United States Patent [19]
Booth

[54]

[73]

[73)
[21]
[22]

[51].

[52]

[58]

METHOD FOR COMPILING LOOPS
"HAVING RECURSIVE EQUATIONS BY
DETECTING AND CORRECTING

- RECURRING DATA POINTS BEFORE

STORING THE RESULT TO MEMORY

Inventor 'Mlchael W Booth, Apple Valley,
Minn.
Assignee: Cray Research, Inc., Eagan, Minn.
Appl. No.: 642,480
Filed: Jan. 17, 1991
Int, CLS e, GO6F 9/45
US. CL certeetenaerrrebaesaens 395/800; 395/700;
395/ 375 364/730; 364/931. 51; 364/DIG. 2; |
| 364/232.21
-' Field of Search 395/800, 700, 375; -
364/730

A

US005247696A
[11] Patent Number: 5,247,696
[45] Date of Patent: Sep. 21, 1993
[56] References Cited
U.S. PATENT DOCUMENTS
4,710,872 12/1987 Scarboroughn........... 395/700
4,821,181 4/1989 Iwasawa et al.oo......... 395/500
4,833,606 5/1989 Iwasawa et al. 395/700
4,858,115 8/1989 Rusterholz etal. woneenoenn.. 395/800
4,967,350 10/1990 Maeda et al. wouoeeneeveeennnnnns 395/800
5,036,454 7/1991 Rauetal. ... S 395/375
5.083,267 1/1992 Rauetal. .o, 395/375
331,991 9/1992 Iwasawa et al. woweooneoenein, 395/700

~ FOREIGN PATENT DOCUMENTS
63-120338 5/1988 Japan .

Primary Exammer—-—"l"homas C. Lee
Assistant Examiner—Paul Harrity

- Attorney, Agent, or Firm—Merchant, Gould, Smith,

Edell, Welter & Schmidt

2 Claims, 5 Drawing Sheets

100

102

PREPARE INTERIOR LOOP
FOR VECTORIZATION

104

INCLUDE PROGRAM CODE TO
CHECK FOR RECURRENCE

106

'INCLUDE PROGRAM CODE
TO REPAIR ERRORS

DUE TO RECURRENCE

5,247,696

Sheet 1of 5

Sep. 21, 1993

~ U.S. Patent -

4IAINNOD

AVEOOUd
9¢

d344Nd

NOLLONNLSNI
A/

431SID3
NOLLONAULSNI

1 {4

gl

SYIISIOAN |
(S) ¥VIVOS

. 11 v 9
SLNN cyl —
IULTINHLINY . S SHAISION
a3INM3did (A) HOLI3A
_ e !

-0l

| 9ld

~ U.S. Patent ~ Sep.21,1993 Sheet 2 of 5 5,247,696

100

STRIP MINE
THE LOOP

102

PREPARE INTERIOR LOOP
'FOR VECTORIZATION

104

. INCLUDE PROGRAM CODE TO
| CHECK FOR RECURRENCE

106

INCLUDE PROGRAM CODE

TO REPAIR ERRORS
DUE TO RECURRENCE

FIG. 2

U.S. Patent sep. 21, 1993 Sheet 3 of 5 5,247,696

subroutine update(X,Y,3,n)

- real X(*),Y(*) ytmp(0:63)
“integer j(*)

| '5 pointer (aptr,index(*))

do i=1l,n ' -
X(j(i)) = X(J(i)) + ¥(4)

10 * end do

% % % %

aptr =loc(a)
do il=1,n,64

i2=(
do i3=il,min(il+63,n)

tmp(i2)-X(j(i3))+Y(i3)
_ 12=i2+1
- 20 end do

15

12=0 -

do i3=il,min(il+63, n)

