United States Patent 9
O’Brien

[54) METHOD FOR REMOVING INVARIANT
BRANCHES FROM INSTRUCTION LOOPS

OF A COMPUTER PROGRAM
[75] Inventor: John K. P. O’'Brien, South Salem,
N.Y.

International Business Machines
Corporation, Armonk, N.Y.

[21] Appl. No.: 939,586
[22) Filed: Sep. 3, 1992

[73] Assignee:

Related U.S. Application Data
[63] Continuation of Ser. No. 420,789, Oct. 12, 1989, aban-

doned.

[51] Imt. CLS .o ecnensmae e GO6F 15/38
[52) US.ClL ...ooiiricccinaene 395/700; 364/DIG. 1;
364/280.5; 364/DIG. 2; 364/973
[58] Field of Searchcccceonnnrrinnnn. 395/500, 700

[56] References Cited

U.S. PATENT DOCUMENTS

4,567,574 1/1986 Saade et al.ccnvvvennnreenn 395/700
4,656,582 4/1987 Chaitin et al. ..., 395/700
4,656,583 4/1987 Auslander et al. 3957700
4,773,007 971988 Kasadaetalccniien, 395/700
4,991,088 2/1991 Kamccoiivvimiimininrenciinnnnes 364/200

OTHER PUBLICATIONS

Henhapl et al. “Parallel Loop Structures” IBM Techni-
cal Disclosure Bulletin vol. 16, No. 4, Sep. 1973 pp.
1047-1049.

Kizis, “Loopable Code Enhancement For An Ate
Compiler” IBM Technical Disclosure Bulletin, vol. 23,
No. 11B, Apr. 1983 pp. 6085-6089.

A. K. Chandra, “Identifying Inner Loops Of Pro-
grams” IBM Technical Disclosure Bulletin, vol. 18, No.
10, Mar. 1976 pp. 3514-3515.

P. F. Carpenter et al. “Program Optimization Tech-
nique” IBM Technical Disclosure Bulletin, vol. 12, No.
6, Nov. 1969, pp. 891-893.

F. E. Allen et al. “A Catalogue of Optimizing Transfor-

i

b

OO 0 O D AT O

US005202995A
[11] Patent Number:

457 Date of Patent:

5,202,995
Apr. 13, 1993

mations” IBM T. J. Watson Research Center Yorktown
Heights, New York, 1972.

Robert Tarjan “Depth-First Search and Linear Graph
Algorithms” Siam J. Comput. vol. 1, No. 2, Jun. 1972
pp. 146-160.

Barrett et al.,, “Compiles Construction: Theory and
Practice,” Science Research Associates, Inc., Chicago,
1979, pp. 551-587.

Bauer et al.,, “Compiler Construction an Advanced
Course,” 2nd ed., Springer-Verlag, New York, 1976,
pp. 549-603.

Gries, David, “Compiler Construction For Digital
Computers,” John Wiley and Sons, New York, 1971,
pp. 376-411.

Lewis et al, *“Compiler Design Theory,” Ad-
dison-Wesley, Mass., 1976, pp. 559-569.

Primary Examiner—Thomas C. Lee
Assistant Examiner—Richard Lee Ells
Attorney, Agent, or Firm—Ratner & Prestia

[57) ABSTRACT

Removal of invariant branches from nests of loops re-
sults in an optimized computer program with increased
speed of execution. To accomplish this objective, each
loop of a program is then examined, looking at inner
loops before their containing outer loops, to locate con-
ditional branch instructions which are loop invariant.
Each conditional branch which is evaluated based upon
loop invariant calculations is rewritten, outside the out-
ermost loop for which this branch is invariant. The
moved branch is modified to branch around the loop in
which it was originally contained if its condition 1is
evaluated false. A new copy of the loop is made in
which the invariant branch is rewritten as an uncondi-
tional branch. In the original copy of the loop, the in-
variant branch is deleted, and a branch is inserted after
the modified original loop to skip around the new copy
when the original copy is executed. Finally, any sec-
tions of the program which will never be executed as a
result of the above described transformation are de-

leted.

