

US005212414A

ABSTRACT

United States Patent [19]

Francis

[11] Patent Number:

5,212,414

[45] Date of Patent:

[57]

May 18, 1993

[54]	SWITCH WITH FREQUENCY
	COMPENSATION, DIFFERENTIAL BIAS
	OPERATION COMPENSATION AND
	ENABLE INDICATOR

[75]	Inventor:	John R.	Francis,	Burlington,	Canada
------	-----------	---------	----------	-------------	--------

[73] Assignee: Gennum Corporation, Burlington,

Canada

[21] Appl. No.: 589,229

[22] Filed: Sep. 26, 1990

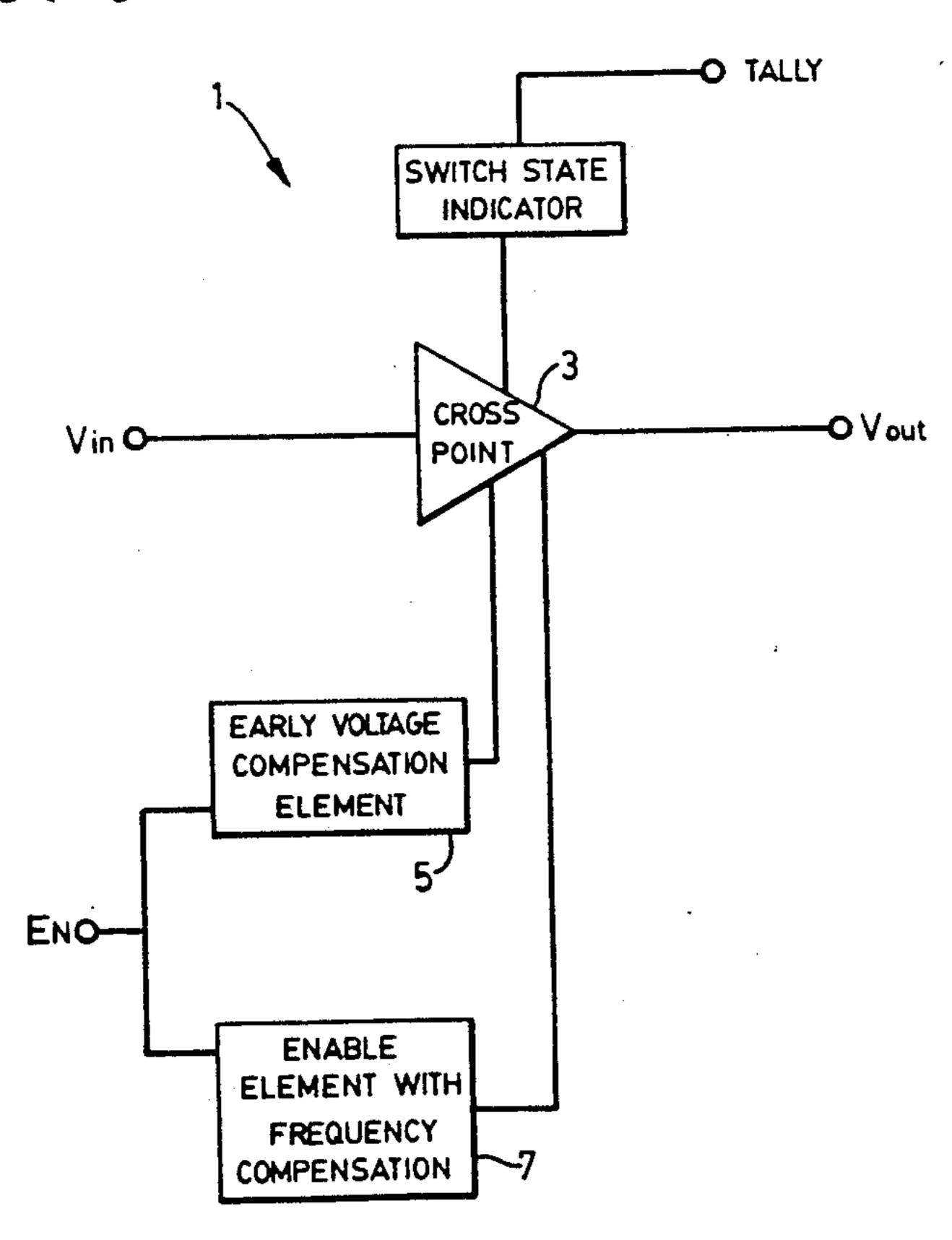
[30] Foreign Application Priority Data

Oct	. 13, 1989 [CA]	Canada 2000636
[51]	Int. Cl. ⁵	G06G 7/12; H03K 17/56;
• •		H03K 17/60; H03K 3/01
[52]	U.S. Cl	
[J		307/254; 307/270; 307/494
[58]	Field of Search	

[56] References Cited

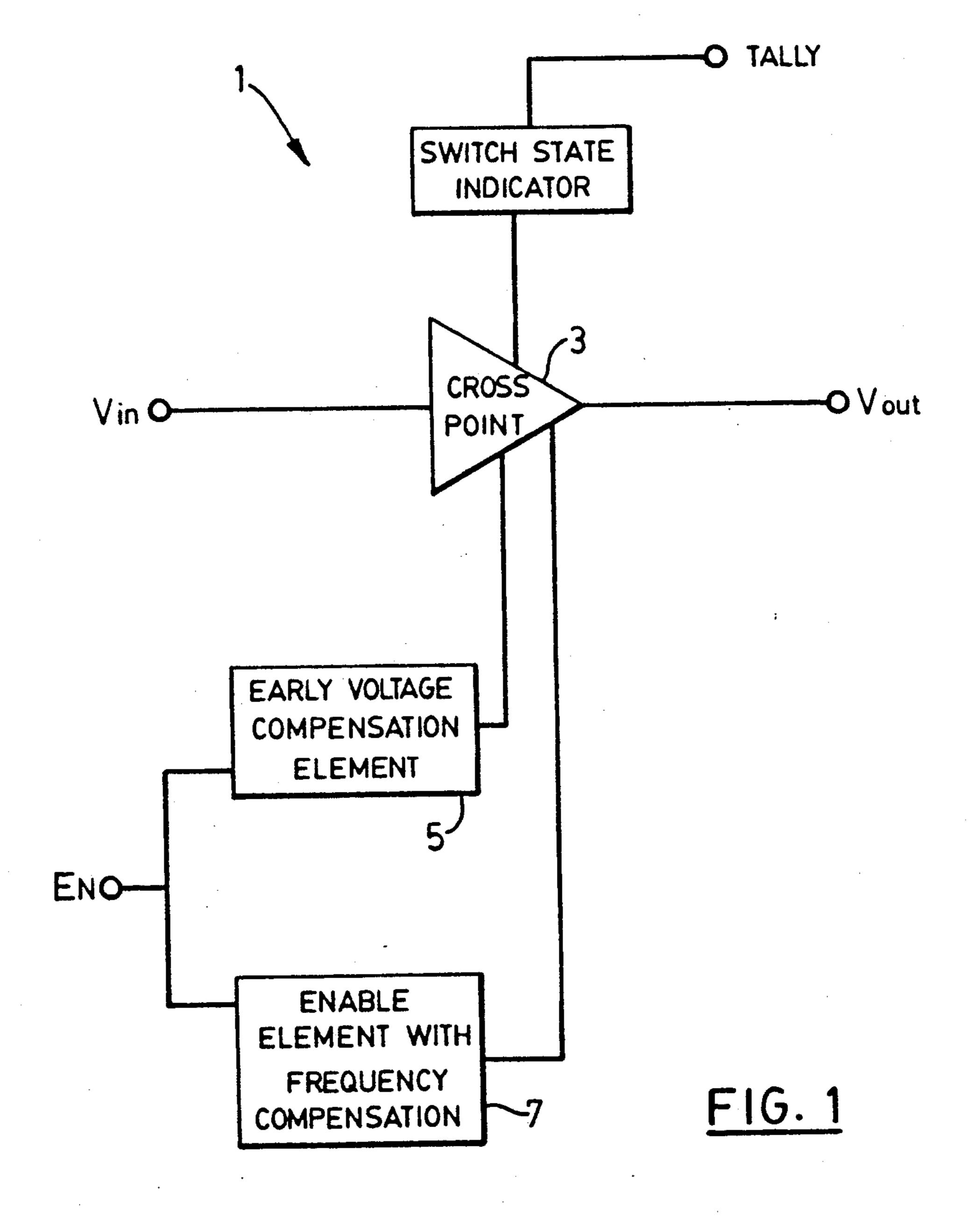
U.S. PATENT DOCUMENTS

4,663,598	5/1987	Dayton et al	
4,684,823	8/1987	Dayton et al	
5,023,476	6/1991	Watanabe et al	307/491
5,028,815	7/1991	Van De Plassche	307/491
5,047,727	9/1991	Theus	307/491
•		Ten Eyck	

