United States Patent [19]

Cole

- [54] METHODS AND APPARATUS EMPLOYING **DISTRIBUTION PRESERVING TOMLINSON PRECODING IN TRANSMISSION OF DIGITAL DATA SIGNALS**
- Inventor: Paul D. Cole, Fairfield, Conn. [75]
- General DataComm, Inc., [73] Assignee: Middlebury, Conn.
- Appl. No.: 820,098 [21]
- Jan. 13, 1992 Filed: [22]

Assistant Examiner-T. Ghebretinsae Attorney, Agent, or Firm-David P. Gordon

Patent Number:

Date of Patent:

US005291520A

5,291,520

Mar. 1, 1994

[57] ABSTRACT

[11]

[45]

A transmitter is provided with a distribution preserving Tomlinson coder which predistorts shaped data signals such that the power of each data signal exiting the coder is substantially similar to the power of the data signal entering the coder and such that upon transmission of the predistorted data signal over a channel, the effect of ISI of the channel is substantially removed. The transmitter is primarily intended for coded modulation systems utilizing a "coset" code, and the predistortion is preferably accomplished according to a linear function

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 651,563, Feb. 6, 1991.

[51] Int. Cl.⁵ H04B 1/10 [52] 375/60; 375/99 [58] 375/60, 34, 33, 7, 99; 371/43

[56] **References** Cited **U.S. PATENT DOCUMENTS**

OTHER PUBLICATIONS

"A simple and effective precoding scheme for noise whitening on intersymbol interference channels" by Rajiv Laroia et al. IEEE Jan. 2, 1992 pp. 1-6.

Primary Examiner—Curtis Kuntz

$$x_k + \sum_{l \ge 1} a_1 x_{k-1} = r_k - s_k + \sum_{l \ge 1} b_1 (r_{k-1} - s_{k-1})$$

where r_k is a data signal entering the coder, a and b are the coefficients of polynomials relating to the channel impulse response, x_k is the predistorted data signal exiting the coder, and s_k is chosen to cause the signal power of x_k on average to approximately equal the signal power of r_k on average. Different methods for so choosing s_k are disclosed. Receivers which cooperate with the provided transmitters are also provided.

20 Claims, 3 Drawing Sheets

•

. . .

. .

. . . . · · ·

U C

· · ·

.

U.S. Patent

Mar. 1, 1994

Sheet 1 of 3

.

.

.

· · ·

 ي ک

•

•

. .

.

DECODER

.

U.S. Patent

•

Mar. 1, 1994

Sheet 2 of 3

N 5

U.S. Patent

.

Mar. 1, 1994

Sheet 3 of 3

•

Ċ

Z S ဖြ SAME ×× CHOOSE SK. s_K μ Ω GENER 152a HAT FROM しい S AND

.

METHODS AND APPARATUS EMPLOYING DISTRIBUTION PRESERVING TOMLINSON PRECODING IN TRANSMISSION OF DIGITAL DATA SIGNALS

This is a continuation-in-part of patent application Ser. No. 07/651,563 filed on Feb. 6, 1991 and assigned to the assignee hereof, which patent application is hereby incorporated by reference herein in its entirety. 10

BACKGROUND OF THE INVENTION

This invention generally relates to the transmission and receipt of data over telecommunications channels via the use of modems. More particularly, this invention 15 relates to apparatus and methods for modem equilization which predistort data signals in a transmitter prior to sending the signals over a channel. Data signals which are sent over a channel from a transmitter to a receiver are often corrupted by the 20 inherent characteristics of the channel. Those inherent characteristics include the inability of a channel to provide a perfect response to a signal; i.e. the state of the channel at a previous moment in time affects the response of the channel at a later moment in time. In the 25 art, this is known as intersymbol interference or ISI. In addition to ISI, data signals are also subjected to noise. Both the noise and ISI reduce the ability of a receiver to determine exactly what was transmitted from the trans-30 mitter. In attempting to correct for ISI, it is common in the art to supply an equalizer in the receiver. The function of the equalizer is to correct for the ISI of the received signals so that the initial data can be recovered. With an equalizer in the receiver, typically, a known sequence of 35 data signals (i.e. a training sequence) is sent from the transmitter to the receiver. Being that the data signal sequence itself is known, and the signals being received are known, it is possible for the equalizer first to determine the effects of the channel (i.e. the channel coeffici- 40 ents) on the transmitted signals, and then to compensate for those effects via any of several processes such as linear equalization or decision feedback equalization. Linear equalization functions by multiplying the incoming signals by the inverse of the ISI. While the ISI is 45 generally removed from the incoming signals in this manner, noise inherent in the data transmission is undesirably simultaneously amplified. Additional details of linear equalization may be obtained by reference to Lee, Edward A. and Messerschmitt, David G., Digital Com- 50 munication; (Kluwer Academic Publishers, 1988). Decision feedback equalization avoids the noise amplification problems of linear equalization. However, in recreating the ISI via feedback, decision feedback equalization runs the risk of error propagation, as any 55 decision errors that are made are fed back. Additional details of decision feedback equalization may be obtained by reference to Lee, Edward A. and Messerschmitt, David G., Digital Communication; (Kluwer Academic Publishers, 1988). 60 In response to the problems of linear and decision feedback equalization, M. Tomlinson, "New Automatic Equalizer Employing Modulo Arithmetic"; Electronics Letters Vol. 7, (March, 1971) pp. 138-139, suggested that equalization occur in the transmitter rather than in 65 the receiver. In other words, the signals should be predistorted in the transmitter in such a manner that would cancel out the ISI of the channel upon transmission. As