10 Claims, 12 Drawing Sheets

—©
"

i

U.S. Patent Apr. 13, 1993 Sheet 1 of 12 5,202,995

FIG. 1

U.S. Patent Apr. 13, 1993 Sheet 2 of 12 5,202,995

FIG. 2

U.S. Patent Apr. 13, 1993 Sheet 3 of 12 5,202,995

U.S. Patent Apr. 13, 1993 Sheet 4 of 12 5,202,995

FIG. 4

U.S. Patent Apr. 13, 1993 Sheet 5 of 12 5,202,995

aepresent asl” 1% FIG. SA

FLOWGHAPH

IENTIFY STRONGLY |/~ %
CONNECTED REGIONS

EVALUATE EACH COMPUTED 300
VALUE FOR INVARIANCE WITH
RESPECT TO ITS LOOP

400
NODES IN REGION 1050

o

DETERMINE NUMBER OF

500 ,
EVALUATE NODE
60 T0
NEXT NODE
o00 B60

COMPUTATIONS
OF CONDITION
CODE VALUES
MOVED?

NO

EVERY INPUT TO EACH
INSTRUCTION WHICH
COMPUTES A COND OP
OF BRANCH INVARIANT
NITH RESPECT TO LOOP?

CONDITION
OPERAND OF
BRANCH RC?

U.S. Patent Apr. 13, 1993 Sheet 6 of 12 5,202,995

900
BRANCH DEPENDS
ON INVARIANCE
RECORD 320
POSITION
FIND OUTER |~ 340
LOOP

FIG. 5B

1000

RECORD QUTERMOST
LOOP

100 COPY QUTERMOST

LOOP

1200

PLACE CONDITIONAL BRANCH
INSTRUCTION IN LOOP BEFORE
FIRST COPY OF DUPLICATED LOGP

MODIFY DESTINATION TO STARTING 1300
ADDRESS OF SECOND LOOP
1400

DELETE CONDITIONAL BRANCH FROM
FIRST COPY OF DUPLICATED LOOP

INSERT NON-CONDITIONAL BRANCH 1300
BETWEEN FIRST AND SECOND
COPY OF LOOP

REPLACE CONDITIONAL BRANCKH 1600
INSTRUCTION IN SECOND COPY OF

LOOP WITH UNCONDITIONAL BRANCH

OELETE unnecessaRy L~ T
CODE

U.S. Patent Apr. 13, 1993 Sheet 7 of 12 5,202,995

100 START L0OOP

150 BHA;~ICH ON CONDITION TO 250
200 BRAEICH 10 300

290 LAB.EL

300 LAB:EL

400 END LDD:P

900 STATEMENT

993 STOP

U.S. Patent

FIG. /A

Apr. 13, 1993

100

150

200

2a0

300

400

440

430

0500

200 -

600

650

680

Sheet 8 of 12 5,202,995

BAANCH ON CONDITION TO 450

START LOOP

(¥ BRANCH DELETED ¥}

BRANCH T0 300

LABEL
LAEEL

END LO;]P

BFIANCH. 100

START LOOP

BRANCH 650 (¥ CHANGED TO
UNCONDITIONAL %)

BRANCH TO 650

LABEL
LABEL

END LOOP

U.S. Patent Apr. 13, 1993 Sheet 9 of 12 5,202,995

100 LABEL

FIG. 7B _
300 STATEMENT

U.S. Patent

FIG. 8

Apr. 13, 1993

100

200

300

400

440

450

500

600

620

700

300

993

Sheet 10 of 12 5,202,995

START LOOP
(*' BRANCH TO 300 DELETED *)
LA-BEL

00 L0

BRANCH 700

START LOOP
(*.BRANCH T0 600 DELETED)
LAEEL
LABEL

END LDD%

e

e

S10P

U.S. Patent Apr. 13, 1993 Sheet 11 of 12 5,202,995

FIG. 9A

O
TEOWsO
}

—(

U.S. Patent Apr. 13, 1993 Sheet 12 of 12 5,202,995

5,202,995

1

METHOD FOR REMOVING INVARIANT
BRANCHES FROM INSTRUCTION LOOPS OF A
COMPUTER PROGRAM

This application is a continuation of application Ser.
No. 07/420,789 filed Oct. 12, 1989, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of Invention

This invention is in the field of computer program
compilation, and specifically is directed to optimizing
computer programs. In particular, a method is set forth
for the removal of invariant branches from instruction
loops of a computer program.

