O 0

United States Patent (1)
Ardolino

[54] METHOD FOR REMOTELY ACCESSING
SERVICE PROGRAMS OF A LOCAL
PROCESSING SYSTEM SUPPORTING
MULTIPLE PROTOCOL STACKS AND
MULTIPLE DEVICE DRIVERS

[76] Inventor: Anthony A. Ardolino, 2435 Trappe
Ave., Miami, Fla. 33133
[21] Appl. No.: 681,948 '
[22] Filed: “Apr. 8, 1991
[51] Int. CLS cooreererenece. GOGF 9/06; GO6F 9/455
[52] US. QL ... v anaans 395/500; 395/725;
364/239.4; 364/240.8; 364/284; 364/940.81;
- - 364/232.3
[58] Field of Search 395/500, 725, 200
[56] References Cited
U.S. PATENT DOCUMENTS
4,493,021 1/1985 Agrawal et al.c........ 395/200
4,754,395 6/1988 Weisshaar et al. 395/650
4,768,150 8/1988 Chang et al.ccoeovrerrennen. 395/700
4,855,905 8/1989 Estrada et al.ccoeeuerenne. 395/500
4,975,829 12/1990 Clarey et al.oovverereennnee. 395/275
5,109,515 4/1992 Laggis et al. 395/7235

OTHER PUBLICATIONS

Grygo; “TCP-IP Parade Marches On”’; Digital Review
Nov. 7, 1988 vol. § No. 21, p. 49.

Gill; “Search For the Perfect Unix User Interface”;

Computer System News, No. 360, p. 56; Apr. 4, 1988.
Stephenson; “Lan Bridges: Connecting Your Lan to a
‘World Information”; GOV Computer News, vol. 7,
No. 17; p. 63. | -

Pompili; “TCP-IP Firms Work Toward OSA Compati-
bility”; PC Week, vol. 5, No. 24, PC 40; Jun. 14, 1988.
McClatchy, “Andrew Toolkit Offers Standard User

Interface Across Many System”; PC Week Feb. 2, 1988,

vol. 5, No. 5, p. 13.

US005265239A
111 Patent Number:

- (45] Date of Patent:

) 5,265,239
Nov. 23, 1993

- Scott; “Operating System Gives Access t0 YAX. VMS,

Unix”; PC Week Jun. 28, 1988, vol. 5, No. 26, PC 4.

Primary Examiner—Parshotam S. Lall
Assistant Examiner—Krisna Lim

Attorney, Agent, or Firm—David H. Judson

[57] - ABSTRACT
A method is described for enabling one or more exter-

' nal processing systems to access service programs of the

local processing system, the local processing system

having an operating system kernel and supporting mul-
tiple protocol stacks and multiple hardware device driv-
ers. The method begins by generating a master control
structure for each compatible protocol stack and device
driver supported in the local processing system. The.
hardware device drivers are then monitored for receipt,
from an external processing system, of any requests to
access the service programs. Upon receipt by a protocol
stack/device driver pair of an access request for one of
the service programs, the master control structure is
cloned into a control structure (DCB) for that service

‘program, the resulting service program control struc-

ture including control information to associate the ser-

~vice program with the protocol stack/device driver

pair receiving the access request. Then, the method
creates a virtual circuit representing a communication

path between the external processing system, the proto-

- col stack/device driver pair receiving the access re-

quest, and the service program. A control block (NCB)

is then generated for each predetermined block of ac-

tual data to be communicated to and from the service
program. The service program control structure and
the virtual circuit are maintained while actual data is
communicated between the service program, the proto-
col stack/device driver pair and the external processing
system. |

17 Claims, 2 Drawing Sheets

CLONE MASTER CONTROL

- GENERATE MASTER 30
- CONTROL STRUCTURE
MONITOR FOR RECEWPT | -39

OF ACCESS REQUEST .

RECEPT

34

STRUCTURE WNTO DATA
CONTROL BLOC

CREATE WRTUAL CRCUIT

36

T GENERATE WRTUAL 37
- CONTROL BLOCK

GENERATE NETWORK
COMMAND BLOCK FOR

~ EACH DATA PACKET

MAINTAN DATA CONTROL
BLOCK AND WRTUAL
CONTROL BLOCK WHILE
~ DATA COMMUNICATED

38

40

“TERMNATE DATA
| coNTROL BLOCK AND

WRTUAL CONTRQL BLOCK

42

U.S. Patent Nov. 23, 1993 Sheet 1 of 2 5,265,239

160 1

- ' LAN USER SPACE
s | NETWARE a AGER -

SERVlCE INTERFACE

KERNEL
- 12
NETBIOS

| TWSTED PAR

ETHERNET ' ETHERNET
20a 20e
R — 10
SERVICE PROGRAMS USER SPACE

---_——“____-__-____ .
: T T

SOCKETS INTERFACE T iNTERFACE"

_ ' o 17
[PROTOSW — [nersos _E]

