
each control their own bus 21, 22 or 23; in this embodi-
ment, these are not multi-master busses; there is no
contention or arbitration. For a write, the CPU drives
the address and command onto the bus in one cycle
along with the address strobe AS (active low), then in a
subsequent cycle (possibly the next cycle, but not neces-
sarily) drives the data onto the address/data lines of the
bus at the same time as a data strobe DS. The address
strobe AS from each CPU causes the address and com-
mand then appearing at the ports 91, 92 or 93 to be
latched into the address and command sections of the
registers 94, 95 and 96, as these strobes appear, then the
data strobe DS causes the data to be latched. When a
plurality (two out of three in this embodiment) of the
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busses 21, 22 and 23 drive the same memory request into
the latches 94, 95 and 96, the vote circuit 100 passes on
the final command to the bus 103 and the memory ac-
cess will be executed; if the command in a write, an
acknowledge ACK signal is sent back to each CPU by
a line 112 (specifically line 112-1 for Memory#1 and
line 112-2 for Memory#2) as soon as the write has been
executed, and at the same time status bits are driven via
acknowledge/status bus 33 (specifically lines 33-1 for
Memory#1 and lines 33-2 for Memory#2) to each CPU
at time T3 of FIG. 5. The delay T4 between the last
strobe DS (or AS if a read) and the ACK at T3 is vari-
able, depending upon how many cycles out of synch the
CPUs are at the time of the memory request, and de-
pending upon the delay in the voting circuit and the
phase of the interna! independent clock 17 of the mem-
ory moduie 14 or 15 compared to the CPU clocks 17. If
the memory request issued by the CPUs is a read, then
the ACK signal on lines 112-1 and 112-2 and the status
bits on lines 33-1 and 33-2 will be sent at the same time
as the data is driven to the address/data bus, during time
T3; this will release the stall in the CPUs and thus syn-
chronize the CPU chips 40 on the same instruction.
That is, the fastest CPU will have executed more stall
cycles as it waited for the slower ones to catch up, then
all three will be released at the same time, although the
clocks 17 will probably be out of phase; the first instruc-
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tion executed by all three CPUs when they come out of _

stall will be the same instruction.

All data being sent from the memory module 14 or 15
to the CPUs 11, 12 and 13, whether the data is read data
from the DRAM 104 or from the memory locations
106-108, or 1s I/0 data from the busses 24 and 25, goes
through a register 114. This register is loaded from the
internal data bus 101, and an output 115 from this regis-
ter 1s applied to the address/data lines for busses 21, 22
and 23 at ports 91, 92 and 93 at time T3. Parity is
checked when the data is loaded to this register 114. All
data written to the DRAM 104, and all data on the 1/0
busses, has parity bits associated with it, but the parity
bits are not transferred on busses 21, 22 and 23 to the
CPU modules. Parity errors detected at the read regis-
ter 114 are reported to the CPU via the status busses
33-1 and 33-2. Only the memory module 14 or 15 desig-
nated as primary will drive the data in its register 114

onto the busses 21, 22 and 23. The memory module

designated as back-up or secondary will complete a
read operation all the way up to the point of loading the
register 114 and checking parity, and will report status
on buses 31-1 and 33-2, but no data will be driven to the
busses 21, 22 and 23.

A controller 117 in each memory module 14 or 15
operates as a state machine clocked by the clock oscilla-
tor 17 for this module and receiving the various com-
mand lines from bus 103 and busses 21-23, etc., to gen-
erate control bits to load registers and busses, generate
external control signals, and the like. This controller
also i1s connected to the bus 34 between the memory

modules 14 and 15 which transfers status and control

information between the two. The controller 117 in the
module 14 or 15 currently designated as primary will
arbitrate via arbitrator 110 between the 1/0 side (inter-
face 109) and the CPU side (ports 91-93) for access to
the common bus 101-103. This decision made by the
controller 117 in the primary memory module 14 or 15
Is communicated to the controller 117 of other memory
module by the lines 34, and forces the other memory
module to execute the same access.
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The controller 117 in each memory module also in-
troduces refresh cycles for the DRAM 104, based upon

“a refresh counter 118 receiving pulses from the clock

oscillator 17 for this module. The DRAM must receive
512 refresh cycles every 8-msec, so on average there
must be a refresh cycle introduced about every 15-
microsec. The counter 118 thus produces an overflow
signal to the controller 117 every 15-microsec., and if an
idle condition exists (no CPU access or I/0 access exe-
cuting) a refresh cycle is implemented by a command
applied to the bus 103. If an operation is in progress, the
refresh is executed when the current operation is fin-
ished. For lengthy operations such as block transfers
used in memory paging, several refresh cycles may be
backed up and execute in a burst mode after the transfer
is completed; to this end, the number of overflows of
counter 118 since the last refresh cycle are accumulated
in a register associated with the counter 118.

- Interrupt requests for CPU-generated interrupts are

received from each CPU 11, 12 and 13 individually by

lines 68 in the interrupt bus 35; these interrupt requests
are sent to each memory module 14 and 15. These inter-
rupt request lines 68 in bus 35 are applied to an interrupt
vote circuit 119 which compares the three requests and
produces a voted interrupt signal on outgoing line 69 of

the bus 35. The CPUs each receive a voted interrupt

signal on the two lines 69 and 70 (one from each module
14 and 15) via the bus 35. The voted interrupts from
each memory module 14 and 15 are ORed and pres-
ented to the interrupt synchronizing circuit 65. The
CPUs, under software control, decide which interrupts
to service. External interrupts, generated in the 1/0
processors or 1/0 controllers, are also signalled to the
CPUs through the memory modules 14 and 15 via lines
69 and 70 in bus 35, and likewise the CPUs only respond
to an interrupt from the primary module 14 or 15.

I/0 Processor:

Referring now to FIG. 6, one of the I/0 processors
26 or 27 is shown in detail. The I/0 processor has two
identical ports, one port 121 to the I/0 bus 24 and the
other port 122 to the I/0 bus 25. Each one of the 1/0
busses 24 and 25 consists of: a 36-bit bidirectional multi-
plexed address/data bus 123 (containing 32-bits plus
4-bits parity), a bidirectional command bus 124 defining
the read, write, block read, block write, etc., type of
operation that is being executed, an address line that
designates which location is being addressed, either
internal to 1/0 processor or on busses 28, and the byte
mask, and finally control lines 125 including address
strobe, data strobe, address acknowledge and data ac-
knowledge. The radial lines in bus 31 include individual

lines from each I/0 processor to each memory module:

bus request from I/0 processor to the memory mod-
ules, bus grant from the memory modules to the 1/0
processor, interrupt request lines from 1/0 processor to
memory module, and a reset line from memory to 1/0

processor. Lines to indicate which memory module is

primary are connected to each 1/0 processor via the
system status bus 32. A controller or state machine 126
in the I/0 processor of FIG. 6 receives the command,
control, status and radial lines and internal data, and
command lines from the busses 28, and defines the inter-
nal operation of the I/0 processor, including operation
of latches 127 and 128 which receive the contents of
busses 24 and 25 and also hold information for transmit-
ting onto the busses. |

Transfer on the busses 24 and 25 from memory mod-
ule to 1/0 processor uses a protocol as shown in FIG.
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7 with the address and data separately acknowledged.
The arbitrator circuit 110 in the memory module which
1s designated primary performs the arbitration for own-
ership of the I/0 busses 24 and 25. When a transfer from
CPUs to 1/0 is needed, the CPU request is presented to
the arbitration logic 110 in the memory module. When
the arbiter 110 grants this request the memory modules
apply the address and command to busses 123 and 124

(of both busses 24 and 25) at the same time the address

strobe 1s asserted on bus 125 (of both busses 24 and 25)
in time T1 of FIG. 7; when the controller 126 has

caused the address to be latched into latches 127 or 128,
the address acknowledge is asserted on bus 125, then the
memory modules place the data (via both busses 24 and
25) on the bus 123 and a data strobe on lines 125 in time
T2, following which the controller causes the data to be
latched into both latches 127 and 128 and a data ac-
knowledge signal is placed upon the lines 125, so upon
receipt of the data acknowledge, both of the memory
modules release the bus 24, 25 by de-asserting the ad-
dress strobe signal. The 1/0 processor then deasserts
the address acknowledge signal. .

For transfers from 1/0O processor to the memory
module, when the 1/0 processor needs to use the I/0
bus, it asserts a bus request by a line in the radial bus 31,
to both busses 24 and 25, then waits for a bus grant
signal from an arbitrator circuit 110 in the primary
memory module 14 or 15, the bus grant line also being
one of the radials. When the bus grant has been asserted,
the controller 126 then waits until the address strobe
and address acknowledge signals on busses 125 are
deasserted (i.e., false) meaning the previous transfer is
completed. At that time, the controller 126 causes the
address to be applied from latches 127 and 128 to lines
123 of both busses 24 and 25, the command to be applied
to lines 124, and the address strobe to be applied to the
bus 125 of both busses 24 and 25. When address ac-
knowledge 1s received from both busses 24 and 25, these
are followed by applying the data to the address/data
busses, along with data strobes, and the transfer is com-
pleted with a data acknowledge signals from the mem-
ory modules to the 1/0 processor.

The latches 127 and 128 are coupled to an internal bus
129 including an address bus 1294, and data bus 1295
and a control bus 129¢, which can address internal status
and control registers 130 used to set up the commands
to be executed by the controller state machine 126, to
hold the status distributed by the bus 32, etc. These
registers 130 are addressable for read or write from the
CPUs in the address space of the CPUs. A bus interface
131 communicates with the bus 28, under control of the
controller 126. The bus 28 includes an address bus 28a,
a data bus 280, a control bus 28¢, and radials 284, and all
of these lines are communicated through the bus inter-
face modules 29 to the I/0 controllers 30; the bus inter-
face module 29 contains a multiplexer 132 to allow only
one set of bus lines 28 (from one 1/0 processor or the
other but not both) drive the controller 30. Internal to
the controller 30 are command, control, status and data
registers 133 which (as is standard practice for periph-
eral controllers of this type) are addressable from the
CPUs 11, 12 and 13 for read and write to initiate and
control operations in I/0 devices.

Each one of the 1/0 controllers 30 has connections
via a multiplexer 132 in the BIM 29 to both I/0 proces-
sors 26 and 27 and can be controlled by either one, but
1s bound to one or the other by the program executing
in the CPUs. In the event of a failure in one of the I/0

~ pProcessors, an
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1/0 controller can be reassigned to the
remaining 1/0 processor via the second port on BIM
29. A particular address (or set of addresses) is estab-
lished for control and data-transfer registers 133 repre-

senting each controller 30, and these addresses are

maintained in an I/0 page table (normally in the kernel
data section of local memory) by the operating system.
These addresses associate each controller 30 as being
accessible only through either 1/0O processor #1 or #2,
but not both. That 1s, a different address is used to reach
a particular register 133 via 1/0 processor 26 compared
to I/0 processor 27. The bus interface 131 (and control-
ler 126) can switch the multiplexer 132 to accept bus 28
from one or the other, and this is done by a write to the
registers 130 of the I/0 processors from the CPUs.
Thus, when the device driver is called up to access this

- controller 30, the operating system uses these addresses

20

in the page table to do it. The processors 40 access the
controllers 30 by I/0 writes to the control and data-
transfer registers 133 in these controllers using the write
buffer bypass path 52, rather than through the write

~ buffer 850, so these are synchronous writes, voted by
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circuits 100, passed through the memory modules to the
busses 24 or 25, thus to the selected bus 28; the proces-
sors 40 stall until the write is completed. The 1/0 pro-
cessor board of FIG. 6 is configured to detect certain
failures, such as improper commands, time-outs where
no response is received over bus 28, parity-checked
data, etc., and when one of these failures is detected the
1/0 processor reports the error to the CPU via both
memory modules 14 and 15 via busses 24 and 25. The
CPU terminates the stall and continues processing. This
is detected by the bus interface 56 as a bus fault, result-
ing in an interrup as will be explained, and self-correct-
ing action if possible.

Synchronization:

The processors 40 used in the illustrative embodiment
are of pipelined architecture with overlapped instruc-
tion execution, as discussed above. A synchronization
technique used in this embodiment relies upon cycle
counting, 1.e., incrementing a counter 71 and a counter
13 of FIG. 2 every time an instruction is executed, gen-
erally as set forth in copending applications Ser. No.
282,538, Ser. No. 283,139, or Ser. No. 283,141, and
application Ser. No. 118,503. Every time the pipeline
advances an instruction is executed. One of the control
lines in the control bus 43 is a signal RUN# which
indicates that the pipeline is stalled; when RUN# is
high the pipeline is stalled, when RUN# is low (logic
zero) the pipeline advances each machine cycle. This
RUN# signal is used in the numeric processor 46 to
monitor the pipeline of the processor 40 so this co-
processor 46 can run in lockstep with its associated
processor 40. This RUN# signal in the control bus 43
along with the clock 17 are used by the counters 71 and
73 to count Run cycles.