2. Description of the Prior Art

After a computer program has been written in a high
level language (i.e. Fortran, Pascal, C), a compiler pro-
gram is typically used to convert this program into a
sequence of machine language instructions to be exe-
cuted by a computer. These machine language instruc-
tions are also called object code. There are many ways
to express a program written in a high level language in
object code. In particular, some object code interpreta-
tions of the high level language program will run faster
than others. For this reason, compiler systems are often
equipped to perform a procedure called code optimiza-
tion. Code optimization is a technique whereby object
code is improved so that a program will execute in less
time.

Code optimization can be achieved through numer-
ous methods. Repetitious computations may be deleted.
Variables that never change may be replaced with con-
stants. An expression within a loop which is always
evaluated identically regardless of loop iteration can be
moved to a location outside of the loop.

A particular area of interest in the field of code opti-
mization relates to decreasing the running time of pro-
gram loops, i.e., sections of programs that repeat. Be-
cause computer programs spend a relatively large
amount of time executing instructions in loops, a code
optimization technique which decreases loop execution
time can be extremely useful for improving the execu-
tion time of the entire computer program.

A common method of improving loop performance is
to relocate a computation that produces the same result
each time around the loop to a point in the computer
program just before the loop begins execution. In this
way the computation need only be done once, when the
loop is entered, rather than each time the loop 1s re-
peated. Such a computation is called a loop invariant.

U.S. Pat. No. 4,567,574 to Saade et al. relates 10 a
method for optimizing COBOL source programs which
include PERFORM statements. Where appropriate, the
code for the procedure or simplified linkage code 1s
substituted for the PERFORM statement.

U.S. Pat. No. 4,656,582 to Chaitin et al. relates to an
optimization method which uses “code motion” and
“common subexpression elimination.” For instructions
which may use values in memory or values in tempo-
rary registers, the optimization method selects the best
form of instruction for the context in which it lies.

U.S. Pat. No. 4,773,007 to Kasada et al. relates to a
method of data flow analysis for determining array
element interdependence as a precursor to program
code optimization.

10

15

25

30

35

45

35

65

2

SUMMARY OF THE INVENTION

The present invention operates by optimizing a com-
puter program that contains loop invariant conditional
branch instructions. Once optimized, the computer pro-
gram can be executed in a shorter amount of time than
before it was optimized.

In the present invention, a method is set forth for the
removal of loop invariant conditional branch instruc-
tions from the computer program in which these in-
structions reside.

Operation of the present invention OCCUrS in a series
of steps as follows: First, each loop of the program is
examined, inner loops are inspected before their con-
taining outer loops, to locate conditional branch in-
structions which are loop invarniant. Each conditional
branch in which the condition includes only loop in-
variant calculations is rewritten, outside the outermost
loop for which this branch is invariant. The moved
branch is modified to branch around the loop in which
it was originally contained if its condition evaluates to a
first predetermined logical value. A new copy of the
loop is made in which the invariant branch is rewritten
as an unconditional branch. This branch and all other
branches in the copied loop are modified relative to the
beginning of the copied loop. In the original copy of the
loop, the invariant branch is deleted, and a branch is
inserted after the modified original loop to skip around
the new copy when the original copy is executed. Fi-
nally, as an optional step, any sections of the program
which will never be executed as a result of the above
described transformation are deleted.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an exemplary graph which is strongly con-
nected and which is useful for explaining the present
invention.

FIG. 2 is an exemplary graph which is not strongly
connected and which is useful for explaining the present
invention.

FIG. 3 is an exemplary graph which includes a single
entry strongly connected region and which is useful for
explaining the present invention.

FIG. 4 is an exemplary graph which is not single
entry strongly connected and which is useful for ex-
plaining the present invention.

FIGS. 5A and 5B are a flow chart diagrams which
illustrate the operation of the present invention;

FIG. 6 is an exemplary computer program which is
useful for describing the present invention.

FIGS. 7A and 7B each include a portion of the exem-
plary computer program of FIG. 6 and further includes
a conditional branch instruction placed before the com-
puter code in both loops of the computer program.

FIG. 8 is the exemplary computer program of FIGS.
7A and 7B after unreachable code has been deleted.

FIG. 9A is a graphical representation of the com-
puter program shown in FIG. 6.

FIG. 9B is a graphical representation of the computer
program shown in FIGS. 7A and 7B.