"STREANS /P! MESSAGE PRocessmc

: “TWISTED PAR
1| ETHERNET

FIG. 4

U.S. Patent

52

(sTaRT)
RECEVE EACH
DATA PACKET

PERFORM INITIAL
LOOK-UP
_ KNOWN?
ADD TWO LSB's | -56
OF ADDRESS |

MODULO-DIVIDE RESULT
8Y A PRIME NUMBER

OF CONNECTION TABLES

"~ INDEX TO CONNECTION

TABLE USING REMAINDER 60

T REVIRSE NDEX g2
RETRIEVE CONNECTION

DENTIFIER 64

FIG. 3

Nov. 23, 1993

EQUAL TO THE NUMBER |38

T GENERATE MASTER
| CONTROL STRUCTURE

Sheet 2 of 2

| UNKNOWN? | ESTABLISH |~ 94
~ |CONNECTION

MONITOR FOR RECEIPT
OF ACCESS REQUEST

RECEIPT

CLONE MASTER CONTROL _
STRUCTURE INTO DATA
CONTROL BLOCK

CREATE VIRTUAL CIRCUIT

GENERATE VIRTUAL
CONTROL BLOCK

GENERATE NETWORK _
COMMAND BLOCK FOR
EACH DATA PACKET

MAINTAIN DATA CONTROL
BLOCK AND VIRTUAL
CONTROL BLOCK WHILE
" DATA COMMUNICATED

TERMINATE DATA
CONTROL BLOCK AND
VIRTUAL CONTROL BLOCK

FIG. 2

~ 40

5,265,239

34

36

37

38

1

METHOD FOR REMOTELY ACCESSING
SERVICE PROGRAMS OF A LOCAL PROCESSING
SYSTEM SUPPORTING MULTIPLE PROTOCOL
STACKS AND MULTIPLE DEVICE DRIVERS

TECHNICAL FIELD

The present invention relates generally to methods
and systems for integrating diverse computer systems
and more particularly to a method for enabling one or
more external processing systems to transparently ac-
cess service programs of a local processing system.

BACKGROUND OF THE INVENTION

The UNIX ® System was designed in the 1970’s as a
general purpose, multiuser, interactive operating system
for minicomputers. The communications environment
in UNIX 1is designed around a simple character input-
/output interface mechanism. This mechanism, which
processes one character at a time, is thus unable to effec-
tively support a broad range of devices, speeds, modes
and protocols, such as the current generation of net-
working protocols exemplified by Systems Network
Architecture (SNA), Transmission Control Protocol-
/Internet Protocol (TCP/IP) and Xerox Network Sys-
tems (XNS). Such protocols provide significant func-
tionality and features but cannot be efficiently inte-
grated for use with the UNIX operating system due the
lack of a standard interface.

There have been attempts to solve this problem

-~ through the development of special tools such as
AT&T’'s STREAMS, which is a collection of system

calls, kernel resources and kernel utility routines that

define standard interfaces for character input/output
within the UNIX kernel, and between the kernel and
the rest of the UNIX System. The STREAMS mecha-
nism is described in the UNIX System V/386 Release
3.2 Streams Primer (1989). The Berkeley Standard Dis-
tribution (“BSD”) form of the UNIX kernel has a simi-
lar mechanism commonly referred to Berkeley Sockets.

Conceptually, AT&T's STREAMS and Berkeley
Sockets support development of interface standards for
character input/output within the UNIX kernel, and
‘between the kernel and the user level. Unfortunately,

5,265,239

S

10

15

20

25

30

35

45

these tools have not been effectively developed to the
extent necessary to enable the UNIX operating system -
to be interconnected and integrated with existing di-

verse networks. The many desirable features and char-

acteristics of the UNIX System therefore have not been
available to users of PC’s and local area networks be-
cause of this connectivity problem.

It would therefore be desirable to prowdc a method
of integrating a multiuser, interactive operating system

such as UNIX with other computing systems, nctworks |

applications and information.

BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to provide a

55

2

‘access service programs of the local proccssmg system

in a transparent manner.
It is another object of the invention to provide a

method in which a multiuser operating system functions
‘as a server providing file, applications and peripheral
“access to and from diverse local area networks such as
Novell Netware, OS/2 LAN Manager, NETBIOS and

TCP/IP-NFS.

According to the method of the present invention,
certain data control structures are created to enable the
local processing system to identify what service pro-
gram is being accessed in the operating system kernel
and where data from that service program needs to be
communicated at the hardware level. Multiple different
kinds of service programs can thus be multiplexed to
multiple different kinds of protocols on multiple differ-
ent kinds of hardware drivers. The result is a “server”
that is tranSparcnt to a network operating system, thus
functionally a *“clone” of all existing network servers
such as Banyan, Novell and Lan Manager.

It is yet a further important feature of the invention to
implement the above-identified method using a “dual
personality” interface between the service programs
and the protocol stacks and between the protocol stacks
and the hardware level. Each such interface supports
both STREAMS and Berkeley Sockets calls. This ar-
chitecture is extremely advantageous because it enables
service programs written for the BSD environment to
be compiled and run unmodified in the UNIX environ-
ment, and vice versa.