* lndex(j(iB))-iZ
12=i2+1 _

end do

i2=(
- do i3=jil min(il+63 n)
30 if(:.ndex(j(j,:;)) ne.i2) then

_ tmp(index(j(i3)))=tmp(index(j(i3)))+Y(13)
end if
1i2=12+1
- end do

12=0
do 13-11m1n(11+63 n)
- X(3(i3))=tmp(i2)
- i2=i2+1
40 end do

35

end do
end

U.S. Patent Sep. 21, 1993 Sheet 4 of 5 5,247,696

4

.
44

T

' @ NO_ DO VECTOR UPDATE

52

DO SCALAR LOOP ON k=k+VL
REMAINING ¢ ELEMENTS

FIG. 4

U.S. Patent Sep. 21, 1993 Sheet 5 of 5 5,247,696

FIG. 5

60
. la [j [k:k+VL-1]]_.... vl
T . 62

1 [ovL-1
= &6
-
- IR 66

x
— 68
v2—=a[j [kk+VL—=1]]

4

82 | ¢ =LOCATION OF 1ST
" [NONZERO ELEMENT IN v6

L T va[vs [d]] + v3 (o] — v4 [v5 [
] /8 _

' R 80
R)

* DENOTES SCALAR OPERATIONS

70
_ 1]
72
.. 74
—~L 7 NO
. 76

|v4——q [J [K:k+V0L—

0,247,696

1

METHOD FOR COMPILING LOOPS HAVING
RECURSIVE EQUATIONS BY DETECTING AND
CORRECTING RECURRING DATA POINTS
BEFORE STORING THE RESULT TO MEMORY

_ 'BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention pertains generally to the field
of high speed digital processing systems, and more par-
ticularly to a method of vectorizing loops containing
_Tecursive equations in a supercomputer. |

2. Background of the Invention |

Supercomputers are hlgh performance computing
platforms that employ a pipelined vector processing
approach to solving numerical problems. Vectors are

3

10

15

ordcred sets of data. Problems that can be structured as

a sequence of Operatmns on vectors can experience one

~ to two orders of magnitude increased throughput when

" executed on a vector machine (compared to execution

20

ona scalar machine of the same cost). Pipelining further '

_ ‘increases throughput by hiding meémory latency
‘through the prefetching of instructions and data.

A pipelined vector machine is disclosed in U.S. Pat.
No. 4,128,880, issued Dec. 5, 1978, to Cray, the disclo-
sure of which is hereby incorporated herein by refer-
ence. In the Cray machine, vectors are processed by
loading them into operand vector registers, streaming
them through a data processmg pipeline having a func-
tional unit, and receiving the output in a result vector
register. A vector machine according to U.S. Pat. No.
- 4,128,880 supports fully parallel operation by allowing
multiple pipelines to execute concurrently on mdepen-
dent streams of data.

For vectorizable problems, vector processing is faster
and more efficient than scalar processing. Overhead
associated with maintenance of the loop-control vari-
able (for example, incrementing and checking the

count) is reduced. In addition, central memory conflicts.

are reduced (fewer but b1gger requests) and data pro-

cessing units are used more efficiently (through data
streaming).

Vector processing supercomputers are used for a

“variety of large-scale numerical problems. Applications

- typically are highly structured computations that model 50

physical processes. They exhibit a heavy dependence
on ﬂoatmg-pomt arithmetic due to the potentially large
dynamic range of values within these computations.

Problems requiring modeling of heat or fluid flow, or of
the behavior of a plasma, are examples of such applica-
tions.

Program code for execution on vector processing
supercomputers must be vectorized to exploit the per-
formance advantages of vector processing. Vectoriza-
tion typically breaks up a loop of the form:

doi=1ton
X = AX(), Y}

enddo

into a nested Io(::p of the form:

235

30

35

40

45

2
dok = OQton— 1byVL
dol =1to VL
Xk + 1) = AXk + 1), Yk + D}
enddo
enddo

where VL is the length of the vector reglsters of the
system. This process i1s known as “strip mlnmg the
~loop”. In strip mining, the number of iterations in the
internal loop is defined by the length of a vector regls--
ter. The number of iterations of the external loop 1is
defined as an integer number of vector lengths. The
remaining iterations are performed as a separate loop
placed before the nested loop. Vector length arrays of

data from the original data arrays are loaded into the

vector registers for each iteration of the internal loop.
Data from these vector registers can then be processed
at the one element per clock period rate of a vector
operation.