2

a result, after travel through the channel, the signals being received by the receiver would correspond to those signals which were generated by the transmitter prior to the predistortion, except for noise. The noise accompanying the data would not be amplified.

In more mathematical terms, if a series of data points r_k are to be sent from the transmitter to the receiver, the Tomlinson scheme precodes the data according to a linear function:

$$x_k + \sum_{l \ge 1} h_1 x_{k-1} = r_k \mod M$$

where x_k is the ISI corrected (i.e. predistorted) signal which is transmitted over the channel, r_k is the precorrected selected signal point, and h_i are the coefficients of a polynomial which describes the channel's impulse response (i.e. ISI). While Tomlinson precoding is generally effective, the manner in which Tomlinson processes the signals prior to transmission causes signals having a desired power distribution which provides coding gain (e.g. as seen in U.S. Ser. Nos. 07/535,329 and 07/640,260 which are hereby incorporated by reference herein) to lose that gain. In other words, if the Tomlinson precoding is to be used, there is no benefit in providing a signal constellation having a desired "shape" or power distribution, as the Tomlinson precoding substantially destroys desired power distributions of coded signals. While for certain data transmission schemes this feature is acceptable, in high speed modems (e.g. 19.2 kbits/sec) it is advantageous that any gain available be maintained. Recently, in Forney Jr., G. David, "Trellis Shaping", IEEE Information Theory Workshop, CCITT Study Group XVII & Working Parties, Geneva 15-23 Oct. 1990 (Temporary Document 211-E), an in Forney Jr., G. David, "Trellis Precoding: Combined Coding, Precoding and Shaping for Intersymbol Interference Channels", IEEE Information Theory Workshop, CCITT Study Group XVII & Working Parties, Geneva 15-23 Oct. 1990 (Temporary Document 212-E), Forney proposed an equalization scheme which avoids the drawbacks of both the equalization in the receiver, and the Tomlinson precoding methods. As set forth in the Forney articles, Trellis encoded and modulated data signals are predistorted to account for ISI in a manner which simultaneously provides minimum possible energy of the transmitted signal. While the Forney method theoretically provides excellent results, it has several drawbacks. First, the shaping scheme of Forney adds considerable delay to the process of transmitting data. Second, the Forney method requires very complex processing.

SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide a transmitter which predistorts data signals having a desired power distribution without destroying the power distribution of the data signals.

It is another object of the invention to provide a transmitter which straight-forwardly predistorts coded data signals while substantially maintaining the power distribution of those coded data signals. It is a further object of the invention to provide a transmitter which predistors coded data signals without introducing additional delay and which substantially maintains the power distribution of the coded data signals.

3

It is an additional object of the invention to provide a receiver having a decoder for decoding coded data signals which have been predistorted without destroying the power distribution of the coded data signals and which have been sent through a distorting channel.

It is yet a further object of the invention to provide a digital telecommunications system having a transmitter and receiver where predistorted shaped data signals are transmitted over a channel, and shaped data signals received by the receiver are decoded.

In accord with the objects of the invention, a transmitter is provided with precoding means which predistorts shaped data signals such that the power of each data signal exiting the precoding means is substantially similar to the power of the data signal entering the precoding means and such that upon transmission of the predistorted data signal over a channel, the effect of intersymbol interference of the channel is substantially removed. The transmitter of the invention is primarily 20 intended for coded modulation systems utilizing a "coset" code, and the predistortion is preferably accomplished according to a linear function

$$\sum_{l\geq 1}^{\sum} v_1(r_{k-1}-s_{k-1})-\sum_{l\geq 1}^{\sum} u_1X_{k-1}\right).$$

⁵ Thus, four different combinations are set forth: choose s_k as a multiple of a given value to cause x_k and r_k to occupy identical defined regions in space, where s_k is chosen according to equation (1) and predistortion is accomplished according to equation (1) (this arrangement having been taught in the parent application hereto); choose s_k as a multiple of a given value to cause approximator X_k and r_k to occupy identical defined regions in space, where s is chosen according to equation (2) and predistortion is accomplished according to equation (1); choose s_k to cause x_k to approximate r_k and

$$x_k + \sum_{l \ge 1} a_1 x_{k-1} = r_k - s_k + \sum_{l \ge 1} b_1 (r_{k-1} - s_{k-1})$$