It is still another object of the invention to implement
connection-oriented service at the device driver level
for a UNIX-based local processing system.

In the preferred embodiment, these and other objects
of the invention are provided in a method, using a local
processing system having an operating system kernel
and supporting multiple protocol stacks and multiple

hardware device drivers, for enabling one or more ex-

ternal processing systems to access service programs of
the local processing system. The method comprises the
steps of first generating a master control structure for
each compatible protocol stack and device driver sup-
ported in the local processing system, the master con-
trol structure for each protocol stack/device driver pair

including control information to factiitate data transfer

to and from the protocol stack associated with that

- protocol stack/device driver pair. Thereafter, the hard-

ware device drivers are monitored for receipt, from an
external processing system, of any requests to access the
service programs. Upon receipt by a protocol stack/de-
vice driver pair of an access request for one of the ser-
vice programs, the master control structure is cloned
into a control structure (DCB) for that service program,
the resulting service program control structure includ-
ing control information to associate the service program

~ with the protocol stack/device dnvcr pair receiving the

method and system supported on a multiuser operating

system such as UNIX that is transparently integrated
with other diverse computing systems.

It is a more Spec1ﬁc object of the present invention to

provide a method, using a local processing system hav-
ing an operating system kernel and supporting multiple
protocol stacks and multiple hardware device drivers,
for enabling one or more external processing systems to

65

access request.

The method then continues by creating a *“‘virtual
circuit” representing a communication path between
the external processing system, the protocol stack/de-
vice driver pair receiving the access request, and the
service program. A virtual control block (VCB) is also
created for the virtual circuit. The VCB points to or

references the relevant hardware interface at which the

access request was received. A control block (NCB) is

then generated for each predetermined block of actual
data to be communicated to and from the service pro-

gram. The control block includes a data portion and

3

information identifying the service program control
structure for the service program. Each block or
“packet” of data points to a DCB, and each DCB refers
to a VCB for the virtual circuit. The method maintains
the service program control structure and the virtual
circuit while actual data is communicated between the
service program, the protocol stack/device driver pair
and the external processing system. During such data
communication, the data portion of each control block
1s transmitted over the virtual circuit. Upon completion
of the data communication, the service program control
structure and the virtual circuit (and 1ts corresponding
VCB) are terminated.

The method also advantageously implements connec-
tion-oriented service at the datalink layers. Every data
packet to be transmitted from the local processing sys-
tem in response to the access request is sent from the
service program down to the hardware level with just
an address identifying the original source of the request
(1.e., the external processing system device). If the ad-
dress does not identify an existing connection, the con-
nection 1s still established automatically. If the address
does identify an existing connection, the connection
identifier for the existing connection is retrieved and the
packet 1s transmitted on that number. A unique hash
algorithm 1s used to increase the speed at which connec-
tion identifiers for existing connections are retrieved.

The foregoing has outlined some of the more perti-
nent objects of the present invention. These objects

5,265,239

10

15

20

25

should be construed to be merely illustrative of some of 30

the more prominent features and applications of the
invention. Many other beneficial results can be attained
by applying the disclosed invention in a different man-

ner or modifying the invention as will be described.

Accordingly, other objects and a fuller understanding
of the invention may be had by referring to the follow-
ing Detailed Description of the preferred embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

- For a more complete understanding of the present
invention and the advantages thereof, reference should
~ be made to the following Detailed Description taken in
connection with the accompanying drawings in which:

FIG. 1 1s a schematic block diagram of a local pro-
cessing system supporting multiple protocol stacks and
multiple hardware device drivers according to present
invention;

FIG. 2 is a flowchart diagram of a preferred method
of the present invention for enabling an external pro-
cessing system to access one of the service programs of
the local processing system of FIG. 1; and

FIG. 3 1s a flowchart diagram of a hash algorithm of
the present invention for facilitating connection-ori-
ented service at the hardware level of the local process-
ing system of FIG. 1; and

FIG. 4 1s a schematic block diagram of an alternate
embodiment of the invention wherein the local process-
ing system includes common service interfaces for im-
plementing UNIX and Berkeley Sockets function calls.

DETAILED DESCRIPTION

FI1G. 1 illustrates the basic architectural design of a
local processing system 10 incorporating the principles
of the present invention. Local processing system 10
includes an operating system kernel 12 and a user space
14 supporting a plurality of service programs 16. Ser-
vice programs 16 provide various types of user services
such as file access and print functions. According to the

35

435

30

335

65

4

invention, the operating system kernel 12 supports mul-
tiple protocol stacks 18 and multiple hardware device
drivers 20. In one embodiment of the invention, the
service programs 16 interface to the protocol stacks 18
via calls to an interface or “transport” layer 17. Like-
wise, the protocol stacks 18 interface to the device
drivers through an interface layer 19. In an alternate
embodiment of the invention described below in con-

nection with FIG. 4, the transport layers 17 and 19

support multiple different types of interfaces (e.g.,
UNIX System V or Berkeley Sockets).