DETAILED DESCRIPTION

The following are definitions of terms that are used in
the description of the invention that follows.

STRONGLY CONNECTED REGION (SCR)—A
directed graph in which for every two vertices (A) and
(B) in the graph there is a path from (A) to (B) as well
as a path from (B) to (A). FIG. 1 illustrates a strongly

5,202,995

3

connected graph. This graph is strongly connected
because there is a path from any node in the graph to
any other node in the graph. FIG. 2 is an example of a
graph which is not strongly connected. This graph is
not strongly connected because, for example, there is no
path from node d to node a.

SINGLE ENTRY STRONGLY CONNECTED
REGION (SESCR)—A strongly connected region 1n
which there is only one node which has predecessors
outside the strongly connected region. A single entry
strongly connected region corresponds to the common
programming notion of a loop. FIG. 3 is an example of
a graph which contains a single entry strongly con-
nected region. This graph illustrates a SESCR because
the only path from node e to strongly connected sub-
graph a,b,c,d is through node a. In FIG. 4, an example
of a graph is shown that is not single entry strongly
connected. This graph is not a depiction of a SESCR
because there are two nodes which have predecessors

outside the strongly connected region (i.e. node f is a 20

predecessor of node b and node e is a predecessor of
node a).

REGION CONSTANT (RC)—With respect to a
SESCR, a value that is not computed in the SESCR. In
FIG. 3, node e illustrates a region constant.

ARTICULATION NODE (AN)—A node of a sub-
graph which must be visited on every traversal of the
sub-graph. In FIG. 1, nodes a & d are articulation nodes.

PREDICATE—A mathematical relationship which
determines the behavior of a conditional instruction.

CONDITION CODE—An indication of whether a
value is negative, zero, or positive.

In the process of optimizing a computer program, it
may be desirable to relocate 2 conditional branch in-
struction to a point outside of its originally containing
loop. This may occur, for example, when a conditional
branch instruction demonstrates the property of loop
invariance, which is to say, it is evaluated identically
regardless of the iteration of the loop. The relocation of

10

15

25

30

35

such a statement to a point just prior to loop execution 40

alleviates repetitious, unnecessary evaluations. For ex-
ample, in pipelined computer systems without sophisti-
cated branch prediction hardware, conditional branch
instructions may significantly reduce processor utiliza-
tion. Thus, by reducing the number of conditional
branch instructions encountered during the executions
of a program a major, positive impact on program run-
ning time may be achieved.

In the exemplary embodiment of the invention de-
scribed below, a loop that has an invariant conditional
branch instruction is transformed into two loops. The
first loop is the original loop. The second loop is an
exact copy of the original loop. However, the destina-
tion of branches in the second loop are modified relative
to the beginning of the second loop. In the first loop the
conditional branch instruction is deleted and nothing 1s
put in its place. In the second loop the conditional
branch instruction is replaced with an unconditional
branch instruction. The condition of the original condi-
tional branch instruction may be evaluated before either
loop is entered. If this condition evaluates false, then the
first newly created loop is executed. Otherwise, the
second newly created loop is executed. In this way, the
condition is evaluated only once, as opposed to an eval-
uation for every iteration of the loop. This technique 1s
called unswitching.

Operation of the present invention is shown in FIG.
§. Before analyzing a computer program for optimiza-

45

335

65

4

tion, it is desirable to represent the program as a flow
graph (step 100). In the present embodiment of the
invention, the Tarjan algorithm is used to accomphsh
this task. However, any method of constructing a flow
graph may be used. The Tarjan algorithm is described
in an article by Tarjan, R. E., “Depth first search and
linear graph algorithms,” SIAM J. Computing 1:2 at
pages 146-160 which is hereby incorporated by refer-
ence.

Once the flow graph has been generated, 1t is possible
to identify loops which may be targets for optimization
within the program. This is accomplished by locating
SESCR’s of the flow graph (step 200). In this embodi-
ment of the invention, SESCR’s are identified by using
an algorithm set forth in the referenced Tarjan article.
However, any algorithm for identifying SESCR’s can
be used.

In step 300, each computed value in a SESCR 1is
evaluated to determine whether or not that computa-
tion is invariant with respect to the loop in which 1t
resides. Computations that possess this property are so
marked. A computation is invariant if it is characterized
as a region constant in a directed graph representation
of the program.