Where r_k is a data signal entering the precoding means, a_i and b_i are the coefficients of polynomials relating to the channel impulse response, x_k is the predistorted data signal exiting the precoding means, and s_k is chosen to cause the signal power of x_k on average to approximately equal the signal power of r_k on average. Different manners of choosing s_k to accomplish this are set forth. For example, s_k may be chosen as a multiple of a given value (N) which is chosen to cause x_k and r_k to occupy identical defined regions in space, where the total length and/or width of each defined region is the given value N; or s_k may be chosen to cause x_k to ap-40 proximate r_k (i.e., s chosen closest to

predistortion is accomplished according to equation (1); and choose s_k to cause approximator X to approximate r_k (as in equation (2)) and accomplish predistortion according to equation (1).

Further in accord with the objects of the invention, a receiver is provided with a decoder for decoding received data signals which have been predistorted as summarized above. The receiver receives a sequence of signals, and processes the sequence to provide a se-(1) 25 quence of signals whose k'th term is an estimate of $r_k - s_k$. If in the transmitter, s was chosen to cause x_k or X_k and r_k to occupy identical regions in space, then from the estimate of $r_k - s_k$, the decoder of the receiver preferably generates an estimate of x_k or X_k (depending) upon how the coding was accomplished in the transmitter) by multiplying the received estimate by the ISI. From the estimate of x_k or X_k , and the estimate of $r_k - s_k$, the decoder determines the particular value of an estimate of s_k , and hence the value of an estimate of \mathbf{r}_k . On the other hand, if in the transmitter, \mathbf{s}_k was chosen to cause x_k or X_k to approximate r_k , then s_k is taken as the closest point to an estimate of

$$\sum_{l\geq 1} b_1(r_{k-1}-s_{k-1})-\sum_{l\geq 1} a_1x_{k-1}\right).$$

In accord with another aspect of the s_k may be chosen at the transmitter according to a second linear function:

$$X_k + \sum_{l \ge 1} u_1 X_{k-1} = r_k - s_k + \sum_{l \ge 1} v_1 (r_{k-1} - s_{k-1})$$

where r_k is a data signal entering the precoding means, 55 X_k an approximator of x_k , u_i and v_i are the coefficients of polynomials chosen such that X_k is an approximator of x, and s_k is chosen to cause the signal power of X_k on average to approximately equal the signal power of r_k on average. Typically, the coefficients u are set to zero. 60

$$\sum_{l\geq 1}^{\sum} b_1(r_{k-1}-s_{k-1})-\sum_{l\geq 1}^{\sum} a_1x_{k-1}\right)$$

or to an estimate of

50

(2)

$$\sum_{l\geq 1} v_1(r_{k-1} - s_{k-1}) - \sum_{l\geq 1} u_1 X_{k-1} \bigg).$$

The telecommunication system invention preferably utilizes the above-summarized transmitter and the above-summarized receiver. The methods of the invention relate closely to transmitter, receiver, and system apparatus inventions.

Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided drawings.

Where s_k is chosen according to equation (2), it will be appreciated that upon sending a signal, predistortion itself is still accomplished according to equation (1). It should also be appreciated in using the approximation linear function (2) in choosing s_k , that s_k may still be 65 chosen as a multiple of a given value N chosen to cause X_k and r_k to occupy identical defined regions in space, or to cause X_k to approximate r_k (i.e., a chosen closest

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a portion of the transmitter of the invention.

FIG. 2 is a flow chart of the method of the invention carried out in the distribution preserving Tomlinson encoder of FIG. 1.

FIG. 3 is a block diagram of a portion of the preferred receiver of the invention.

FIG. 4 is a flow chart of the method of the invention carried out in the distribution preserving Tomlinson decoder of FIG. 3.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A portion of a modem transmitter 10 is seen in FIG. 1. The preferred transmitter 10, as shown, includes a Trellis encoder 15, a mapper 20, a distribution preserving Tomlinson encoder 25, and filters and analog cir- 10 cuitry 30 for interfacing with a channel 40. Details of a Trellis encoder 15 may be found in Lee, Edward A. and Messerschmitt, David G., Digital Communication; (Kluwer Academic Publishers, 1988). The preferred mapper 20 of the invention is the mapper disclosed in 15 U.S. Ser. Nos. 07/535,329 and 07/640,260 which were previously incorporated by reference herein. The mapper 20 preferably provides to the distribution preserving Tomlinson encoder 25 a series of data signals which are drawn from a "shaped" constellation; i.e. a series of data 20 signals having a desired power distribution. The function of the distribution preserving Tomlinson encoder 25 is to predistort the data signals to account for channel ISI while simultaneously substantially maintaining the power distribution of the data signals being transmitted. 25 According to the invention, predistortion is accomplished in the distribution preserving Tomlinson encoder 25 according to a linear function (set forth above as equation 1):

6

at least one other value are included. In particular, the set of $r_k - s_k$'s is an enlargement of the set of r_k 's. The size of the enlargement of the set of $r_k - s_k$'s is dependent on the size of the set S. While a large number of s_k 's is beneficial for accuracy, it will be appreciated that a reduction in the number of $r_k - s_k$'s chosen can enhance the estimation procedures used in the receiver as well as providing simplicity in the receiver and transmitter.