Although not meant to be limiting, preferably the
local processing system 10 is a multiuser computer pro-
cessing system such as a standard 386 or 486 personal
computer (PC) running SCO UNIX. The service pro-
grams include for example SQL 16a, NETWARE 165,
LAN Manager 16¢c, NFS (Network File System) 164,
and FTAM (OSI) 16¢. The protocol stacks 18 include
for example the protocols: NETBIOS 1842, XNS 185,
TCP/IP 18c and OSI 184. The hardware device drivers
interconnect to Ethernet 20a (ISO specification 802.3),
ArcNet 206 (ISO specification 802.4), token ring 20c
(ISO specification 802.5), Starlan 204 and twisted pair
Ethernet 20e.

According to the invention, the local processing sys-
tem 10 includes appropriate software for enabling one
or more external processing systems 22a-22¢ to access
the service programs 16 in a transparent manner. The
software thus provides “interoperability” to the exter-
nal processing systems 22 by enabling the local process-
ing system, e.g., a PC running UNIX SCQO, to act as a
server providing file, applications and peripheral access
to and from the diverse local area networks intercon-
nected to these systems. By way of example, worksta-
tion users supported on an external processing system
22 can gain transparent access to UNIX files, applica-
tions and facilities from the workstation’s native envi-
ronment.

Referring now to FIG. 2, a flowchart diagram 1s
shown of a preferred embodiment of a method of the
present invention for enabling the multiple external
processing systems to transparently access the service
programs of the local processing system. The method
begins at step 30 wherein a master control structure 1s
first generated for each compatible protocol stack 18
and device driver supported in the local processing
system. The master control structure for each protocol
stack/device driver pair including control information
to facilitate data transfer to and from the protocol stack
assoclated with that protocol stack/device driver pair.
Thereafter, at step 32, the hardware device drivers are
monitored for receipt, from an external processing sys-
tem 22, of any requests to access the service programs
16. Upon receipt by a protocol stack/device driver pair
of an access request for one of the service programs, the
method continues at step 34 by cloning the master con-
trol structure into a control structure (DCB) for that
service program. The service program control structure
that results from step 34 includes control information to
associate the service program with the protocol
stack/device driver pair receiving the access request.

The method then continues at step 36 by creating a
so-called *‘virtual circuit” representing a communica-
tion path between the external processing system 22, the
protocol stack/device driver patr receiving the access
request, and the necessary service program 16. At step
37, a virtual control block (VCB) 1s created for the
virtual circuit. A network command block (NCB) 1s

_ -8 .
then generated at step 38 for each predetermined block
of actual data to be communicated to and from the

5,265,239

service program 16. The NCB includes a data portion

and information identifying the service program control

structure (DCB) for the service program. Each packet

of data sent to or from the service program points to a

5

DCB for the service program and each DCB has a
virtual circuit identification number of *“‘vcid” that re-

fers to a VCB for the virtual circuit. The VCB itself
points to the hardware interface.

Referring back to FIG. 2, the method continues at
step 40 wherein the service program control structure
and the virtual circuit constructs are maintained while
actual data is communicated between the service pro-
gram, the protocol stack/device driver pair and the
external processing system. During such data communmni-
cation, the data portion of each control block is trans-
mitted over the virtual circuit. Upon completion of the
data communication, the service program control struc-
ture and the virtual circuit (and its corresponding VCB)
are terminated as indicated at step 42.

Therefore, according to the method of the present

~invention, the above-identified control structures are
created to enable the local processing system to identify

what service program is being accessed in the operating .

system kernel and where data to/from that service pro-
gram needs to be communicated at the hardware level.

10

15

20

25

This operation is carried out for each connection that is

established, i.e., for each access request. Multiple differ-
ent kinds of service programs can thus be multiplexed to
multiple different kinds of protocols on multiple differ-
ent kinds of hardware drivers. The result is a “server”
that is transparent to a network operating system, thus
functionally a “clone” of all existing network servers
such as Banyan, Novell and Lan Manager. In effect, the
local processing system acts as the interface between
various different types of networks. With multiple ser-

vice programs and multiple external processing sys-

tems, the method facihitates interoperability between
normally heterogeneous computer systems irregardless
of the user’s current operating environment.

As stated above, the method generates a service pro-
gram control structure or DCB that includes control
information to associate the service program with the
protocol stack/device driver pair receiving the access
request. The DCB includes all information that the
service program will need during the transaction, 1.e.,
the use of the service program to comply with the ac-
cess request. The preferred format of the DCB is set
forth below:

DATA CONTROL BLOCK -

struct NB_dcb
mblk..t *nd_mblk;
mblk_ t *nd_dataq;

/* Mblk to be freed */
/* data before conndone */-

queue__t *nd__rdq;
struct nbaddr nd__faddr;

- struct nbaddr nd__laddr;
struct NB__dcb *nd__head;
struct NB_dcb *nd__cq;
char *nd__listenncb;
mblk._.t *nd_iocbp;

unsigned long nd__opackets;

unsigned long nd..ipackets;
short nd_maxcon;

short nd._seqnum;

short nd__qlen

short nd__minordev;

short nd_state;

short nd__flags;