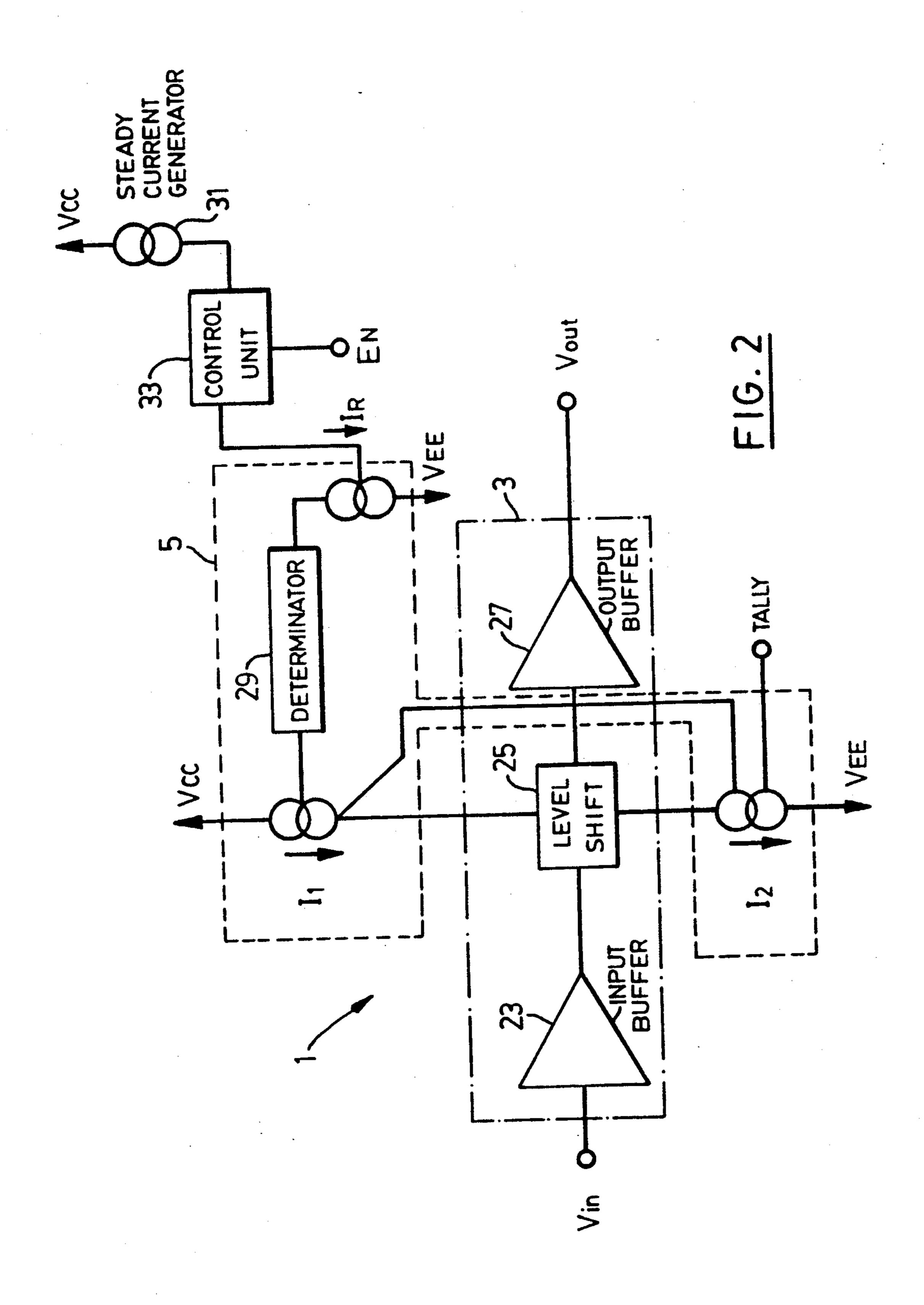

307/544, 552, 270, 254

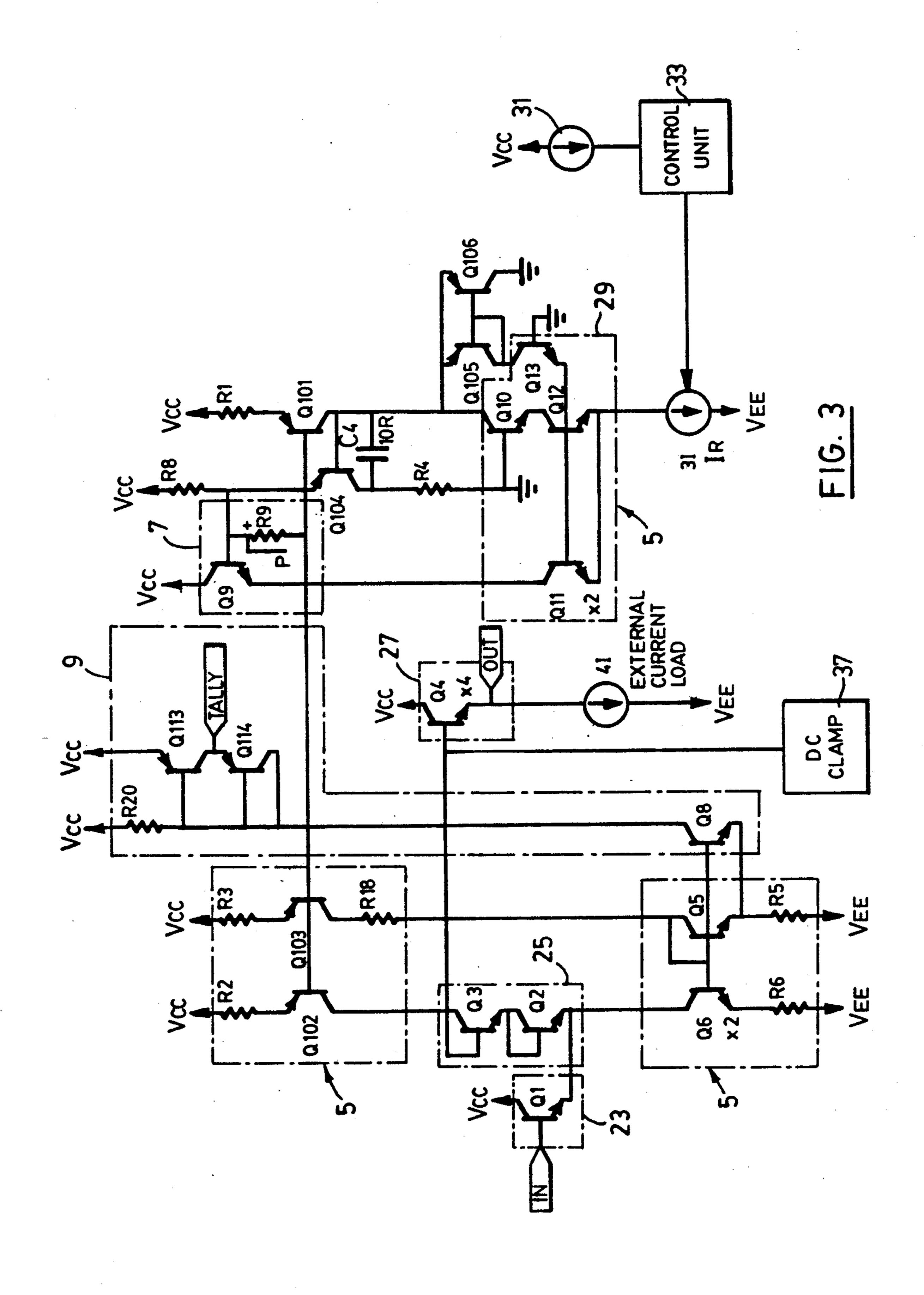
Primary Examiner—William L. Sikes
Assistant Examiner—Trong Quang Phan

