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[57) ABSTRACT

A fast parallel 2-D discrete casing transform, DCT,
device capable of performing a fast 2-D DCT by signifi-
cantly reducing the number of multiplications during
the implementation of the 2-D DCT. N XN 2-D mput
data is re-arranged into N groups so as to be the same as
the kernel of a cosine function in order to transform a
multiplying form of the cosine function (as the kernel of
a 2-D DCT) into a summation form. Then, the first
summations and first subtractions are carried out on the
re-arranged data, thereby generating first computed
data. Then, N 1-D DCT’s are carried out on the first
computed data. Finally, the 2-D DCT data is generated
by carrying out a shifting process after performing addi-
tions and subtractions on the 1-D DCT data in logaN
stages.
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1

METHOD AND CIRCUIT FOR
TWO-DIMENSIONAL DISCRETE COSINE
TRANSFORM

FIELD OF THE INVENTION

The present invention relates to a two-dimensional
discrete cosine transform (to be called hereinafter 2-D
DCT) for use in a data transmission system, in which
the computing time period of the 2-D DCT can be
shortened, thereby achieving a fast 2-D DCT.

BACKGROUND OF THE INVENTION

Generally, in data communication, data to be trans-
mitted is compressed at a transmitter and then the com-
pressed data is converted into an original data format at
a receiver. Such compressed data is subject to the trans-
form and, for this end, the most widely known method
is called the 2-D DCT. For instance, for a given 2-D
data sequence [X;r i, j=0, 1, 2, ..., N—1], the 2-D
DCT sequence [Ymr: m, n=0,1,2,..., N—1]is given
by

10

15

20

g
-

Yin -ﬁ;— U(m) U(n)

i=0 j=0
where a scale factor

30
-;-,2— Ulm) U(n)

may be neglected for convenience. Then, a denormal-

ized 2-D DCT form ym» of the 2-D DCT sequence 1s

defined as 35

Youn = —;;-2— U(m) Un) Y (37

Accordingly, it is noted from the above Formula (2) 40
that the denormalized 2-D DCT sequence ymn 1S €x-
pressed in terms of N 1-D DCT’s by implementing

e
N-—1N-1 @) 45
s < ! % (2i + 1I)m (2 + 1)
Ymn = f-z-{} jio Xjj cos TN 7 Cos =5 T
in the row direction, and thereafter implementing
N | 50
2 COos 2t Dm ,1 =
j=0 2N

in the column direction.
That is, from Formula (2'), the 2-D DCT can be

55
expressed by Formula (3") as shown below.

N—-1 T
2 COos
J=0

SN

. Therefore, in order to implement a DCT for a
N %X N2-D digital data based on Formulas (2') and (3'), a
system constituted as illustrated in FIG. 1 may be used.
That is, 1-D DCT are implemented N times in the row
direction for the N xXN2-D digital data input, and the
resulting outputs therefrom are then transposed in the
form of a matrix by a matrix transposer 2. Then, the
resulting outputs of the matrix transposer 2 are subject

65

2

to N 1-D DCT’s in the column directions, thereby ob-
taining the resulting 2-D DCT output Y mn.

However, in the case where a 2-D DCT is imple-
mented for NXN 2-D digital data in the above de-
scribed method, the DCT computing time is delayed
due to the implementation of 2N 1-D DCT'’s, and at the
same time, the hardware construction therefor becomes
complicated, thereby making it difficult to realize a high
density VLSI. That is, a 1-D DCT circuit is generally
comprised of a number of adders and multipliers; how-
ever, using the large number of 1-D DCT’s included in
a circuit implies that a great number of multiphers must
be used. It is therefore understood from the foregoing
that if a 2-D DCT circuit includes a large number of
1-D DCT’s, the computing time is increased and the
construction of the hardware becomes complicated.
Furthermore, since the input digital data is subject to
the 1-D DCT in the row direction, the output thereof
being transposed in the form of the matrix so as to per-
form 1-D DCT for the transposed data in the column
direction, there are great difficulties in constituting the
matrix transposer in the form of hardware.

N-1N-1 ; ; I
TINE ] Ky cos RE M 5 o il o ()

However, in order to perform the real time data com-
pression for a great amount of data, a fast DCT scheme
is necessarily required. Preferably, a scheme such as a
parallel structure with a fast transform speed and low
complexity, is required. In attempts to overcome the
above described problems which are inherent in the
method of FIG. 1, various methods have been pro-
posed. A variety of examples are disclosed in “A TWO-
DIMENSIONAL FAST COSINE TRANSFORM”
by M. A. Hague [IEEE Trans. Acoust., Speech, Signal
processing, Vol. ASSP-33, PP. 1532-1339, Dec. 1985.],
and “A FAST RECURSIVE TWO-DIMENSIONAL
COSINE TRANSFORM?” by C. Ma [Intelligent Ro-
bots and Computer Vision: Seventh in a series, David P.
Casasent, Editor, Proc. SPIE 1002, PP. 541-548, 1988].

In the above publications, there are proposed several
ways to carry out the 2-D DCT, without using the 1-D
DCT. Thus, if the 2-D DCT is performed in the above
method, a separate hardware is required regardless of
the 1-D DCT circuit. Furthermore, for the implementa-
tion of the DCT, the number of multiplications 1s re-
duced by about 25 percent, compared with the conven-
tional methods. Nevertheless, the DCT computing time

is still long, causing a problem in implementing the fast
DCT.

SUMMARY OF THE INVENTION

Therefore it is an object of the present invention to
provide a method and device for a fast 2-D DCT in
which the 2-D DCT for NXN digital data input 1s
performed in terms of N 1-D DCT’s by adding and
shifting the data. |

It is another object of the present invention to pro-
vide a method and device for a fast 2-D DCT in which
the number of multiplications is reduced, by converting
a multiplication form of cosine function into an summa-
tion form thereof so as to perform the 2-D DCT by
means of summation of a 1-D DCT.

It is still another object of the present invention to
provide a method and device for a fast 2-D DCT 1n
which the multiplication form of a cosine function 1s
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3

re-arranged into a summation form thereof, the re-
arranged digital data 1s subject to a primary addition
process, N 1-D DCT’s are performed for the result of
the primary addition, and then, the result is subject to a
secondary addition process.

It 1s still another object of the present invention to
provide a method and device for re-arranging N XN
digital data into N groups of data so as to carry out the
2-D DCT by means of performing N 1-D DCT’s.

It 1s still another object of the present invention to
provide a method and device for a fast 2-D DCT in
which, N/2 odd numbered groups of data and N/2 even
numbered groups of data from the re-arranged N group
data are subject to a primary addition and subtraction,
1-D DCT 1s performed for the result, and the resultant
value of the 1-D DCT is subject to a secondary summa-
tion and subtraction for logoN stages.

It is still another object of the present invention to
provide a method and device for reducing the number
of the implementations of the 1-D DCT to N/2 times in
an N XN 2-D DCT circuit, in which during a primary
addition of N/2 groups of data from the N group data
re-arranged in a circuit which implements 1-D DCT in
a pipe line structure, the remaining N/2 groups of data
are subject to a 1-D DCT, and during the 1-D DCT
implementation for the primary addition of N/2 groups
of data, a secondary summation of the remaining N/2
groups of data is implemented.