/* read q to send pkts */

/* Foreign address */

/* Local address */

/* Head of queue */

/* Connection queue */

/* Listen-NCB for cancel */
/* ioct] blk */ |

/* Number of out packets */
/* Number of in packets */
/* Maximum number */

/* Sequence number */
/* Qlen of connections */
/* Minor device num */

/* TLI state of dev */

/* Info about dev */

30

35

45

50

6

~continued
DATA_CONTROL BLOCK
| /* TLI req in err */

“short nd__req;

-short nd_err; /* TLI err to send up */
short nd._magic; /* Sanity check */
short nd__vcid; /® veid to use later */
short nd_nameid: /* Name number */

~ short nd_pid; /* Pid of process */

As noted above, each block of data (e.g., a call, a call
response, a connect request, a connect response, Or

actual data such as the results of a file copy) transmitted

to or received by the service program points to a DCB
having the above-identified data fields. The DCB pro-

vides the kernel all the information needed to facilitate

connections to/from a service program. The informa-
tion includes a number of identifiers. Referring now to
the above description, the identifier “pid” is the service
program identifier. The “nameid” is the index into a
name table. Each computer on the network is given a
name. Upon system initiation, the local processing sys-
tem’s name is registered in the table; thereafter, names
of remote computers are registered as connections are
established. The identifier “vcid” is the identifier for the
virtual circuit created at step 36 of the method. The
identifier “err” stores any error currently reported that
can then be sent up to the upper layer; the identifier
“req” stores errors that occur in the upper layer that are
sent downward. The “flags” field identifies the type of
interface. The *state” field identifies the state of the
interface, e.g., open, closed, data transfer. The 1dentifier
“minordev”’ is the actual physical device number con-

nected to the service program. “Qlen” is the queue

length identifying the maximum number of outstanding
connection requests that can be supported at one time.

‘The *“segnum” is the sequence number of the pending

connections. ‘“Maxcon” is the maximum number of

simultaneous connections.

The fields “ipackets™ and “opackets™ reflect the num-
ber of in and out packets for use in statistical reporting.

“The identifier “iocbp” refers to the input/output con-

trol block that the DCB point to. “Listenncb” 1s the
pointer to the NCB that is listening. The 1dentifier “cq”
defines the connection queue, whose head is defined by
the “head” identifier. The field “laddr” identifies the
local network address; “faddr” is the remote network
address. The identifier “rdq” is the read queue that data
comes in on. “Datag” is the data queue where data is
stored before connection is completed. “Mblk” is the

actual message block for the communication.

The VCB is created for each virtual circuit, and is
found by the “vcid” in the DCB. As discussed above,

I ~ the VCB itself specifically points to the structure refer-

55

65

ring to the hardware. The preferred format of the VCB
is set forth below:

VIRTUAL CONTROL BLOCK

typedef struct vcb

NAMCB far *namcb; /* ptr to name table entry */
BYTE rmame[16]; ~ /* remote name */
TIMER wdtimer; /* watchdog timer */
BYTE rpadr{6]; /* address at other end */
NCB far *ctl_ncb; /* calls and hangups */
WORD lbsendp; /* 0: no loopback’'d send
] pending */
/* 1: loopback send pending
but */

/* delaying bccause no
recvr */

5,265,239

7

-.continued
VIRTUAL CONTROL BLOCK

NCB far *rv__ncbhead:; /*
TIMER rv__timer; /*
WORD rv__already__used: /*

pending receives */
receive timer */
bytes used in next recv

msg */

WORD rv_bufused; /* bytes already rcvd into rv
ncb */

NCB far *sn__ncbhead; /* pending sends */

TIMER sn__timer; send timer ** also used for

call resp **

/*

WORD sn_._sent; /* bytes last sent for sn ncb

*/

WORD sn__acked; /* bytes sent and acked for sn
nch */

BYTE vcid; /* circuilt id that user sees

BYTE state; /* VSTATEfree,call,hangup,
active,hpend */

BYTE flags /* flag bits, VFLAGcaller and
loopback */

BYTE nameid; /* index to name table */

BYTE hangupsts; /* hangup sts when state =
hpend */

BYTE wdcount: /* decremented when wdtimer
expires */

/* reloaded when packet

received */

BYTE rto; /?* receive timeout, 8 sec
incs */

BYTE sto; /¥ send timout, 4 sec incs */

BYTE rvcid; /* wvcid that remote end uses */

BYTE rv_seq; /* recv expected seq # — O or
0% 10 */

BYTE sn__time; /* total time elapsed attempting
send */

/* ** also used for call retry

counter ** *

BYTE sn__seq; /* send seq # — O or 010 */

struct NB__ifnet*

The pointer “namcb” points to a name control block
identifying the name of the local processing system.
Byte “rname” is the name of the remote machine that
the local processing system is communicating with.
Each virtual circuit has a timer associated therewith;
the “wdtimer” i1s a watchdog timer which is restarted
with each new packet. If the time times out, the virtual

circuit 1s terminated. The byte “rpadr” is the network

address of the remote computer. The “ctl_ncb” is a
control network command block established for the
virtual circuit to monitor calls and hangups. The
“lbsendp” field is a flag indicating whether or not the
virtual circuit defines a loopback within the local pro-
cessing system (for testing purposes) or an external
connection. The pointer “rv__ncbhead” 1s a pointer to a
head of a linked list of NCB’s posted to receive incom-
ing data packets. Likewise, the pointer “sn__ncbhead”
points to the head of a linked list of pending NCB’s
waiting to be sent.