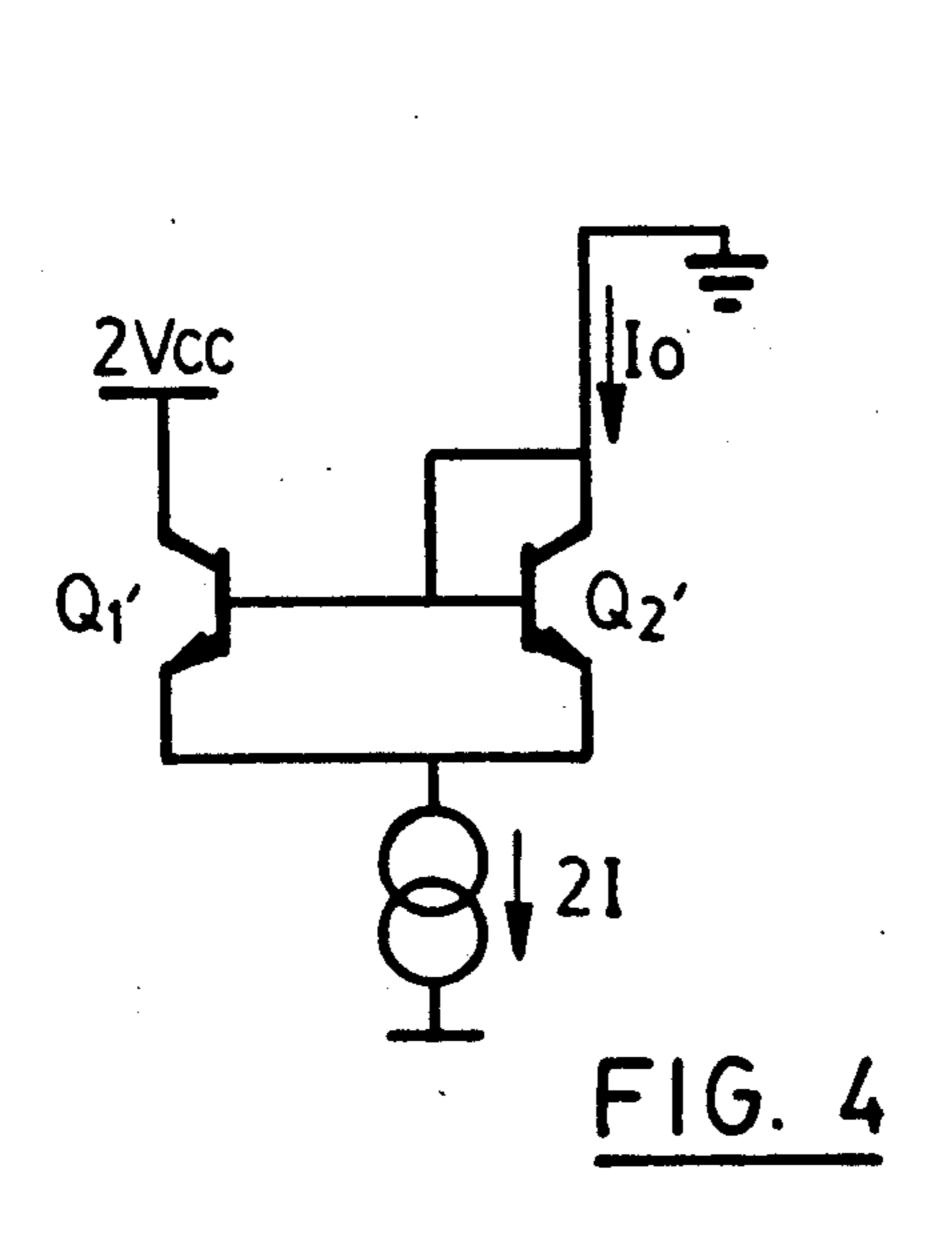
Attorney, Agent, or Firm-Bereskin & Parr

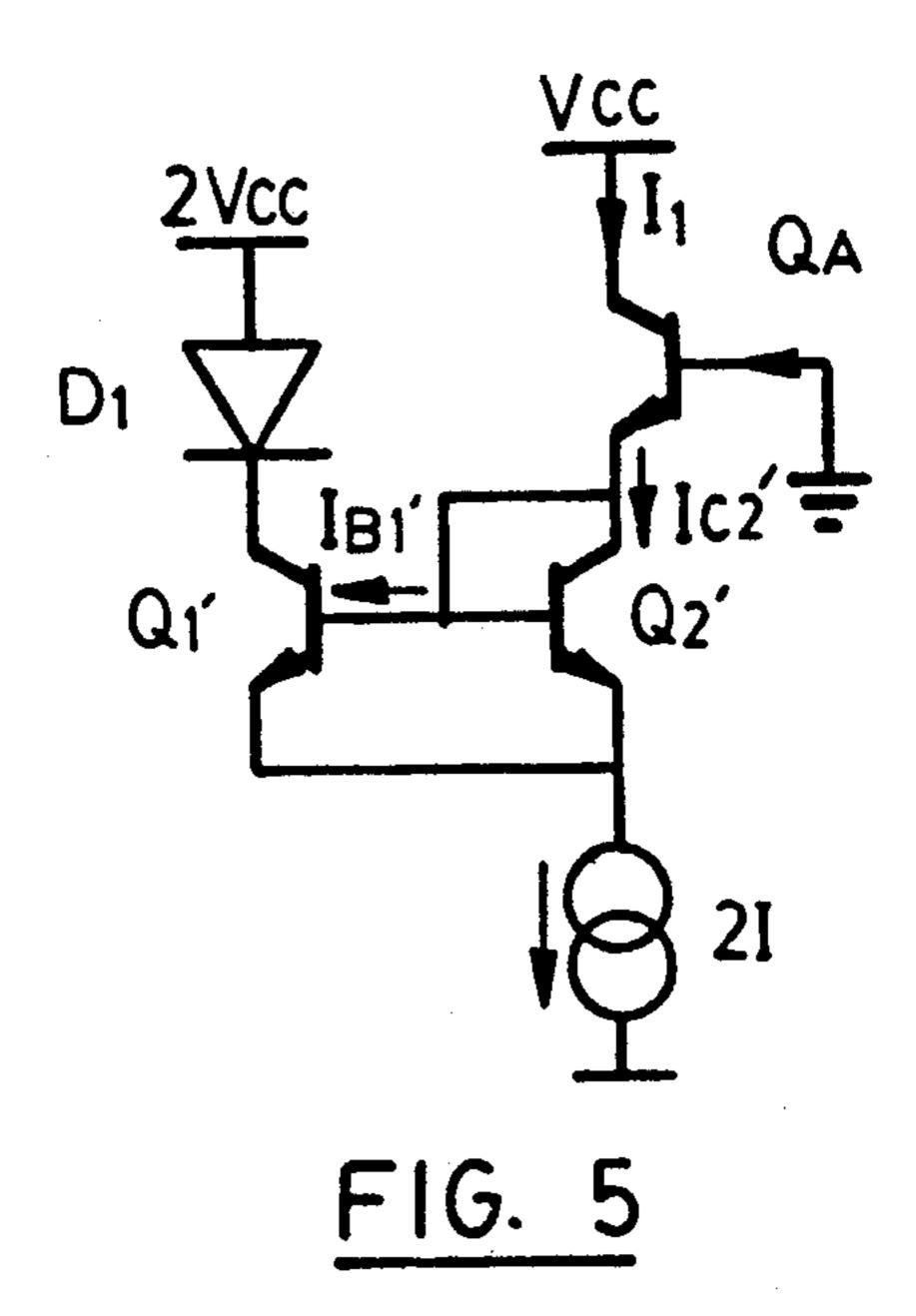

The switch has a cross-point. The cross-point has an input buffer, a level shift and an output buffer. The input and output buffers are BJT's, the level shift is two diode connected BJT's. The voltage drops across the buffers are designed to match the voltage drops across the diodes. The cross-point is enabled by a current source forcing current through the diodes. The matching of the voltage drops is effected by the Early voltage of the BJT's as they are operated at different Vce's. An Early voltage determinator determines the effect of the Early voltage and adjusts the current flowing from the current source to force differing bias currents through the input buffer and the diodes to make the sum of the V_{be} 's of each more independent of Early voltage. The output impedance of the current source and the impedance of the cross-point form a resistor-capacitor network. Where the f_{τ} of the current source is sufficiently low, the network has a pole-zero combination within the otherwise usable bandwidth of the switch. The current source has a first BJT at its output. A frequency compensating BJT is connected to the base of the first BJT, bringing the pole and zero closer together and shifting the pole-zero combination towards the upper limit of the otherwise usable bandwidth of the switch. A tally output is provided from the biasing network of the switch. The tally output provides an indication of the