A third manner of choosing s_k is also substantially similar to the manner set forth in parent application Ser. No. 07/651,563, except that instead of using s_k to cause x_k and r_k to occupy identical defined regions in space, s_k is instead chosen to cause X_k and r_k to occupy identical defined regions in space, where X is an approximation of x_k and is defined by a linear function as set forth

$$x_{k} + \sum_{l \ge 1} a_{1}x_{k-1} = r_{k} - s_{k} + \sum_{l \ge 1} b_{1}(r_{k-1} - s_{k-1})$$

where r_k is the data signal generated by mapper 20 and forwarded to the encoder 25, a_i and b_i are the coeffici- 35 ents of polynomials relating to the channel impulse response, x_k is the predistorted data signal exiting the distribution preserving Tomlinson encoder 25, and s_k is chosen to cause the signal power of x_k on average to approximately equal the signal power of r_k on average. 40 In accord with the invention, there are four different preferred manners of choosing s_k . A first manner is to choose s_k as a multiple of a given value (N) which is chosen to cause x_k and r_k to occupy identical defined regions in space, where the total length and/or width of 45 each defined region is the given value N. Details of this manner of choosing s_k are set forth in the parent application hereto, Ser. No. 07/651,563, which was previously incorporated by reference herein. These details are not included herein for sake of brevity. 50 A second manner of choosing s_k is substantially similar to the manner set forth in parent application Ser. No. 07/651,563 except that instead of choosing s_k to cause x_k and r_k to occupy identical defined regions in space, s_k is chosen to cause x to approximate r_k . In other 55 words, using equation (1), s_k is chosen as the s_k value closest

in equation (2) above:

$$X_{k} + \sum_{l \ge 1} u_{1}X_{k-1} = r_{k} - s_{k} + \sum_{l \ge 1} v_{1}(r_{k-1} - s_{k-1})$$

where r_x a data signal entering the precoding means, and u_1 and v_1 are the coefficients of polynomials chosen such that X_k is an approximator of x_k . Once s is so 25 chosen, predistortion is accomplished according to equation (1) set forth above. Effectively, then, in the third (and preferred) embodiment s_k is chosen based on an approximation. The use of an approximation is advantageous because it includes, among others, the case 30 where the u_1 coefficients are zero. When the u_1 coefficients are zero, feedback is eliminated in the decoding algorithm of the receiver.

In the third manner of choosing s_k , it will be appreciated that s_k is a multiple of a given value (N) where the length and/or width of each defined region is the given value N. Where a one-dimensional system is utilized, r_k , X_k , and s_k are preferably real numbers, and the regions of total length N in space occupied by X_k and r_k are along a line, while where a two-dimensional system is utilized, r_k , X_k and s_k are preferably complex numbers, and X_k and r_k are located within areas located within two-dimensional regions which are Cartesian products of the two one-dimensional regions. The fourth manner of choosing s_k is effectively a combination of aspects of the second and third manners; i.e., s_k is chosen to cause the approximation X_k to approximate r_k . In other words, in choosing s_k , the approximation of equation (2) is utilized, and instead of using s_k to cause X_k and R_k to occupy identical defined regions in space, s_k is chosen to cause X to be substantially equal to r_k ; i.e., the s_k is chosen as the s_k value closest to

 $\sum_{l\geq 1}^{\sum} b_1(r_{k-1}-s_{k-1})-\sum_{l\geq 1}^{\sum} a_1x_{k-1}\right).$

 $\sum_{l\geq 1}^{\Sigma} v_1(r_{k-1} - s_{k-1}) - \sum_{l\geq 1}^{\Sigma} u_1 X_{k-1} \bigg).$

Again, the s_k 's in the set S should include at least value zero and one other value, and can be limited based on 60 the discussion above.

In order to break a tie, any tie-breaking scheme can be utilized, such as, e.g., using the s_k which is closest to zero.