When a message is lengthy, it must be fragmented and
thus the system needs to keep track of data blocks so
that the data can be properly reassembled later. The
“rv_timer”’ starts when a data block of a fragmented
message 18 received. The “sn timer’ starts upon trans-
mission of a data block; if an acknowledgement is not
received before it times out, the data block is resent.
The “sn_sent” and *“‘sn_—acked” fields indicate the num-
ber of bytes sent and how many of such bytes were
acknowledged, respectively. The byte “vcid” is the
circuit identifier that the user sees. The byte *state”
identifies the state of the virtual circuit, namely: free,
call, hangup, active or hangup pending. The “flags”
field includes the bit flags indicating whether the virtual
circuit is in a loopback or test mode or reflects an outgo-

10

15

20

25

30

35

45

50

33

65

8

ing connection. The “nameid” is the index to the name
table. The byte “hangupsts” determines if there is a
hangup pending. The byte “wdcount” represents the
count that is starte¢ by the “wdtimer”. The *“rto” and
“sto” bytes are the timeout parameters.

The “rvcid” field 1dentifies the “vcid” of the remote
processing system. When packets are transmitted or
received, each packet is sequenced (with a “0” or 1)

so that the sequence of the packets can be verified. The
byte “rv_seq” is the sequence bit of a received packet;

likewise, “sn_.seq” is the sequence bit for a transmitted
packet. The “sn_time” field is a count of the total
elapsed time waiting for an acknowledgement for a
transmitted packet. Finally, the “NB ifnet” pointer
points to the specific hardware device connected.

Each remote processing system has at least one de-
vice driver and protocol stack. The remote system gen-
erates the network command blocks and virtual control
blocks as required to facilitate the transmission.

As discussed above, each data packet delivered to or
from the service program is associated with an NCB.
The preferred format for this structure is set forth be-
low:

NETWORK COMMAND BLOCK
typedef struc ncb

BYTE cmd; /* command code */
BYTE err; /* error return */
BYTE vcid; /* session i1d */
BYTE namenum; /* name number */
char *bufptr; /* buffer address */
short buflen; /* buffer length */
BYTE mame[NBNAMSZ]; /* remote name */
BYTE Iname[NBNAMSZ]; /* local name */
BYTE rto; /* receive timeout */
BYTE sto; /* send timeout */

/* anr entry */

/* adapter number */

/* cmd complete when not ff */
/®* (*) next on list */

/* (*) cancel ncb for this ncb */

void (*anrptr) ();
unsigned char lana;
unsigned char done;
struct ncb far *next;
struct ncb far *cannchb;
/l

*/

short fromdoncb;
mblk__t *mblk;
mblk__t *dblk:

struct NB_dcb *dcb;

/* Nozero if from doncb */
/* Mblk to free for this */
/* Data Mbuf in this ncb */
/* DCB for this NCB */

The upper portion of the NCB (above the last four
lines) is similar to the network command block struc-
ture of NETBIOS. For example, the byte “cmd” 1s a
one-byte field that contains the command to be exe-
cuted. The “err” byte identifies any error code re-
turned. The *“vcid” byte identifies the virtual circuit.
The identifier “*bufptr’ is a four byte field that contains
a pointer to a buffer. The identifier “buflen’ contains
the number of bytes stored in the buffer pointed to by
the *bufptr field. For receive commands, the number is
the actual number of bytes received; for transmission
commands, the number is the number of bytes to send.
The “rname” is the name of the remote machine; the
“Iname” 1s the name of the local processing system (and
corresponds to the “nameid” in the DCB). The
“char_lana” 1s the card number of the hardware device
in the local processing system. The flag ‘“char._done”
represents whether the command is complete or pend-
ing. The field *“ncb far *next” identifies the next NCB
on the linked list to be sent. The structure “ncb far
*canncb” is used to cancel an NCB.