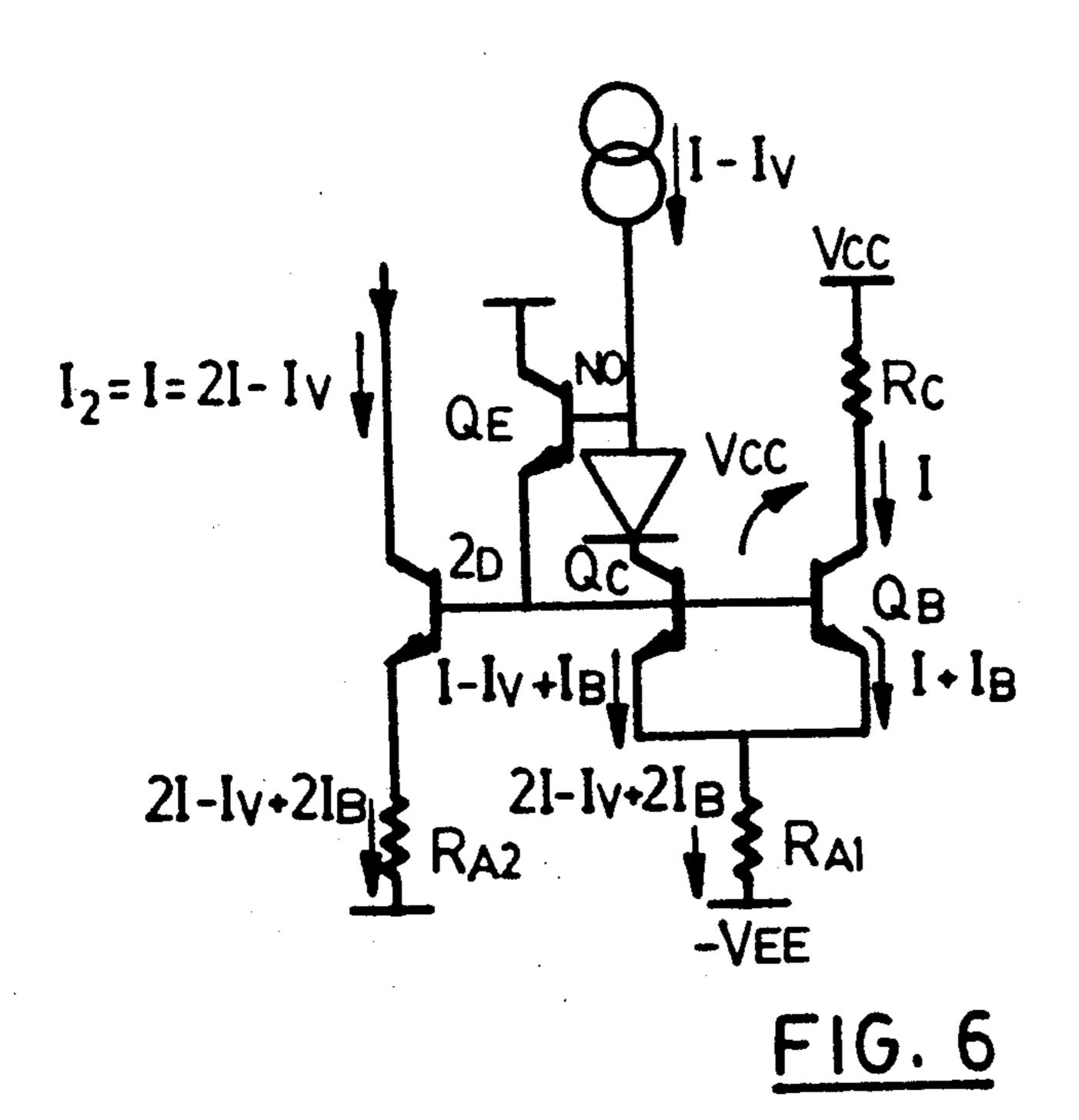
14 Claims, 5 Drawing Sheets

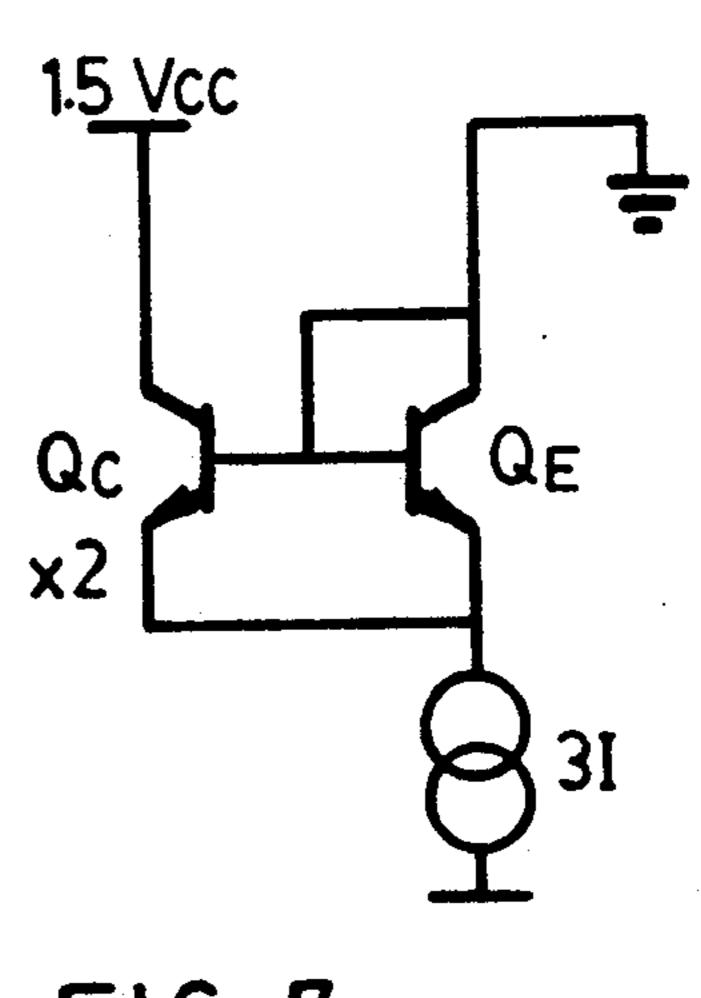


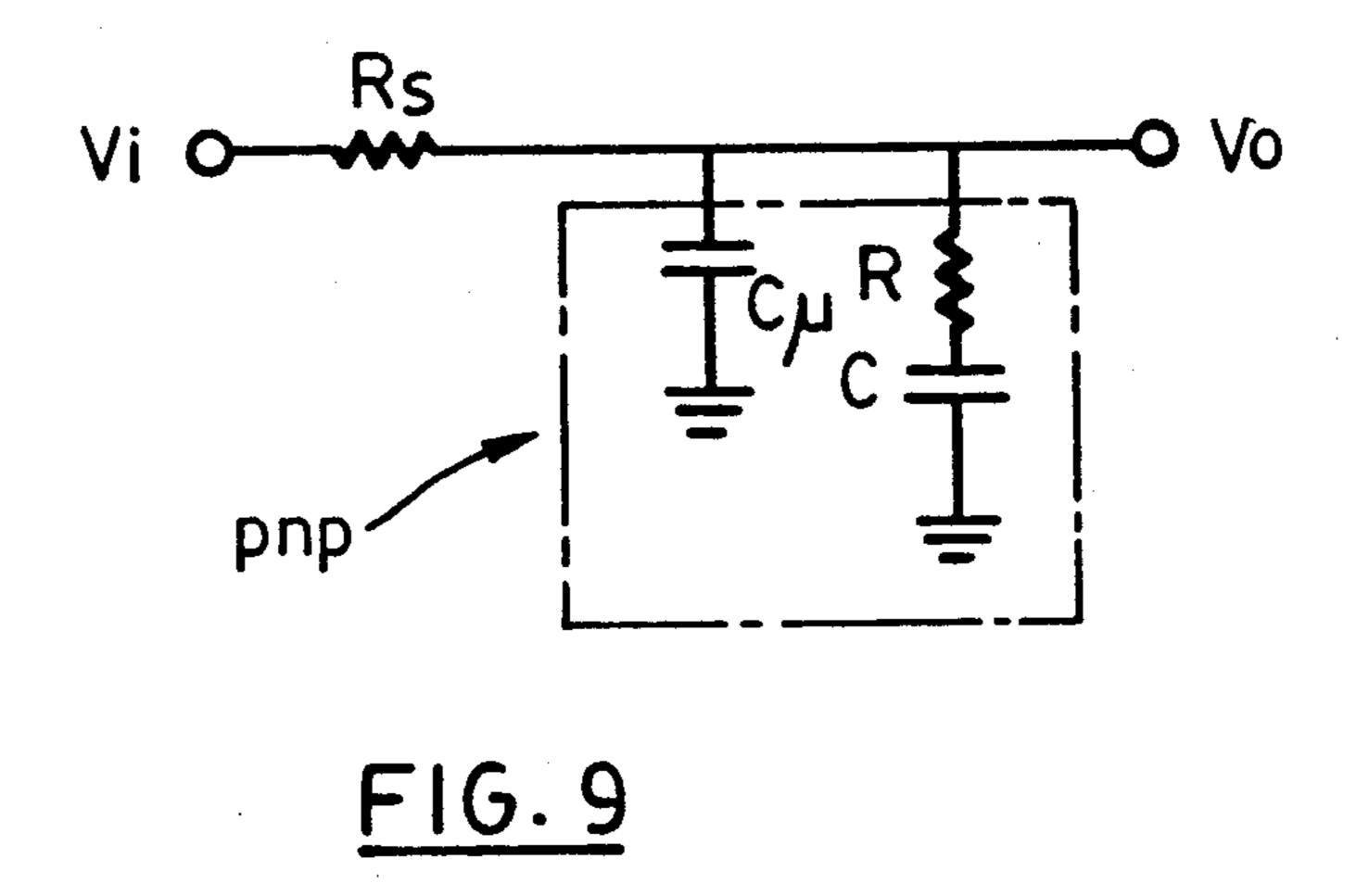

operating state,

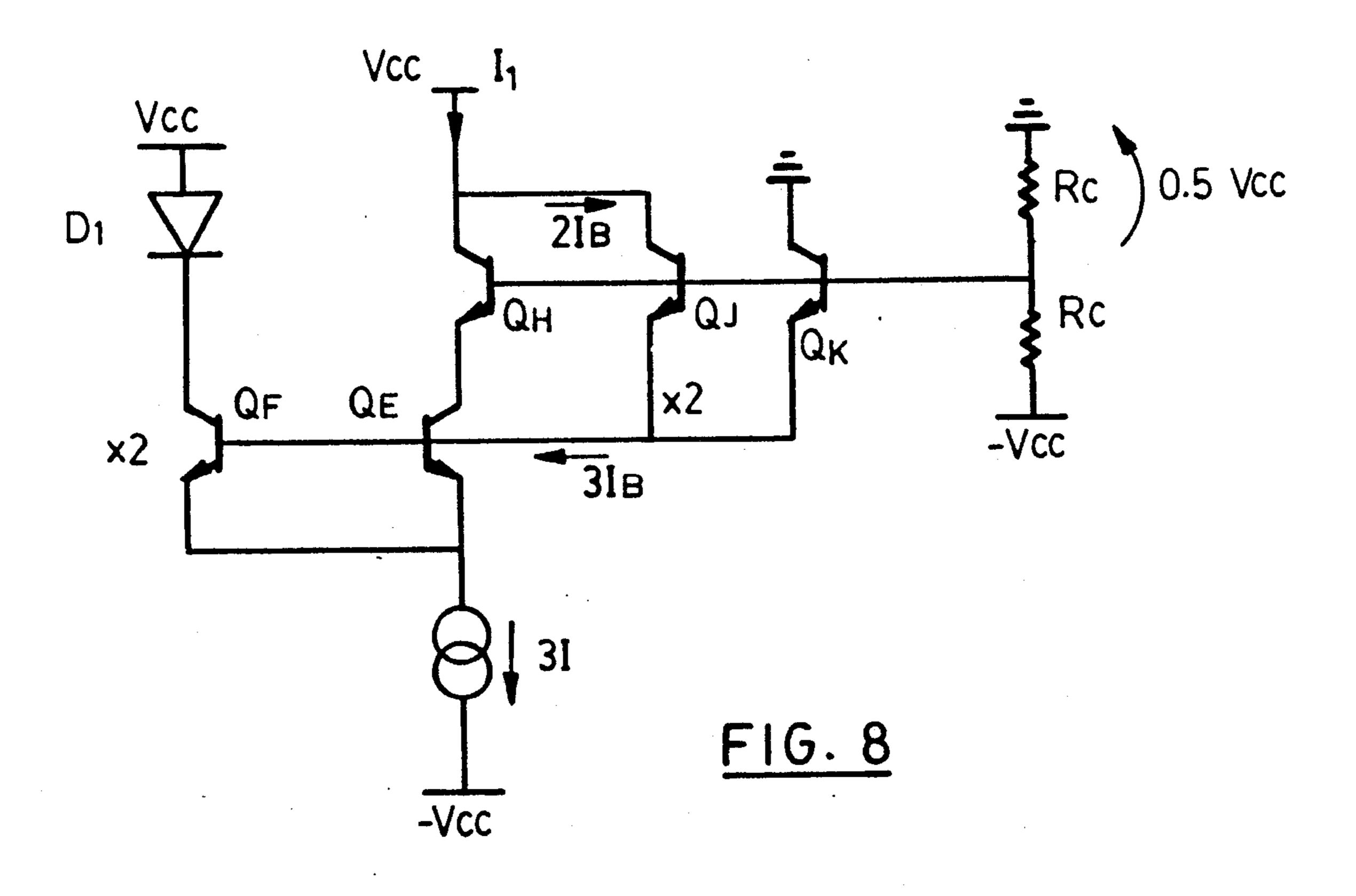

U.S. Patent




U.S. Patent







F1G. 7

SWITCH WITH FREQUENCY COMPENSATION, DIFFERENTIAL BIAS OPERATION COMPENSATION AND ENABLE INDICATOR

FIELD OF THE INVENTION

This invention relates to electronic switches. In at least one of its aspects it relates more particularly to electronic switches for broadband applications.

BACKGROUND OF THE INVENTION

As electronic applications become increasingly complex great demands are placed on the switches used therein. In the past relays were employed for switching 15 applications. Monolithic switches replaced relays, increasing the number of frequencies within which the switches have a substantially constant gain. These frequencies make up the usable bandwidth of the switch. In order to increase the bandwidth further and to de- 20 crease the operating voltage of the monolithic switches, finer manufacturing processes are being used.

The upper limit of the bandwidth of switches increases as the process used becomes more fine. However, many switches require a current source feeding into the signal path. This current source must have a high impedance so as not to degrade the signal in the signal path. A resistor would not be employed as the current source for demanding applications as it would 30 cause distortion. An active component must be used. This introduces a resistor-capacitor network having a pole-zero combination. To keep the pole-zero combination above the otherwise usable bandwidth, a high impedance, high unity gain frequency, fr, transistor may 35 be employed as the current source. However, these transistors are expensive to manufacture.

Another problem encountered with some switches results from employing bipolar junction transistors for which it is desirable that the base-emitter voltages, 40 V_{BE} 's, be substantially similar while the collector-emitter voltages (V_{CE}'s) of those transistors are substantially dissimilar. What constitutes substantial similarity and dissimilarity will depend on the tolerance specifications of the DC offset of the switch. Typical matching tech- 45 niques for producing substantially similar V_{BE} 's employ substantially similar currents flowing in the collectors of each transistor. However, where the transistors are operated at substantially dissimilar V_{CE} 's, the V_{BE} 's will not necessarily be the same due to base-width mod- 50 ulation effects. The Early voltage, V_A , of the transistors is a measure of these effects. The Early voltage of a transistor is not easily controllable during the manufacturing process, becoming lower, therefore having more effect, as the process becomes increasingly fine. Variations in the Early voltage result in unpredictable values of output offset for the switch. The output offset is the DC voltage difference between the input and the output of the switch. This limits the applications where the switch may be used.

Furthermore, it is sometimes required to indicate when a monolithic switch is on. Typically indications are given of when a particular switch has been selected for operation, i.e. enabled, however this indication only 65 FIG. 4, including a current source; represents a selection of a particular switch or the state of the control logic. It does not represent the actual functioning of the switch once enabled.

SUMMARY OF THE INVENTION

In a first aspect the invention provides a switch for switching an input signal at an input to an output signal at an output, said switch being operable in an enabled state and in a disabled state, said switch comprising: (a) cross-point switching means for switching the input signal to the output signal; (b) switching control means coupled to said cross-point switching means, said 10 switching control means having an enable input for receiving an enable signal and means for switching the input signal to the output signal in response to said enable signal; and (c) compensation means for controlling an Early voltage effect in said cross-point switching means, said compensation means being coupled to said switching control means; (d) said cross-point switching means comprising an input buffer coupled to said input, and output buffer coupled to said output, and level shifting means coupling said input buffer to said output buffer, said level shifting means being coupled to said switching control means, and said level shifting means being responsive to operation of said switching control means for said level shifting means to switch the input signal coupled to said input buffer to said output buffer in response to receipt of said enable signal at said enable input.