Compllers exist that will automatically apply strip
mining techniques to scalar loops within program code
to create vectorized loops. This capability greatly sim-
plifies programming efficient vector processing. The
programmer simply enters code of the form:

doi= 1ton
X0 = AX@®, Y(i)}

enddo

and 1t 1s vectorized.
There are, however, certain types of problems that
resist vectorization. Equations of the form:

doi=1ton
X(KD)) = AX(KD), Y()}
enddo

are difficult to vectorize due to the possibility that the
same data point in X may be needed for different Y(i)
within a single vector operation.

Present compilers are demgned to recognize the pos-
sibility of recurring points in a loop and inhibit vectori-

~zation so that the equation is solved by a scalar loop.

The reasons for this are varied. The range and contents

of j(i) may not be known until run time, makmg it diffi-
“cult to predict recurring data pomts Also, it is difficult

to allocate memory for expressions like X(j(1)) in which

~ array X may be of an arbltrary length to be determined

55

60

at run time. For example, it is a common practice within

advanced programmlng languages to pass an array X(1)

_1mply1ng X 1s infinite in length. A practical compiler

may never know the size of the array and, as long as the
data does not overlap, the program will execute prop-

‘erly.

There are programming steps that can be taken to
regaln some of the performance lost in executing recur-
sive equations in scalar loops. Some compilers offer a

- compiler directive that can be used to force vectoriza-

65

tion of loops that would not vectorize otherwise due to

‘the appearance of recurring data points. Programmers

using such a directive take on the res;mnmbﬂ:ty of mak-
ing sure that there are, in fact, no recurring data points
within a vector operation inside the loop.

),247,696

In addition, there exist a number of algorithms that

3

can be used to structure program code to prevent recur-
ring data or detect if operations have been affected by
the vectorization process. One such algorithm creates a

temporary area in memory and uses it to separate opera-
tions on the same data point. This method is called the
work vector method. Since the source of error in vec-

torizing recursive loops lies in the occurrence of a data

point more than once within a vector in the internal
loop, a work vector is created to serve as intermediate
storage of the result of the calculation. If array X is of
size M and the vector length of the machine is VL,
work vector WV/[k,]] will be a two-dimensional array of
size M * VL. The result of each pass through the inter-
nal loop is accumulated in the work vector array at the
location 1 defined by its place in the vector and the
address k of the original data point. That result is used
in future calculations on the same data point in the samie
location in the operand vector. Two operations on the
same data point in a vector operation resuit in writes to
two different locations in the work vector. The last step
in performing the original loop is to add elements 1
through VL for each data pomt in X.

The work vector method is simple. It can lead to
impressive gains in performance over the scalar ap-
proach. But as the size of array X becomes large, the
memory requirements for the work vector array be-
come burdensome.’ Also, in cases of little overlap or of

limited operations within M (smaller n/M), addition of

~ elements 1 through VL for each data point in X leads to
a large number of zero additions. +

An alternate approach was suggested in a paper enti-
tled “Present Status of Computer Simulation at IPP”,
by Dr. Yoshihiko Abe, in Supercomputing 88: volume
11, Science and Applications in 1989. Abe proposed a
method of vectorizing recursive equations which con-
sisted of breaking one large loop into a number of
smaller loops, performing vector operations on the

smaller loops, flagging recurring data points within the 40

vector operationn and correcting the result. The Abe
method creates two new vectors L and K of size M and
2*VL, respectively. Vector L is a scratch pad vector
used to record the identity of the last Y(i) added to a
data point. Vector K 1s a scratch pad vector used to
‘record the location of elements of Y(i) whose contribu-
tion to X was missed due to the vector operation.