The size of the counter register 71 in a preferred
embodiment, is chosen to be 4096, i.e., 212, which is
selected because the tolerances of the crysta] oscillators
used in the clocks 17 are such that the drift in about 4K
Run cycles on average results in a skew or difference in
number of cycles run by a processor chip 40 of about all
that can be reasonably allowed for proper operation of
the interrupt synchronization. One synchronization
mechanism 1s to force action to cause the CPUs to syn-
chronize whenever the counter 71 overflows. One such
action is to force a cache miss in response to an over-
flow signal OVFL from the counter 71; this can be done
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by merely generating a false Miss signal (e. g., TagValid
bit not set) on control bus 43 for the next I-cache refer-
ence, thus forcing a cache miss exception routine to be
entered and the resultant memory reference will pro-
duce synchronization just as any memory reference
does. Another method of forcing synchronization upon
overflow of counter 71 is by forcing a stall in the pro-
cessor 40, which can be done by using the overflow
signal OVFL to generate a CP Busy (coprocessor busy)
signal on control bus 43 via logic circuit 71a of FIG. 2;
this CP Busy signal always results in the processor 40
entering stall until CP Busy is deasserted. All three
processors will enter this stall because they are execut-
ing the same code and will count the same cycles in
their counter 71, but the actual time they enter the stall
will vary; the logic circuit 71a receives the RUN#
signal from bus 43 of the other two processors via input
R#, so when all three have stalled the CP Busy signal is
released and the processors will come out of stall in
synch again.

Thus, two synchronization techniques have been
described, the first being the synchronization resulting
from voting the memory references in circuits 100 in the
memory modules, and the second by the overflow of
counter 71 as just set forth. In addition, interrupts are
synchronized, as will be described below. It is impor-
tant to note, however, that the processors 40 are basi-
- cally running free at their own clock speed, and are
substantially decoupled from one another, except when
synchronizing events occur. The fact that pipelined
microprocessors are used would make lock-step syn-
chronization with a single clock more difficult, and
would degrade performance; also, use of the write
buffer S0 serves to decouple the processors, and would
be much less effective with close coupling of the pro-
cessors. Likewise, the high-performance resulting from
using instruction and data caches, and virtual memory
management with the TLBs 83, would be more difficult
to implement if close coupling were used, and perfor-
mance would suffer.

Interrupt Synchronization:

The interrupt synchronization technique must distin-
guish between real time and so-called “virtual time”.
Real time is the external actual time, clock-on-the-wall
time, measured in seconds, or for convenience, mea-
sured in machine cycles which are 60-nsec divisions in
the example. The clock generators 17 each produce
clock pulses in real time, of course. Virtual time is the
internal cycle-count time of each of the processor chips
40 as measured in each one of the cycle counters 71 and
73, i.e., the instruction number of the instruction being
executed by the processor chip, measured in instruc-
tions since some arbitrary beginning point.

The three CPUs of the system of FIGS. 1-3 are re-
quired to function as a single logical processor, thus
requiring that the CPUs adhere to certain restrictions
regarding their internal state to ensure that the pro-
gramming model of the three CPUs is that of a single
logical processor. Except in failure modes and in diag-

nostic functions, the instruction streams of the three

CPUs are required to be identical. If not identical, then
voting global memory accesses at voting circuitry 100
of FIG. 4 would be difficult; the voter would not know
whether one CPU was faulty or whether it was execut-
ing a different sequence of instructions. The synchroni-
zation scheme is designed so that if the code stream of
any CPU diverges from the code stream of the other
CPUs, then a failure is assumed to have occurred. Inter-

18

rupt synchronization provides one of the mechanisms of
maintaining a single CPU image.

All interrupts are required to occur synchronous to
virtual time, ensuring that the instruction streams of the
three processors CPU-A, CPU-B and CPU-C will not
diverge as a result of interrupts (there are other causes
of divergent instruction streams, such as one processor
reading different data than the data read by the other

- processors). Several scenarios exist whereby interrupts
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occurring asynchronous to virtual time would cause the
code streams to diverge. For example, an interrupt
causing a context switch on one CPU before process A
completes, but causing the context switch after process
A completes on another CPU would result in a situation
where, at some point later, one CPU continues execut-
Ing process A, but the other CPU cannot execute pro-
cess A because that process had already completed. If in
this case the interrupts occurred asynchronous to vir-

tual time, then just the fact that the exception program

counters were different could cause problems. The act
of writing the exception program counters to global
memory would result in the voter detecting different
data from the three CPUs, producing a vote fault.

Certain types of exceptions in the CPUs are inher-
ently synchronous to virtual time. One example is a
breakpoint exception caused by the execution of a
breakpoint instruction. Since the instruction streams of
the CPUs are identical, the breakpoint exception occurs
at the same point in virtual time on all three of the
CPUs. Similarly, all such internal exceptions inherently
occur synchronous to virtual time. For example, TLB
exceptions are internal exceptions that are inherently
synchronous. TLB exceptions occur because the virtual
page number does not match any of the entries in the
TLB 83. Because the act of translating addresses is
solely a function of the instruction stream (exactly as in
the case of the breakpoint exception), the translation is
inherently synchronous to virtual time. In order to en-
sure that TLB exceptions are synchronous to virtual
time, the state of the TLBs 83 must be identical in all
three of the CPUs 11, 12 and 13, and this is guaranteed
because the TLB 83 can only be modified by software.
Again, since all of the CPUs execute the same instruc-
tion stream, the state of the TLBs 83 are always
changed synchronous to virtual time. So, as a general
rule of thumb, if an action is performed by software
then the action is synchronous to virtual time. If an
action 1s performed by hardware, which does not use
the cycle counters 71, then the action is generally syn-
chronous to real time.

External exceptions are not inherently synchronous
to virtual time. I/O devices 26, 27 or 30 have no infor-
mation about the virtual time of the three CPUs 11, 12
and 13. Therefore, all interrupts that are generated by
these I/0 devices must be synchronized to virtual time
before presenting to the CPUs, as explained below.
Floating point exceptions are different from 1/0 device
Interrupts because the floating point coprocessor 46 is
tightly coupled to the microprocessor 40 within the
CPU. |

External devices view the three CPUs as one logical
processor, and have no information about the syn-
chronaity or lack of synchronaity between the CPUs, so
the external devices cannot produce interrupts that are
synchronous with the individual instruction stream
(virtual time) of each CPU. Without any sort of syn-
chronization, if some external device drove an interrupt
at some instant of real time, and the interrupt was pres-
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ented directly to the CPUs at this time then the three
CPUs would take an exception trap at different instruc-
tions, resulting in an unacceptable state of the three
CPUs. This is an example of an event (assertion of an
interrupt) which is synchronous to real time but not
synchronous to virtual time.

Interrupts are synchronized to virtual time in the
system of FIGS. 1-3 by performing a distributed vote
on the interrupts and then presenting the interrupt to
the processor on a predetermined cycle count. FIG. 8
shows a more detailed block diagram of the interrupt
synchronization logic 65 of FIG. 2. Each CPU contains
a distributor 135 which captures the external interrupt
from the line 69 or 70 coming from the modules 14 or
15; this capture occurs on a predetermined cycle count,
e.g., at count-4 as signalled on an input line CC4 from
the counter 71. The captured interrupt is distributed to
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the other two CPUs via the inter-CPU bus 18. These

distributed interrupts are called pending interrupts.
There are three pending interrupts, one from each CPU
11, 12 and 13. A voter circuit 136 captures the pending
interrupts and performs a vote to verify that all of the
CPUs did receive the external interrupt request. On a
predetermined cycle count (detected from the cycle
counter 71), in this example cycle-8 received by input
line CC-8, the interrupt voter 136 presents the interrupt
to the interrupt pin on its respective microprocessor 40
via line 137 and control bus 55 and 43. Since the cycle
count that 1s used to present the interrupt is predeter-
mined, all of the microprocessors 40 will receive the
interrupt on the same cycle count and thus the interrupt
will have been synchronized to virtual time.

Memory Management:

The CPUs 11, 12 and 13 of FIGS. 1-3 have memory
space organized as illustrated in FIG. 9. Using the ex-
ample that the local memory 16 is 8-MByte and the

global memory 14 or 15 is 32-MByte, note that the local

memory 16 1s part of the same continuous zero-to-40M
map of CPU memory access space, rather than being a
cache or a separate memory space; realizing that the
0-8M section is triplicated (in the three CPU modules),
and the 8-40M section is duplicated, nevertheless logi-
cally there is merely a single 0-40M physical address
space. An address over 8-MByte on bus 54 causes the
bus interface §6 to make a request to the memory mod-
ules 14 and 15, but an address under 8-MByte will ac-
cess the local memory 16 within the CPU module itself.
Performance is improved by placing more of the mem-
ory used by the applications being executed in local
memory 16, and so as memory chips are available in
higher densities at lower cost and higher speeds, addi-
tional local memory will be added, as well as additional
global memory. For example, the local memory might
be 32-MByte and the global memory 128-MByte. On
the other hand, if a very minimum-cost system is
needed, and performance is not a major determining
. factor, the system can be operated with no local mem-
ory, all main memory being in the global memory area
(in memory modules 14 and 15), although the perfor-
mance penalty 1s high for such a configuration.

The content of local memory portion 141 of the map
of FIG. 9 is identical in the three CPUs 11, 12 and 13.
Likewise, the two memory modules 14 and 15 contain
identically the same data in their space 142 at any given
instant. Within the local memory portion 141 is stored
the kernel 143 (code) for the Unix operating system, and
this area is physically mapped within a fixed portion of

the local memory 16 of each CPU. Likewise, kernel
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data is assigned a fixed area 144 in each local memory
16; except upon boot-up, these blocks do not get
swapped to or from global memory or disk. Another
portion 145 of local memory 16 is employed for user
program (and data) pages, which are swapped to area
146 of the global memory 14 and 15 under control of the
operating system. The global memory area 142 is used
as a staging area for user pages in area 146, and also as
a disk buffer in an area 147; if the CPUs are executing
code which performs a write of a block of data or code
from local memory 16 to disk 148, then the sequence is
to always write to a disk buffer area 147 instead. Then,
while the CPUs proceed to execute other code, the
write-to-disk operation is done, transparent to the
CPUs, to move the block from area 147 to disk 148. In
a like manner, the global memory area 146 is mapped to
include an I/0 staging 149 area, for similar treatment of
1/0 accesses other than disk (e.g., video).

The physical memory map of FIG. 9 is correlated
with the virtual memory management system of the
processor 40 1n each CPU. FIG. 10 illustrates the virtual
address map of the R2000 processor chip used in the
example embodiment, although it is understood that
other microprocessor chips supporting virtual memory
management with paging and a protection mechanism
would provide corresponding features.

In FIG. 10, two separate 2-GByte virtual address
spaces 150 and 151 are illustrated; the processor 40
operates in one of two modes, user mode and kernel
mode. The processor can only access the area 150 in the
user mode, or can access both the areas 150 and 151 in
the kernel mode. The kernel mode is analogous to the

‘supervisory mode provided in many machines. The

processor 40 1s configured to operate normally in the
user mode until an exception is detected forcing it into
the kernel mode, where it remains until a restore from
exception (RFE) instruction is executed. The manner in
which the memory addresses are translated or mapped
depends upon the operating mode of the microproces-
sor, which is defined by a bit in a status register. When
in the user mode, a single, uniform virtual address space
150 referred to as “kuseg” of 2-GByte size is available.
Each virtual address is also extended with a 6-bit pro-
cess identifier (PID) field to form unique virtual ad-
dresses for up to sixty-four user processes. All refer-
ences to this segment 150 in user mode are mapped
through the TLB 83, and use of the caches 144 and 145
is determined by bit settings for each page entry in the
TLB entries; i.e., some pages may be cachable and some
not as specified by the programmer.

When in the kernel mode, the virtual address space

‘includes both the areas 150 and 151 of FIG. 10, and this
space has four separate segments kuseg 150, kseg0 152,

ksegl 183 and kseg2 154. The kuseg 150 segment for the
kernel mode is 2-GByte in size, coincident with the
“kuseg” of the user mode, so when in the kernel mode
the processor treats references to this segment just like
user mode references, thus streamlining kernel access to
user data. The kuseg 150 is used to hold user code and
data, but the operating system often needs to reference
this same code or data. The kseg0 area 152 is a 512-
MByte kernel physical address space direct-mapped
onto the first 512-MBytes of physical address space, and
1s cached but does not use the TLB 83; this segment is
used for kernel executable code and some kernel data,
and 1s represented by the area 143 of FIG. 9 in local
memory 16. The ksegl area 153 is also directly mapped
into the first 512-MByte of physical address space, the
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same as kseg0, and is uncached and uses no TLB entries.
Ksegl differs from kseg0 only in that it is uncached.
Ksegl is used by the operating system for 1/0 registers,
ROM code and disk buffers, and so corresponds to areas
147 and 149 of the physical map of FIG. 9. The kseg2
area 154 is a 1-GByte space which, like kuseg, uses TLB

83 entries to map virtual addresses to arbitrary physical -

ones, with or without caching. This kseg2 area differs
from the kuseg area 150 only in that it is not accessible
in the user mode, but instead only in the kernel mode.
The operating system uses kseg2 for stacks and per-
process data that must remap on context switches, for
user page tables (memory map), and for some dynami-
cally-allocated data areas. Kseg?2 allows selective cach-
ing and mapping on a per page basis, rather than requir-
ing an all-or-nothing approach.