According to an aspect of the present invention, a
device for carrying out fast discrete cosine transforms
on N X N two-dimensional input data, includes: a circuit
for re-arranging the N XN input data to be identical to
kernel of one-dimensional discrete cosine transform of a
cosine function so as to transform a multiplying form of
the cosine function, the multiplying form being the
kernel of a two-dimensional discrete cosine transform
into an summation form; a circuit for generating first
N/2 summed data by adding together the respective
re-arranged data of even groups and odd groups among
the re-arranged data, and generating first N/2 sub-
tracted data by subtracting one from the other of re-
maining data groups; a circuit for carrying out one-
dimensional discrete cosine transforms on the first
added data and the first subtracted data produced
through the first computing step; and a circuit coupled
to the one-dimensional discrete cosine transform circuit,
for generating two-dimensional discrete cosine trans-
form data by performing summations and subtractions
on the one-dimensional discrete cosine transform out-
puts in logoN butterfly stages, and then by shifting the
result of the summation and subtraction by multiplying

by 3. |
BRIEF DESCRIPTION OF THE DRAWINGS

The above objects and other advantages of the pres-
ent invention will become more apparent by describing
in detail the preferred embodiment of the present inven-
tion with reference to the attached drawings, in which:

F1G. 1 illustrates the constitution of a conventional
2-D DCT circuit:

FIGS. 2A and 2B illustrate a 2-D DCT circuit and an
inverse 2-D DCT circuit, respectively, according to the
present invention;

FIGS. 3A and 3B illustrate re-arranged data format
for an 8 X 8 input data of FIG. 2;

FIGS. 4A, 4B, 4C 1llustrate a first embodiment of an
8 X8 2-D DCT circuit according to the present inven-
tion;
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FIGS. 5A, 5B, 5C illustrate the constitution of an
8 X 8 inverse 2-D DCT circuit according to the present
invention; |

FIG. 6 illustrates another embodiment of the first
adder and the 1-D DCT circuit of FIGS. 2A and 2B;
and |

FIGS. 7A, 7B, 7C illustrate another embodiment of
an 8 X8 2-D DCT circuit according to the present in-
vention.

" DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring to FIG. 2A, an input buffer 100 receives
N XN 2-D digital data input and a re-arranging section
200 receives the data output from the mput buffer 100.
In order to transform the multiplication of cosine func-
tion which is the kernel of 2-D DCT, into the summa-
tion of the cosine function, the re-arranging section 200
re-arranges the data input into N groups of data so that
the summation of cosine function may be the same as
the kernel of 1-D DCT. A first adder 300 receives the
output of the re-arranging section 200 to generate sum-
mation data as well as subtraction data for N/2 groups
of data by adding or subtracting the data of the respec-
tive odd numbered groups of data to or from the data of
the adjacent even numbered groups of the re-arranged
N groups of data. Then, the summation data and sub-
traction data of N/2 groups are applied to a 1-D DCT
section 400 which implements 1-D DCT to generate
1-D DCT data with respect to the summation data and
subtraction data of N/2 groups of data. A second adder
500 receives the output of the 1-D DCT section 400 to
generate 2-D DCT data by carrying out summation,
subtraction and shifting operations for logi;N stages.
Furthermore, an output buffer 600 buffers the output of
the second adding section 500.

In addition, a 2-D inverse DCT (hereinafter referred
to as 2-D IDCT) shown in FIG. 2B has a construction
which is inverse, in operation, of the 2-D DCT circuit
of FIG. 2A.

Referring to FIGS. 3A and 3B, there is shown the
procedure of re-arranging 8 X8 input data into eight
groups of data. After receipt of the 8 X8 input data as
shown in FIG. 3A, the data is re-arranged into 8 groups
to have the summation of the cosine function become
the same as the kernel of 1-D DCT, so that the multipli-
cation of cosine function which is the kernel of 2-D
DCT may be transformed to the summation of the co-
sine function.

In FIGS. 4A to 4C, an embodiment of an 8 X8 DCT
is shown in which a first adder 300 (i.e., the adders
301-308) receiving the re-arranged 8 group data sets
adds or subtracts a data set of group R;9, R39, Rs9, R4
to or from another data set of an adjacent group R?,
R34 Rsb, R7%to generate therefrom the summation data
and subtraction data of the two groups. The 1-D DCT
section 400 (i.c., the sections 401-408) receiving the
output of the first adder 300 carries out 1-D DCT for
the eight groups of the data sets with respect to the
summation and subtraction data. Further, the second
adder 500 receiving the DCT data from the 1-D DCT
section 400 carries out summation, shift operation and
subtraction for logaN stages to generate 2-D DCT data.

In FIGS. 4A to 4C, “()” indicates an adder, dotted
lines indicates transfer factors “—1”, solid lhnes indi-
cates unit transfer factors, and =} with % indicates
multiplication by 42 which is equivalent to shift opera-
tion. FIG. 4A 1llustrates a process for which, among the
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re-arranged eight groups of data sets X;;, odd numbered
groups and the adjacent groups of data sets are added or
subtracted to or from each other, and 1-D DCT’s are
carried out for the summation and subtraction data,
thereby to generate summation group data fj; and sub-
traction group data gp;.

FIG. 4B illustrates a process for which a secondary
summation is performed on the summation group data
f51, and 2-D DCT data y, is generated. FIG. 4C illus-
trates a process for which a secondary summation is
performed on the subtracted group data g, and 2-D
DCT data y,, is generated.

FIGS. 5A to 5C illustrating an 8 X8 IDCT, shows a
process inverse to that of the 8 X8 DCT of FIGS. 4A to
4C.

-~ Referring to FIG. 6, it illustrates another constitution
of the first adder 300 and the 1-D DCT section 400 of
FIG. 1 and shows the fact that, even if the primary
summation operation is performed after subjecting the

2-D data mput to 1-D DCT’s, it is equivalent to the 20

operation that 1-D DCT’s are carried out after perform-

Ing a primary summation.

FIG. 7 illustrates another embodiment of the 88
DCT, and according to this drawing, the constitution of
the 1-D DCT section 400 is reduced in its complexity by

$ by using multiplexers 701, 702 and demultiplexers 801, 30

802.

The present invention will now be described herein-
below in detail as to its operations, with reference to the
above described constitutions. |

According to the present invention, an NXN 2-D
DCT 1s carried out by implementing 1-D DCT N times,
so that the number of multiplications may be greatly
decreased and the 2-D DCT may be performed at a
high speed, improving the regularity and allowing the
system to achieve a high density.

For this end, the multiplication of row and column
cosine functions of 2-D DCT kernel should be trans-
formed to the summation of the cosine functions. Fur-
ther, the transformed data sets Should be re-arranged
into N 1-D DCT groups of data sets, so that the data
sets may become equivalent to 1-D DCT kernel. Ac-
cordingly, when the re-arranging section 200 which
receives N XN 2-D digital data input, transforms the
multiplication of the cosine functions which is the ker-
nel of the 2-D DCT into the summation of cosine func-
tions, the input data sets must be rearranged into N
groups so that the summation of the cosine functions
may become equivalent to the kernel of the 1-D DCT.

Thereafter, each of the re-arranged N groups of data
sets will have a unique characteristics and, according to
the charactenistics, the first adder 300 performs the
summation or subtraction on the respective groups.
Thus, the first adder 300 receives N groups of the data
sets to perform the summation and subtraction and, in
performing the computations, two data sets are added
together for N/2 groups of the data sets. Whereas, a
data set is subtracted from another data set for the re-
maining N/2 groups of the data sets. Therefore, the
resultant data output from the first adder 300 consists of
the summation data for the first N/2 groups and the
subtraction data for the remaining N/2 groups.

The summation and subtraction data which are out-
put from the first adder 300 are then respectively trans-

10

15

4

Ymp =

N2

35

45

35

65

6
formed to DCT data by the 1-D DCT section 400,

while the output of the 1-D DCT section 400 is subject
to subtraction for log;N stages and shifted by the sec-
ond adder 500, thereby generating 2-D DCT data yma.
Therefore, among the ultimately obtained 2-D DCT
data ymn, the 2-D DCT data having an even numbered
“n” are the summation of the results which are obtained
by carrying out the 1-D DCT in the form of adding the
both data sets through all of them by the first adding
section 300, while those having an odd numbered “n”
are the summation of the results which are obtained by
carrying out the 1-D DCT in the form of subtracting
one data set from another data set by the first adding
section 300.