In a second aspect the invention provides a switch for switching an input signal to an output signal, said switch being operable over a frequency response range and said switch being operable in an enabled state and a disabled state, said switch comprising: (a) cross-point switching means for switching the input signal to the output signal; (b) switching control means coupled to said cross-point switching means, said switching control means having an enable input for receiving an enable signal and means for switching the input signal to the output signal in response to said enable signal; (c) compensation means for controlling an Early voltage effect in said cross-point switching means, said compensation means being coupled to said switching control means; (d) switch state indicating means for indicating when said switch is in the enabled state and when said switch is in the disabled state, said switch indicating means being coupled to said compensation means; and (e) frequency response control means for controlling the frequency response of said switch, said frequency response control means being coupled to said switching control means.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, and to show more clearly how it may be carried into effect, reference will now be made, by way of example 55 to the accompanying drawings, which show a preferred embodiment of the present invention, and in which:

FIG. 1 is a block diagram of a switch according to the preferred embodiment of the present invention;

FIG. 2 is a detailed block diagram of the switch of 60 FIG. 1;

FIG. 3 is a partial circuit diagram and block diagram of the switch of FIG. 1;

FIG. 4 is a circuit diagram of a determinator;

FIG. 5 is a circuit diagram of the determinator of

FIG. 6 is a circuit diagram of a current sink;

FIG. 7 is a circuit diagram of an equivalent circuit to the determinator of FIG. 4;

3

FIG. 8 is a circuit diagram of an equivalent circuit to the determinator of FIG. 5; and

FIG. 9 is a equivalent diagram of an RC network in the switch of FIG. 1;

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1, a switch 1 has a cross-point gate 3. The cross-point 3 has an input V_{in} and an output V_{out} . The cross-point 3 is also connected, through an Early 10 voltage compensation element 5 and through an enable element with frequency compensation 7, to an enable input EN. The cross-point is further connected to a switch state indicator 9 to an output TALLY.

In operation, an enable signal is received at EN. The signal is passed through the element 7 to the cross-point 3. The cross-point 3 is enabled, passing a signal at V_{in} to V_{out} . The output offset of the switch is determined by $V_{out}-V_{in}$. When the EN signal is low, the cross-point 3 is disabled. V_{out} is isolated from V_{in} .

The element 9 determines the operating state of the cross-point 3, either enabled or disabled. The state is output at TALLY.

The element 5 determines the effect of the Early 25 voltage on the bi-polar junction transistors (BJT's), not shown in FIG. 1, in the cross-point 3 which are for operation at substantially similar V_{BE} 's and substantially dissimilar V_{CE} 's. As will be discussed later, the element 5 contains a substantially equivalent DC circuit 30 to the BJT's for operation at similar V_{BE} 's. The element 5 sets the bias conditions of the BJT's to compensate for the effect of the Early voltage. It is assumed that the Early voltage of each BJT is the same as this technique is primarily designed for use in monolithic switches 1. However, even in a monolithic switch 1, the Early voltages of the BJT's may differ by 10 to 15%. This will effect the accuracy of the compensation. The compensation will, however, be an improvement upon an uncompensated switch.