Methods of identifying region constants are well
known in the art. In this embodiment of the invention,
the following algorithm is used. The first step 18 to
perform invariant code motion as set forth in Chapter
13 of Principles of Compiler Design by A. Aho et al.
Addison Wesley, 1979 pages 454471, which 1s hereby
incorporated by reference. Next, for each SESCR in the
flow graph, all results computed by the program are
placed into a working set for the region under consider-
ation. Each basic block (flow graph node) in the region
is then examined and each computation performed in
the block is removed from the working set. When all of
the blocks in the region have been examined, the com-
putations remaining in the working set are the region
constants.

After identifying the region constants, the next step in
this optimization process is to determine those branches
which depend on invariant predicates. The number of
nodes in each region is determined (step 400). The flow
chart of FIGS. S5A and 5B has been simplified to show
operations performed on one SESCR. However, in the
exemplary embodiment of the invention, each SESCR
is considered, starting with innermost SESCR’s of a
directed graph and working outward. In considering
each node in the SESCR (step 500), single node regions
may be ignored, since they have no interior branches.
Also latch nodes (i.e. a node in the loop which is at the
predecessor of the loop header) may be ignored.

There are at least two methods to determine which
branches depend on invariants. The method used de-
pends on whether condition code values have prewvi-
ously been moved in the computer program by other
code optimization processes (step 600).

Where the optimization process has moved the condi-
tion code computations outside of the loop, the condi-
tion part of the branch is examined to determine 1f it is
a region constant (step 800). If the condition part of the
branch is a region constant, then the conditional branch
instruction is invariant with respect to the loop in which
it resides (step 900 via off page connector A). Other-
wise, the node is ignored and the next node is evaluated
(step 810).

Where condition code computations have not been
moved, every input value to each instruction which

5,202,995

S

computes a condition operand of a branch is examined
(step 850). If every input value is invariant with respect
to the loop under analysis, then the condition part is
invariant with respect to this loop (step 900 via off page
connector A).

Otherwise the next node in the loop is evaluated (step
860). If a branch instruction is invariant with respect to
the loop in which it resides, its position is recorded (step
920) and a search is conducted to determine the outer-
most loop for which the invariance holds (step 940).
This is done by applying the region constant algorithm
(previously referenced) to nodes adjacent to that re-
corded in step 920 (step 1050 via off page connector B).
In this way, the branch can be moved to a point outside
of the loops for which it is invariant, thereby decreasing
the program execution time as set forth above. The
position of this outermost loop is then recorded (step
1000).

In the present embodiment of the invention, nodes are
only evaluated if they are articulation nodes of an in-
struction loop of the computer program. However, it 1s
contemplated that this restriction may be removed.
Algorithms for finding articulation nodes are well
known in the field of graph theory.

After loops have been identified for optimization, the
computer program may be rewritten in order to achieve
optimization. Loops are processed in the inverse order
of their identification.

In step 1100, a loop which has been identified for
optimization is copied. This results in two copies of the
loop. A first copy of the loop will be executed if the
invariant conditional branch evaluates to false. The
second copy of the loop will be executed if the invariant
conditional branch evaluates to true. In creating the
second copy, the destination of branches in the copy are
modified relative to the beginning of this loop.

At step 1200, the conditional branch instruction is
placed in the program before the original copy of the
loop. The destination of this conditional branch instruc-
tion is modified to be the starting address of the second
copy of the loop (step 1300).

At step 1400, the conditional branch instruction,
which is located in the first copy of the duplicated loop,
is deleted. Nothing is put in its place.

At step 1500, a non-conditional branch instruction is
inserted between the first and the second copies of the
duplicated loop. The destination of this branch is the
instruction immediately following the second copy of
the duplicated loop. In this way, when execution of the
first loop is complete, program execution will jump
over the second loop, to the instruction that followed
the original loop in the unmodified program.

At step 1600, the conditional branch instruction
which is located in the second copy of the loop is re-

10

15

20

25

30

35

40

45

50

placed with an unconditional branch. The destination of 55

this branch is the target of the original conditional
branch instruction.