The 32-bit virtual addresses generated in the registers
- 76 or PC 80 of the microprocessor chip and output on
the bus 84 are represented in FIG. 11, where it is seen
that bits 0-11 are the offset used unconditionally as the
low-order 12-bits of the address on bus 42 of FIG. 3,
while bits 12-31 are the VPN or virtual page number in
which bits 29-31 select between kuseg, kseg0, ksegl and
kseg2. The process identifier PID for the currently-
executing process is stored in a register also accessible
by the TLB. The 64-bit TLB entries are represented in
FIG. 11 as well, where it is seen that the 20-bit VPN
from the virtual address is compared to the 20-bit VPN
field located in bits 44-63 of the 64-bit entry, while at
the same time the PID is compared to bits 38-43; if a
match is found in any of the sixty-four 64-bit TLB
entries, the page frame number PFN at bits 12-31 of the
matched entry is used as the output via busses 82 and 42
of FIG. 3 (assuming other criteria are met). Other one-
bit values in a TLB entry include N, D, V and G. N is
the non-cachable indicator, and if set the page is non-
cachable and the processor directly accesses local mem-
ory or global memory instead of first accessing the
cache 44 or 45. D is a write-protect bit, and if set means

that the location is “dirty” and therefore writable, but if 40

zero a write operation causes a trap. The V bit means
valid if set, and allows the TLB entries to be cleared by
merely resetting the valid bits; this V bit is used in the
page-swapping arrangement of this system to indicate
whether a page is in local or global memory. The G bit
1s to allow global accesses which ignore the PID match
requirement for a valid TLB translation; in kseg2 this
allows the kernel to access all mapped data without
regard for PID. |
The device controllers 30 cannot do DMA into local
-memory 16 directly, and so the global memory is used
as a staging area for DMA type block transfers, typi-
cally from disk 148 or the like. The CPUs can perform
operations directly at the controllers 30, to initiate or
actually control operations by the controllers (i.e., pro-
grammed 1/0), but the controllers 30 cannot do DMA.
except to global memory; the controllers 30 can become
the bus (bus 28) master and through the 1I/0 processor
26 or 27 do reads or writes directly to global memory in
the memory modules 14 and 15. |
Page swapping between global and local memories
(and disk) is initiated either by a page fault or by an
aging process. A page fault occurs when a process is
executing and attempts to execute from or access a page
that is in global memory or on disk; the TLB 83 will
show a miss and a trap will result, so low level trap code
in the kernel will show the location of the page, and a
routine will be entered to initiate a page swap. If the
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page needed 1s in global memory, a series of commands
are sent to the DMA controller 74 to write the least-
recently-used page from local memory to global mem-
ory and to read the needed page from global to local. If
the page is on disk, commands and addresses (sectors)
are written to the controller 30 from the CPU to go to
disk and acquire the page, then the process which made
the memory reference is suspended. When the disk
controller has found the data and is ready to send it, an
interrupt is signalled which will be used by the memory
modules (not reaching the CPUs) to allow the disk
controller to begin a DMA to global memory to write
the page into global memory, and when finished the
CPU 1s interrupted to begin a block transfer under con-
trol of DMA controller 74 to swap a least used page
from local to global and read the needed page to local.
Then, the original process is made runnable again, state
is restored, and the original memory reference will
again occur, finding the needed page in local memory.
The other mechanism to initiate page swapping is an
aging routine by which the operating system periodi-
cally goes through the pages in local memory marking
them as to whether or not each page has been used
recently, and those that have not are subject to be
pushed out to global memory. A task switch does not
itself initiate page swapping, but instead as the new task
begins to produce page faults, pages will be swapped as
needed, and the candidates for swapping out are those
not recently used.

If a memory reference is made and a TLB miss is
shown, but the page table lookup resulting from the
TLB miss exception shows the page is in local memory,
then a TLB entry is made to show this page to be in
local memory. That is, the process takes an exception
when the TLB miss occurs, goes to the page tables (in
the kernel data section), finds the table entry, writes to
TLB, then the process is allowed to proceed. But if the
memory reference shows a TLB miss, and the page
tables show the corresponding physical address is in
global memory (over 8M physical address), the TLB
entry 1s made for this page, and when the process re-
sumes it will find the page entry in the TLB as before;
yet another exception is taken because the valid bit will
be zero, indicating the page is physically not in local
memory, so this time the exception will enter a routine
to swap the page from gobal to local and validate the
TLB entry, so execution can then proceed. In the third
situation, if the page tables show address for the mem-
ory reference is on disk, not in local or global memory,
then the system operates as indicated above, i.e., the

- process is put off the run queue and put in the sleep

55
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queue, a disk request is made, and when the disk has
transferred the page to global memory and signalled a
command-complete interrupt, then the page is swapped
from global to local, and the TLB updated, then the
process can execute again.

Private Memory:

Although the memory modules 14 and 15 store the
same data at the same locations, and all three CPUs 11,
12 and 13 have equal access to these memory modules,
there i1s a small area of the memory assigned under
software control as a private memory in each one of the
memory modules. For example, as illustrated in FIG.
12, an area 155 of the map of the memory module loca-
tions is designated the private memory area, and is writ-
able only when the CPUs issue a “private memory
write” command on bus 59. In an example embodiment,
the private memory area 155 is a 4K page starting at the
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address contained in a register 156 in the bus interface
56 of each one of the CPU modules; this starting address
can be changed under software control by writing to
this register 156 by the CPU. The private memory area
153 1s further divided between the CPUs; only CPU-A
can write to area 155a, CPU-B to area 1555, and CPU-C
to area 155¢. One of the command signals in bus 57 is set
by the bus interface 56 to inform the memory modules

14 and 15 that the operation is a private write, and this
1s set in response to the address generated by the proces-
sor 40 from a Store instruction; bits of the address (and

a Write command) are detected by a decoder 157 in the
bus interface (which compares bus addresses to the
contents of register 156) and used to generate the “pri-
vate memory write” command for bus 57. In the mem-
ory module, when a write command is detected in the
registers 94, 95 and 96, and the addresses and commands
are all voted good (i.e., in agreement) by the vote circuit
100, then the control circuit 100 allows the data from
~only one of the CPUs to pass through to the bus 101,
this one being determined by two bits of the address
from the CPUs. During this private write, all three
CPUs present the same address on their bus 57 but
different data on their bus 58 (the different data is some
state unique to the CPU, for example). The memory
modules vote the addresses and commands, and select
data from only one CPU based upon part of the address
field seen on the address bus. To allow the CPUs to vote
some data, all three CPUs will do three private writes
(there will be three writes on the busses 21, 22 and 23)
of some state information unique to a CPU, into both
memory modules 14 and 15. During each write, each
CPU sends its unique data, but only one is accepted
each time. So, the software sequence executed by all
three CPUs is (1) Store (to location 155a), (2) Store (to
location 155b), (3) Store (to location 155¢). But data
from only one CPU is actually written each time, and
the data 1s not voted (because it is or could be different
and could show a fault if voted). Then, the CPUs can
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vote the data by having all three CPUs read all three of 40

the locations 1554, 1556 and 155¢, and by having soft-
ware compare this data. This type of operation is used
in diagnostics, for example, or in interrupts to vote the
cause register data. |

The private-write mechanism is used in fault detec-
tion and recovery. For example, if the CPUs detect a
bus error upon making a memory read request, such as
a memory module 14 or 15 returning bad status on lines
33-1 or 33-2. At this point a CPU doesn’t know if the
other CPUs received the same status from the memory
module; the CPU could be faulty or its status detection
circuit faulty, or, as indicated, the memory could be
faulty. So, to isolate the fault, when the bus fault routine
mentioned above is entered, all three CPUs do a private
write of the status information they just received from
the memory modules in the preceding read attempt.
Then all three CPUs read what the others have written,
and compare it with their own memory status informa-
tion. If they all agree, then the memory module is voted
off-line. If not, and one CPU shows bad status for a
memory module but the others show good status, then
that CPU is voted off-line.

Fault-Tolerant Power Supply:

Referring now to FIG. 13, the system of the preferred
embodiment may use a fault-tolerant power subsystem
which provides the capability for on-line replacement
of failed power supply modules, as well as on-line re-
placement of CPU modules, memory modules, 1/0
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processor modules, I/0 controllers and disk modules as
discussed above. In the circuit of FIG. 13, an a/c power
line 160 1s connected directly to a power distribution
unit 161 that provides power line filtering, transient
suppressors, and a circuit breaker to protect against
short circuits. To protect against a/c power line failure,
redundant battery packs 162 and 163 provide sufficient
system power so that orderly system shutdown can be

accomplished; for example, several minutes of battery
power is sufficient in an illustrative embodiment. Only

one of the two battery packs 162 or 163 is required to be
operative to safely shut the system down.

The power subsystem has two identical AC to DC
bulk power supplies 164 and 165 which exhibit high
power factor and energize a pair of 36-volt DC distribu-
tion busses 166 and 167. The system can remain opera-
tional with one of the bulk power supplies 164 or 165
operational. |

Four separate power distribution busses are included
in these busses 166 and 167. The bulk supply 164 drives
a power bus 166-1, 167-1, while the bulk supply 165
drives power bus 166-2, 167-2. The battery pack 162
drives bus 166-3, 167-3, and is itself recharged from both
166-1 and 166-2. The battery pack 163 drives bus 166-3,
167-3 and 1s recharged from busses 166-1 and 167-2. The
three CPUs 11, 12 and 13 and driven from different
combinations of these four distribution busses.

A number of DC-to-DC converters 168 connected to
these 36-v busses 166 and 167 are used to individually
power the CPU modules 11, 12 and 13, the memory
modules 14 and 15, the 1/0 processors 26 and 27, and
the 1/0 controllers 30. The bulk power supplies 164 and
165 also power the three system fans 169, and battery
chargers for the battery packs 162 and 163. By having
these separate DC-to-DC converters for each system
component, failure of one converter does not result in
system shutdown, but instead the system will continue
under one of its failure recovery modes discussed
above, and the failed power supply component can be
replaced while the system is operating.

The power system can be shut down by either a man-
ual switch (with standby and off functions) or under
software control from a maintenance and diagnostic
processor 170 which automatically defaults to the pow-
er-on state in the event of a maintenance and diagnostic
power failure. |

Moreover, in conjunction with dual power subsys-
tems 164, 165 and dual battery backup power subsys-
tems 162, 163, it is contemplated that redundant cooling
systems or modules 900 having cooling efficiency sen-
sors 901 operate on the cooling modules 900 such that
the efficiency of remaining cooling modules 900 can be
increased to compensate for faulty cooling modules 900.

Thus, when operating, the fault tolerant computer
system detects an error in a cooling module 900, re-
moves the cooling module 900 without system shut-
down and while normal system operation continues,
and the cooling module 900 is replaced without system
shutdown and while normal system operation contin-
ues.

System-bus Error Evaluation:

The sequences used by the CPUs 11, 12 and 13 to
evaluate responses by the memory modules 14 and 15 to
transfers via buses 21, 22 and 23 (the system-bus) will
now be described. This sequence is defined by the state

machine 1n the bus interface units 56 and in code exe-
cuted by the CPUs.
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In case one, of a read transfer, it is assumed that no
data errors are indicated in the status bits on lines 33
from the primary memory. The stall begun by the mem-
ory reference is not ended until the other (no-primary)
memory module responds with an ending status condi-
tion or the non-primary memory times out. The stall is
terminated by asserting a Ready signal via control bus
55 and 43. If the non-primary memory asserts an ac-
knowledge on line 112 before the time out expires, the
ending status is evaluated by the state machine. In no
data errors are indicated by either status field (lines 33-1
~or 33-2), the memory reference is terminated without
any further action. |

In case two, for read transfer, it is assumed that no
data errors are indicated from the primary memory on
lines 33-1 and that the non-primary memory acknowl-
edges and indicates a data error in the status received on
lines 33-2. In this situation, the memory reference is
ended as in case one and in addition the ending status
condition is latched in a register and an interrupt is
posted. If either the primary memory and/or the non-
primary memory indicate an error on lines 33 other than
a data error, than the reference is terminated and the

status is latched with an interrupt posted. Another vari-

ation of case two is that the non-primary memory fails
to assert an acknowledge before the time out expires. In
this case, the interrupt is posted along with an indication
to software that a time out occurred during a read trans-
fer on the non-primary memory.

In case three, for read transfer, it is assumed that a
data error 1s indicated in status lines 33 from the primary
memory or that no response is received from the pri-
mary memory. The CPUs will wait for an acknowledge
from the other memory, and if no data errors are found
“In the status bits from the other memory, circuitry of the
~ bus interface 56 forces a change in ownership (primary
memory ownership status), then a retry is instituted to
see if data is correctly read from the new primary. If
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good status is received from the new primary (no data -

error indication), then the stall is ended as before, and
an interrupt is posted along with an ownership change
indication to update the system (to note one memory
bad and different memory is primary). However, if a
data error or timeout results from this attempt to read
from the new primary, then a bus error is indicated to
the processor 40 via control bus 55 and 43.

In case four, for read transfer, if both the primary
memory and the non-primary memory indicate a data
error in status lines 33-1 and 33-2, or if no response is
received from the primary memory and the other mem-
ory responds with a status error in lines 33, the stall is
ended and a bus error is indicated to the processor 40
via control bus 55 and 43. |

For write transfers, with the write buffer 50 by-
passed, case one is where no data errors are indicated in
status lines 33-1 and 33-2 from either memory module.
The stall is ended to allow execution to continue.

For write transfers, with write buffer 50 bypassed,
case two is where no data errors are indicated from the
primary memory on lines 33-1 and that the non-primary
memory acknowledges and indicates a data error in the
status received on lines 33-2. In this situation, the mem-
ory reference is ended as in case one and in addition the
ending status condition is latched in a register and an
interrupt is posted. If either the primary memory and-
/or the non-primary memory indicate an error on lines
33 other than a data error, than the reference is termi-
nated and the status is latched with an interrupt posted.
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Another variation of case two is that the non-primary
memory fails to assert an acknowledge before the time
out expires. In this case, the interrupt is posted along
with an indication to software that a time out occurred
during a write transfer on the non-primary memory.
For write transfers, with write buffer 50 bypassed,
case three is where a data error is indicated in status
from primary memory, or no response is received from
the primary memory. The interface controller of each
CPU wiaits for an acknowledge from the other memory |
module, and if no data errors are found in the status
from the other memory, an ownership change is forced

“and an interrupt is posted. But if data errors or timeout

occur for the other (new primary) memory module,
then a bus error is asserted to the processor 40.