It will be appreciated that in choosing a set S of s_k 's which can be used to cause x_k to approximate r_k , any number of s_k 's can be utilized, provided at least zero and

More particularly, and as shown in FIG. 2, at step 102 the distribution preserving Tomlinson encoder 25 obtains the ISI of the channel 40 (e.g. from memory); the ISI having typically been determined initially by a re-65 ceiver via the use of training sequence technology, and communicated back to the transmitter. As part of step 102, the channel coefficients a₁ and b₁ are obtained (e.g. from memory) such that

$\left(1+\sum_{l\geq 1}a_{l}D^{l}\right)/\left(1+\sum_{l\geq 1}b_{l}D^{l}\right)$

approximates the channel impulse

Then, at step 104, the r_k value from the mapper 20 (which is preferable obtained via the mapping technique) described in U.S. Ser. Nos. 07/535,329 and 07/640,260 which were previously incorporated by reference 10 herein) is preferably scaled such that the input of mapper 20 is a half-integer; e.g. $\ldots -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{1}{2}, \frac{1$ (although such scaling is not necessarily required). Then, a value for s_k must be chosen to cause the signal power of x_k on average to approximately equal the 15 8

to FIG. 4. The \tilde{r}_k values are then sent to the demapper 65 which provides to the differential decoder 70 a series of points drawn from a constellation.

Details of the manner in which the distribution pre-5 serving Tomlinson decoder 60 determines \tilde{r}_k are seen with reference to FIG. 4. At step 150, the decoder 60 receives $r_k - s_k$ from the Viterbi decoder 55 Then, if in the transmitter, s_k was chosen to cause x_k and r_k to occupy identical regions in space, then at 152a from the estimate of $r_k - s_k$, the decoder of the receiver preferably generates an estimate of x_k (\bar{x}_k) by multiplying the received estimate by the ISI; i.e.,

$$\widetilde{x}_{k} + \sum_{j \ge 1} a_{1} \widetilde{x}_{k-1} = \widetilde{r_{k} - s_{k}} + \sum_{j \ge 1} b_{1} (\widetilde{r_{k-1} - s_{k-1}})$$

signal power of r_k on average. The manner in which s_k is chosen is according to any of the four previously described manners. Thus, as seen at 106a, s_k is chosen for each r value based on causing x_k and r_k to occupy identical regions in space, and based on the first linear 20 function. As seen at 106b, s_k is chosen for each r value based on causing x_k to approximately equal r_k , and based on the first linear function. As seen at 106c, s_k is chosen for each r_k value based on causing X_k and r_k to occupy identical regions in space, and based on the 25 second linear function. As seen at **106***d*, s_k is chosen for each r value based on causing X_k to approximately equal r_k , and based on the second linear function. Regardless of how s_k is chosen, at 108, x is sent according to the first linear function.

Where s_k is chosen to cause x or X_k and r_k to occupy identical defined regions in space, the regions may be defined in manners set forth in parent application Ser. No. 07/651,563 or in other suitable manners. Also, for these situations, as described in the integers (i.e. they are 35 multiples of 2). On the other hand, regardless of whether s_k is chosen to cause x or X_k and r_k to occupy

 $i \equiv 1$

Then \tilde{s}_k is chosen so that $\tilde{r}_k - \tilde{s}_k + \tilde{s}_k$ and \tilde{x}_k occupy the same region in space. If, in the transmitter, s_k was chosen to cause x_k to approximately equal r_k , then at 152b, \tilde{s}_k is taken as the closest point to

$$\sum_{l\geq 1} b_1(r_{k-1}-s_{k-1}) - \sum_{l\geq 1} a_1 \tilde{x}_{k-1} \bigg).$$

Where the a_i coefficients are taken as zero, no \tilde{x}_{k-i} values need be generated.

However, where one or more of the a_i coefficient are 30 not zero, the \tilde{x}_{k-1} values are the previous estimates \tilde{x}_k generated as above. If, in the transmitter s_k was chosen to cause X_k and r_k to occupy identical regions in space, then from the estimate of $r_k - s_k$, then at 152c the decoder of the receiver preferably generates an estimate \tilde{X}_k by multiplying the received estimate by the \tilde{ISI} ; i.e.,

identical defined regions in space or is chosen to cause x_k or X_k to be approximately equal to r_k , in order to accommodate coding/decoding, the only restriction on 40 the coding of the input sequence $\{r_k\}$ is that the hereinafter described receiver must recognize $\{r_k - s_k\}$ as a valid coded sequence whenever $\{r\}$ is a coded sequence of r_k 's, and $\{r_k - s_k\}$ is a corresponding sequence of $r_k - s_k$'s. Further, in order to accommodate differential 45 encoding/decoding, of $\{x_k\}$ is the output sequence generated by the input sequence $\{r_k\}$, then $\{-x_k\}$ should be the output sequence generated by the input sequence $\{-\mathbf{r}_k\}.$

While the mathematics set forth above deals in only 50 one dimension, the extension to two dimensions is straight-forward. In two dimensions, the sequence $\{r_k\}$ is a sequence of complex numbers having real and imaginary portions: $Re(r_k \text{ and } Im(r))$. In fact, extension to more than two dimensions will suggest itself to those 55 skilled in the art.