Now a.process for carrying out the NXN 2-D DCT
in the above method will be described in more detail
below. Assuming that the 2-D data sequence are repre-
sented by [X;z 1, j=0, 1,..., N—1] and that the 2-D
DCT sequence are represented by [Ymn: m, n=0, 1, ..
. » N—1], then the relation therebetween can be ex-
pressed by Formula (1) as shown below.

N—
U(m) U(n) X

I=

1 N—-1 - * !
T Xjoos LM oo Gt (1)
Jj=0

In Formula (1), the scale factor

=2 Uom) U

NZ

can be neglected and thus, a denormalized DCT form of
Y m» is defined as

(2)

N-1N-1 : ;
Xﬁcos—gf—-z%\r—lm ﬂm&mﬁl -

3
i=0 j=0

Ymn =
Therefore, the normalized DCT Y,,, can be ex-
pressed as shown below,

—5~ Ulm) UCn) - yon @)

Ymn
In this case, the multiplication in terms of the cosine
functions of the 2-D DCT kernel can be expressed in a

summation in terms of the cosine functions as shown in
Formula (4) below.

cos 2Lt m ZNl M cos 42

4)

1 2i Dm + (2 1n
z(cos SN e o
2i Dm — (27 n
COs o n')

From Formula (4), the 2-D DCT Y, of Formula (2)
can be expressed as shown in the following Formula (5). _

(5}
(2i 4+ Dm 4+ (2j + )n

IN T+
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-continued

N-1N-1
Z 2 Xjcos
i=0 j=0

2i 4+ Vm — (2
2N

1)n ﬂ,)
where m, n=0,1,2,..., N—1.
For convenience, the 2-D DCT can be divided into
1-D DCT’s A,,nand B,,, based on the cosine summation
theorem, as shown below in Formulas (6) and (7).

N—-1N-1 : (6)
Amn;—. 15 )i ij cOS 21 ImzN 2 1)}n -

N-1N-1 2+ Vm — (2i 4+ Dn (7
Bypn = 15 j-—}..: Xij cos N T

Therefore, Y, which is the result of the 2-D DCT
can be expressed by Formula (8) as below,

Ymn=$(Amn+ Bmn) (8)

Now the possibility that an N XN DCT can be imple-
mented by carrying out N independent 1-D DCT wili
be presented by showing that y,, can be represented by
the summation of N 1-D DCT’s through a slight data
re-arrangement of Ap, and B, If the transform ker-
nels of the Formulas (6) and (7) are made to be equal to
the kernels of the 1-D DCT, it is necessary that
[(2i4- 1) m=*(2j+ 1)n] be expressed in the form of (2i+ 1)
times an integer. If this condition is to be satisfied, the
remainder remaining after dividing (2j+1) by 2N
should be equal either to the remainder remaining after
dividing a multiplication of (2i4+1) by 2N, or the re-
mainder remaining after dividing 2N minus a multiphca-
tion of (2i4 1) by 2N. That is, the above relation should
satisfy Formulas (9) and (10) shown below.

(2/+1)=p(2i+1) modulo 2N (%)

(2j+ 1) =p(2i+ 1)+ N modulo 2N (10)
where, p is an odd integer ranging between 1 and N~ 1.
Therefore, Formulas (9) and (1Q) can be expressed by
Formulas (11) and (12) as shown below,

j=pf+£?l—moduloN (1)

j=N=-1-pi-£5 (12)
where p=1,3,5,..., N—1.
In the above, when the variable 1 varies from O to

J
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N -1, the sequences for the variable j which are respec-

tively determined by Formulas (9) and (10) are different
from each other. Accordingly, the NXXN 2-D data can
be separated into N different data groups which satisfy
Formulas (9) and (10). Then, the transform kernels of
Formula (5) for the respective data groups become
equal to the kernels of the 1-D DCT. Therefore, in
order to distinguish between the respective j sequences
produced by Formulas (11) and (12) for p=1, 3, 5, . ..
, N—1, Formulas (13) and (14) are defined as shown
below.

#pia) = pi + L5~ modulo N (13)
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-continued

Kp:b) = (N — 1) — pi — modulo N (14)

where p=1,3,5,...N—-1,andi=0,1,2,3,..., N—1.

That is, for a given p, [j(p;a):i=0,1,2,...,N—1]isa

j sequence produced by Formula (9), while [i(p;b):1=0,
1,2,..., N~1]is a j sequence produced by Formula
(10). Accordingly, the 2-D input data and [X;5: i, j=0, 1,
2,..., N—1] can be separated into N separate 1-D data

" in the form of [Xjxp.q)' =0, 1, 2, ..., N—1] and [Xjzp;p):

i=0, 1, 2,..., N—1]}, so that Formula (5) can be ex-
pressed in the terms of the summation of the 1-D DCT.
In this case, if the groups of the 1-D data are respec-

tively represented by R,? and Ry%, Formulas (15) and
(16) can be defined as follows.

(15)
Rpﬂ = [XMH): | = 91 ll 2: - sy N - Iiﬂp”.ﬂ) -

pi + -L;—l— modulo N]

(16)
pr= [wa):f= 0,12, ...,N= 1, Kpb) =

N-—1 —pf—-L:-Lmodu]oN:I

2

The exact value obtained by dividing

by N should be known from the above, however, only
the remainders of the dividing can be known from For-
mulas (15) and (16). That is, the product of the dividing
and the remainder of carrying out the dividing should
both be known. Therefore, if a new integer sequence
qp1 for representing the product of dividing

pi + 251

by N is to be defined, “modulo” can be omitted from
Formulas (15) and (16) as shown in Formulas (17) and

(18). -

(17)
R,°

[xm,,): i=012...,N=1Kpa) =

where p=1, 3,5, ..., N-1.
If the data re-arrangements are applied to Formulas
(17) and (18), then A, and B, which are expressed by
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Formulas (7) and (8) can be expressed Formulas (19) n
below.

N-1 19
Amn= I _[T2(mn) + T,%(m,n)] (19

P.....

(20)

where p is an odd integer.

Furthermore, Tp%m,n), TpP(m,n), S,%m,n) and
S,%(m,n) can be expressed by Formulas (21)-(24) as
shown below.

: - 21

Tomn) = X Xjoos=& lm2N2 Dn_ @D
X;%€R,°

- - 22

pr(m,n)-m ) X; cos 2 1m2N2 Ln " 22)
XyeR,®

S%mn) = I chm_(%y_im_” (23)
XieRp"

; — (9 24

Spb(m.m) 2 chos 2 1m2N2 L T (24)
XgeRp

Accordingly, ymn of Formula (8) can be rewritten as:

25
N-1 @)

Ymn = PZ [7p9%m,n) + pr(m n} + Sp%m,n) + Spb(m n)]

Thus, in order to show that y,,, is the summation of
1-D DCT’s, it has only to show that T,%(m,n), T,*(m,n),
S,%(m,n) and S,?(m,n) can be expressed in terms of sum-
mation of 1-DCT’s. For this end, Formula (17) can be
substituted for a corresponding term in Formula (21) to
obtain Formula (26) as shown below.

N-1

i+ m+ Pi+ —Ngpin
fz XHP"_—TV_L

Formula (29) can be separated into Formulas (27) and
(28) for the cases where n is even and odd integers as
shown below.

26
Tpa(mr ﬂ) ( )

T%(m,n) = 1:72-01 Xixp;a) COS Z 1_2;3 I r @)
where n is even integer.
N1 2/ + 1Ym -+ Pn =
Tpo(m,n) = :EO (—1) gpiXixp:a) COS N T

where n is odd integer.

Further, Formula (22) can be substituted for a corre-
sponding term in Formula (8) to obtain Formula (29) as
shown below..