For write transfers, with write buffer 50 bypassed,
case four is where both the primary memory and the
non-primary memory indicate a data error in status lines
33-1 and 33-2, or if no response is received from the
primary memory and the other memory responds with
a status error 1n lines 33, the stall is ended and a bus
error is indicated to the processor 40 via control bus 55
and 43. | |

For write transfers, with write buffer 80 enabled so

the processor 40 is not stalled by a write operation, case

one is with no errors indicated in the status from either
memory module. The transfer is ended, so another bus
transfer may begin.

For write transfers, with write buffer 50 enabled, case
two 1s where no data errors are indicated from the pri-
mary memory on lines 33-1 and that the non-primary
memory acknowledges and indicates a data error in the
status received on lines 33-2. In this situation, the mem-
ory reference is ended as in case one and in addition the
ending status condition is latched in a register and an
interrupt is posted. If either the primary memory and-
/or the non-primary memory indicate an error on lines
33 other than a data error, than the reference is termi-
nated and the status is latched with an interrupt posted.
Another variation of case two is that the non-primary
memory fails to assert an acknowledge before the time
out expires. In this case, the interrupt is posted along
with an indication to software that a time out occurred

during a write transfer on the non-primary memory.

For write transfers, with write buffer 50 enabled, case
three is where a data error is indicated in status from
primary memory, Or no response is received from the
primary memory. The interface controller of each CPU
waits for an acknowledge from the other memory mod-
ule, and if no data errors are found in the status from the
other memory, an ownership change is forced and an
interrupt is posted. But if data errors or timeout occur
for the other (new primary) memory module, then an
interrupt is asserted to the processor 40 and the transfer
is ended. | |

For write transfers, with write buffer 50 enabled, case
four is where both the primary memory and the non-pri-
mary memory mndicate a data error in status in lines 33-1
and 33-2, or if no response is received from the primary
memory and the other memory responds with a status
error in lines 33, the transfer is ended and an interrupt is

indicated to the processor 40 via control bus 55 and 43.

Once it has been determined by the mechanism just
described that a memory module 14 or 15 is faulty, the
fault condition is signalled to the operator, but the sys-
tem can continue operating. The operator will probably
wish to replace the memory board containing the faulty
module, which can be done while the system is powered
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up and operating. The system is then able to re-integrate
the new memory board without a shutdown. This
mechanism also works to revive a memory module that
failed to execute a write due to a soft error but then
tested good so it need not be physically replaced. The
task is to get the memory module back to a state where
its data 1s identical to the other memory module. This
revive mode is a two step process. First, it is assumed
that the memory is uninitialized and may contain parity
errors, so good data with good parity must be written
into all locations, this could be all zeros at this point, but
since all writes are executed on both memories the way
this first step is accomplished is to read a location in the
good memory module then write this data to the same
location in both memory modules 14 and 15. This is
done while ordinary operations are going, on inter-
leaved with the task being performed. The CPUs treat a
memory in revive state just as if it were in the online
state, but writes originating from the I/0 busses 24 or
25 are ignored by this revive routine in its first stage.
After all locations have been thus written, the next step
1s the same as the first except that I/0 accesses are also
written; that is, 1/0 writes from the 1/0 busses 24 or 25
are executed as they occur in ordinary traffic in the
executing task, interleaved with reading every location
in the good memory and writing this same data to the
same location in both memory modules. When the mod-
ules have been addressed from zero to maximum ad-
dress in this second step, the memories are identical.
During this second revive step, both CPUs and 1/0
processors expect the memory module being revived to
perform all operations without errors. The 1/0 proces-
sors 26, 27 will not use data presented by the memory
module being revived during data read transfers. After
completing the revive process the revived memory can
then be (if necessary) designated primary.

A similar revive process is provided for CPU mod-
ules. When one CPU is detected faulty (as by the mem-
ory voter 100, etc.) the other two continue to operate,
and the bad CPU board can be replaced without system
shutdown. When the new CPU board has run its power-
on self-test routines from on-board ROM 63, it signals
this to the other CPUs, and a revive routine is executed.
First, the two good CPUs will copy their state to global
memory, then all three CPUs will execute a *“soft reset”
whereby the CPUs reset and start executing from their
initialization routines in ROM, so they will all come up
at the exact same point in their instruction stream and
will be synchronized, then the saved state is copied back
into all three CPUs and the task previously executing is
continued.

As noted above, the vote circuit 100 in each memory
module determines whether or not all three CPUs make
identical memory references. If so, the memory opera-
tion 1s allowed to proceed to completion. If not, a CPU
fault mode is entered. The CPU which transmits a dif-
ferent memory reference, as detected at the vote circuit
100, is identified in the status returned on bus 33-1 and
or 33-2. An interrupt is posted and a software subse-
quently puts the faulty CPU offline. This offline status is
reflected on status bus 32. The memory reference where
the fault was detected is allowed to complete based
upon the two-out-of-three vote, then until the bad CPU
board has been replaced the vote circuit 100 requires
two identical memory requests from the two good
CPUs before allowing a memory reference to proceed.
The system is ordinarily configured to continue operat-
ing with one CPU off-line, but not two. However, if it
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were desired to operate with only one good CPU, this
is an alternative available. A CPU is voted faulty by the
voter circuit 100 if different data is detected in its mem-
ory request, and also by a time-out; if two CPUs send
identical memory requests, but the third does not send
any signals for a preselected time-out period, that CPU
1s assumed to be faulty and is placed off-line as before.

The 1/0 arrangement of the system has a mechanism
for software reintegration in the event of a failure. That
1s, the CPU and memory module core is hardware fault-
protected as just described, but the 1/0 portion of the
system 1s software fault-protected. When one of the 1/0
processors 26 or 27 fails, the controllers 30 bound to
that I/0 processor by software as mentioned above are
switched over to the other 1/0 processor by software;
the operating system rewrites the addresses in the 1/0
page table to use the new addresses for the same con-
trollers, and from then on these controllers are bound to
the other one of the pair of 1/0 processors 26 or 27. The
error or fault can be detected by a bus error terminating
a bus cycle at the bus interface 56, producing an excep-
tion dispatching into the kernel through an exception
handler routine that will determine the cause of the
exception, and then (by rewriting addresses in the 1/0
table) move all the controllers 30 from the failed 1/0
processor 26 or 27 to the other one.

When the bus interface §6 detects a bus error as just
described, the fault must be isolated before the reinte-
gration scheme is used. When a CPU does a write,
either to one of the 1/0 processors 26 or 27 or to one of
the I/0 controllers 30 on one of the busses 28 (e.g., to
one of the control or status registers, or data registers, in
one of the I/0 elements), this is a bypass operation in
the memory modules and both memory modules exe-
cute the operation, passing it on to the two 1/0 busses
24 and 25; the two 1/0 processors 26 and 27 both moni-
tor the busses 24 and 25 and check parity and check the
commands for proper syntax via the controllers 126.
For example, if the CPUs are executing a write to a
register in an 1/0 processor 26 or 27, if either one of the
memory modules presents a valid address, valid com-
mand and valid data (as evidenced by no parity errors
and proper protocol), the addressed I/0 processor will
write the data to the addressed location and respond to
the memory module with an Acknowledge indication
that the write was completed successfully. Both mem-
ory modules 14 and 15 are monitoring the responses
from the 1/0 processor 26 or 27 (i.e., the address and
data acknowledge signals of FIG. 7, and associated
status), and both memory modules respond to the CPUs
with operation status on lines 33-1 and 33-2. (If this had
been a read, only the primary memory module would
return data, but both would return status.) Now the
CPUs can determine if both executed the write cor-
rectly, or only one, or none. If only one returns good
status, and that was the primary, then there is no need to
force an ownership change, but if the backup returned
good and the primary bad, then an ownership change is
forced to make the one that executed correctly now the
primary. In either case an interrupt is entered to report
the fault. At this point the CPUs do not know whether
it is a memory module or something downstream of the
memory modules that is bad. So, a similar write is at-
tempted to the other 1/0 processor, but if this succeeds
it does not necessarily prove the memory module is bad
because the 1/0 processor initially addressed could be
hanging up a line on the bus 24 or 25, for example, and
causing parity errors. So, the process can then selec-
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tively shut off the 1/0 processors and retry the opera-
tions, to see if both memory modules can correctly
execute a write to the same 1/0 processor. If so, the
system can continue operating with the bad 1/0 proces-
sor off-line until replaced and reintegrated. But if the
retry still gives bad status from one memory, the mem-
ory can be off-line, or further fault-isolation steps taken
to make sure the fault is in the memory and not in some
other element; this can include switching all the con-
trollers 30 to one I/O processor 26 or 27 then issuing a
reset command to the off 1/0 processor and retry com-
munication with the online 170 processor with both
memory modules live-then if the reset 1/0 processor
had been corrupting the bus 24 or 25 its bus drivers will
have been turned off by the reset so if the retry of com-
munication to the online I/0 processor (via both busses

24 and 25) now returns good status it is known that the
- reset 1/0 processor was at fault. If both memory mod-
ules acknowledge with any type of error other than a
data error, then the 1/0 transfer is terminated and a bus
error is indicated to the processor. A time out is handled
the same way. If the primary responds with a data error
and the backup has no data error, then an ownership
change is attempted. In any event, for each bus error,
some type of fault isolation sequence in implemented to
determine which system component needs to be forced
offline.

CPU and Memory Error Recovery:

Handling of hardware faults in the CPU and memory
subsystem of FIGS. 1-13 is an important feature. The
subsystem includes the CPUs 11, 12 and 13 and the
memory boards 14 and 15, along with the system-bus,
1.e., buses 21, 22 and 23. Whenever the hardware detects
some extraordinary event, whether a small glitch such
as @ memory parity error, or a major subsystem failure
(a blown power supply, for instance), the object is to
identify the failed component and remove it from the
system so that normal operation may quickly resume; at
this point no attempt is made to diagnose or reintegrate
the failed component. First the error recovery arrange-
ment for the “core” of the system will be discussed,
then the error recovery for the 1/0 buses and 1/0 con-
trollers. |

Hardware Error Exceptions: Hardware error excep-
tions are indicated by high priority interrupts or by bus
errors. In general a high priority interrupt is generated
for an error that can be handled asynchronously, i.e.
sometime after the current instruction is executed. A
few examples are (1) a “take ownership” operation
forced by hardware-detected fault on previous primary
memory board 14 or 15; (2) Non-data errors on system-
bus reads; (3) system-bus reads that suffered a data error
on the primary memory 14 or 15, but still could be
completed by the backup memory 14 or 15. In these
three examples, the kernel is notified of errors from
which the hardware has already recovered. In some
cases, however, the processor is stalled awaiting the
finish of an operation that can never be completed, such
as: (1) failed take-ownership operations; (2) system-bus
reads and writes that can be completed by neither mem-
ory module; (3) data errors on system-bus writes while
the write buffer 52 is enabled. Since interrupts can be
masked, they can’t be relied upon to break a stall; bus
errors perform this function.

Even though these two types of hardware error ex-
ception are thus distinguished, nevertheless the two can
be funneled into one exception handler that doesn’t care
which type occurred. During its pass through the bus

30

error handler, if a bus error isn’t recognized as being

~ caused by ‘nofault’ or subscription services accesses or

15

as resulting from user stack growth, it is shunted off to
the hardware fault code (which happens to be the han-
dler for high priority interrupts). The error status pre-
served by the system of FIGS. 1-8 is equally valid for
either type of exception.

The first error registers to be checked are ones which
are potentially asymmetric, since they report failures in
processor synchronization.

The CPU_ERR register contains a number of spe-
cific bits assigned to indicate certain types of errors, as
indicated in the following sub-paragraphs:

CPU_ERR: Interrupt synchronization error-
Indicated by CPU_grr—_IS bit. This indicates CPU

- divergence or the failure of a signal in a CPU’s interrupt

20

synchronization logic. If the soft synchronziation test
didn’t reveal divergence, pursue the fault in synchroni-
zation hardware. Response:

~ If the CPU’s don’t agree on the state of CPU_ERR_IS.
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CPU_SERR_CPUaHIGH,

take the odd CPU offline.
Else,

soft-vote CPU_SERR and act on bit settings as
described below.

CPU_SERR: Interrupt pending inputs-Indicated by:
CPU_SERR._CPUb-
HIGH, CPU_SERR_CPUcHIGH, CPU_SERR_C-
PUaLOW, CPU_SERR_CPUbLOW, CPU_SER-
R_CPUcLOW, CPU_SERR_CPUaTIM0, CPU_
SERR_CPUbTIMO, CPU_SERR._CPUcTIMO,
CPU_SERR_CPUaTIM1, CPU_SERR_CPUb-
TIM1, or CPU_SERR_CPUcTIM1 bits. These bits
present a snapshot of the inputs to the interrupt syn-
chronization circuitry 65 of each CPU at the instant the
error was flagged. Response:
If one CPU’s version of these four inputs in unique, its
synchronization hardware is broken; take it offline.
CPU_ERR: Processor synchronization error-
Indicated by: CPU.._ERR_PS bit. This indicates CPU
divergence or the failure of a signal in a CPU’s proces-
sor synchronization logic; the soft-sync operation didn’t
reveal divergence, so pursue the fault in synchroniza-
tion hardware. Response:

If the CPU’s don't agree on the state of CPU_ERR__PS,
take the odd CPU offline.