As shown in FIG. 2, the element 7 has a switchable current source with frequency compensation I₁. The current source I₁ has an active component as shown by BJT Q₁₀₂ of FIG. 3. The output impedance of current source I₁ must be high so as not to degrade the signal 45 passing through the input buffer 23 and level shift 25 from V_{in} to V_{out} . A resistor cannot be used for the current source I₁ as a resistor would not be a high enough impedance. Q₁₀₂ is in part equivalent to a resistor and capacitor in series, creating a resistor-capacitor, RC, 50 network including the source resistance of the crosspoint 3 and the output impedance of the element 7. This network will have at least one pole and zero. With a BJT Q₁₀₂ of sufficiently high output impedance and unity gain frequency, $f\tau$, the pole and zero will be above 55 the bandwidth of the switch 1. However, such a BJT is relatively difficult and expensive to manufacture. Accordingly, the element 7 employs current source I₁ with a high impedance transistor Q₁₀₂ having a lower radian frequency $f\tau$, and with frequency compensation.

Without frequency compensation, the lower fr can create a pole-zero combination in the otherwise usable bandwidth of a switch, not shown. As is known, the pole-zero combination produces a dip in the frequency response of the switch. The frequency compensation of 65 the switch 1 brings the pole and zero closer together decreasing the amplitude of the dip. The frequency compensation also shifts the pole-zero combination

toward or above the otherwise upper limit of the bandwidth of the switch 1.

As the element 5 is also in contact with the signal passing from V_{in} to V_{out} , the element 5 will require 5 similar frequency compensation to the element 7. The switch 1 is less complex when the elements 5,7 are combined, and connected to create a series rather a parallel path. The rest of this disclosure will describe a switch 1 where elements 5, 7 are so combined. The components of each element 5, 7 will be described where they can be broken down. It is to be understood that it is not necessary in all applications to combine the elements 5,7 nor is it always necessary to use both elements 5,7.

Referring to FIG. 2, the cross-point 3 has an input buffer 23, a level shift 25 and an output buffer 27. The element 5 is made up of a determinator 29, a current source with frequency compensation I₁ and a current sink I₂. The element 7 includes a steady current generator 31, an enable control unit 33, a switchable current reference I_R, the current source I₁ and the current sink I₂. The element 9, strictly speaking, includes each of the components of the elements 5,7 and particularly the current sink I₂. The elements 5,7,9 together make up a biasing network of the switch 1.

The unit 33 is connected to EN.

The unit 33 is kept biased by the generator 31. The unit 33 controls the reference I_R . The reference I_R is connected through the determinator 29 to a control input of the source I_1 . The source I_1 is connected to the cross-point 3 at the level shift 25. The current sink I_2 is connected directly to the level shift 25, and from the current source I_1 to a control input of the current sink I_2 .

In operation, the switch 1 receives an input signal at V_{in} and an enable signal at EN. When the enable signal is enabled, the unit 33 draws operating current from the generator 31 to switch on the current reference I_R. The reference I_R drives the determinator 29 to determine the effects of the Early voltage on the cross-point 3. The determinator 29 is a substantially equivalent DC circuit to the buffer 23 and level shift 25.

The determinator 29 activates the current source I_1 to enable the level shift 25 and the current source I_2 and, correspondingly, the cross-point 3.

The input signal at V_{in} flows from V_{in} through the buffer 23, level shift 25 and buffer 27. The level shift 25 compensates for the voltage drops in both buffers 23, 27

For a more reproducible output offset, the voltage rises in the level shift 25 and drops in the buffers 23, 27 should be matched so that the output offset of the crosspoint 3 will be independent of the Early voltage of components employed in the cross-point 3. In the Figures, it is convenient to denote the emitter area of a bi-polar junction transistor in a current mirror using "x2" notation. This notation means that the emitter area of the transistor is twice the emitter area of the other transistor in the current mirror. As shown in FIG. 3, the buffers 23, 27 may be BJT's, Q1, Q4, while the level shift 60 25 may be two diode connected BJT s, Q2, Q3. For optimum operation, V_{BE1} should be identical to V_{BE2} and V_{BE3} should be identical to V_{BE4} . Typical, biasing circuits call for the current in the emitters, I_E , and the collectors, I_c , of each transistor to be the same for the V_{BE} 's to be the same. However, the Early voltage will cause the V_{BE} 's to be different. The determinator 29 determines the approximate effect on the V_{BE} 's of Q_1 , Q_3 , and Q_4 when operating at differing V_{CE} 's. This

4

45

65

effect is passed to I_1 which generates a current having two component: I independent of the Early voltage and equal to the bias current at which Q_1 is to operate, and I_{ν} dependent on the Early voltage and representative of the effect on the V_{BE} 's of Q_1 , Q_2 . I_1 being I minus I_{ν} . 5 The level shift 25 and I_2 receive the current I_1 . I_2 sinks a current equal to $2I - I_{\nu}$. Thus, I must be flowing from the emitter of Q_1 . V_{BE1} and V_{BE2} will be matched. Also V_{BE3} and V_{BE4} will be matched. V_{BE3} will be the same as V_{BE2} . The collector-emitter voltage of Q_4 is approximately the same as that of Q_1 , thus V_{BE4} is approximately the same as V_{BE1} .

The output impedance of I₁ combined with the resistances of the buffer 23 and level shift 25 create an RC network. The network produces a pole and zero. The frequency compensation in I₁ brings the pole and zero closer together to reduce the amplitude of the dip. The frequency compensation additionally shifts the polezero towards or above the otherwise usable bandwidth of switch 1.

EARLY VOLTAGE COMPENSATION

As discussed above, the switch 1 includes a level shifter 25 which uses two diode-connected transistor Q_2 and 3 to compensate for the voltage drops (i.e. V_{BE}) 25 across the emitter-base junctions of Q1 and Q4. For optimum operation of the switch 1, the voltage drops across the emitter-base junctions of Q1, Q2, Q3 and Q4 should be matched, however, the Early voltage effect will tend to vary these voltage drops. Accordingly, the present invention includes Early voltage compensation in the determinator 29. As was explained, the compensation comprises biasing the transistor with a current source having two components: I and Iv. The current component I is independent of the Early voltage, while the other current component Ivis a function of the Early voltage. The compensation of the Early voltage by I and I_v can be shown by considering $V_{BE1} = V_{BE2}$ (i.e. Q₁ and Q₂) in terms of the well-known equation for the Early voltage effect.

Substituting the classic equation for the Early Voltage, V_A , the expression $V_{BE1} = V_{BE2}$ can be expressed as follows:

$$V_T \ln \frac{I_{c1}}{I_s (1 + V_{CE1}/V_A)} + R_{B1} I_{B1} =$$

$$V_T \ln \frac{I_{c2}}{I_s (1 + V_{CE2}/V_A)} + R_{B2} I_{B2}$$

where

IB is the base current IC is the collector current RB is the base resistance IS is the saturation current VT is the thermal voltage

$$I_{C2} = I_{C1} \frac{V_A + V_{CE2}}{V_A + V_{CE1}} \exp \left\{ \frac{I_{B1}R_{B1} - I_{B2}R_{B2}}{V_T} \right\}$$

The exponent will be approximately unity and is neglected.

$$\frac{I_{C2}}{I_{C1}} \approx \frac{V_A + V_{CE2}}{V_A + V_{CE1}}$$

Referring to FIG. 2, the provide Early voltage compensation, the current source I_1 (shown as Q_{102} in FIG. 3) supplies a current consisting of I and I_V, and the current sink I_2 (shown as Q_6 in FIG. 3) sinks the current from the emitters of Q_1 and Q_2 . Referring to FIG. 3, I_1 = $I=I_V$ is flowing in the emitter of Q_2 , while I is flowing in the emitter of Q_1 . Then for Q_2 and Q_1 respectively,

$$I - I_V = I_{C2} + I_{B2} I - I_{B1} = I_{C1}$$

which can be substituted for I_{C1} and I_{C2} in the above expression to give the following.

$$\frac{I - I_{V} - I_{B2}}{I - I_{B1}} = \frac{V_{A} + V_{CE2}}{V_{A} + V_{CE1}}$$

$$I - I_{V} = \frac{V_{A} + V_{CE2}}{V_{A} + V_{CE1}} (I - I_{B1}) + I_{B2}$$

$$I_{V} = \left(1 - \frac{V_{A} + V_{CE2}}{V_{A} + V_{CE1}}\right) I - I_{B2} + \left(\frac{V_{A} + V_{CE2}}{V_{A} + V_{CE1}}\right) I_{B1}$$

Using the well-known Kirchoff voltage Law, the voltages V_{CE1} and V_{CE2} can be expressed in terms of the supply voltage V_{CC} n the base-emitter voltage V_{BE} as follows: $V_{CE1} = V_{BE} + V_{CC}$ and $V_{CE2} = V_{BE}$. Substituting into the above expression gives the following:

: according to the above, the current source

$$I_{1} \text{ requires} \left(\frac{V_A + V_{BE}}{V_A + V_{BE} + V_{CC}} \right) I +$$

$$I_{B2} - \left(\frac{V_A + V_{BE}}{V_A + V_{BE} + V_{CC}} \right) I_{B1}$$

40 and the current sink
$$I_2$$
 requires $\left(\frac{2V_A + V_{CC} + V_{BE}}{V_A + V_{BE} + V_{CC}}\right)I +$

$$I_{B2} - \left(\frac{V_A + V_{BE}}{V_A + V_{BE} + V_{CC}}\right) I_{B1}$$

the current components, i.e. I and I_{ν} , of the current source I_1 can be generated using the circuit shown in FIG. 4. This circuit is an equivalent DC circuit to Q_1 and Q_2 and for notional convenience the transistors will be reference as Q_1' and Q_2' , and the double supply voltage V_{CC} will be designated as 2 V_{CC} .