(29)
N—-1 (2i + 1Xm — nP) + 2N(1 + gppn

!EO Xijp-b) €OS SN

Tp%(m,n) = s

10

However, Formula (29) can be separated into Formu-

las (30) and (31) depending on whether n is odd or even
integer.
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N-1 2 4+ 1Xm — Pn (30)
b - i m
Tp°(m,n) :-2-0 Xikp:p) cOS N T
where n is even integer.
(31)
N—-1 % + 1 -
pr(m n = — I (—~1) QPIXy(p'b) I ZJ'TT = 7

where n is odd integer.

In the same way, if Formula (23) is substituted for a
corresponding term in Formula (7), S;%(m,n) can be
expressed by Formulas (32) and (33) as shown below.

N-1 2 + 1Xm — Pn (32)
Spitm.n) = .2 Xipia) cOS 2N ""
where n is even integer.
1 2/ 4+ 1X P) 33}
' m -~ n
Sp‘:(myﬂ) _O ( l) qF' XWH) COs 2N o

where n i1s odd integer.

Further, if Formula (18) is substituted for a corre-
sponding term in Formula (24), S;%(m,n) can be ex-
pressed by Formulas (34) (35) as shown below.

N 20 + 1 Pr (34)
b - B l m
Sp°(m,n) IO Xixp.a) COS SN 4
where n 1s even integer.
(35)
Sbommy = — 5 (=1) cos SELELNmM 1D
P ' I“'U qp' Wﬂ} 2N

where n 1s odd integer.

Thus, if Formulas (27)-(35) are substituted for the
respective corresponding terms in Formula (25), then

Ymn Can be expressed by formulas (36) and (37) as shown
below.

Ymn = (36)
1 N1} N1 2i 4+ 1 m 4 n
5 pil [ 20 (Xiipa) + Xiip:b)) €OS IN T +
N-1 (2i + 1Xm — nP)
:EU (Xigkp,a) + Xigp:b)) €O IN /1
where n is even integer.
37
L Nl [Nfl(x Gn
Y2 p=tPodd | iZ0 NP
Xigp:b)) COS 12; L T+
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-continued
N1 (2i + 1}{m — nP)

where n is odd integer.

However, Formulas (38) and (39) shown below cor-
respond to one of 1-D DCT’s of the input data sequence
(Xiip:a)+Xip;p)] for the given m and n.

N1 (2i + 1¥m 4+ nP) (38)
'-.-}50 (Xikp,a) + Xixp:p)) cos 5N T
N-1 204+ 1 m — n (39)

2N T

;'50 (Xixp:a) + Xigp:b)) cos

That is, fpl which shows the result of carrying out a

1-D DCT by subjecting the re-arranged data to a first

addition can be expressed by Formula (40) as shown

below, and it can be seen that Formulas (38) and (39)

correspond to either +{5; or —fp1 for 1 (where 1=0, 1,
2,...,N~—1).

Jpl = _20 (Xixpa) + Xigp;b)) cOs

F —

2i (40)

1)/ -
2N

Meanwhile, g, which shows the result of carrying
out a 1-D DCT by subjecting the re-arranged data (re-

arranged by Formula (37)) to a first subtraction, can be
expressed by formula (41) as follows.

(41)

N=-1 :
g =" I (=1 gpiXifga) — Xig) cos Erti m
In this case, it can be seen that g,1 which 1s defined by
Formula (41) corresponds to either g5 or —gp) as
shown by Formulas (42) and (43) below fot a given |
(where 1=0,1,2,..., N—-1).

.,

(42)
N (=1) qoiXikpa) — Xixppy) cos St 1Xm £ nbh) o
=0 gpA1ifp;a) iXp:.b) 2N
, (43)
— ) ) 2i + 1m — n
1'20 (— 1) gpdXigp.a) — Xixp;b)) €OS N T

Therefore, it is noted that only [yms:m,n=0, 1, 2, ...
, N—1] which corresponds to NXN DCT is needed,
and this implies that only N 1—D DCT’s are required
for the computation of NXN 2-D DCT.

Besides the gy and f;1 manipulated as above, the
processes of carrying out the secondary addition and
subtraction will be considered hereinafter. It can be
seen that the 2-D DCT y,, can be expressed by the
summation of f5; and gp1 as evidenced by Formulas (36),
(37), (40) and (41). The forms of the secondary additions
for fp1 and gp1 for obtaining the value of ym, consist of
butterfly stages as in the case of the DFT (discrete
fourier transform) and DCT (discrete cosine transform)
algorithms. In the process described above, Formula
(44) as shown below will become valid where n is an
even integer.
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(44)

Q2i + Dim - n(N ~ P)]

COS AN

==COSs g

(2i + 1Xm + nP)
m = |

2N

The above formula implies that Formulas (45) and
(46) become valid whenthe 1 (1=0,1,2,...,N~-1)1s
given.

(45)
N-1 (2i + 1Xm + nP)
2 (X; P 6 cos ” =
2 Kigza) + Xigpip) N Jor
- (46)
2 (XixN-pa) +
=0
2i + 1m 4 n _
XiXN—p:b)) cOS N 7 = f(N—pi)

Further, from the foregoing, it can be seen that For-
mulas (47) and (48) will become valid where n 1s odd
integer. -

(47)
N1 . . 204 \Ym 4+ nP)
; 5 0 (—1) gpAXigN:a) — XifN;b)) cOS N T = 8pl
(48)

N-1
2 (=) GpXiN—pa) ~

Qi + Dim — n(N — P)]

XX N—-p;b)) cOs 3N

T = ZZN-PN-1)

Therefore, {51 which shows the result of carrying out
a 1-D DCT by subjecting it to the first addition in For-
mulas (45) and (46) appears always together with *=f,.
p)1, thereby allowing to form a butterfly stage. Mean-
while, gy which shows the result of carrying out 1-D
DCT by subjecting it to the first subtraction in Formu-
las (47) and (48) appears always together with
+gN-pXN-1), thereby allowing to form a butterfly
stage.

Now the process for implementing the 2-D DCT will
be described referring to FIG. 2A. First, an NXN 2-D
digital data is stored into the input buffer 100 and then
the re-arranging section 200 re-arranges the NXN 2-D
digital data into N separate groups based on Formulas
(17) and (18). Thereafter, the first adder 300 performs
adding and subtracting operations in the form of a but-
terfly stage in order to carry out the computation of
(Xifp;a)+ Xixp;p)) and (— 1)qpi (Xixp,a) — Xixp;5)) based on
Formulas (40) and (41). Under this condition, the com-
puting manner is as described below. That is, if n is even
integer, an operation of adding the re-arranged data of
the adjacent groups is performed, while if n is odd inte-
ger, an operation of subtracting one of the data set of
the adjacent groups is performed. The data which has
been subjected to the first adding and subtracting opera-
tions by the first adder 300 is supplied to the 1-D DCT
where the data is subjected to a 1-D DCT. Here the
output therefrom appears in the form of f;) showing the
result of the 1-D DCT for the first added data on the
one hand, and in the form of gy showing the result of
the 1-D DCT for the first subtracted data on the other
hand. '

Then, the second adder 500 performs a secondary
adding operation in the form of a butterfly stage after
receipt of fp; and gp1 before outputting ym, of the 2-D
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DCT. The output of the second adder 500 is supplied to
the output buffer 600 where the data is re-arranged into
a proper form suitabie as an output before outputting it
to a coder.

The 2-D DCT data is again inversely transformed as
shown in FIG. 2B. That is, FIG. 2B illustrates the con-
stitution of a 2-D IDCT (two-dimensional inverse dis-
crete cosine transform), and the 2-D IDCT is carried
out in a process inverse to that of the 2.D DCT.

Now the process for carrying out a 2-D DCT on an
8 X8 2-D digital data will be specifically described.
First, for N=8, ym, of a 2-DCT is expressed as shown
below based on Formula (5).

-

¥ =-l-[% 2 Xjicos &
"2 Lisoj=0""Y

1Ym pA]
16

1)n

where mn=0, 1,2, 3,4, 5, 6 and 7.
Further, A, and B, of Formulas (6) and (7) are also
expressed as shown below.