Turning to FIG. 3, a block diagram of the receiver 50 of the invention is seen. The preferred receiver includes a Viterbi decoder 55, a distribution preserving Tomlinments a differential decoder 70. The function of the Viterbi decoder 55 is to receive the signals sent over channel 40, and to decode the Trellis coding so as to provide an estimate of $r_k - s_k$; i.e. $r_k - s_k$, to the distribution preserving Tomlinson decoder. From $f_k \rightarrow s_k$, the 65 distribution preserving Tomlinson decoder 60 of the invention finds values for the series of \tilde{r}_k , which are suggest itself to those skilled in the art. estimates of r_k , as set forth in more detail with reference

$$\widetilde{X}_{k} + \sum_{l \ge 1} u_{1} \widetilde{X}_{k-1} = \widetilde{r_{k} - s_{k}} + \sum_{l \ge 1} V_{1} (\widetilde{r_{k-1} - s_{k-1}})$$

Then \tilde{s}_k is chosen so that $\tilde{r}_k - \tilde{s}_k + \tilde{s}_k$ and \tilde{X}_k occupy the same region in space. Finally, if, in the transmitter, the s_k was chosen to cause X_k to approximately equal r_k , then at 152d, \tilde{s}_k is taken as the closest point to

$$\sum_{k\geq 1} v_1(r_{k-1}-s_{k-1}) - \sum_{l\geq 1} u_1\widetilde{X}_{k-1} \bigg).$$

Again, if the u_i coefficients are not zero, the \tilde{x}_{k-1} values are previous X_k as generated above. Regardless of the manner in which s_k is derived, at step 154, from the estimate of s_k , the decoder 60 determines r_k according to

$$\widetilde{r_k} = \widetilde{r_k - s_k} + \widetilde{s_k} \tag{3}$$

While the above disclosure regarding the receiver of son decoder 60, a demapper 65, and in some embodi- 60 the invention deals in only one dimension, the extension to two dimensions is straight-forward. For example, in two dimensions, the sequence $\{r_k - s_k\}$ is a sequence of complex numbers having real and imaginary portions: $Re(r_k - s_k)$ and $Im(r_k - s_k)$. As with the transmitter, in the receiver, the real and imaginary portions are treated separately, but each is treated exactly as set forth above Again, extension to more than two dimensions will

-9

The telecommunication system invention preferably utilizes the transmitter and the receiver invention previously described. It will be appreciated that where a particular embodiment of the transmitter is utilized, a corresponding embodiment of the receiver should be 5 utilized for compatibility.

There have been described and illustrated herein transmitter provided with (pre)coding means which predistorts shaped data signals such that the power of each data signal exiting the precoding means is substan-¹⁰ tially similar to the power of the data signal entering the precoding means and such that upon transmission of the predistorted data signal over a channel, the effect of intersymbol interference of the channel is substantially removed. Also described and illustrated herein are receivers which cooperate with such transmitters. While particular embodiments have been described, it will be appreciated that it i not intended that the invention be limited thereby, as it is intended that the invention be as $_{20}$ broad in scope as the art will allow. Thus, while the transmitters of the invention were described as preferably having Trellis encoders, and the receivers of the invention were described as preferably having Viterbi decoders, it will be appreciated that the invention has 25 application to transmitters and receivers employing different types of coding, or no coding at all. Also, while the invention suggested use of certain mappers providing coding gain, it will be appreciated that other mappers could be utilized. Of course, it will be appreci-30 ated that the precoding and decoding are carried out using standard apparatus such as properly programmed DSPs, microprocessors or other processors. Those skilled in the art will also appreciate that while the invention was set forth in detail for one dimensional 35 signals, and for two dimensional signals based on a rectangular grid, the concepts of the invention also apply to two dimensional signals based on other grids (e.g. hexagonal) as well as to signals having three or more dimensions. In fact, even though the disclosed 40 implementation of the invention has deficiencies when one or more of the coefficients u_i are not zero, those skilled in the art will appreciate that various techniques can be utilized to overcome those deficiencies. Therefore, it will be apparent to those skilled in the art that 45 yet other changes and modifications may be made to the invention as described without departing from the scope and spirit of the invention is so claimed.

10

average to approximately equal the signal power of r_k on average; and

interface means coupled to said coding means, said interface means for receiving said predistorted output second telecommunications signals and for processing said predistorted output second telecommunications signals for transmission on said telecommunications channel.