The last four identifiers are included to facilitate the
method of the present invention. The identifier *from-

5,265,239

9

doncb” determines whether a data packet is commg
from a STREAMS interface. According to the inven-
tion, each message may have associated therewith one
~or more data blocks. The field “*mblk™ identifies the
message and the field “*dblk” identifies the data blocks
associated therewith. Most importantly, the *“*dcb”
associates the service program control structure or
DCB with the NCB. As previously discussed, a DCB is

10

most significant bytes. In this manner, the location of
the connection identifier takes place much more rapidly

- because many of the cards identified in a connection

established for each service program using the protocol

stack.
Of course, each remote processing system has at least

10

one device driver and protocol stack. The remote sys-

- tem generates the network command blocks and virtual
control blocks as required to facilitate the transmission.
The above-identified description relates to connectiv-

~ ity at the transport and NETBIOS layers. In particular,

the DCB and its related constructs facilitate reliable
data transmission, i.e., the sending of data and the ac-

knowledgement thereof, between the service pro-

gram(s) 16, transport interface 17 and protocol stacks
18. Turning now to the hardware level, the present
invention implements so-called “connection-oriented”
service at the datalink layer on a UNIX-based process-
ing system. Such service is effected by a unique routine
for relating the multiple connection identifiers at the
hardware level to the virtual circuit identifiers at the
NETBIOS level. According to the invention, the upper
levels (i.e., the protocol stacks and the transport layer)

have no knowledge of the connection at the hardware

level. In particular, every data packet to be transmitted

15

20

25

30

from the local processing system in response to the

access request is sent from the service program down to
the hardware level with just an address identifying the
original source of the request (i.e., the external process-
ing system device). If the address does not identify an
existing connection, the connection is established auto-
matically. If the address does identify an existing con-
nection, the connection identifier for the existing con-
nection is retrieved and the packet is transmitted on that
number. |

A unique hash algorithm is used to increase indexing
speed to determine the connection identifiers for exist-
ing connections. Referring now to the flowchart of
FIG. 3, this routine is now described. At the outset, the
local processing system has associated therewith a plu-
rality of “connection tables” each of which includes a

plurality of addresses and connection identifiers. The

tables are formed automatically as connection requests
come in and as the system connects to other systems;
" i.e., upon establishment of connections. The routine
bcgins at step 50 upon receipt of each data packet in-

cluding the routing address. At step 52, a test is made to

determine if the address identifies a known connection.

If not, the connection is established at step 54. If the -

result of the test at step 52 indicates that the address

35

45

30

55

corresponds to an existing connection identifier, the

routine continues at step 56 by adding together the two
least significant bytes (LSB’s) of the address. At step 58,
the resuit of the addition step 56 is then modulo-divided
by a prime number equal to the number of connection
tables. The remainder generated from the modulus divi-
sion is then used at step 60 as the index to one of the
‘connection tables. Specifically, the remainder identifies
the particular connection table. |

Thereafter, at step 62, the routine indexes into the
particular connection table (corresponding to the re-
" mainder) in a “backwards” manner, 1.e., by using the
least significant bytes of the address rather than the

65

‘table will have common MSB’s. Once the connection

identifier is located, it is retrieved at step 64 and the
packet is transmitted on that number.

Therefore, it can be seen that the invention provides
automatic connections as well as automatic lookup of
existing connections in the datalink layer. All data

‘packet addresses are resolved into a connection identi-

fier based on the hash index (i.e., the remainder) and the
backwards indexing routine. This operation facilitates

“connection-oriented” service at the hardware level.

Referring now to FIG. 4, a schematic block diagram
is shown of an alternate embodiment of the invention
wherein the local processing system includes common
service interfaces for implementing UNIX and Berkeley

Sockets function calls. By way of background, a user

level service program must communicate to a kernel
level protocol stack via the service level interface layer
17 such as shown in FIG. 1. In UNIX System V, the
interface is called “TLI” or the transport level inter-
face. In Berkeley Standard Distribution (BSD) UNIX,
the interface is a Berkeley-style Sockets interface. Ac-
cording to another important feature of the present
invention, a dual “personality” interface layer is pro-
vided between the user service programs and the proto-
col stacks, and between the protocol stacks and the -
device drivers. Thus, if a service program is making
Berkeley Sockets calls, for example; these calls are
translated back into TLI-type calls, or vice versa. The
same protocol stacks therefore can be used for service
programs whether or not they are written in Berkeley
BSD UNIX or UNIX System V STREAMS.
Referring now to FIG. 4, the preferred architecture is
shown. The upper level dual interface 17 allows service
programs to talk to the protocol stacks with both Sock-
ets and STREAMS. Likewise, the lower level dual
interface 19 has the ability to talk to two different types
of drivers, Sockets-type and STREAMS-type drivers.

If the local processing system is a BSD machine, the

dual interface 19 generates Sockets-type direct hard-
ware calls. If the system is a UNIX System V machine,

“the interface 19 generates STREAMS-type calls.

The upper layer dual interface 17 includes a Sockets

~interface layer 60 and a TLI interface 62 having a p]u-

rality of modules 62a-62d. For example, module 624 is
a TCP/IP STREAMS module, and module 62B is a
NETBIOS STREAMS module, and so forth for other
modules normally comprising a TLI interface on a
UNIX System V machine. The Sockets interface layer
60 includes a switch PROTOSW 64 which functions to
select the proper module depending on the calls re-
ceived from the service programs. If the calls are Berke-
ley Sockets, the Sockets interface layer 60 translates
those calls into STREAMS-type calls and directs the

calls, via the switch 64, to the appropriate module 62. If

the calls from the service programs are in STREAMS,
they are sent directly to the modules 62 without change.
Likewise, the lower level dual interface layer 19 in-

cludes an Ifnet/STREAMS interface 68 and a
STREAMS driver 70. Because BSD drivers generally

deal with devices directly, the Ifnet/STREAMS inter-
face can talk directly to the drivers interfacing, for
example, to Ethernet and X.25. The STREAMS dniver
70, however, is “virtual” in that it looks like a direct
hardware driver but really is a software driver. The

11

output of the driver 70 is one or more Berkeley style
hardware device drivers.