7 1 2 + Dm + (27 + Dn

7 7 2+ Dm — (27 + Dn
Bmn= X2 X X:icos T
™ iz0j=0"" 16

In this case, if it i1s established that A,,, and B,
shown above are the same as an 8 point DCT through
the data re-arranging process, it would be possible that
the 2-D DCT can be computed out from the 8 separate
I-D DCT’s. Therefore, if the transform kernels for A,,,,,
and B,,» are to be the same as the kernels of the 1-D
transforms, [(2i+ 1)m=(2j+ 1)n] should be expressed in
a muitiple of (2i+1), while if this condition is to be
satisfied with, (2j+ 1) should become either a multiple
of (2i+ 1) modulo 2N, or a multiple of (2i4 1)+ N mod-
ulo 2N. Therefore, if a 8 X8 2-D input data is divided
into 8 groups consisting of 8§ data-sets respectively based
on Formulas (13) and (14), then the transforms of For-
- mulas (6) and (7) become 8§ separate 1-D DCT’s. Ac-
cordingly, in the case of N=2§, the result becomes p=1,
3, 5 and 7, and there are determined the values of i and
J for dividing the 8 X 8 input data into 8 groups based on
Formulas (13) and (14).

Accordingly, the mnput data [X;1j=0, 1, 2, 3, 4, 5, 6
and 7] is divided into 8 groups as shown below based on
Formulas (17) and (18).

R1%={Xoo Xi1, X22 X33 Xea Xs5 Xee X717}
R1°={X07, X16 Xa5 X34 Xu3. Xs2, X61. X70}
R3?={Xo1, X14 X27, X323 Xus. Xso Xg3. X6}
R3®={Xos X13 X20 X35 X423 Xs7, Xea X711
Rs%=1{Xo1, X17 X24 X31, Xae X53. Xeo X7}
Rs®={Xps, X10 X123, X36 Xa1, Xs4. Xe7, X72}
R7%={Xo3, X12 X21, X30 X473, Xse Xes, X74}

R7%={Xos Xi15 X26 X317, Xeo X351 Xe2 X73
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Meanwhile the sequences qp; for p=1, 3, 5, 7 are as
follows:

¢1i=1{0,0,0,0, 0, 0, 0, 0}
Q3f={01 0: 0: 1: 11 2! 2: 2}
¢si=10,0, 1, 2,2, 3, 4, 4}

q1i=10, 1, 2, 3, 3, 4, 5, 6}

Therefore, when 8 X 8 data input is transformed to a
2-D'DCT using a 8 1-D DCT’s as shown in FIG. 3A,
the re-arranging section 200 re-arranges the respective 8
input data sets into 8 groups as shown in FIG. 3B in
order to convert the multiplication form of the cosine
function to the summation form.

Now the process for carrying out a 2-D DCT in the
form of 8 separate 1-DCT’s using the re-arranged data
of 8 groups will be described. A,y and B,,, which are
shown by Formulas (19) and (20) can be expressed as
shown below where N=28.

Amn=[T1Ym,n)+ T7 b(m,n)-{- T3b(rn. n)
+ Ts%m, n)+ Ts%(m,n)+ T+9(m, n)+ T15(m,n)]

Bmn=[$19(m,m)+ S]b(m, n)+S3%m,n)+ 53'&(”’1- n)
+ 859(m, n) + Ss°(m, n) + $7%(m,n) + S1°(m, n)]

In the foregoing, T,%(m,n), Tp*(m,n), S;%(m,n) and
S,° are defined in Formulas (27) and (28), (30) and (31),
(32) and (33), and (34) and (35), respectively. Thus, yms
can be expressed as shown below based on Formulas
(36) and (37).

35 Ymn =
L { 7 (2i + 1Xm + nP)
2 2 (Xi +4+ X cOS -

45

50

335

65

7 (2i 4 1Xm — nP)
I_EO(Xﬁ(p;a)‘*'ij(me:))CUS 2 llr: L 1'."]

where n is even and p is odd integer.

7 7
Ymn = "%"' P"E-=1 [I'EO (—1) ¢pdXij(pra) —

- 2i + 1

X iﬁ(P;b)) COS £

2N

L ™ -+

2 1Xm — n

N

d

7
I'EO (—1) ¢ Xijp.ay — Xigp;b)) COS

where n 1s odd and p 1s odd integer.
However, in the foregoing,

] 2+ 1Xm + nP)
s Kipa) + Xifob)) €OS 2i 4+ 1Xm + n -

i=0 N
and
i=0 ip.a) IKp,b) N

of ymn correspond to the 1-D DCT of the 2N data input
sequence [X;yp.a)+ Xiip:s)] for the given m, n.



5,257,213

15

In the same way,

] Qi+ 1Ym + nP)
EEO (= 1) @pdXixp.a) — Xigpb)) cOS &+ I? L T

and

: 204 1Ym — nP)
I (—1) gpiXifpa) — Xiggio) cos ~ S RE =2 7

10
correspond to the 1-D DCT of the data input sequence

for the given m and n, so that q,; can be defined in the
form of Formula (41). Accordingly, f,1 can be defined
based on Formula (40). Therefore, the first adder 300
generates first summed data after implementing (X«
p,a)+ Xixp:pyof Formula (40), and gcncratcs first sub-
tracted data after implementing (— 1)qp{Xixp;a)— X~
ikp;p)) of Formula (41).

That is, the first adder 300 produces the first summed
data and the first subtracted data by utilizing 8 re-
arranged groups of data. Specifically, adders 301-304
produce first added data by adding the re-arranged data
of group Ri (R19, R1b), group R3 (R39, R3%), group Rs
(Rs?, Rsb) and group R7 (R79, R7%). Meanwhile, adders
305-308 product the first subtracted data by carrying
out subtractions one from the other of the re-arranged
data sets of the Ri, R3, Rs and Ry groups.

Upon producing the first summed and subtracted data
by the first adder 300, the 1-D DCT section 400 carries
out 1-D DCT’s on the first summed and subtracted data
based on Formulas (40) and (41) and using 8 1-D
DCT’s. Specifically, 1-D DCT elements 401-404 pro-
duce fp; data after receipt of the first summed data from
the adders 301-304, while 1-D DCT elements 405-408
produce gp1 data after receipt of the first subtracted data
from the adders 305-308. Therefore, if the 8 X8 DCT
sequence ymn is to be computed, only f,1 and gy are
needed and thus it can be seen that only 8 1-D DCT’s
are required for computing 8 X8 DCT. |

As described above, ymn is produced in the form of 40
the summation of {51 and g1, and, in this connection, the
definitions of ymn for a predetermined m and n will be
presented below in order to see the relation between
Ymn and fp1 and gp1.

15

20

25

35

45
yio=38(f13+i3+ 33+ 33+ fs3+ 53+ 73+ f73)

- ysa=4A1+N13-fis+B1—fs1 Hfss—113—17)
na=t17+ 11— =fs1+ 477
»26=4O+f14— 34— 30+ fso+Ss4—fr4+ O)

ya1=4815+813+837+ 831857+ 851—8&75+873)

y03=4(813+813—£37—837—851— 851 —8715—&75) 5

y35=4(04g12—832— 834+ 854856+ &£76 +870)
ys7=4(~g14+812835— 830+ O+ 852 — 876 —&74)

In this case, if n is an even integer, fp; appears always
together with =*fiv—-p1) in Formulas (45) and (46),
thereby making it possible to form a butterfly stage.
Meanwhile, if n is odd integer, g,1 appears always to-
gether with #gw_p1) in Formulas (47) and (48),
thereby making it possible to form a butterfly stage.

Accordingly, when N=38, the above instances can be
expressed as shown below.