The Abe method assumes that the amount of overlap
is fairly small. Therefore the cost of tracking overlap

and performing calculations on those elements which sg

were missed due to overlap is low. The frequency of
correction must be kept small in order to get good per-
formance from this algorithm. But in a large class of
_problems (e g. Monte Carlo simulations) the number of
iterations is small in comparison to data point space. For

10

15

20

4

Most importantly, the Abe method is difficult to im-
plement 1n a practical compiler. The size M of array X
1s rarely known at compile time. Although it is possible
for a compiler to allocate vector K based on the value of
M calculated at run time, the time required to scan j in

order to determine the maximum size required for K

would severely curtail any performance benefits gained
from the execution of Abe’s method.
A different approach was presented by Giuseppe

‘Paruolo in an article entitled “A Vector-Efficient and

Memory-Saving Interpolation Algorithm for PIC
Codes on a Cray X-MP” published in the Journal of
Computational Physics 89 in 1990. Paruolo suggests a
method in which two temporary work arrays are used
to detect and compensate for recurring data points.
Two working arrays are created, IAG and IAP. IAG is
the same size as X. IAP is the same size as Y. IAP serves
as a pool of pointers linking elements in Y to their corre-
sponding data points in X. The method consists of writ-
ing the location of each element in Y to the location in
IAG corresponding to the data point affected in X.

- Locations in IAG that are affected by more than one

25

30

35

45

55

these types of problems the Abe method will give a -

substantial boost in performance.

There are drawbacks to the Abe technique, however.
Memory must be set aside that is equivalent to the size
of the array of data points. This memory (vector L
above) is needed to record the identity of the last ele-
ment used to operate on that data point. In addition,
memory must be set aside (vector K) as a stack for
recording the location of elements missed due to over-
lap. This additional memory can get large for large M.
The total memory needed required by the Abe method

s, however, smaller than that required by the work
vector method.

element of Y are written into more than once. After one
pass through IAP, IAG contains pointers to no more
than one element in Y for each data point in X. A new
X 1s calculated using the values of Y pointed to by IAG
and those elements of Y are removed from the pool.

The above process is repeated until all elements of Y
are consumed, the pool of elements in Y falls beneath a
threshold or the number of elements consumed in a pass
falls beneath a threshold. The remaining iterations are
then solved with a scalar loop.

Paruolo’s method, like Abe, requires additional mem-
ory. Memory must be set aside that is equivalent to the
sum of the size of array Y and the size of array X. This

- additional memory can get large for large n or large M.

Like Abe, Paruolo’s method is difficult to implement in
a practical compiler due to the difficulty in determining
the size of X prior to algorithm execution time.

Abe and Paruolo are geared to solving different types
of problems. Abe works best in a large data space with
little overlapping of elements. Paruolo works best in a
data space with a great deal of overlap, as in the case
where the number of elements in Y is much greater than
the number of data points in X. The Paruolo method is
optimized toward problems exhibiting a uniform distri-
bution of elements of Y over the data points of X. How-
ever, it would perform no worse than the scalar calcula-
tion in the case of total overlap (i.e. all elements in Y
affect one point in X).

Each of the three algorithms discussed offer ways of
structuring loops containing recursive equations so as to
take advantage of some level of vectorization. They
share a requirement for large amounts of additional
memory that limits the size of problems that can be
executed and may force otherwise vectorizable calcula-
tions to be performed in scalar mode.

In addition, use of these algorithms requires a con-

scious effort on the part of programmers to structure

their programs. The pmgrammer'must convert a prob-

~ lem that involves recurring data points into a different

65

approach that can take advantage of these methods. It is
difficult to construct a practical compiler that will auto-
matically vectorize loops containing ambiguous refer-
ences to possibly recurring data points using these
methods. The ambiguous nature of references to data
point arrays such as X means that compilers implement-
ing these algorithms would be required to allocate

5,247,696

S

memory at run time based on the contents of one or

“more data arrays. This approach would be complex and

the time required to determine the required memory
size would probably outweigh any performanee in-

~ crease gained from complled execution.

It is clear that there is a need for improved methods

of vectorizing scalar loops. A system which can operate

to vectorize scalar loops containing recursive equations

with no additional memory requirements is desired. In

addition, there is a need for a method of vectorizing
scalar loops containing recursive equations that can be

placed into a compller and automatically vectonze such
loops.

SUMMARY OF THE INVENTION

The present invention provtdes a vector update
method for vectorizing loops containing recursive
equations w1th1n a supercomputer. Program code con-
~ taining a loop is transformed into a nested loop in which
- the interior loop performs an integer number of itera-
~ tions of the original loop equal to the vector length of
the system. Vector operations are executed on the ar-

10

15

20

rays of data within the interior loop, a check is made for
recurring data points and repairs are made to the results

of .the vector operations. All repairs are completed
before exiting the interior loop.