Else,
soft-vote CPU_SERR and act on bit settings as
described below. |
CPU_SERR: Processors stalled-Indicated by:
CPU_SERR_CPUaSTALL, CPU_SERR_CPUb-

STALL, CPU_SERR_CPUCSTALL bits. These bits
present a snapshot of the input to the processor syn-
chronization hardware on each CPU at the instant the
error was flagged. Response:

If one CPU’s version of this signal in unique, its syn-

chronization hardware is broken; take it offline.

CPU_ERR: Unassigned CPU space violation-
Indicated by: CPU_SERR_USV bit. An unimple-
mented address within CPU space was written. This
may result from failing kernel software or from a fault
in the CPU hardware’s address decode logic. Note that

‘this is one of the few cases where it does matter whether

the exception is a bus error or high priority interrupt.



5,295,258

31
For USV’s, if the write buffer is enabled, a high priority

interrupt is generated; else, a buss error. If the errant
write goes into the write buffer, the USV will happen
asynchronously and so the PC in the exception frame
won’t pinpoint the gulity instruction. Therefore, the 5

type of exception tells whether to trust the exception
PC. Response:

If all CPU’s show an unassigned space error, the kernel has been
corrupted;
read the bad address from CPU_ERRADDR:
write CPU_MASK__CUSYV to clear the error:
consult for reqguired action.
Else, if only one CPU shows the error,
take it offline.

10

15

CPU_ERR: Write violation in local RAM-Indicated
by: CPU_ER-R_WPV bit. A write to a write-
protected address was attempted. This may result from
failing kernel software or from a fault in CPU or mem-
ory module write protect RAM. Just as for Unassigned
Space Violations (see above), the exception type tells
whether to trust the PC in the exception stack frame.
Response:

20

23

If all CPU’s show a write protect violation, the kernel has been
corrupted;
read the bad address from CPU_ERRADDR;
write CPU_MASK__CWPV to clear the error:
consult for required action. |

Else, if only one CPU shows the error,
take it offline.

30

CPU_ERR: Dual rail faults-Indicated by: CPU__
ERR_CPUaDRF, CPU_ERR_CPUbDRF, CPU._..
ERR_CPUcDRF, CPU_ERR_IOPODRF, CPU__
ERR_IOP1IDRF or CPU_ERR_MPDRF bits. The
failure can be at the signal’s source, on the backplane, or
on an individual CPU. CPU_ERR describes dual rail
faults from all sources but the memory module 14 and
15. Since there are too many different dual rail signals 40
coming from memory module to fit in CPU_ERR,

these fault bits are located in the system-bus status regis-
ters, CPU_RSBa and CPU_RSBc. Response:

35

45

If all three CPU’s concur that a particular DRF is present,
disable the source of the bad signal.
Else,
disable the odd CPU (since the signal was driven inactive
by the detection of the fault, it is likely that the
signal's source will be disabled in the future, even
though the culprit was a bad CPU).

50

CPU_ERR: Power system state change interrupt-
Indicated by: CPU_ERR_POWER bit. Response:

Read CPU_POWER and act on bit settings as de-
scribed below.

CPU_POWER: Bulk regulator and battery status-
Indicated by: CPU_POWER_BATTaSTS1, CPU-
POWER _BATTaSTS2, CPU_POWER.__.
BATTcSTS1, CPU_POWER_BATTcSTS2,
CPU_POWER_BULKaSTS1, CPU_POWER__
BULKaSTS2, CPU_POWER_BULKCcSTSI1,
CPU_POWER__BULKcSTS2, CPU_POWER__.
BATTaMONI1, CPU_POWER_BATTaMON?2,
CPU_POWER_BATTcMON1, CPU_POWER_.
BATTcMON?2, CPU_POWER. _BULKaMON1,
CPU_POWER_BULKaMON2, CPU_POWER_.
BULKcMON1, or CPU_POWER_BULKcMON?2

3
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bits. In this register, STS bits set to one indicate compo-
nents which are physically present; the MON bits are
writable masks which are initially set to the same state
as their corresponding STS bits. A high priority inter-
rupt is generated if any MON line doesn’t match its STS
line. Note that these double-line signals are not dual rail
signals; any STS lines 1 and 2 should always match.
Response:

save the current MON bits; |

read the current STS bits and write them to the MON bits
(masking this power state change interrupt);

compare the saved MON bits with the current STS bits;

if either STS line for any battery or bulk regulator has changed.
call the powerfail interrupt handler.

CPU_ERR: Core module present state change inter-
rupt-At least one of the CPUs, memory modules, or 1/0
processors has been removed or replaced. By compar-
ing the current module-present bits in CPU_CFG to
their previous state (saved by the kernel), the missing-
/added component can be identified. Response:

If a memory module or 1/0 Processor board has been removed,
hold in reset;:
mark it as absent;
remove from/config.;
If a CPU board has been removed,
mark it as absent,
remove from/config.

‘The kernel saves the state of CPU_CFG when return-

ing from hardware exceptions. With this as a reference,
configuration changes (boards failed, pulled, reinserted,
batteries rejuvenated, and so forth) can be noticed by
comparing the current and the saved versions of
CPU_CFG when the next hardware exception is taken.

CPU_ERR: Both memory module primary error-
Both memory modules claim to be primary. This is
probably a result of a failed take-ownership operation.
Upon detection of both memory module’s primary, the
CPU’s complement the would-be system-bus ownership
bits to switch back to the pre-take-ownership operation
primary. Response: |

Soft-reset the backup and take it offline.

CPU_ERR: memory module primary and revive
error-A memory module 14 or 15 claims to be both
primary and in revive mode, probably due to a picked
bit in the indicated memory module’s control register:
could also be a dual rail fault on memory module Pri-
mary. Response:

Perform take-ownership, soft-reset the backup, and

take 1t offline.

CPU_ERR: TMRC timeout bits-Indicated by:
CPU_ERR__TMRCaTMOR, CPU_ER-
R_TMRCcTMOR, CPU_ERR_TMRCaTMOTOS,
CPU_ERR_TMRCcTMOTOS, CPU_ERR_TM-
RCaTMOW, or CPU_ERR_TMRCcTMOW bits.
Not to be confused with CPU_RSB_TMO, indicating
one or more CPU’s were timed out, these bits describe
reasons the system-bus timed out one of the memory
module 14 or 15. This may be the result of self-checking
logic on the memory modules causing the board to halt
because an internal error was detected. There is no
other indicator of memory module internal errors. Re-
sponse:
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—-“_——“—-ﬂ_lﬂ——m—-—-—__._____
Soft-reset the memory module and take it offline.

CPU_ERR: RSB error - Indicated by: CPU_ERR__RSBa,
CPU_ERR._RSBc bits. Response: | |

For either or both CPU_ERR_RSBx bits set,
read corresponding CPU_RSBx register and act on bit

settings as described below.
M

CPU_RSBx: Data vote error-Indicated by:
CPU_RSB_ANY or CPU_RSB_CPUx bits. One
CPU’s data miscompares with the others; data could
have been take-ownership, Module Present DRF, or
system-bus parity signals. Response:

Take CPUx offline. - |

CPU_RSBx: CPU timeout-Indicated by: CPU_RS-
B_ANY, CPU_RSB_TMO, or CPU_RSB/CPUx

bits. Indicated CPU was the only one to miss (or only
one to initiate) an system-bus request or a take-owner-
ship. Response:
Take CPUx offline. -
CPU_RSBx: Data error-Indicated by: CPU_RS-
B_ANY or CPU_RSB_DATA bits. This can be any
of several faults: (1) Access to valid but absent (unin-

3
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stalled) global memory; (2) Access to non-existent

global memory address; (3) Write protect violation in

global memory; (4) Data error (parity error in data from

‘memory). Response:

Read TMRC.__ERR; -
if none of TMRC__ERR_ABSENTRAM, TMRC_ERR_NEXIS-

TRAM, or TMRC_ERR_WPYV are set, assume
the data error,

perform take-ownership if necessary, making the failed
memory module backup;

soft-reset the backup;

take the backup offline.

e e e
TMRC_ERR: Access to uninstalled global RAM-

Indicated by: TMRC__ERR_ABSENTRAM bit. Re-

Sponse: |

Perform action analogous to that for local RAM

write protect violations. | |

TMRC_ERR: Access to non-existent global RAM-
Indicated by: TMRC_ERR_NEXISTRAM bit. Re-
sponse:

Perform action analogous to that for local RAM

write protect violations.

TMRC_ERR: Write protection violation in global
RAM-Indicated by: TMRC__ERR_WPV or TMRC_.
ERR_CPU bits. This error can be caused by CPU
access or by a VME master writing into global RAM;
TMRC_ERR_CPU tells which is the culprit. The

address of the attempted write is latched in TMRC_.
ERR_ADDR. Response:

If the CPU initiated the write,

perform action analogous to that for local RAM write
protect violations;

else,
treat as a master access fanlt.

CPU_RSBx: Bypass error-Indicated by: CPU_RS-
B_ANY, CPU_RSB_RIOB or CPU_RSB_DATA
bits. The 1/0 processor returned bad status or the mem-
ory module detected a parity error on data read from
the 1/0 processor. The problem could stem from the
memory module or from the I/0-bus interface logic on
the I/0 processor. Another possibility is that the other
170 processor sharing the 1/0-bus has failed in such a
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way that is is causing I/0-bus operations to fail. Re-
sponse: |

If both system-bus’s show the RIOB/IOP bit set,
take the 1/0 processor out.
Else, -
If the memory module showing these system-bus status
bits isn’t primary,
perform take-ownership;
sclect the other 1/0 processor:
if bypass operations succeed,
disable the I/0 processor;
else,
soft-reset the memory module and take it offline.

CPU_RSBx: Bypass timeout-Indicated by:
CPU_RSB_ANY, CPU_RSB_RIOB, CPU_RS-
B_DATA or CPU_RSB_TMO bits. An 1/0 proces-
sor 26 or 27 didn’t respond to a bypass operation. As
above, the problem could be caused by the memory

module or by the I/0-bus interface logic on the 1/0
processor. Response: |

e ===,
If both system-bus’s show the TIMEOUT bit set,
take the 1/0 processor out.
Else,
if the memory module showing these system-bus status
bits 1sn’t primary,
perform take-ownership;
select the other 1/0 processor;
if bypass operations succeed,
disable the 1/0 processor:
else,
soft-reset the memory module and take it offline.

CPU_RSBx: Timeout on one RIOB and one CPU-
Indicated by: CPU_RSB_ANY, CPU_RSB_RIOB,
CPU_RSB_DATA, CPU_RSB_TMO, or CPU._RS-
B_CPUx bits. There are several possibilities: (1) A
bypass error (see above) accompanied by a CPU time-
out; (2) a bypass timeout (see above) with a vote fault;
(3) an 1/0 processor and CPU that timed out separately.
Response:

Take CPUx offline and retry the operation, hoping to

produce one of the simpler cases.

CPU_RSBx: Dual rail faults-Indicated by:
CPU_RSB_PRIDREF, CPU_RSB_HIGHDREF,
CPU_RSB_LOWDREF, CPU_RSB_TIM1DREF,
CPU_RSB_TIMODREF, CPU_RSB_C-
PUaONLDREF, CPU_RSB_CPUbONLDREF,
CPU_RSB_CPUcCONLDREF, CPU_RSB_TM-
RCaONLDREF, CPU_RSB_TMRCcONLDREF,
CPU_RSB_REVDRF or CPU_RSB_PRESDRF
bits. If CPU_RSB_PRESDRF (the module-present
dual rail fault) has failed, since it qualifies all the rest, no
dual rail faults from the memory module will be as-
serted. Response: |

If the other system-bus agrees with the dual rail faults found here,
disable the source of the signal;
else, |

soft-reset the memory module and take if offline.
W

CPU_ERR: Hardware ownership change-Indicated
by: CPU__ERR_TOS bit. A take-ownership operation
was forced by hardware in response to an system-bus
error. Should also see CPU_ERR_RSBa or CPU_.
ERR_RSBc set. Response:
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Act upon CPU_RSB status bits for the indicated system-bus.
CPU_ERR: No bits set. Response:

Check for memory module errors.

TRMC_CAUSE: Inter-TMRC communication er-
ror-Indicated by assigned bit. An error was detected in
the communication between the primary and backup
TMRC’s. Response: | |

Soft-reset the backup TMRC and take it offline.

TMRC_CAUSE: Refresh counter overflow-
Indicated by assigned bit. Global RAM hasn’t been
refreshed within the timeout period implemented by the
refresh counter.

TMRC_CAUSE: CPU module present dual rail
fault-Indicated by assigned bits (one bit per CPU).
Error in module present signal from one CPU. Re-
sponse:

Take the indicated CPU offline.

TMRC_CAUSE: RIOB timeout-Indicated by as-
signed bit. The I/0O-bus arbiter granted the bus to an
1/0 processor that never acknowledged the grant. Re-
sponse:

Disable the indicated 1/0 processor.

Some of the bits in the foregoing subparagraphs have
the following meanings:

CPU__RSB_ANY One or more of the other seven

error bits is set; aka “bit <6>",

CPU_RSB_DATA Either invalid data was read or
data couldn’t be correctly written; aka “bit < 6>,

CPU_RSB_RIOB Error on IOP or in RIOB inter-
face logic; aka “bit <4>".