65

30

16

.'-’3t)li—-i{0'13+ﬁ3)+(f13+f73)+(f33 +/53)+(f33+f53.

ysz;}=!{(ﬁ1—ﬁ7)+(fls—ﬁ3)—(fss +f58)+ (f31 ~ f51-

ya;fi{(ﬁ7+ﬁ?)+(ﬁl+f71)—(&1+f51)-—(f31+.&1-

= 226=4{(04+0)+(fia—f1a)— (fra—Sfsa)— (f30+f50) }

J’41=) }i{(ms+873)+(313—375)+(831+851)+(331—s—
87

yo33{(213—£79) + 813 —875)— (8371 +851) — (837+851)}

y354{(0+810)+(812+876) — 832+856) — (834 —854)}

-l

ys7i{—@14+874)+812—876)+ (&36 +852)—(£300)}

In this context, the operations of the secondary adder
500 will be discussed by taking
Yio=3[(f134113)+ (13 +173) + 33+ fs3) + (f33+f53)] as
an instance. (f13+f73), (f13+173), (f33+fs3) and (f33+153)
are implemented by the adder 501, (fi3+f73)+(f134173)
and (f33+fs3)+(f33+fs3) are implemented by the adder
502, and [(f13+f73)+ (f13+f73)] + [(F33+fs3) + (£33 +f53)]
is implemented by the adder 503, while “3” is imple-
mented by the shifter 504.

Now the constitution of FIGS. 4A-4C will be de-
scribed. That is, as shown in FIG. 4A, the first adder
300 generates the first summed data and first subtracted
data in order to supply the re-arranged data X;; to the
1-D DCT section 400. In turn, the 1-D DCT section 400
generates fp; and gp; by carrying out the 1-D DCT on
the first summed and subtracted data.

Meanwhile, the second adder 500 as shown in FIG.
4B is for computing ym» (with n being even integer)
from fp; generated by the 1-D DCT section 400, while
the second adder 500 as shown in FIG. 4C 1s for com-
puting ym» (with n being odd integer) from gp. The
number of the summations performed by the second
adder 500 is determined by logaN stage, while in the
case of N=28 as shown in FIGS. 4B and 4C, the number
of additions is 3 stages (log28). Further, the multiplica-
tion by 4 performed by the second adder 500 is carried
out in the same form as that of the shifting operation and
therefore, the actual multiplications are carried out by
the 1-D DCT section 400.

The implementation of the 2-D DCT is described
above, and now the operation of the inverse transform
will be described referring to FIGS. 5A-5C.

Generally, in the algorithm of a fast transform, the
flow of an inverse transform can be computed by taking
a flow inverse to the forward flow, if the scale factor is
not taken into account. However, in the case where the
scale factor is taken into account, the inverse transform
has to be carried out after adding a slight modification.
That is, as shown in FIGS. 4A-4C, there are some
nodes which do not have their pairs, thereby making it
impossible for the second adder 500 to form a butterfly
stage when implementing the 2-D DCT.

Accordingly, if the signals are to flow in an inverse
manner when carrying out the 2-D IDCT, it has only to
be made sure that a first 1-D IDCT section 350 which
performs computations inversely to that of the second
adder 500 should take a double of the value of the rele-
vant node so as for the value of the inverse transform
not to be varied. That is, it is seen that there are no pairs
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for the two nodes existing between the lines fsg and o
in the second adder 500. Therefore, when carrying out
the 2-D IDCT, if the first 1-D IDCT section 350 takes
a double of the line value, a correct result can be ob-
tained. Further, a first operation section 450 has to mul-

tiply the Oth input by §, when the scale factor is taken
into account, and this is solved by the shifting opera-
tion. However, when carrying out the 1-D IDCT for
gp1, the above multiplying factor § and the multiplying
factor 2 for the node can be offset each other in the first
operation section 450.

In the case where the scale factors for X;; are to be
kept in the original form, the values of the nodes have to
be multiplied by 4, or the input y,, has to be divided by
N2/2. However, considering the fact that the computa-
tions are concerned with a limited number of bits, it is
more advantageous to adopt the multiplication by 4.

Furthermore, when implementing the 2-D DCT by
means of a high density circuit, the most important
factor is to reduce the number of the multiplications,
because the multipliers occupy a large area in the inte-
grated circuit. In the case where the 2-D DCT is carnied
out using the method of FIGS. 3A-3B, the N 1-D
DCT’s are required and therefore, if NXN DCT’s are
'in parallel performed, a structure of N 1-D DCT’s 1s
required. |

FIGS. 7A-7C illustrate the method of implementing
N/2 1-D DCT’s using a multiplexer 700 and demulti-
plexer 800, for the case where a parallel implementation
of NXN DCT’s is structurally provided. As shown in
FIG. 3A, the first adder 300 generates a first summed
data and first subtracted data by computing the re-
arranged data for the respective group units, while the
1-D DCT section 400 carries out 1-D DCT on the out-
puts of the first adding section 300 to generate f,; and
fe1. However, as shown in FIG. 6, the 1-D DCT’s are
first carried out on the re-arranged group data by the
1-D DCT section 400, and then, the result of the imple-
mentation of the 1-D DCT’s 1s processed by the first
adding section 300, thereby generating fp1 and gp;.

That is, during the time when the re-arranged data of

R19 and R groups are processed by the adders 301,
302, 1-D DCT’s are performed on the re-arranged data

of R39 and Ri? groups by the 1-Id DCT elements 403,
404. Thereafter, the same results of fp; and gp1 can be

obtained even if the first summed data and first sub-
tracted data of the R1? and R1% groups generated from
the adders 301, 302 and the 1-D DCT data of the R3¢
and R3% groups generated from the 1-D DCT elements
403, 404 are processed by the adders 303, 304. That is, as
shown in FIG. 6, even if the order of the implementa-
tions of the first addition and the 1-D DCT for the
re-arranged data of the R3? and R3% groups and the
re-arranged data of the R72and R7? groups are reversed,
the values of Fp) and gp1 thus obtained become the same.

Accordingly, as shown in FIG. TA-7C, during the
time when the adders 311, 315 process the re-arranged
data of the Ri2 and R;% groups, the multiplexer 701
selects the re-arranged data of the R32and R3? groups to
generate them to the 1-D DCT elements 411, 412.

Meanwhile, the multiplexer 702 selects the re-
arranged data of the R72and R4% groups to supply them
to the 1-D DCT elements 413, 414, during the time
when the adders 313, 317 process the re-arranged data
of the Rs? and R3® groups.

Then, during the time when the re-arranged data of
the R19 and R % groups and the re-arranged data of the
Rs? and Rs? groups are processed by the first adding

18

section 300, the 1-D DCT section 400 carries out 1-D
DCT’s on the re-arranged data of the R3? and R3®
groups and the re-arranged data of the R7? and RR+?
groups.