The vector update method requires no additional

memory for the vectorization of program code. Fur-
thermore, it is designed to vectorize loops without re-
cursive elements with negligible loss in performance. A

system implemented according to the present invention

demonstrates a noticeable increase in the speed of pro-

25

30

~gram execution and can handle larger problems than

systems implemented under previous methods.
According to another aspect of this invention, a com-
piler constructed to include the vector update method
of vectorizing code will automatically transform pro-
gram code containing loops into vectorized code. A
compiler according to this invention generates code
without allocating additional work space memory. This

means that it can operate independent of the data used
in the program to be complled eliminating the run time

determination of memory sizes required by compilers

lmplemented with other methods.

BRIEF DESCRIPTION OF THE DRAWINGS

“FIG. 1is a block diagram representative of a typical
vector processing computer system according to the
present ivention.

FIG. 2 15 a flow diagram representatwe of the steps

taken to vectorize program code containing a loop
“according to the present invention.

FIG. 31s a FORTRAN representatlon of a program

solvmg an algorithm containing recurring data points

using the vector update method of the present inven-

tion.

FIGS. 4 and 5 are flow dtagrams representative of the
- steps a vector processing computer system goes
through in executing a vectorized loop after compiling
- with the vector update method of the present invention.

. DETAILED DESCRIPTION OF THE
"~ PREFERRED EMBODIMENTS

In the followmg Detailed Descrlptton of the Pre-
ferred Embodiments, reference is made to the accompa-
- nying Drawings which form a part hereof, and in which
1s shown by way of illustration specific embodiments in
which the invention may be practiced. It is to be under-

35

6

stood that other embodiments may be utilized and struc-
tural changes may be made without departtng from the
scope of the present invention.

A computer system 10 which can be used for high
speed data processing is illustrated generally in FIG. 1.
Computer system 10 is a typical pipelined vector pro-
cessing system which includes a main memory 12, a

‘plurality of vector registers 14, a plurality of scalar

registers 16, a plurality of address registers 18, a plural-
ity of arithmetic units 20, an instruction buffer 22, an

-instruction register 24, a program counter 26 and a

compiler 30. Computer system 10 also includes control
hardware for operating in either scalar or vector mode

(not shown). Vector registers 14, scalar regtsters 16 and

address registers 18 are connected to main memory 12

‘and serve as intermediate high-speed memory between

main memory 12 and arithmetic units 20. Vector regis-
ters 14.1 through 14.n are of uniform vector register

length VL and are connected to main memory 12 and

arithmetic units 20. Compiler 30 is connected to main
memory 12 and serves to convert program code into
machine executable code in preparation for execution in
computer 10. Instruction buffer 22 is connected to main

memory 12 and serves as intermediate high-speed mem-

ory between main memory 12 and instruction register
24. |

To operate computer system 10, data is loaded from
memory 12 into one or more of vector registers 14.
Those vector registers 14 used as operand registers for
a given vector process transmit individual elements to
an arithmetic unit 20 at the rate of one element per time
period. Once the start-up time, or arithmetic unit time,
has passed, the arithmetic unit provides successive re-
sult elements on successive time periods, and these are
transmitted as elements of a result vector to a vector

register 14 acting as a result register for that parttcular

vector process. Vector transfers between vector regis-
ters 14 and main memory 12 may also be accomplished
at one element per time period.

By providing a number of arithmetic units (for exam-

 ple, floating point multiply, integer add, logical opera-

~tions, etc.) and a number of vector registers 14 (for

~ example, eight), any of which may be associated by

45

50

program instruction control with any arithmetic unit 20
or memory 12, computer system 10 may have numerous

vector processes proceeding simultaneously, thereby

achieving extremely high data processing rates.
Program code to be run on computer system 10 must

- be vectorized to exploit the performance advantages

inherent in vector processing. Program code containing
loops 1n which mathematical or logical operations are
performed on arrays of data points can be vectorized
using the vector update method of the present inven-

‘tion. In the preferred embodiment of this invention this
55 .

code vectorization is performed by a compiler. In an
alternate embodiment, the method of this invention can

~ be used by programmers to restructure program code

65

for use on vector processing systems that do not have

this compiler.