Again considering the voltage drops across the emitter-base junctions for Q_1' and Q_2' , i.e. $V_{BE1}' = V_{BE2}'$ and substituting the classic equation for Early voltage, the expression for $V_{BE1}' = V_{BE2}'$ becomes:

$$\therefore V_T \ln \frac{I_{C1'}}{I_S \left(1 + \frac{V_{CE1'}}{V_A}\right)} + I_{B1'} R_{B1'} = \frac{I_{C2'}}{I_S \left(1 + \frac{V_{CE2'}}{V_A}\right)} + I_{B2'} R_{B2'}$$

$$\frac{I_{C2'}}{I_{C1'}} \approx \frac{V_A + V_{CE2'}}{V_A + V_{CE1'}} \approx \frac{V_A + V_{BE2}}{V_A + 2V_{CC} + V_{BE1}}$$

Applying the well-known Kirchoff Current Law to the circuit in FIG. 4, the collector current I_{C1} for Q_1 can be expressed as follows:

$$I_{C1}'=2I-I_{C2}'-I_{B1}'-I_{B2}'$$

Substituting for I_{C1} , the above expression becomes:

$$I_{C2'} = \frac{V_A + V_{CE2'}}{V_A + V_{CE1'}} (2I - I_{C2'} - I_{B1'} - I_{B2'})$$

$$\left(1 + \frac{V_A + V_{CE2'}}{V_A + V_{CE1'}}\right) I_{C2'} = \frac{V_A + V_{CE2'}}{V_A + V_{CE1'}} (2I - I_{B1'} - I_{B2'})$$

$$I_{C2'} = \frac{V_A + V_{CE2'}}{2V_A + V_{CE1'} + V_{CE2'}} (2I - I_{B1'} - I_{B2'})$$

$$\therefore I_{C2'} + I_{B2'} = \frac{V_A + V_{CE2'}}{2V_A + V_{CE1'} + V_{CE2'}} (2I - I_{B1'} - I_{B2'}) + I_{B2'}$$

By applying the well-known Kirchoff voltage Law to the transistors Q_1' and Q_2' , the voltage drops V_{CE1}' and V_{CE2}' can be expressed in terms of V_{BE} and V_{CC} , ad substituted into the equation for I_{C2}' to give the following:

$$V_{CE1}' = 2V_{CC} + V_{BE} \qquad V_{CE2}' = V_{BE}$$

$$I_{C2}' + I_{B2}' = \left(\frac{V_A + V_{BE}}{V_A + V_{CC} + V_{BE}}\right)I + I_{B2}' - \left(\frac{V_A + V_{BE}}{V_A + V_{CC} + V_{BE}}\right)\left(\frac{I_{B1}' + I_{B2}'}{2}\right)$$

$$\therefore I_0 = I_{C2}' + I_{B2}' \approx I - I_V$$

Referring to FIG. 5, I_0 , of FIG. 4, may be generated employing Q_A . D_1 should be added between $2V_{CC}$ and the collector of Q_1' to compensate for V_{BEA} .

To generate I₂ it is best to use the source I₁ of FIG. 2 ⁴⁰ to avoid glitches when switching off the cross-point 3, although it is not necessary.

To generate I_2 the circuit shown in FIG. 6 may be used, where $I-I_V$ is drawn from I_1 . R_C is adjusted so that V_{CC} appears across the collector-base of Q_B . Since 45 the V_{CE} of Q_C is V_{BE} and the V_{CE} of Q_B is V_{CC} plus V_{BE} , then I_C of Q_B must be I, given that I_C of Q_C is $I-I_V$. $2I-I_V+2I_B$ will flow through R_{A1} . The voltage across R_{A1} will appear across R_{A2} drawing $2I-I_V$ into the collector of Q_D .

Referring to FIGS. 4 and 5, requiring $2V_{CC}$ is undesirable as this would require the use of a second supply. Referring to FIG. 7, the circuit shown will produce approximately the same current as that of FIG. 4. Q_C has twice the emitter area of Q_E .

$$I_{CE} \approx \frac{V_A + V_{BE}}{V_A + V_{CC} + V_{BE}} \left(I - \frac{I_{BC}}{3} - \frac{I_{BE}}{3} \right)$$

and $I_{CE} \approx I_{C2}'$

The circuit of FIG. 7 can be implemented as shown in FIG. 8. Q_J , Q_K provide the base currents for Q_E , Q_F . D_1 compensates for the base-emitter voltages of Q_H , Q_J , Q_K . The voltage divider provided by resistors R_C adds 65 0.5 V_{CC} voltage drop at the base of Q_H . This provides a voltage drop of 1.5 V_{CC} from the collector of Q_F to the collector of Q_E . For simplicity we assume I_B .

 $=I_{BE}=I_{BF}/2$. $3I_B$ is required as base current for Q_E and Q_F . The collector current of Q_H is $I_{CE}-I_B$. $3I_B$ is divided by Q_J and Q_K and $2I_B$ is added with $I_{CE}-I_B$ so that $I_1=I_{CE}+I_B$.

5 Referring to FIG. 3, further approximations have been made as well as adding circuitry to compensate for the base current flowing into Q4. The determinator 29 is substantially equivalent to FIG. 8, except only V_{CC} is between the collectors of Q_F and Q_E . Q_F , Q_E are replaced by Q_{11} , Q_{12} . Q_{11} has twice the emitter area of Q_{12} . Q_H is replaced by Q_{10} . I_R replaces 3I and produces 3I when switched on. The base of Q_{10} has been tied to ground. The collector of Q_{11} is connected through Q_9 and R_8 to V_{CC} .

 Q_{105} and Q_{106} are current mirror configured. Q_{11} and Q_{12} will draw the equivalent of 3 base currents, $3I_B$ through Q_{13} . Thus Q_{105} will draw $3I_B$ and Q_6 will draw $3I_B$, with $2I_B$ being lost to Q_{12} and Q_{10} , for a total of $4I_B$. This current will provide the base current for Q_4 . To provide sufficient drive capability Q_4 is biased with 4I externally and has 4 times the emitter area of Q_1 , Q_2 and Q_3 .

Q₁₀, Q₁, Q₁₂, Q₁₃ form the determinator 29. Q₁₁ and Q₁₂ divide the current from I_R according to V_A. I₁ is pulled out of the collector of Q₁₀₁ into the determinator 29. As only V_{CC}, not 1.5 V_{CC}, appears at the collector of Q₁₀, I₁ does not contain a full I_V. This effects the amount of Early voltage compensation for both Q₂ and Q₃. However, I₂ compensates by pulling twice as much less than the difference from a full I_V in I₁. This causes a change in the V_{BE} of Q₁ which compensates for the effect the difference will have on the V_{BE}'s of Q₁ and Q₂. It also compensates for the effect the difference will have on the V_{BE}'s Q₃ and Q₄. Q₄ is operating at approximately the same V_{CE} as Q₁. This further compensation is done by biasing the collector-base voltage of Q₈ at 1.5V_{CC}.

It is not necessary for Q_{11} to be connected through Q_9 , however this is a convenient means of providing the necessary bias current for Q_{101} , Q_{102} , and Q_{103} and forms part of the base current compensation of Q_{101} , Q_{102} , and Q_{103} as will be described later.

 Q_{101} , Q_{103} and Q_{102} form part of I_1 of FIG. 2. They are current mirror connected. The current in the collector of Q_{101} is mirrored in the collectors of Q_{103} , Q_{102} .

 Q_6 , Q_5 and Q_8 are also current mirror connected. They, along with R_6 , R_5 and R_{20} form I_2 of FIG. 2. Q_6 has twice the emitter area of Q_5 and Q_8 .

12 is equivalent to the circuit shown in FIG. 6, except there is 1.5V_{CC} across Q_B collector-base and there is no base current compensation. Q₆, Q₅, Q₈ are replacements of Q_D, Q_C, Q_B. R₆, R₅ replace R_{A2}, R_{A1}. R₂₀ replaces R_B. The base currents previously provided by Q₆ are compensated for in the 4I_B component of I₁. I₂ is drawn from the level shift 25 and the buffer 23, at the emitters of Q₂ and Q₁. As I minus a fraction of I_V is flowing in the emitter of Q₂ then I plus a fraction of I_V flows from the emitter of Q₁. Thus the sum of the V_{BE}'s of Q₁, Q₂, Q₃, and Q₄ are substantially independent of the effect of the Early voltage.

When I_1 flows through the level shift 25, it is enabled and V_{in} is connected to V_{out} .