CPU_RSB_TMO One or more CPU’s were timed
out during RSB operation, or there was an RIOB
error on a bypass operation; aka “bit <3> ",

CPU_RSB._CPUa CPU a is suspected in RSB error:
aka “bit <2>7,

CPU..RSB_CPUb CPU b is suspected in RSB error:
aka “bit <1>",

CPU_RSB_CPUc CPU c is suspected in RSB error:
aka “bit <0>",

1/0 Subsystem Fault Detection, Error Recovery and

Reintegration:

Each of the I/0 processors 26, 27, is a self-checked,
fail-fast controller, the purpose being to minimize risk to
the core of the system during a hardware failure. Com-
bined with the BIM 29, each 1/0 processor 26, 27 also
protects the CPU and Memory Subsystem from errant
VME controliers 30. Unlike CPU/memory subsystem
fallures, software is solely responsible for recovering
from an 1/0 processor 26, 27 failure and providing the
redundancy necessary to recover from such a fault. The
recovery procedure for various known I/O processor
26, 27 and controller 30 faults will be described in the
following paragraphs.

- The purpose here is to describe the handling of faults
within the I/0O subsystem of the system of FIGS. 1-8.
When a fault in the I/0 subsystem occurs, the primary
goal 1s to identify the failed component, i.e., an 1/0
processor 26, 27, or I/0 controller 30, or 1/0 device
148 and to remove it from the system configuration so
that normal operation can resume.

In the following sections, headings are formed from
two components: a register name and an error condition
that can be described by the register. Names for regis-
ters and their bits come from the kernel’s C language
header files for the CPU and 1/0 processor 26, 27
boards. The pertinent bits within the register are listed
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under an “Indicated by:” subheading. The list of bits is
normally followed by a brief explanation of the error.
The section is concluded by a description of the appro-
priate response or procedure, whether to take immedi-
ate action or to gather more information.

1/0 Processor Recovery Strategies: When an 1/0
processor 26, 27 fails, the kernel switches the 1/0 con-
trollers 30 to the other bus 28 for the other controller 26
or 27 before resetting the failed IOP controller 26 or 27.

The process to switch a controller is as follows:

a) Acquire the bus 28 of the good 1/0 processor 26 or
27.

b) Call an identification routine of each device con-
nected to the failed 1/0 processor. The identifica-
tion routine should, at a minimum, probe the con-
troller 30 to see if it responds.

c) If the identification routine fails, Take the control-
ler 30 off-line. It could not be switched over.

d) After switching all the controllers 30, release the
bus 28.

e) Merge the bad I/0 processor’s registers with the
good 1/0 processor’s registers. All 1/0 processor
registers are mirrored in local memory 16 so that
the old values are available if the I/O processor
fails.

f) Place the bad 1/0 processor in reset.

g) If the exception type was a bus error and not a high
priority interrupt and the instruction that was bus
errored is a write to an I/0 processor register,
Change the contents of the source register to re-

flect a possibly new value in the target 1/0 pro-
cessor register and restart the last instruction.

I/0 Controller Recovery Strategies: The architec-
ture of the system of FIG. 1 does not provide for repli-
cated 1/0 controllers 30. There are features provided in
the operating system, such as disk mirroring, that allow
the system to continue when an I/0 controller 30 fails.
The kernel also provides services to device drivers to
detect and handle hardware faults (bus errors, parity
errors, and access errors, for example). In addition, the
device drivers are responsible for detecting software or
firmware errors associated with their 170 controller 30.
Some of the services provided are:

iobuscopyin and iobuscopyout protect the device
driver from bus errors, parity errors, and time outs
(otherwise, the device driver must detect these
events). They also simplify the driver’s interface to
the I/0 processor’s hardware.

Subscription services for errors asynchronous to the
CPU and for bus errors, parity errors, and time outs
when the device driver chooses to bypass the iobu-
‘scopyin and iobuscopyout functions.

Recovery techniques to back out of an instruction
stream when a controller 30 fails.

When an 1/0 controller 30 fails, the operating system
loses the resources that the controller provided. Any
system calls using those resources fail unless the re-
source is replicated in software. In one embodiment,
disk drives 148 are the only replicated peripheral de-
vices in the system. Other embodiments may have repli-
cated ethernet or other communications devices such
that a single failed 1/0 controller 30 will not impact
system availability on a network.

Particularly in the embodiment wherein disk drives
or disk drive modules 148 are replicated peripheral
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devices in the system, it is contemplated that a faulty

disk drive 148 is attached to 1/0 Controlier 30 such that
faulty disk drive 148 can be isolated and powered down
until the faulty disk drive 148 is removed and replaced.

Moreover, it is contemplated that the present fault
tolerant computer system is operable such that the fol-
- lowing steps occur:

(1) An error is detected in disk drive 148;

(2) Disk drive 148 is isolated and powered down:

(3) Normal system operation is continued using the

mirror for disk drive 148. _ |

1/0 processor Hardware Error Exceptions-Indicated
by: 1/0 processor High Priority Interrupts, or CPU Bus
Errors. In general, a high-priority interrupt is generated
whenever the 1/0 processor determines that an error
occurs asynchronous to current CPU activity. Some
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examples of these kinds of error are: (1) Invalid access

to the memory board 14 or 15 from a controller 30; (2)
Invalid parity on the bus 28; (3) Invalid request from a
controller 30. In each of those examples, a minimum
amount of recovery has been performed by the I/0
processor hardware. It is up to the kernel to kick-off the
services to recover from the fault or to designate a
component as failed.

When the CPU is accessing the 1/0 processor 26 or
27 or accessing an 1/0 controller 30, an I/0 processor
or controller failure may result in bad status being re-
turned to the CPU board. When the CPU 11, 12 and 13
receives bad status, a bus error trap is generated by the
processor. Some examples of these kinds of errors are:
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(1) Invalid parity on the bus 28; (2) controller 30 not

present or failed; (3) I/0 processor 26 or 27 not present
or failed.

The manner in which the kernel detects an 1/0 pro-
cessor or controller 30 failure determines the algorithm
to recover. When a high-priority interrupt is captured,
the kernel must determine the type of fault (I1/0 proces-
sor or controller), and take failed components off-line.
Any recovery beyond this action is fault specific. When
a bus error occurs, the kernel must always inspect the
target address for a store instruction to an 1/0 proces-
sor register. The target address is the address on the bus
when the bus error exception occurred. It is acquired by
disassembling the instruction that was executing when
the bus error occurred. The I/0 processor register may
have been modified by the recovery process and if the
write were to complete without change, it could incor-
rectly destroy some important bits.

High Priority Interrupts-Indicated
TMRC_CAUSE_IOPOHIGH
TMRC_CAUSE_IOP1HIGH bits. A high-priority
interrupt is generated whenever the 1/0 processor de-
tects an error within its own logic or an error in the path
to or from a controller 30. Response:

Select the interrupting I/0 processor on the memory
module and call the I/0 processor’s handler.

by:

Read the 1/0 processor’s interrupt cause register.
If the memory module times out the read, |
Move all the controllers on the 1/0 processor to the other,
functioning I/0 processor.
Place the 1/0 processor in reset.
Exit the interrupt handler.
Check each bit in the interrupt cause register, and if
active, call the appropriate fault handier.
Exit the interrupt handler.

IOP_IICAUSE: Controller Bus Hog Time-out-
Indicated by: IOP_IICAUSE._BUSHOG bit. A con-
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troller 30 has held the bus 28 for a very long time and

the timer maintained by the 1/0 processor 26 or 27 has
expired. Response:

Notify any subscribers of the bus hog error for the indicated
slot. -'
If there is no subscriber or the subscriber returns 0,
take the controller 30 off-line.
If the subscriber returns 1,

jJust clear the interrupt.

I10P_IICAUSE: Level 2 fault-Unsupported Request-
Indicated by: IOP__IICAUSE__LLEVEL2 bit. The con-
troller 30 has presented the 1/0 processor with a re-
quest that is not supported. It could be an invalid ad-
dress modifier, an A16 master access, or an unsupported
A32 address. Response:

Notify any subscribers of the level 2 fault for the indicated
slot.
If there is no subscriber or the subscriber returns, 0,
take the controller 30 off-line.
If the subscriber retumns 1,
just clear the interrupt.

IOP_IICAUSE: Access Validation Fault-Indicated
by: IOP_IICAUSE_AYV bit. A controller 30 has at-
tempted to access a physical address that has not been
prepared for it by the CPU (the controller does not
have the proper read/write permissions or slot number
set up 1n the access validation RAM on the 1/0 proces-
sor). Response:

Notify any subscribers of the access validation fault.
If there is no subscriber or the subscriber returns, 0,
take the controller 30 off-line.
If the subscriber returns 1,
clear the interrupt.

I0P_HCAUSE: Protocol Violation-Indicated by:
IOP__IICAUSE_PROTO bit. The controller 30 pres-
erited the I/0 processor with an invalid set of bus sig-
nals. The controller 30 may have failed. Response:

Notify any subscribers of the protocol fault for the indicated
slot.
If there is no subscriber or the subscriber or returns 0,
take the controlier 30 off-line. |
If the subscriber returns 1,

clear the interrupt.

IOP__IICAUSE: parity error-Slave state machine-
Indicated by: IOP_IICAUSE_VME_S_PAR bit.
The 1/0 processor detected bad parity from the con-
troller 30. In this case, the controller was performing an
operation and the data, address, or control parity was
not correct. Response:

Notify any subscribers of the parity error for the indicated slot.
If there is no subscriber or the subscriber or returns 0,
take the controlier 30 off-line.
If the subscriber returns 1,
just clear the interrupt.

JOP_IICAUSE: Bad Parity on the I/0-bus-
Indicated by: 1OP_IICAUSE_RIOBOPAR or
IOP_HCAUSE_RIOBI1PAR bits. A parity error was
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detected by the I/0 processor 26 or 27 when accessing
global memory 14 or 15. If both 1/0O-buses 24 and 25
present the error, then the I/0 processor is at fault. If
only one 1/0-bus presents the error, then the memory
module 14 or 15, the 1/0-bus, or the 1/0 processor may 5
be at fault. The memory module will be taken off-line as

it may have stale data. Time to further isolate this fault
should be scheduled at a later time. Response:

10

If both 1/0-buses present the parity error,
Switch all controllers to the other 1/0 processor.
Take the indicated 1/0 processor off-line.

If only one 1/0-bus presents the parity error,
Take the indicated memory module off-line.

Notify any subscribers of the 1/0-bus parity error. 15

IOP_IICAUSE: The 1/0-bus timed out an 1/0 pro-
cessor request-Indicated by: IOP__IICAUSE_RIOBO-
TIME or I0P_IICAUSE_RIOB1TIME bits. A mem-
ory module did not respond to an I/O processor re-
quest. If both 1/0O-buses timed out, the I/O processor
probably fatled. If only one I/0-bus timed out, then the
memory module, the 1/0-bus, or the 1/0 processor may
be at fault. The memory module will be taken off-line as
it may have stale data. Time to further isolate this fault 25
should be scheduled at a later time. Response:

20

If both 1/0-buses timed out,
Switch all controllers to the other 1/0 processor.
Take the indicated 1/0 processor off-line.
If only one 1/0-bus timed out,
Take the indicated memory module off-line.
Notify any subscribers of the I/0-bus time out.

30

IOP__IICAUSE: Bad Status from the memory mod- 35
ule returned to the I/0 processor-Indicated by:
IOP_IICAUSE_MEMO0 or IOP_JICAUSE_MEM1
bits. An access to non-existent global memory, a write
to protected global memory, or bad parity on an opera-
tion to global memory can cause the memory module to
generate bad status to the 1/0 processor. If both mem-
ory modules returned bad status, the source of the re-
-quest, a controller 30, may have failed. If only one mem-
ory module returned bad status, then the memory mod-
ule, the I/0-bus, or the 1/0 processor may be at fault.
The memory module will be taken off-line as it may
have stale data. Time to further isolate this fault should
be scheduled at a later time. Response:
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If both memory modules return bad status,

Determined the faulty controller 30 access from the 1/0
processor’s error registers and the access
validation.

Notify any subscribers of the bad status.

If there is no subscriber or the subscriber returns 0,

take the indicated controller 30 off-line.

If the subscriber returns 1,

Just clear the interrupt.
If only one memory module returned bad status,

Take the indicated memory module off-line.

Notify any subscribers of the bad status.

35
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IOP_IICAUSE: A 1/0-bus grant timed out-
Indicated by: IOP_IICAUSE_RIOBGTIME bit. A
I/0-bus grant was not received before the time out
interval. When the I/0 processor requested the 1/0- 65
bus, the primary memory module did not respond with
the grant signal. The primary memory module or the
I/0-bus may be at fault. Response:

40

Notify any subscribers of the timed out 1/0O-bus.

Make the backup memory module primary.

CPU Bus Errors- When the CPU is accessing regis-
ters on the 1/0 processor 26 or 27 or controllers 30 on
the bus 28, the kernel must be prepared to receive a bus
error. If the I/0 processor times out an access to a
controller 30 or detects some kind of error, it will gen-

“erate bad status back to the memory module 14 or 15.

Bits in the I/O processor’s cause register can be used to

isolate the error. The memory module can also time out
the I/0O processor, resulting in a bad status being re-

turned to the CPU. To recover from a bus error, the
kernel, after changing the configuration, must re-run
the last instruction, or return execution to some known
point in the previously executed instruction stream. The
“known point” must be in the same thread as the error
condition so that stack and user pages are properly
mapped when restarted.