A flow chart of the steps of the present invention is
shown in FIG. 2. At 100, program code containing a
loop 1s converted into program code containing a
nested loop of depth two through the process of strip
mining. The resulting interior loop is of length VL, the
vector length of the system. At 102, functions to be
performed within the interior loop are set up as vector
operations with the results to be saved to an intermedi-

ate vector register.

5,247,696

7

The steps of strip mining and vectorizing ignore the
possibility of recurring data points. At 104, recurring
data points are detected by including program code that
writes the numbers 0 through VL —1 to the locations in
memory of the data points used in the current interior

loop. Recurring data points will be written to more than
once, with the last number written pomtmg to the loca-

tion in the intermediate vector reglster of the last valid
operation performed on that data point.

At 106, program code is included that repairs those
elements in the intermediate vector register associated
with the recurring data points and saves the results to
memory.

A system implemented according to the present in-
vention has several advantages over a system imple-
mented using the work method, Abe’s method or
Paruolo’s method. There are no additional memory
requirements. Systems 1mp]emented using this method,
in effect, oversubscribe memory. Data point arrays
become scratch pads for markmg errors in vectorization
due to recurnng data points. This leads to greater effi-
ciency in the use of memory, resulting 1n the capacity to
handle larger problems in the same memory space. It
also eases demand on memory bandwidth.

The vector update method tracks and repairs errors
due to recurring data points within the internal loop of
the vectorized code. Unlike Abe or Paruolo, this
method operates on a set of elements from operand
arrays acting on the data point arrays until all elements
in the set are consumed. Abe must maintain in memory
a list of elements that were missed by forced vectoriza-
tion. He must then enter a second series of operations to
repair the damage. Paruolo must maintain in memory
two arrays, one for matching elements from a pool of
elements to locations representative of the data pomt
array X and the other to track the remaining elements in
the pool.

A robust general compiler capable of vectorizing
recursive equations can be developed using the vector
- update method. The vector update method consumes
elements of the operand arrays as they are handled.
Computer 10 remains inside the vector update loop.
until all recurring data points are corrected. More im-
portantly, since the vector update method requires no
additional memory for tracking recurring data points,
there 1s no requirement for determining the size of data
point arrays. A compiler implemented under the Abe or
Paruolo methods is requzred to perform a run time de-
termination of the maximum size of the index into the

data point array. This is no longer required. Program 50

code can be compiled at compile time with no addi-
tional run time memory allocation steps.

FIGS. 4 and 5 illustrate an embodiment of the stEps
computer system 10 will execute after compiler 30 has
compiled program code of the form:

10

8

greater than or equal to VL (the vector register length
of the computer used). If ii is greater than VL —1, com-
puter 10 moves to 46 and performs the vector update
method’s vector operation and correction for recurring
data points. Upon completion, at 48, a value equivalent
to the length of a vector register is added to k. Steps 42,
44, 46 and 48 are repeated until the number of elements
in ii is less than VL.

When the number of elements remaining to be pro-
cessed 15 less than the vector length of a vector register,
the remaining calculations are performed in a scalar
loop. At 50, a check is made to see if all elements have

- been consumed. If so, control returns to the main pro-

15

20

25

30

35

gram. If not, the remaining calculations are performed
as a scalar loop of ii iterations. Then control returns to
the main program.

Vectorized compiling with the vector update method
results in code that executes a set of equations of the
form:

Il = MOD(n, VL)
dok=1ton —Ilby VL
doii=0to VL — 1
X(ik + i) = AXGk + i), Yk + i)}
enddo
enddo
dok=n—-HN+1ton

X({(K)) = AX((k), Y(k)}

enddo

where the internal loop calculation of the nested loop is
performed as a vector operation.

FIG. S illustrates the preferred embodiment of the
steps a vector processing computer goes through in
executing a loop vectorized by a compiler 30 using the

present invention. This routine will work with all loops

“including those containing recurring data points. The

45

33

doi=1ton
X((D) = X((D) + Y()
enddo

into vectorized code. It should be apparent to those
skilled in the art that other equations 1nclud1ng equa-
tions of the form X(j(i))=f{X(j(i)), YO, ..., Z(} could
be compiled using the same technique.