Thereafter, the multiplexers 701, 702 respectively
select the outputs of the adders 311, 315 and the adders
313, 317 and at the same time the demultiplexers 801,

-~ 802 respectively select the outputs of the 1-D DCT
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elements 411, 412, 413, 414 to output them to the adders
312, 316 and 314, 318. Therefore, during the time when
the data of the R and R;? groups and the Rs? and R3?
groups are subject to the implementations of 1-D DCT
by the 1-D DCT section 400, the data of the R3? and
Ri%are processed by the first adder 300. Thereafter, the
results are supplied to the second adder 300 where the
data are subject to the implementations of summations
and subtractions in the form of logaN butterfly stages.
According to the present invention described above,
when implementing the 2-D DCT on a N XN 2-dimen-
sional data input, it can be carried out by performing N
separate 1-D DCT’s and by performing first and sec-
ondary summations in the form of a butterfly stages.
Furthermore, in forming the parallel constitution of the
hardware using multiplexers and demultiplexers, only
N/2 1-D DCT’s are required and therefore, the number
of the multiplications can be greatly reduced, thereby
making it possible to realize a fast 2-D DCT and a high
density circuit.
Although specific constructions and procedures of
the invention have been illustrated and described
herein, it is not intended that the invention be limited to
the elements and constructions disclosed. One skilled in
the art will easily recognize that the particular elements
or subconstructions may be used without departing
from the scope and spirit of the invention.
What is claimed is:
1. A method for conducting a discrete cosine trans-
form on N X N two-dimensional input data, said method
comprising:
re-arranging the N XN input data received as input
electrical signals to enable the input data to be
identical to kernels of a one-dimensional discrete
cosine transform of a cosine function to transform a
multiplying form of said cosine function, said mul-
tiplying form being kernels of a two-dimensional
discrete cosine transform, into a summation form;

generating first N/2 summed data by adding together
even groups and odd groups in the re-arranged
data, and generating first N/2 subtracted data by
calculating differences between the even groups
and the odd groups;

performing one-dimensional discrete cosine trans-

forms on said first summed data and said first sub-
tracted data to generate one-dimensional discrete
cosine transform data; and

generating output electrical signals representing two-

dimensional cosine transform data by performing
summations and subtractions on said one-
dimensional cosine transform data in logaN butter-
fly stages, and then by carrying out a shifting on a
result of said summations and subtractions.

2. A device for calculating discrete cosine transforms
on N XN two-dimensional input data, comprising:

means for re-arranging the N XN input data repre-

sented by input electrical signals, to render the
input data identical to kernels of one-dimensional
discrete cosine transform of a cosine function to
transform a multiplying form of said cosine func-
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tion, said multiplying form being kernels of a two-
dimensional discrete cosine transform, into a sum-
mation form;

means for generating N/2 summed data groups by
adding together even groups and odd groups in the

re-arranged data, and generating N/2 subtracted a

data groups by calculating a difference between
said even groups and said odd groups;
means for carrying out one-dimensional discrete co-

sine transforms on said summed data groups and 10

said subtracted data groups to generate one-
dimensional discrete cosine transform data; and

means coupled to the one-dimensional discrete cosine
transform means, for generating output electrical
signals representing two-dimensional discrete co-
sine transform data by performing summations and
subtractions on said one-dimensional discrete co-
sine transform data in logsN butterfly stages, and
then for shifting results of said summation and
subtraction by multiplying by 4.

3. The device for calculating discrete cosine trans-
forms in claim 2, wherein the one-dimensional discrete
cosine transform means comprises N one-dimensional
discrete cosine transform circuits connected in parallel.

4. The device for calculating discrete cosine trans-
forms in claim 2, wherein the one-dimensional discrete
cosine transform means comprises N/2 one-dimensional
discrete cosine transform circuits connected in parallel
each comprising a multiplier, a multiplexer and a demul-
tiplexer,

5. A method for conducting discrete cosine transform
on N XN two-dimensional input data, said method com-
pnsmg

recerving input electrical signals representing N XN

two-dimensional input data.;

rearranging said N XN two-dimensional input data

into N groups of rearranged data;

generating N/2 summed data groups by adding to-

gether even groups and odd groups of said groups
of rearranged data, and generating N/2 subtracted
data groups by calculating differences between
even groups and odd groups of said groups of rear-
ranged data;

performing one dimensional discrete cosine transfor-

mation on said N/2 summed data groups and said
N/2 subtracted data groups to generate one dimen-
sional discrete cosine transform data;

generating output electrical signals representing two-

dimensional discrete cosine transform data by per-
forming summations and subtractions on said one-
dimensional discrete cosine transform data in
logaN butterfly stages, and then by carrying out a
shifting on a result of said summations and subtrac-
tions.

6. A method for conducting discrete cosine trans-
forms as in claim 5, wherein said N XN two-dimen-
sional input data is rearranged into said N groups of
rearranged data based on the formulas:

RP=Xijpayi=0,1,2,..., N=1
J'(P;ﬂ) =P'I+ ((P"" 1)/2)N9P;', and
pr-_-x,}-(p;byho, ,2,..., N-1I;

Kpb)=N—1—pi+({(p—1)/2)+ Ngp;;
in which p=1, 3, 5, ... N—1; R, and R,® represent
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~ groups are generated by adding together Xip,q) and

X iKp;b)-

8. A method for conducting discrete cosine trans-
forms as in claim 7, wherein said N/2 subtracted data
groups are generated by the formula: (—1) Ngpi (Xx-
pia)— X ij(p;b).

9. A method for conducting discrete cosine trans-
forms as in claim 6, wherein said one dimensional trans-
form data is calculated from said N/2 summed data
groups and said N/2 subtracted data groups based on
the formulas:

N-1
ol = 550 (Xixpa) + Xixp:p)) cos((2i + 1)im)/2N)
N—1 - |
Epl = :' EO (— DgpdXixp.0) — Xixp;b)) cos(((2i + 1)Im)/2N)

in which 1=(1,1,... 7).

'10. A method for conducting discrete cosine trans-
forms on 8 X 8 two-dimensional input data, said method
compnsmg

receiving input electrical signals representing said

8 X 8 two-dimensional input data;

rearranging said 8 X 8 two-dimensional input data into

eight groups of rearranged data;

generating four summed data groups by adding to-

gether said eight groups of rearranged data and
generating four subtracted data groups by calculat-
ing a difference between said eight groups of rear-
ranged data;

performing one dimensional discrete cosine transfor-

mation on said four summed data groups and said
four subtracted data groups to generate one dimen-
sional discrete cosine transform data;

generating output electrical signals representing two-

dimensional discrete cosine transform data by per-
forming summations and subtractions on said one-
dimensional discrete cosine transform data in three
butterfly stages, and then by carrying out a shifting
on a result of said summations and subtractions.

11. A method for conducting discrete cosine trans-
forms as in claim 10, wherein X;; represents said 8 X 8
two dimensional input data and said eight groups of
rearranged data are:

Ri7=1{Xo0, X11, X22, X33, X4, Xs5, X66: X77}
R1%={Xo7, X16, X25, X34, Xu3, X52, X61, X70}
R3%=1{Xo1, X14, X27, X32, X43, X50, X63, X76}
R3%={Xo6, X13, X20, X35, X42, X57p1, X64» X711}
Rs?=1{X02, X17, X24, X31, Xu6, X53, X0, X758}
b={Xos, X10. X23, X36, X1, Xs4, X67, X72}
R77=1{X03, X12, X21, X30, X47, X56, X635, X74}

R7%={Xo4, X135, X26, X37, Xu0, X51, X62, X73}.

12. A method for conducting discrete cosine trans-
forms as in claim 11, wherein four summed data groups

groups of data qp;is an integer sequence, and X; repre- 65 are generated by adding R1?to R R3%9to R3%, Rs? to

sents said N XN two dimensional input data.
7. A method for conducting discrete cosine trans-
forms as in claim 6, wherein said N/2 summed data

Rs%, and R7? to R7%, and said four subtracted data

groups by calculating a difference between Rj9and Ri?,
R3% and R34, Rs? and Rs?, and R79 and R-2.
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13. A method for conducting discrete cosine trans-
forms as 1n claim 12, wherein said one dimensional
transform data is calculated from said four summed data

groups and said four subtracted data groups based on
the formulas:

;
= I (Xigpa) + Xigpity) cos(Qi + 1)im)/16)

.
gl = 53.. (— DgpdXigpa) — Xixp:p)) cos(((2i + 1)imr)/16)

in which 1=, 1,...7).

14. A method for conducting discrete cosine trans-
forms as in claim 13, wherein said two dimensional
transform data, y,,, is calculated from said one dimen-
sional transform data based on the formulas:

m):i: (N3 4/3)+ (134 3)+ (3 +153) + (33 +f53.

ysg;-- H(r+A7)+(fis—f3)— (s + f55)+ (31— f51.

y};}=i{(ﬁ7+ﬁ7)+(ﬁl+ﬁl)-(f31 +f51)—(314+/51-

26=131{(0+0)+f14~f74) — (34— fs4) — (F30+ f50)}

y41=)- }i{(z15+373)+(313—-375)+(337 +851)+ (831 — 8-
57

J’DE)}= i{@13—375)+(813 "8;?5)“(83?"!'851)" (837851-

}’3:5}=i{0+m)+(312 +£76) — (832 +856) — (834 —£54-

Y57 =1{— (@14+874) + (12— £76)+ €36+ 852) — (&30-
+0)}.