The networking interfaces described above provide
significant advantages. Most importantly, service pro-
grams written for the BSD environment can be com-
piied and run unmodified on a UNIX System V ma-
chine. Programs written for the TLI environment can
be run unmodified because of the TLI interface. Be-
cause Berkeley Sockets is supported in the kernel, no
kernel sources are modified. At the hardware level, the
Ifnet layer has an extra driver for multiplexing to
STREAMS drivers. Both Berkeley-style Ifnet drivers
that talk directly to hardware as well as Ifnet drivers
that talk to STREAMS are provided. Therefore, differ-
ent network applications can access multiple protocols
through a common dual personality interface support-
ing both BSD Sockets and AT&T UNIX System V
STREAMS calls.

It should be appreciated by those skilled in the art
that the specific embodiments disclosed above may be
readily utthized as a basis for modifying or designing
other structures for carrying out the same purposes of
the present invention. It should also be realized by those
skilled in the art that such equivalent constructions do
not depart from the spirit and scope of the invention as
set forth in the appended claims.

I claim:

1. A method, using a local processing system having
an operating system kernel and supporting multiple
protocol stacks and multiple hardware device drivers,
for enabling one or more external processing systems to
access service programs of the local processing system,
comprising the steps of:

(a) generating a master control structure for each
compatible protocol stack and device driver sup-
ported in the local processing system, the master
control structure for each protocol stack/device
driver pair including control information to facili-
tate data transfer to and from the protocol stack
associated with that protocol stack/device driver
pair;

(b) monitoring the hardware device drivers for re-
ceipt, from an external processing system, of any
requests to access the service programs;

(c) upon receipt by a protocol stack/device driver
pair of an access request for one of the service
programs, cloning the master control structure into
a control structure (DCB) for that service pro-
gram, the resulting service program control struc-
ture including control information to associate the
service program with the protocol stack/device
driver pair receiving the access request;

(d) creating a virtual circuit representing a communi-
cation path between the external processing sys-
tem, the protocol stack/device driver pair receiv-
ing the access request, and the service program;

(e) generating a control block (NCB) for each prede-
termined block of actual data to be communicated
to and from the service program, the control block
inciuding a data portion and information identify-
ing the service program control structure for the
service program,

5,265,239

10

15

20

25

30

35

45

50

23

65

12

(f) maintaining the service program control structure
and the virtual circuit while actual data 1s commu-
nicated between the service program, the protocol
stack/device driver pair and the external process-
ing system, wherein during such data communica-
tion the data portion of each control block is trans-
mitted over the virtual circuit; and

(g) terminating the service program control structure
and the virtual circuit upon completion of the data
communication.

2. The method as described in claim 1 wherein the
operating system kernel includes first or second service
interfaces between the service programs and the proto-
col stacks.

3. The method as described in claim 1 wherein the
control structure includes a virtual circuit identification
number.

4. The method as described in claim 3 wherein the
virtual circuit identification number 1dentifies a virtual
circuit control block including control information fa-
cilitate data transfer to and from the device drniver
uniquely identified with the virtual circuit.

5. The method as described in claim 4 further includ-
ing the step of maintaining the virtual circuit control
block while maintaining the data control block.

6. The method as described in claim 1 wherein the
application programs interface to the protocol stacks
via calls to a first or a second service interface in the
kernel.

7. The method as described in claim 6, further includ-
ing the step of:

translating calls to the first service interface into calls
to the second service interface such that an applica-
tion program written for the first service interface
1s compatible with the second service interface
without change to the kernel or the application
program.

8. The method as described in claim 3 wherein the
first service mterface is a Berkeley sockets style inter-
face and the second service interface is an AT&T UNIX
System V Streams transport layer interface (TLI).

9. The method as described in claim 1 wherein the
operating system kernel 1s UNIX System V.

10. The method as described in claim 1 wherein the
operating system kernel is Berkeley Sockets.

11. The method as described in claim 1 wherein one
of the protocol stacks implements the NETBIOS proto-
col.

12. The method as described 1n claim 11 wherein one
of the protocol stacks implements the TCP/IP proto-
col.

13. The method as described in claim 11 wherein one
of the protocol stacks implements the XNS protocol.

14. The method as described in claim 1 wherein the
protocol stacks implement the NETBIOS, TCP/IP and
XNS protocols.

15. The method as described in claim 1 wherein one
of the device drivers interface to Ethernet.

16. The method as described in claim 1 wherein one
of the device drivers interfaces to a token passing ring.

17. The method as described in claim 1 wherein one

of the device drivers interfaces to a token passing bus.
% % % *

	Front Page
	Drawings
	Specification
	Claims