2. A transmitter according to claim 1, wherein: s_k is chosen to cause x_k to be approximately equal to r_k .

3. A transmitter according to claim 1, wherein: s_k is chosen according to a second linear function

$$X_{k} + \sum_{l \ge 1} u_{1}X_{k-1} = r_{k} - s_{k} + \sum_{l \ge 1} v_{1}(r_{k-1} - s_{k-1})$$

where X_k an approximator of x_k , and u_i and v_i respectively represent coefficients of first and second polynomials chosen to cause X_k to approprimate x_k , and

- s_k is a multiple of a given value (N) which is chosen by said coding means to cause X_k and r_k to occupy identical defined regions in space, where the total length and/or width of each defined region is the given value N.
- 4. A transmitter according to claim 1, wherein: s_k is chosen according to a second linear function

$$X_k + \sum_{l \ge 1} u_1 X_{k-1} = r_k - s_k + \sum_{l \ge 1} v_1 (r_{k-1} - s_{k-1})$$

where X_k an approximator of x_k , and u_i and v_i respectively represent coefficients of first and second polynomials chosen to cause X_k to approximate x_k , and

I claim:

1. A transmitter for transmitting a series of telecom-⁵⁰ munications signals over a telecommunications channel, said transmitter comprising:

coding means for predistorting first telecommunications signals according to a linear function s_k is chosen to cause X_k to be approximately equal to

r_k.

5. A transmitter according to claim 3, wherein

- r_k , X_k and s_k are complex numbers having real and imaginary portions, and X_k and r_k are located within identical two-dimensional regions which are Cartesian products of a defined real and a defined imaginary one-dimensional region, each of total length N.
- 6. A transmitter according to claim 1, wherein: said real portion of s_k and said imaginary portion of s_k are even integers, and real portion of r_k and said imaginary portion of r_k are scaled data signals.

7. A receiver for receiving a series of signals over a channel, where the signals were first predistorted according to a linear function

$$x_k + \sum_{l \ge 1} a_1 x_{k-1} = r_k - s_k + b_1(r_{k-1} - s_{k-1})$$

 $x_{k} + \sum_{l \ge 1} a_{1}x_{k-1} = r_{k} - s_{k} + \sum_{l \ge 1} b_{1}(r_{k-1} - s_{k-1})$

to provide predistorted output second telecommu- 60 and then subjected to ISI of said channel and noise, wherein r_k represents a signal which is to be predisnication signals, wherein r_k represents a first telecommunication signal which is to be predistorted torted according to said linear function, a_i and b_i respectively represent coefficients of first and second polynoby said coding means, a_i and b_i respectively repremials relating to said channel ISI, x_k represents a signal sent coefficients of first and second polynomials which is subjected to said ISI, and s_k is chosen to cause relating to the channel impulse response of said 65 telecommunications channel, x_k represents a prethe signal power of x_k on average to approximately distorted output second telecommunications signal, equal the signal power of r_k on average, said receiver and s_k is chosen to cause the signal power of x_k on comprising:

25

40

50

65

11

- a) means for receiving said series of signals and generating from a k'th signal of said series of signals an estimate of $r_k - s_k$; and
- b) decoder means for generating from said estimate of $r_k - s_k$ and/or an indication of said ISI an estimate 5 of s_k , and from said estimate of $r_k - s_k$ and said estimate of s_k an estimate of r_k .
- 8. A receiver according to claim 7, wherein: said estimate of s_k is generated by causing said estimate of s_k to be an s_k value which is closest to

$$\sum_{l\geq 1} b_1(r_{k-1} - s_{k-1}) - \sum_{l\geq 1} a_1 x_{k-1}$$

where $\tilde{\mathbf{x}}_{k-i}$ are estimates of previous \mathbf{x}_k . 9. A receiver according to claim 8, wherein:

12

b) a transmitter for transmitting a series of data signals over said channel, said transmitter including coding means for predistorting data signals according to a linear function

$$x_k + \sum_{l \ge 1} a_1 x_{k-1} = r_k - s_k + \sum_{l \ge 1} b_1 (r_{k-1} - s_{k-1})$$

10 to provide predistorted output data signals, wherein r_k represents a data signal which is to be predistorted by said coding means, a₁ and b_i respectively represent coefficients of first and second polynomials relating to the channel impulse response of said channel, x_k represents 15 a predistorted output data signal, and s_k is chosen to cause the signal power of x_k on average to approxi-

said coefficients s_i are chosen as zero.

10. A receiver according to claim 8, wherein: x_{k-i} are previous x_k estimates (\bar{x}_k) , where \bar{x}_k is determined by multiplying said estimate of $r_k - s_k$ by said ISI according to

$$\widetilde{x}_{k} + \sum_{l \ge 1} a_{1} \widetilde{x}_{k-1} = \widetilde{r_{k} - s_{k}} + \sum_{l \ge 1} b_{1} (\widetilde{r_{k-1} - s_{k-1}})$$

- where $r_k s_k$ is said estimate of $r_k s_k$. **11**. A receiver according to claim **10**, wherein: said estimate of s_k is generated by causing said estimate of $r_k - s_k$ plus said estimate of s_k to occupy an 30 identical one of a plurality of defined regions in space as \tilde{X}_k , where \tilde{X}_k is an estimate of X_k , and X_k is an approximator of x_k .
- 12. A receiver according to claim 11, wherein:
- \mathbf{X}_k is determined by multiplying said estimate of 35 $r_k - s_k$ by said ISI according to

mately equal the signal power of r_k on average; and c) a receiver means for receiving a series of signals corresponding to said predistorted output data signals, said series of signals being said predistorted output data signals which were subjected to ISI of said channel and noise, said receiver means including means for generating from a k'th signal of said series of signals an estimate of $r_k - s_k$, and decoder means for generating from said estimate of $r_k - s_k$ and or from an indication of said ISI an estimate of s_k , and for determining from said estimate of s_k and said estimate of $r_k - s_k$ an estimate of r_k .