FIG. 4 illustrates the result of strip mining the loop.
The routine in FIG. 4 is entered at 40 where the index
variable Kk is initialized to zero. At 42 an initial value of
11 1s calculated. At 44 a check is made to see if ii is

65

routine is entered at 60 where the contents of array X
selected by j(i) in the current iteration of the loop are
transferred from memory 12 to vector register 14.1. At
62, vector register 14.2 is loaded with the values of 0
through VL —1 (where VL is the vector length of com-
puter 10). Vector register 14.2 will serve as a constant
vector in the determination of recurring data points
within the vector loop. At 64, vector register 14.3 is
loaded with the values of Y selected by i in the current
iteration.

At 66, the vector operation(s) are performed as if

‘there are no recurring data points. In this example, the

operation is the addition of X(j(i)) and Y(@i). The results
are stored in vector register 14.4.

Steps 68 through 72 search for recurring data points.
At 68, the elements of vector register 14.2 are written to
the locations in X involved in the current loop. Any
recurring points will be written to more than once, with
the last element written corresponding to the last vector

operation performed on that data point. At 70, the con-

tents of array X selected by j(i) in the current iteration
are transferred from memory 12 to vector register 14.5.
If there are no recurring points, vector register 14.5 will
be a replica of vector register 14.2. If there are recurring
data points, the location of the last vector operation
performed on that data point will occur more than once
in vector register 14.5.

At 72, a test 1s made for recurring data points. Vector
register 14.2 is subtracted from vector register 14.5 and
the result stored in a vector register 14.6. At 74, a check
1s made for any non-zero entries in vector register 14.6.

5,247,696

-'If not there were no recurring data points and at 82 the -

9

- updated values of X from vector register 14.4 are saved

to memory 12. Control is returned to the stnp mlnlng_
loop of FIG. 8. -

~If, at 74, the check turns up one or more non-zero
- entries a scalar loop is entered. At 76 the location of the

first non-zero element in vector register 14.6 is saved to .

variable 1. Variable 1 points at the element in vector
register 14.3 whose operation on X was overwritten in
step 66. At 78, this operation is performed. At 80, ele-
ment 1 in vector register 14.6 is set to zero and control
returns to 74. Steps 74, 76, 78, and 80 are repeated until
all non-zero elements in vector register 14. 6 have been
set to zero.

Then control moves to 82, the updated va]ues of X
from vector register 14.4 are saved to memory 12 and

- control is returned to the exterior loop of FIG. 5.

In vector processing computer systems 1mplemented
with vector mask registers, an alternate embodiment of

“the location of non-zero entries in vector register 14.6..
Repair would then consist of a scalar loop that goes bit
by bit through the vector mask register and performs
the required Operatmns on those locations correspond-
. ing to bits set to one in the vector mask register.

In an alternate embodiment, programmers can im-

‘prove execution of code containing recursive equatlons
by structunng their code according to the present in-
- .vention. This would only be necessary in the case of

- program code that is intended to be executed on a vec- 30

“tor processing computer that does not contain a com-
piler including the vector update method for vectorized
compiling.

A FORTRAN subroutme for 1mp1ement1ng the vec-
“tor update method on a vector processing computer is
shown in FIG. 3. It has been written to be executed on
~ a vector processmg computer containing vector regis-
ters of length 64 (e.g. a Cray supercomputer). The sub-
routine shown executes an operanon of the form
X)) = X(](l))-i—Y(l) The array j(i) is a pointer array
used to match the elements of Y to the data points of X.
It should be apparent to those skilled in the art that
other equations including equations of the form
X(N=1XG0), YO, . . ., ZO} could be implemented
using the same techmque

In the subroutine of FIG. 3, lines 3-5 are variable

declarations. The array tmp is the only additional mem-
ory requlred by routines implemented according to the
present invention. The size of tmp has been chosen such
“that the compiler will assign tmp to a vector register
‘rather than external memory. Lines 7-11 are comments
| deplctmg the recursive loop that is bemg solved accord-
ing to the present invention. Line 12 is the definition of
a pointer to the array of data points X.
- Lines 14 and 42 are the exterior loop created by the
strip mining process. Lines 16 through 20 perform the
forced vectorization, saving the results into tmp. Lines

22 through 26 write an index value into the array X at

the locations read during the forced vectorization per-
" formed by lines 16 through 20. In the event of a recur-
ring data point, data point array X will contaln the ﬁnal
index value written to that location.