15. A device for calculating discrete cosine trans-
forms on two-dimensional input data, said device com-
prising:

means for re-arranging said two-dimensional input
data mto a first plurality of-Qne-dimensional input
data groups and a second plurality of one-
dimensional input data groups;

a plurality of parallel adders of calculating a plurality
of summation data groups by adding together cor-
responding groups of said first plurality of one-
dimensional input data groups with said second
plurality of one-dimensional input data groups;

a plurality of parallel subtractors for calculating a
plurality of subtraction data groups by calculating
differences between said corresponding groups of
said first plurality of one-dimensional input data
groups with said second plurality of one-
dimensional input data groups;

a plurality of parallel one-dimensional discrete cosine
transform circuits for calculating one-dimensional
discrete cosine transforms of said plurality of sum-
mation data groups and said plurality of subtraction
data groups to generate a first plurality of trans-
formed data groups and a second plurality of trans-
formed data groups, respectively;

a first plurality of adding and shifting circuits for
adding together and shifting said first plurality of
transformed data groups to generate a first portion
of two-dimensional transformed data; and
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a second plurality of adding and shifting circuits for
adding together and shifting said second plurality
of transformed data groups to generate a second
portion of said two-dimensional transformed data.

16. A device as claimed in claim 15, wherein said

two-dimensional input data (X;7:i,j=0,1,2,... N=1)1is
rearranged into said first plurality of one-dimensional
input data groups, R,%, and said second plurality of
one-dimensional input data groups, R,5, by said means
for re-arranging according to the formulae:

RyP=Xjpayi=0,1,2,... N=1;
- Kpra)=pi+(@+(p—1)/2) modulo N, and

RpP=Xjyppy i=0,1,2,... N—1;
Ap:b)=(N—1—pi+(p—1)/2) modulo N;

in which p=1,3,5,... N—-1.

17. A circuit for calculating two-dimensional discrete
cosine transformation, said circuit comprising:

a first sub-circuit for rearranging received two-di-
mensional data into a plurality of rearranged data
groups;

a second sub-circuit for performing one-dimensional
discrete cosine transform on each of said rear-
ranged data groups and for adding and subtracting
said rearranged data groups to and from each
other, to generate one-dimensional discrete cosine
transform data; and

a third sub-circuit for generating two-dimensional
discrete cosine transform data by performing sum-
mations and subtractions on said one-dimensional
discrete cosine transform data.

18. A device as claimed in claim 17, wherein said
two-dimensional data (X;:1,j=0, 1, 2, ... N—1) is rear-
ranged into said plurality of rearranged data groups
R4 Ryt p=1,3,5,... N—1) by said first sub-circuit
according to the formulae:

R=Xjpay i=0,1,2,... N=};
Kpia)=(pi+(p—1)/2) modulo N, and

R°2=Xjppy i=0,1,2,... N—1;
p:b)y=(N—1—pi+(p—1)/2) modulo N;

in which p=1, 3,5,... N-1.

19. A device as claimed in claim 18, wherein said

second sub-circuit comprises:

a butterfly stage for adding the R ;% ones of said rear-
ranged data groups to the Rpf ones of said rear-
ranged data groups to generate addition data
groups, and for calculating differences between the
R,? ones of said rearranged data groups and the
R? ones of said rearranged data groups to generate
subtraction data groups; and

one-dimensional discrete cosine transform circuits for
independently calculating one-dimensional discrete
cosine transforms of each of said subtraction data
groups and said addition data groups to generate
said one-dimensional discrete cosine transform
data.

20. A device as claimed in claim 17, wherein said

second sub-circuit comprises:

a butterfly stage for adding and subtracting predeter- .
mined ones of said rearranged data groups to and
from each other to generate subtraction data
groups and addition data groups, respectively; and

one-dimensional discrete cosine transform circuits for
independently calculating one-dimensional discrete
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cosine transforms of each of said subtraction data
groups and said addition data groups to generate
said one-dimensional discrete cosine transform
data.

21. A device as claimed in claim 17, wherein said
second sub-circuit comprises:

one-dimensional discrete cosine transform circuits for

independently calculating one-dimensional discrete
cosine transforms of each of said rearranged data
groups to generate intermediate data groups; and

a butterfly stage for adding and subtracting predeter-

mined ones of said intermediate data groups to and
from each other to generate said one-dimensional
discrete cosine transform data.
22. A method for conducting a discrete cosine trans-
form on N XN two-dimensional input data, said method
comprising: |
re-arranging the N XN input data in a rearranging
circuit to enable the input data to be identical to
kernels of a one-dimensional discrete cosine trans-
form of a cosine function to transform a multiply-
ing form of said cosine function, said multiplying
form being kernels of a two-dimensional discrete
cosine transform, into a summation form;
adding together even groups and odd groups in adder
circuits, calculating differences between even
groups and odd groups in subtracting circuits, and
carrying out one-dimensional discrete cosine trans-
forms, in one-dimensional discrete cosine transform
calculating circuits, to generate one-dimensional
discrete cosine transform data from the rearranged
input data; and '

generating two-dimensional discrete cosine transform
data by performing summations and subtractions
on said one-dimensional discrete cosine transform
data in logoN butterfly stages of adder and sub-
tracting circuits.

23. A method for conducting discrete cosine trans-
form on N X N two-dimensional input data, said method
comprising:

receiving input electrical signals representing N XN

(two-dimensional input data;

.
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rearranging said N XN two-dimensional input data
imto N groups of rearranged data in rearranging
circuits;

adding together even groups and odd groups in adder
circuits, calculating differences between even
groups and odd groups in subtracting circuits, and
performing one dimensional discrete cosine trans-
formation to generate one-dimensional discrete
cosine transform data in one dimensional discrete
cosine transformation circuits in response to said N
groups of rearranged data; -

generating output electrical signals representing two-
dimensional discrete cosine transform data by per-
forming summations and subtractions on said one-
dimensional discrete cosine transform data in

logaN butterfly stages of adding and subtracting
circuits. |

24. A circuit for calculating two-dimensional discrete

cosine transformation, said circuit comprising:

a first sub-circuit for rearranging received two-di-
mensional data into a plurality rearranged data
groups, each of said rearranged data groups com-
prising a first data group and a second data group;

a plurality of parallel transmission paths, each of said
transmission paths receiving a different one of said
rearranged data groups and comprising a cascade
connected adding and subtracting circuit and a one
dimenstonal discrete cosine transform circuit to
perform additions and subtractions and one dimen-
sional discrete cosine transforms on the received
rearranged data groups to generate one-
dimensional discrete cosine transform data; and

a second sub-circuit for generating two-dimensional
discrete cosine transform data by performing sum-
mations and subtractions on said one-dimensional
discrete cosine transform

25. A circuit as claimed in claim 24, wherein said

adding and subtracting circuit of each of one said paral-
lel transmission paths adds and subtracts said first data
group and said second data group of the received one of

said rearranged data groups.
* %X %X =%x »
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corrected as shown below:

IN THE CLAIMS
Column 18, Line 57, After "dimensional”, Insert --discrete-- ;
Line 59, After "dimensional”, Insert --discrete-- ,
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Column 20, Line 6, Change "-X ;o1 10 = X i) >

Line 52, Change "X,;" 10 —-A4—;
Line 54, Change "Xs;n" 10 ~Xs7=;

Column 21, Line 32, Change "-(g37g51" to --(g37+g51--;
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