17. A method for predistorting telecommunications signals in a coding means of a transmitter prior to transmission over a telecommunications channel, said method comprising:

- a) obtaining telecommunications signals \mathbf{r}_k which are to be predistorted; and
- b) predistorting said data signals r_k according to a linear function

$$X_{k} + \sum_{l \ge 1} u_{1}X_{k-1} = r_{k} - s_{k} + \sum_{l \ge 1} v_{1}(r_{k-1} - s_{k-1})$$

where u_i and v_i are respectively coefficients of first and second polynomials chosen to cause X_i to estimate x_k .

13. A receiver according to claim 7, wherein: said estimate of s_k is generated by causing said esti-⁴⁵ mate of s_k to be an s_k value which is closest to

$$\sum_{l\geq 1}^{\sum} v_1(r_{k-1} - s_{k-1}) - \sum_{l\geq 1}^{\sum} u_1 X_{k-1}$$

where \tilde{X}_{k-1} are previous estimates of X_k (\tilde{X}_k), X_k is an approximator of x_k , and u_i and v_i are respectively coefficients of first and second polynomials chosen to cause X_k to estimate x_k . 55

14. A receiver according to claim 13, wherein: said coefficients u_i are chosen as zero.

15. A receiver according to claim 13, wherein:

 \bar{X}_k is determined by multiplying said estimate of Ę,

$$x_{k} + \sum_{l \ge 1} a_{1}x_{k-1} = r_{k} - s_{k} + \sum_{l \ge 1} b_{1}(r_{k-1} - s_{k-1})$$

to provide predistorted output telecommunications signals x_k , wherein a_i and b_i respectively represent coefficients of first and second polynomials relating to the channel impulse response of said telecommunications channel, and s_k is chosen to cause the signal power of x_k on average to approximately equal the signal power of r_k on average. 18. A method according to claim 17, wherein: s_k is chosen to cause x_k to be approximately equal to \mathbf{r}_k .

19. A method according to claim **18**, wherein: s_k is chosen according to a second linear function

$$X_k + \sum_{l \ge 1} u_1 X_{k-1} = r_k - s_k + \sum_{l \ge 1} v_1 (r_{k-1} - s_{k-1})$$

where X_k an approximator of x_x , and u_i and v_i respec $r_x - s_k$ by an approximation of said ISI according to 60 tively represent coefficients of first and second polyno-

$$\widetilde{X}_{k} + \sum_{l \ge 1} u_{1} \widetilde{X}_{k-1} = \widetilde{r_{k} - s_{k}} + \sum_{l \ge 1} v_{1} (\widetilde{r_{k-1} - s_{k-1}})$$

where $r_k - s_k$ is said estimate of $r_k - s_k$. 16. A telecommunications system, comprising: a) a telecommunications channel;

mials chosen to cause X_k to approximate x_k , and s_k is a multiple of a given value (N) which is chosen by said coding means to cause X_k and r_k to occupy identical defined regions in space, where the total length and/or width of each defined region is the given value N. 20. A method according to claim 17, wherein: s_k is chosen according to a second linear function

10

15

20

35

14

tively represent coefficients of first and second polynomials chosen to cause X_k to approximate x_k , and s_k is chosen to cause X_k to be approximately equal to r_k .

* * * * *

 $X_{k} + \sum_{l \ge 1} u_{1}X_{k-1} = r_{k} - s_{k} + \sum_{l \ge 1} v_{1}(r_{k-1} - s_{k-1})$

where X_k an approximator of x_k , and u_i and v_i respec-⁵

13

.

25

30

. .

40

45

★. .

50

. 55

•

5

60

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 5,291,520

DATED : March 1, 1994

INVENTOR(S): Paul D. Cole

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

```
Column 9, claim 1, line 6
```

$$x_{k} + \sum_{l \ge 1} a_{l} x_{k-l} = r_{k} - s_{k} + \sum_{l \ge 1} D_{l} (r_{k-1} - s_{k-1})$$

Signed and Sealed this

Thirtieth Day of January, 1996

Bur Chman

BRUCE LEHMAN

Attest:

Attesting Officer

Commissioner of Patents and Trademarks