CPU_RSBx: Parity error on the 1/0-bus-Indicated
by: CPU_RSBx_ANY, CPU_RSB_RIOB or
CPU_RSB_DATA bits. The memory module de-
tected a parity error on a data read from the I/0 proces-
sor. If the error happened on both 1/0-bus interfaces,
the 1/0 processor has a failure. If the parity error is
reported on only one I/0-bus interface, either a mem-
ory module, the 1/0-bus, or one of the 1/0 processors
failed. At least one memory module was able to get
good status so a bus error is not generated. Instead, this
error is reported via an interrupt. Response:

If the parity error is reported by both 1/0-bus interfaces,
Notify any subscribers of the failed 10P.
Take the indicated IOP off-line.
If the parity error is reported on one 1/0-bus interfaces,
Probe the other 1/0 processor.
If the probe fails,
Take the indicated memory module off-line.
If the probe succeeds,
Notify any subscribers of the failed IOP.
Take the indicated 1/0 processor off-line.

CPU_RSBx, IOP_IICAUSE, I0OP_STS: The BIM
detected a parity error-Indicated by: CPU_RSBx-
—~ANY, CPU_RSB_RIOB, CPU_RSB_DATA,
IOP_IICAUSE_XFER and IOP_STS_SYSFAIL
bits. The BIM 29 detected bad parity from the 1/0
processor 26 or 27 and isolated the controller 30 from
the bus 28. The actual error is similar to a bus timeout
except that an additional error indication is asserted by
the BIM. The controller must be switched to the other
1/0 processor to recover the controller. Response:

Notify any subscribers of the parity error for the indicated slot.
If there is no subscriber or the subscriber returns 0,
take the controller 30 off-line.
If the subscriber returns 1,

exit the bus error exception.
m

CPU_RSBx, IOP_IICAUSE: Bus parity error-Mas-
ter state machine-Indicated by: CPU_RSBx__ANY,
CPU_RSB_RIOB, CPU_RSB_DATA and
IOP_IICAUSE_M_PAR bits. The 1/0O processor
detected bad bus parity from the controller 30. In this
case, the CPU was performing a “read” when a parity
error was detected on the data lines from the controller
30. Response:
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Notify any subscribers of the parity error for the indicated
slot. |
If there is no subscriber or the subscriber returns 0,
take the indicated controller 30 off-line.
If the subscriber returns 1,

exit the bus error exception.
%

CPU_RSBx, IOP_IICAUSE: VMEbus time out-
Controller access time out-Indicated by: CPU_RSBX-
~ANY, CPU_RSB_RIOB, CPU_RSB_DATA and
IOP_IICAUSE_XFER bits. The I/0 processor timed
out a request to a controller 30 or the controller re-
sponded with a bus error. Response:

__—_h—-—_l———-ﬂu-_—“—___‘.-__-
Notify any subscribers of the bus error for the indicated

slot. |
If there is no subscriber or the subscriber returns, 0,

take the controller off-line.
If the subscriber returns 1,
exit the bus error exception. |
CPU_RSBx IOP_IICAUSE: I/0-bus 1/0 proces-

sor Select Parity Error-Indicated by: CPU_RSBx-
—ANY, CPU_RSB_RIOB, CPU_RSB_DATA,
CPU_RSB._TMO and IOP_IICAUSE;3 RIOBIO-
SEL bits. The I/0 processor detected bad parity on the
I1/0 processor select bits from the memory module
when the CPU is attempting a transparent bypass opera-
tion to a VME controller 30. Response:

Read the 1/0 processor cause register on the other 1/0 processor.

If the other 1/0 processor saw the parity error on the select bits,
Switch the primary memory module to backup.
Exit the Bus Error Exception and retry the last instruction.
If the other 1/0 processor did not see the parity error on the
select bits, switch the controllers to the
‘other 1/0 processor.
Take the 1/0 processor off-line.

Reintegration of Memory and CPU

The fault tolerant computer system of FIGS. 1-13 is
able to detect and isolate component failures without a
total loss of the services of the system. Reintegration,
the process of adding a new or failed component
(board) to the system while the system is running, is
fundamental to operation as a fault tolerant system. The
reintegration into the system of CPU boards 11, 12 and
13, and memory boards 14 and 15 will now be discussed,
beginning at the time immediately after a fault has been
1solated through the time a component is brought back
online. |

When a faulty component is detected the component
is reset and taken offline. To bring the component back
online a reintegration of that component is required.
The reintegration can be automatic, in which case the
operating system attempts to reintegrate the failed com-
ponent without intervention by the user, or it can be
manual, at the request of a user-level program.

The reintegration process is a sequence of steps that
are taken after the decision to reintegrate a component
has been made. The code executed to implement the
reintegration process performs the role of restoring
system state after one of the following is diagnosed: (1)
a bad CPU 11, 12 or 13; (2) a bad memory board 14 or
15; or (3) a bad memory page. The diagnosis is per-
formed by an error interrupt subsystem based upon
status information reported by the individual compo-
nents, as discussed above. The error interrupt subsystem
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takes whatever action is necessary to put the system in
a safe state—this usually means putting a failed compo-
‘nent offline and in reset or powered off.
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The reintegration process, in summary, is a sequence
of events occurring when a component fails, generally
as follows:

Interrupt occurs indicating 28 component failure:
Bad CPU 11, 12 or 13
Bad memory 14 or 15 (or bad memory page)
If bad CPU board 11, 12 or 13:
put bad CPU offline and reset
continue normal operation .
when offline CPU indicates successful completion
of power-on
self-test: |
aliocated page in global memory for LMR
(local memory reintegration) routine
and valid-page-bitmap |
allocate page in global memory for LMR copy procedure
build bitmap of vaild pages
save state
build data structure shared with PROM
reset all CPUs 11, 12 and 13
(PROM code brings control back to here after reset)
restore state

LMR:
for each page in local memory 16
if valid bit set in valid-page-bitmap
DMA copy page to reserved page
in global memory
verify anticipated vote error
DMA copy page back to local
‘memory
- verify no error
clean up (free LMR routine and its global page)
done, continue with normal operation
If bad memory: |
if just a bad page, remap it
- else, put memory offline and in revive state
copy all memory pages to themselves
if no errors, bring back online

F1G. 14 shows the process of monitoring all modules
for faults and placing a faulty module offline and FIG.
15 shows the reintegration process. In FIG. 14, the
interrupt handler routines, indicated by block 171, eval-
uate an interrupt to see if it is produced by a hardware
fault; 1f not, the ordinary interrupt processing sequences
are entered as indicated by block 172, but, if so, then
fault isolation code is entered as indicated by block 173.
The fault 1solation code can also be entered if a bus
error is detected. The fault isolation code determines
which component is down, as indicated by the blocks
174. As indicated in FIG. 15, when a new component
(such as a memory module 14 or 15, for example) is
inserted, as indicated by the block 175, the component
undergoes it power-on self-test procedure; if it fails, the

. component-down state is entered again as indicated by

block 176, but if it passes the reintegrate state is entered
as indicated by the block 177. If reintegration fails then
the component-down state is entered, or if it succeeds
the component-online state 178 is entered.

A CPU i1s normally in the CPU Normal state, where
the CPU is online and processing the same instruction
stream as the other CPUs. When a CPU Board-Failed
Status message arrives the kernel resets the failed CPU,
forcing it into the CPU Dead state; a CPU comes out of
reset in the CPU Dead state-the reset is either the result
of a soft reset voted by the two remaining CPUs or a
hard reset if the board is just plugged in. The voters 100
on the memory board 14 or 15 ignore CPUs 11, 12 or 13
that are not online. The remaining CPUs continue with
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normal operation while the dead CPU attempts to exe-
cute its power-on self-test. The other state shown is the
CPU Reintable state, which the previously reset CPU
automatically enters if it passes the power-on self-test:
this CPU remains in this state until a user request is
made to reintegrate it.

There are two major steps to the CPU reintegration
procedure. The first is to resynch all the CPUs 11, 12
and 13, so the offline CPU is brought back online with
all three executing the same code. The second major
step 1s to restore local memory 16, i.e., ensure that the
contents of the local memory 16 on the offline CPU is
identical to that of the local memory 16 on the other
CPUs.

The sequence used to resynch the CPUs is:

1. Kernel raises interrupt priority.

2. Kernel saves complete processor state in prepara-

tion for reset.

3. Kernel builds data structure to tell PROMs the
desired return PC value.

4. Kernel resets all CPUs,

5. PROMs put CPU and COprocessor registers in a
known state.

6. PROM code verifies the validity of the return PC
value, and the code executed from the PROM is
executed to jump to the return PC value location

7. Kernel restores complete CPU board state.

When a CPU fails, it is reset by the interrupt subsystem.
If the failed CPU passes its power-on self-test it is eligi-
ble to be reintegrated by the remaining CPUs. Before
the failled CPU can be brought back online it must be
exactly in sync with the other CPUs, executing the
exact same CPU cycles. The technique to accomplish
this 1s to soft reset all CPUs. This returns all CPUs to
the reset vector and allows the code in the PROMs 63
to resynch the CPUs, similar to a power-on reset.

The resynch operation occurs while the system is
active, and so is fairly delicate. The code executed from
the PROMs 63 for this purpose must distinguish be-
tween a power-on reset and a resynch, since a power-on
reset resets all peripherals and runs memory tests which
would destroy the current state of the kernel.

The reintegration code executed from the PROMs 63
keeps all the operating system dependencies in the ker-
nel. Communication with the PROMs is through a data
block, at a fixed physical memory address:

struct kernel__restart {

ulong kr__magic; /* magic number */
ulong kr_pc; /* program counter to restart*/
ulong kr__sp; /* stack pointer */
ulong kr._checksum; /* checksum of above */

};

The magic number and checksum are used by the
PROM code to verify that the return PC is valid. The
magic number will only be set during a reintegration
attempt. Before jumping to the return PC the code
executed from the PROMs 63 puts all CPUs 11, 12 and
13 in 1dentical states, including zeroing all CPU and
coprocessor 46 registers (otherwise a random value
could cause all three CPUs to disagree during a vote).

Local memory 16 is restored by using the DMA
engine 74 to copy each block of local memory 16 out to
global memory 14, 15, and back again; this copy-back
has the effect of copying good memory to the bad. This
techmque relies upon two features of the system con-
struction; first, the contents of local memory 16 are
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preserved across a soft reset of the CPU, and, second,
the DMA engine 74 always runs to completion-in the
case of a vote error, the consensus of the data will be
used, and at the end of the transfer status will indicate
which CPU failed the vote.

Before executing the CPU resynch step the routine
which performs the DMA page copy operations is itself
copied to global memory, so when the CPUs 11, 12 and
13 come out of the resynch step they will be executing
this copy routine in global memory 14, 15. The two
good CPUs will have the kernel and data structures 143,
144 still intact. The bad CPU will have random bad data
(some test pattern) in its local memory 16. After a DMA
page copy to global memory an error in voter 100 indi-
cating a vote fault by the bad CPU is anticipated on
status lines 33 and does not mean the CPU being re-
synched should be put offline again. On the copy from
global memory back to local memory 16, however,
errors indicate a problem.

In embodiments where the amount of local memory
16 1s large, the time required to copy every page may
become unacceptably high. To reduce the copy time,
the number of valid pages can be reduced by swapping
processes out (either to disk or global memory). This
reduces the number of pages that must be copied, at the
expense of system response time before and after the
reintegration.

If errors occur during the CPU resynch operation, all
interrupts are masked by the PROM code before execu-
tion returns to the kernel. Once complete kernel state is
restored the interrupt is lowered, and any pending error
interrupts will be serviced in the usual manner. During
restore of local memory 16, since the local memory is
still intact on a majority of the CPUs it is possible to
field non-maskable interrupts; this implies aborting the
reintegration and putting the bad CPU back offline.

If local memory errors occur, differences in the con-
tents of local memory are detected at voter 100 as vote
faults during writes to global memory 14, 15. If the vote
fault occurs while the write buffers 52 are enabled there
is no reliable way to determine the faulty address so the
error 1s considered fatal and the CPU board is reset. If
the faulty address is known, an attempt to restore only
that cell is made; if the restore is successful the board is
not reset.

A parity-scrubber task is used to force vote-faults.
The parity-scrubber runs in a very low-priority fashion,
writing all pages from local memory 16 to a dummy
page in global memory 14, 15. If any one of the three
local memories 16 contains divergent data, a vote fault
is detected. The parity scrubber runs with a frequency
sufficient to drive toward zero the probability that all
three CPUs will ever contain different data. A similar
parity scrubber task runs in background at low priority
to detect divergent data in global memory.

The process of detecting, isolating and placing a
memory module offline is shown in FIG. 15. There are
two broad types of memory board failures; page specific
errors (e.g., parity) that indicate only a certain page in
memory has failed, and general faults that indicate the
entire board has failed. General failures will reset the
memory board, requiring full reintegration before the
board can be brought back online. Page specific errors
are handled without taking the board offline.

It is desired to make the memory boards 14, 15, “fail
fast”. By this is meant that when an error is present in
data stored in the global memory, it will be detected in
a short time, even though the data may not be accessed
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for a long period-that is, latent faults are intentionally
sought. Two kernel-level tasks are used to make the
memories fail-fast. A primary/backup swap task period-

ically swaps the roles of primary and backup memories

14 and 15 to ensure that errors specific to one of these
modes will be detected. A parity scrubber task, as be-
fore, ensures that all pages in global memory are read by
the CPUs to force latent parity errors.