FREQUENCY COMPENSATION

Frequency compensation is provided by $Q_{9 and} R_8$. As shown in FIG. 9, the resistance R_S of the input buffer 23 plus the level shift 25 and the output impedance of I_1

produce an R-C network. As shown in FIG. 9, the resistance R and the capacitance C will tend to shunt the output of Q_{102} , and C_{μ} is the collector-base capacitance. It is evident that if R is sufficiently low and C is sufficiently high a pole-zero combination will occur 5 within the otherwise usable bandwidth of the switch. The transfer function of the circuit of FIG. 9 is

$$\frac{sCR + 1}{s^2C_{\mu}CRR_s + sC_{\mu}R_s + sC(R + R_s) + 1}$$

As R is much greater than R_s , the pole and zero combination is caused by the sCR+1 and sC(R+R_s)+1 terms. This pole-zero causes a dip in the frequency response. To increase the applications for which the 15 switch 1 may be used, it is necessary to bring the pole and zero closer together or shift the pole-zero toward or above the upper limit of the otherwise usable bandwidth of the switch 1.

R is approximately
$$\frac{R_B + R_E}{R_B} \cdot \frac{1}{2\pi f_\tau C_\mu}$$

where

 R_E is the equivalent resistance of the emitter to AC ²⁵ ground (in the small signal analysis of bi-polar junction transistors) and,

R_B is the equivalent resistance of the base to AC ground (in the small signal analysis of bi-polar junction transistors)

C is approximately

where R_e is the small signal emitter resistance.

$$\frac{R_B C_{\mu}}{R_E + r_e}$$

The product RC is approximately

$$\left(\frac{R_B + R_E}{re + R_E}\right)\left(\frac{1}{2\pi f_\tau}\right)$$

In order to decrease RC, increase R_E and increase R relative to R_s , R_B should be decreased. When the switch 45 1 is enabled Q_9 and R_8 provide a low impedance path for high frequencies from the base of Q_{102} . This decreases R_B , increases R_E and increases R relative to R_s bringing the pole and zero closer together and shifting the pole toward or above the upper limit of the otherwise usable 50 bandwidth. This avoids the necessity of employing a high impedance, high f_T transistor for Q_{102} , and the increased expense.

 Q_{104} provides DC feedback. Should I_{E105} plus I_{E106} plus I_{C10} be greater than I_{C101} plus I_{B104} an error current 55 will flow into the base of Q_{104} . This turns Q_{104} on harder, drawing current from R_B and increasing its voltage drop. This pulls down the base of Q_9 and correspondingly, the base of Q_{101} . Q_{101} will source more current until I_{E105} plus I_{E106} plus I_{C10} is equal to I_{C101} 60 plus I_{B104} . I_{B104} is an unwanted current, but it is kept low given that R_8 is sufficiently high.

 C_4 aids in smoothing transients during enablement of the switch 1. It adds a delay when the voltage at the collector of Q_{101} is pulled down by the determinator 29. 65

To disable the switch 1, a disable signal is sent to EN. The unit 33 switches off the reference I_R . This in-turn shuts off the determinator 29, current sources I_1 , I_2 and

disables the level shift 25. V_{in} is isolated from V_{out} by a DC clamp 37 which pulls the base of Q4 down to avoid spurious signals at V_{out} .

During the disabling of the switch 1, R₉ pulls up the bases of Q₁₀₃, Q₁₀₂, Q₁₀₃ to turn Q₉ off. This avoids transistor leakage occurring which may tend to turn Q₉ on. As Q₉ is an amplifier small leaks could create sufficient current to turn on Q₁₀₁, Q₁₀₂ or Q₁₀₃.

TALLY INDICATION

Q₁₁₃ is connected at its base between the collector of Q₈ and R₂₀. The collector of Q₁₁₃ is connected to TALLY. This provides a tally output signal. When the switch is disabled no current should flow through I₂ and Q₈ will be off. Similarly Q₁₁₃ will be off and no current will flow with a load connected to TALLY. When the switch 1 is enabled, Q₈ should be on and Q₁₁₃ will similarly be on and saturate. The flow of current will indicate the switch is enabled.

As TALLY is taken from the current sink, a component in the biasing network following the cross-point 3, it gives an indication of the operating state of each of the components in the switch. When compared to the signal at EN, TALLY provides a reliable method of trouble shooting circuits not shown, employing the switch 1.

The TALLY could have been taken from other points in the biasing network. However, its location off of I_2 provides an indication of the proper functioning of each of I_2 , I_1 , the determinator 29, I_R , the unit 33, and the steady current generator. Additionally, current is available from I_2 without affecting the signal path from V_{in} to V_{out} .

It is preferable that TALLY be placed at least in a position where it indicates the operating state of the cross-point 3 through the biasing network.

The switch 1 described herein is a single input to single output switch. The principles described herein would apply equally well to switches which have greater numbers of inputs or outputs. It is to be understood these switches fall within the spirit and scope of the invention.

It will be understood by those skilled in the art that other embodiments of the invention will fall within its spirit and scope as defined by the following claims.

I claim:

- 1. A switch for switching an input signal at an input to an output signal at an output, said switch being operable in an enabled state and in a disabled state, said switch comprising:
 - (a) cross-point switching means for switching the input signal to the output signal;
 - (b) switching control means coupled to said crosspoint switching means, said switching control means having an enable input for receiving an enable signal and means for switching the input signal to the output signal in response to said enable signal;
 - (c) compensation means for controlling an Early voltage effect in said cross-point switching means, said compensation means being coupled to said switching control means;
 - (d) said cross-point switching means comprising an output buffer coupled to said input, an output buffer coupled to said output, and level shifting means coupling said input buffer to said output buffer, said level shifting means being coupled to

said switching control means, and said level shifting means being responsive to operation of said switching control means for said level shifting means to switch the input signal coupled to said input buffer to said output buffer in response to 5 receipt of said enable signal at said enable input.

- 2. A switch as claimed in claim 1, wherein said compensation means includes biasing means, said biasing means being coupled to said level shifting means, said biasing means being coupled to said switching control 10 means an being response to said enable signal for enabling said level shifting means to switch the input signal coupled to said input buffer to said output buffer.
- 3. A switch as claimed in claim 2, wherein said compensation means includes Early voltage determining 15 means and Early voltage compensating means, said determining means and said compensating means being coupled to said level shifting means and to said input buffer.
- 4. A switch as claimed in claim 3, wherein said input 20 buffer comprises a fist bi-polar junction transistor, and said level shifting mean includes a second bi-polar junction transistor, said first and second bi-polar junction transistor being capable of operating under biasing conditions, nd said Early voltage compensation means in- 25 cludes a bias circuit for setting the biasing conditions of said first and second bi-polar junction transistors, and said Early voltage determining means comprises a direct current circuit, said direct current circuit being coupled to said bias circuit and being substantially 30 equivalent to said first and second bi-polar junction transistor for reproducing the Early voltage effect on said first and second bi-polar junction transistors.
- 5. A switch as claimed in claim 4, wherein said bias circuit includes a current source coupled to said first 35 and second bi-polar junction transistors, said current source having means for generating a current having first and second current components, said first current component being generated in response to the Early voltage effect in said direct current circuit, and said 40 second current component being generated independent of the Early voltage effect, said current source includes means for supplying said first and second current components to one of said first and second bi-polar junction transistors, so that the Early voltage effect n 45 said first and second bi-polar junction transistors is controlled.
- 6. A switch as claimed in claim 5, wherein said bias circuit includes a current sink, said current sink being coupled to said first and second bi-polar junction tran- 50 sistors and including means for sinking said first current component being supplied to said second bi-polar junction transistor and for sinking said second current component being supplied to said first bi-polar junction transistor.
- 7. A switch as claimed in claim 1, wherein said switch has a frequency response range, said frequency response range having a lower frequency and an upper fre-

quency, said switch having a pole and zero combination within said frequency response range, said pole and zero combination being formed from a resistor-capacitor network in said cross-point switching means and said switching control means.

- 8. A switch as claimed in claim 7, further including frequency response control means for controlling the frequency response to said switch, said frequency compensation means being coupled to said switching control means.
- 9. A switch as claimed in claim 8, wherein said frequency compensation means includes means or shifting the pole and zero combination towards the upper frequency of said frequency response range.
- 10. A switch as claimed in claim 8, wherein said frequency compensation means includes means or bringing the pole closer to the zero.
- 11. A switch as claimed in claim 8, wherein said frequency compensation means includes means for shifting the pole and zero combination beyond the upper frequency of said frequency response range.
- 12. A switch as claimed in claim 17, wherein said frequency compensation means comprises a current source, said current source being coupled to a bi-polar junction transistor and a resistor said resistor having an adjustable resistance value and including means for setting said resistance value.
- 13. A switch as claimed in claim 1, further including switch state indicating means for indicating when said switch is in the enabled state and when said switch is in the disabled state, said switch indicting means being coupled to said compensation means.
- 14. A switch for switching an input signal to an output signal, said switch being operable over a frequency response range and said switch having an enabled state and a disabled state, said switch comprising:
 - (a) cross-point switching means for switching the input signal to the output signal;
 - (b) switching control means coupled to said crosspoint switching means, said switching control means having an enable input for receiving an enable signal and means for switching the input signal to the output signal in response to said enable signal;
 - (c) compensation means or controlling an Early voltage effect in said cross-point switching means, said compensation means being coupled to said switching control means;
 - (d) switch state indicating means for indicating when said switch is in the enabled state and when said switch is in the disabled state said switch state indicating means being coupled to said compensation means; and
 - (e) frequency response control means for controlling the frequency response of said switch, said frequency response control means being coupled to said switching control means.

55