Lines 28 through 34 check to see if all index values
can be read back and compensate for recurring data
points. At line 29 a check is made to see if there was a
~recurring data point. In the event of a recurring data

10

15

25

35

45 -

50

55

60

63

- point the index value read back at that location will

differ from the index value expected. The index value

10

read will, however, point to the location in tmp contain-
ing the result of the last valid operation on that data
point. This permits the execution at line 31 of an instruc-
tion to perform the needed additional operation on that
data point. Lines 36 through 40 write the results of the
internal loop back to memory.

As an enhancement to programs structured accord-

‘ing to the present invention, programmers should use

their knowledge as to the nature of the data in their
model to adjust the stride through the elements to de-
crease the likelihood of recurring data points. This
would be appropriate in data structures that have recur-
ring data points as a function of location in the array.
The replacement of a scalar loop representing a re-
cursive equation with a vector Update loop according to
the present invention can result in code that will exe-
cute the loop approximately three times faster than the
former scalar loop. For code with maximum overlap

. (all elements of Y operate on one element in X) execu-
‘step 74 would be to use the vector mask register to mark 20 (P)

tion will occur at approximately the same rate. For
programs with sparse operations over large data spaces,
computing efficiency can be expected to more than

‘double.

Although the present invention has been described
with reference to the preferred embodiments, those
skilled in the art will recognize that changes may be
made in form and detail without departing from the -

spirit and scope of the invention.

What 1 claim is:
1. A computer implemented method of compiling

program code including a vector operation on an array

of data elements stored in memory of a vector process-

Ing computer system with vector registers of length

VL, the method comprising the steps of:

~ a) scanning the program code for an equation which

- may have recurring data points;

b) replacing the equation with vectorized machine
executable code, wherein the machine executable
code comprises a nested loop and wherein the
‘nested loop comprises:
an exterior loop which decomposes the equation

into a plurality of vector length loops, including
a current vector length loop;

a first interior loop for executing vector operations -
corresponding to the current vector length loop
to form a vector register length result vector:

~asecond interior loop for determining occurrences,

w1th1n the current vector length loop, of recur-
ring data’ pomts, wherein the second interior

| Ioop comprises code for performing indirect
writes of known values to said array, code for
performing indirect reads of said array and code

for comparing data read during the indirect
reads of the array to the known values written to
the array; and

a third interior loop for repairing elements of the
result vector associated with the recurring data
points and writing said repaired result vector to
said memory; and

C) saving the vectorized code to said memory.

2. A computer implemented method of compihng

program code including a mathematical operation on an

array of data elements stored in memory of a vector
processing computer system with vector registers of
length VL, the method comprising the steps of:

a) scanning the program code for an equation which
may have recurring data points;

o),247,696
11 ' 12

b) replacing the equation. with vectorized machine said determining code comprising code for per-
executable code, wherein the vectorized machine forming indirect writes of known values to said

executable code comprises:
vectorization code for performing the mathemati-
cal operation as a vector operation, wherein the 5
vectorization code comprises code for perform-
ing the mathematical operation on a vector
length subset of the data elements in order to

array of data in memory, for performing indirect
reads of said array, for comparing data written
during the indirect writes to data read during the
- indirect reads to find recurring data points and
for correcting the result vector to compensate

form a VL element result vector and for storing for the ref:urring data points; and
the result vector in a first vector register; 10 code for saving the corrected result vector to mem-
determining code for determining and correcting ory; and
recurring data points in the result vector while c) saving the vectorized code to said memory.
the result vector is in the first vector register, * * x5
15
20
235
30
35
40
45
30
23
60

65

	Front Page
	Drawings
	Specification
	Claims