The memory-normal state means the memory board
14 or 15 is online, able to function as either primary or
backup. The contents of the RAM 104 is identical to
that of the other memory board. The primary-backup
and parity-scrubber tasks are active (at low priority).
The memory-offline state is the condition in which a
memory board comes out of reset; this reset is either the
result of a soft reset if the board has been operating or a
hard reset if the board has just been plugged in. The
primary-backup and parity-scrubber tasks are turned
off, since they have succeeded in crashing one memory
and it is necessary that they be prevented from crashing
the other. A memory board is put in the revive state by
a user request to start reintegration. This revive state is
a special write-only limbo state in which the memory is
being prepared for reintegration. The memory board in
the revive state participates in all write operations and
performs write error checking as though it were online,
but 1t does not participate in or perform error checking
during reads. |

At the time a memory board 14 or 15 is put in the
revive state its RAM 104 is completely uninitialized.
Before it can be brought back online the revive memory
must contain exactly the same data as the good memory
board. The reintegration process takes two passes, with

each of these passes involving copying every page of 35 '

memory to itself, which has the effect of reading from
the good memory and writing back to both, thus copy-
ing all of the memory from the good board 14 or 15 to
the revive board. The sole purpose of the first pass is to
put valid parity in every location in memory so that the
second pass can proceed reliably. The memory board is
invisible to the I/0 buses 24 and 25 during this step. The
memory board 14 or 15 which is being reintegrated
always returns good status to the CPUs via lines 33
during this first step. The second pass is the reintegra-
tion step, during which CPUs and 1/0 buses 24 and 25
write to both memory boards 14 and 15; any parity
errors indicate true errors. |

Depending upon the size of the global memories 14
and 15, the amount of time required to run the two
reintegration passes can be significant. The user can

specify how much of the total CPU resources are dedi-
cated to the reintegration passes over a given period of

time. The actual page copy is done by the kernel with
priority set high and with exclusive ownership of the
170 buses 24 and 25; the priority is raised to prevent an
interrupt routine from changing the data before it can
be written back, and the access from the 1/0 buses 24
and 25 1s locked out to prevent an I/0 processor 26, 27
from changing data before it can be written back. The
write-protect bit for a given page must be disabled
while that page is being copied. The page copy will run
whenever the system is idle and at intervals specified by
the user in selecting the memory reintegration policy;
the block size can be selected, e.g., 128, 1024 or 4096
bytes transferred before the CPU is relinquished for
other tasks, and the gap between blocks selected so the
ratio of reintegration task to other tasks is defined.
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If a page-spectfic error occurs, a set number of at-
tempts are made to restore the page by rewriting it from
the other memory (just as in full memory revive). For
soft errors this corrects the problem. The memory is
made primary and the page is tested before a try is
considered a success. If a retry fails the memory board
is reset and must be reintegrated. |

While the invention has been described with refer-
ence to a specific embodiment, the description is not
meant to be construed in a limiting sense. Various modi-
fications of the disclosed embodiment, as well as other
embodiments of the invention, will be apparent to per-
sons skilled in the art upon reference to this description.
It is therefore contemplated that the appended claims

will cover any such modifications or embodiments as

- fall within the true scope of the invention.
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What is claimed is:
1. A method of operating a computer system having
multiple CPUs executing the same instruction stream,
the CPUs each having local memory and also each
accessing multiple global memory units storing identi-
cal data, comprising the steps of:

a) detecting an error in one of said CPUs:

b) 1solating said one CPU from the system and con-
tinuing to execute said instruction stream and ac-
cessing said global memory units by the other ones
of said CPUs;

c) reintegrating said one CPU after rendering said
CPU operative by first bringing said one CPU into
sync with said other ones of said CPUs by soft-
resetting all of said multiple CPUs prior to continu-
ing normal operation of said multiple CPUs, said
soft-resetting non-destructively preserving the cur-
rent state and the local memory of each said multi-
ple CPU, then restoring the state and the local
memory of said one CPU to be identical to the state
and the local memory of the said other ones of the
CPUs.

2. A method according to claim 1 wherein any one of

the global memory units may be designated as primary

for the purpose of supplying read data to said multiple

CPUs and the others of the said global memory units are

designated backup.

3. A method according to claim 1 wherein said step of
restoring the state and the local memory includes;
a) copying each state variable of the other ones of the

CPUs to global memory and then copying each

state variable from global memory to the appropri-

ate state register in all of said muitiple CPUs;

b) copying a portion of local memory of the other
ones of the CPUs to global memory and then copy-
ing said portion from global memory to local mem-
ory in all of said multiple CPUs;

c) repeating step b) for different portions of local
memory of the other ones of the CPUs until all
variables stored in local memory of the other ones
of the CPUs have been copied to global memory
and then copied from global memory to all of said
multiple CPUk. |

4. A method according to claim 1 including the steps

of; |

a) removing said one CPU from said computer sys-

tem without shutdown of said system and while the
other ones of the CPUs continue execution of said
instruction stream:;

b) replacing said one CPU in said computer system

also without shutdown and while instruction exe-
cution continues.
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5. A method according to claim 1 wherein there are
three said CPUs and two said global memory units.
6. A method according to claim 1 comprising the
steps of:
a) detecting an error in one of said global memory
units;
b) isolating said one of said global memory units and

5

continuing to execute said instruction stream and

accessing a remaining global memory unit of said
global memory units;

c) reintegrating said one global memory unit by re-
storing the state and memory contents of said one
global memory unit to be identical to the state and
memory contents of each remaining global mem-
ory unit of the global memory units:

d) and thereafter continuing to execute said instruc-
tion stream accessing said multiple global memory
units including said one global memory unit.

7. A method according to claim 6 wherein there are
two said global memory units either one of which is
designated primary and the other is designated backup.

8. A method according to claim 9 wherein said steps
of reading each global memory unit processor board
state variable and reading each local memory data word
stored in global memory includes checking the validity
of the data in each of said multiple global memory units.

9. A method according to claim 6 wherein said step of

restoring the state and the memory contents of global
memory includes:

a) configuring said one global memory unit to ignore
all access requests from 1/0 Processors;

b) reading each global memory unit processor board
state variable from the primary global memory unit
to said multiple CPUs and storing said processor
board state variable from the multiple CPUs to all
global memory units including said one global
memory unit;

c¢) reading each local memory data word stored in the
primary global memory unit to said multiple CPUs
and storing said local memory data word from the
multiple CPUs to all global memory units including
said one global memory unit;

d) repeating step c;

e) configuring said one global memory unit to execute
all access requests from 1/0 Processors.

10. A method according to claim 8 including the step
of changing the designations of the global memory units
if an error is detected in the global memory unit previ-
ously designated as primary.

11. A fault-tolerant computer system, comprising:

a) first, second and third CPUs of substantially identi-
cal configuration each having local memory, said
first, second and third CPUs executing substan-
tially the same instruction stream;

b) first and second global memory modules of sub-
stantially identical configuration, said first and
second memory modules storing substantially the
same data;

c) busses coupling each of the first, second and third
CPUs individually to each of said first and second
global memory modules whereby said first, second
and third CPUs access said first and second global
memory modules separately and in duplicate;

d) said CPUs continuing to execute said instruction
stream even though one of said first, second and
third CPUs is inoperative and continuing to access
one of said first and second global memory mod-
ules even though the other is inoperative;
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e) said one of said first, second and third CPUs which
Is Inoperative being replaceable into the system
without shutdown of the system while the other
ones of said CPUs continue execution of said in-
struction stream:;

f) said one of said first, second and third CPUs which
is inoperative being rendered operative and re-
stored to normal function in the system without
shutdown of the system while the other ones of
said CPUs continue execution of said instruction
stream, all of said first, second and third CPUs
being soft-reset prior to restoration of said inopera-
tive CPU, said soft-reset non-destructively preserv-
ing the current state and local memory of said first,
second and third CPUs;

g) said other of the global memory modules which is
inoperative being replaceable into the system with-
out shutdown of the system while said first, second
and third CPUs continue to access the global mem-
ory module which 1s operative;

h) said other of the global memory modules which is
inoperative being rendered operative and restored
to normal function in the system without shutdown
of the system while said first, second and third
CPUs continue to access the global memory mod-
ule which is operative.

12. A system according to claim 11 wherein said first,
second and third CPUs are 0peratmg on independent
clocks so that said execution is asynchronous.

13. A system according to claim 11 wherein either of
said global memory modules is designated as primary
and the other is designated backup, and wherein write
operations by the CPUs are executed in both of said
global memory modules but in read operations said
CPUs receive data from only the primary global mem-
ory module; and wherein the backup global memory
module may be designated primary and the primary
may be designated backup, at any time.

14. A system according to claim 11 wherein said first,
second and third CPUs are loosely synchronized upon
the event of a reference to the global memory modules.

15. A system according to claim 14 wherein said first,
second and third CPUs are loosely synchronized upon
the event of a reference to the global memory modules
by detecting an access to said first and second global
memory modules and stalling any CPUs for which the
access occurs earlier to wait until the last one of said
CPUs executes said access, then allowing the access to
occur.

16. A system according to claim 14 wherein said
global memory module include means for voting said
reference to said global memory modules, and wherein
data 1s voted only for writes in said means for voting
said references to said giobal memory modules, and
addresses and commands are voted for both read and
write references to said global memory modules.

17. A system according to claim 11 further including:

1) a first input/output bus coupled to said first global
memory module and a second input/output bus
coupled to said second global memory module; and

J) a first input/output processor coupled to both said
first and second input/output busses, and a second
Input/output processor coupled to both said first
and second input/output busses.

18. A system according to claim 17 further including:

k) one 1/0 bus coupled to said first input/output
processor and a second I/0 bus coupled to said
second input/output processor;
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1) one or more Bus Interface Modules coupled to both
said first and second I/0 busses
* m) one 1/0 Controller coupled to each Bus Interface
Module

n) one or more I/0 devices coupled to each 1/0
Controller.
19. A system according to claim 18 wherein a faulty
1/0 Controller can be taken off-line and placed in reset.
20. A system according to claim 18 wherein a faulty
disk drive module attached to an 1/0Q Controller can be
isolated and powered down until said disk drive is re-
moved and replaced.
21. A system according to claim 18 further including:
0) dual power subsystems providing normal opera-
- tional power for the redundant modules in the
system such that normal system operation can con-

tinue in the event of a failure of one power subsys-

tem component;

p) dual battery backup power subsystems providing 5

sufficient power to allow graceful shutdown of the

system in the event of a loss of mains power even

when one of said battery backup power subsystems
- 1S Inoperative;

q) redundant cooling systems with cooling efficiency
sensors on each cooling module such that the effi-
ciency of all remaining cooling modules can be
increased to compensate for a faulty cooling mod-
ule.

22. A system according to claim 18 further including
additional input/output processors, each coupled to an
additional 1/0 bus. |

23. A system according to claim 22 wherein each said
iInput/output processor functions as an independent
entity providing controlled access between said as-
signed 1/0 Controllers and said global memory mod-
ules.

24. A system according to claim 18 wherein:

a) each said 1/0 controller is assigned to one of the
two said input/output processors coupled via said
I/0 bus and said Bus Interface Module; and

b) each input/output processor coordinates global
memory accesses for its assigned 1/0 controllers;
and

c) each input/output processor monitors said as-
signed 1/0 Controllers for incorrect behavior and
reports software and firmware errors associated
with each said assigned 1/0 controller to the CPUs
via interrupts. - -

25. A system according to claim 24 wherein a faulty

input/output processor can be isolated, held in a Reset
state, and 1ts assigned I/0 Controllers reassigned to the

other input/output processor which is coupled to the
said 1/0 Controllers. |
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26. A method of operating a computer system includ-

ing the steps of: o |

a) executing the same instruction stream in first, sec-
ond and third CPUs; |

b) generating global memory accesses in each of said
first, second and third CPUs at separate first, sec-
ond and third global memory access busses;

¢) storing duplicative data in first and second global
‘memory modules having substantially identical
address spaces within the address range of said
CPUs, including executing accesses to each one of
said first and second global memory modules via
said first, second and third global memory access

~ busses;

d) voting each one of said accesses in said first and
second global memory modules when received
from said first, second and third global memory
access busses, said voting including comparing
information representing said accesses;

¢) allowing said accesses to be completed only where
at least two of said global memory access busses
present the same such information; .

f) placing offline one of said first, second and third
CPUs when a global memory access from said one
1s different from the other two upon said voting,
then placing said one CPU back online without
shutdown of the system after said one of the CPUs
1s rendered operative, said first, second and third
CPUs being soft-reset such that the current state
and local memory of each of said first, second and
third CPUs are non-destructively preserved prior
to continuing normal operation of said first, second
and third CPUs.

- 27. A method according to claim 26 including the

step of placing offline one of said first and second global

memory modules when an error is detected in global
memory access, then replacing said one of said global
memory modules into the system without shutdown of
the system after said one of the global memory modules
is rendered operative.

28. A method according to claim 26 including the
step of synchronizing said first, second and third CPUs
whereby said CPUs are substantially simultaneously
executing the same instruction stream, and wherein said
step of synchronizing said CPUs includes stalling execu-
tion of global memory accesses until all three of the
first, second and third CPUs are executing the same
global memory access at the same time.

29. A method according to the claim 28 wherein said
step of synchronizing also includes timing the imple-
mentation of external interrupts of the CPUs so that all
three of the first, second and third CPUs are executing

the same instruction at the time the interrupt is pres-

ented.
& i ¥ ¥ ¥
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