Finally, at step 1700, code, which has become unnec-
essary for proper program operation (i.e. unreachable
code) as a result of optimization, is deleted. While any
applicable algorithm may be used to accomplish this
objective, an exemplary algorithm is described in chap-
ter 15 of Principles of Compiler Design, by A. Aho et al,,
Addison Wesley, 1979, pages 549-550, which is hereby
incorporated by reference.

FIGS. 6, 7A, 7B and B an illustrate the operation of

the algorithm discussed in reference to FIGS. SA and
SB above. The exemplary program of FIG. 6 is depicted

60

65

6
graphically in FIG. 9A. This program contains a branch
instruction which is invariant with respect to the loop in
which it is contained.

As can be seen, the loop which is shown in lines
100-400 of F1G. 6 is duplicated and appears in FIG. 7A
at lines 100-400 and 450-680. In duplicating the loop,
the destination of branches in the duplicate loop are
modified relative to the beginning of this loop. In line 50
of FIG. 7A, a conditional branch instruction is placed in
the computer program before the code for either loop.
In FIG. 7A, line 150, the conditional branch instruction
is deleted and at line 500, the conditional branch instruc-
tion of the prior figure is replaced with an unconditional
branch in the second copy of the loop. The destination
of this branch remains the same, relative to the begin-
ning of the loop in which 1t resides.

FI1G. 8 illustrates the optimized exemplary program
after the unreachable code has been deleted. The pro-
gram of FIG. 8 is graphically depicted in FIG. 9B. The
instruction at line 250 is considered unreachable be-
cause the instruction at line 200 jumps nght over it.
Similarly, the instruction at line 600 is considered un-
reachable because the instruction at line 550 jumps right
over 1.

While the invention has been described in terms of an
exemplary embodiment, it is contemplated that it may
be practiced as outlined above with modifications
within the spirit and scope of the appended claims.

The invention claimed is:

1. A computer implemented method of reducing the
execution time of a computer program which includes
at least one instruction loop having a first conditional
branch instruction internal to the loop which has a
condition part and a branch part including a target
address, wherein the condition part is invariant with
respect to the instruction loop, said computer imple-
mented method comprising the steps of:

a) identifying said first conditional branch instruction;

b) copying said first conditional branch instruction to
a location in the computer program immediately
before the instruction loop to create a second copy
of the conditional branch instruction;

c) copying the instruction loop to create a copy of the
instruction loop, including a third copy of the con-
ditional branch instruction, and inserting the copy
of the instruction loop in a location in the computer
program after the instruction loop, wherein said
location is identified by a starting address,;

d) modifying the branch part of the second copy of
the conditional branch instruction to branch to the
copy of the instruction loop;

e) inserting an unconditional branch instruction, to
branch around the copy of the instruction loop, at
a location in the computer program before the
copy of the instruction loop; and

f) deleting the first conditional branch instruction;
and

g) changing the third conditional branch instruction
to an unconditional branch instruction, wherein
said unconditional branch instruction includes a
further target address and said further target ad-
dress is said target address modified relative to said
starting address such that the execution time of the
computer program is reduced.

2. The method of claim 1, wherein the step a) is pre-
ceded by the step of removing computations, which are
invariant with respect to the instruction loop, from the
instruction loop.

5,202,995

7

3. The method of claim 1, wherein said instruction
loop is nested within one or more outer loops and the
step b) includes the step of copying the first conditional
branch instruction to a location in the computer pro-
gram immediately preceding an outmost loop for which
the condition part of the first conditional branch in-
struction is invanant.

4. The method of claim 1, wherein steps a) through f)
are repeated for each conditional branch in the instruc-
tion loop having a condition part which is invanant
with respect to the instruction loop.

8. The method of claim 1, wherein a computer pro-
gram consists of a plurality of instruction loops and step
a) includes the steps of:

al) selecting one of said instruction loops for the

identification of said first conditional branch in-
struction; and

b1) evaluating a further instruction loop if said first

conditional branch instruction is not identified in
the selected instruction loop.

6. The method of claim 1, further comprising the step
of:

h) deleting unnecessary sections of the computer

program.

7. The method of claim 1, wherein the step a) includes
the step of:

al) representing the computer program as a flow-

graph; and

a2) evaluating the flowgraph to identify said first

conditional branch instruction as being invarnant
with respect to the instruction loop.

8. The method of claim 7, wherein the step al) further
includes the steps of:

a3) identifying region constants for the instruction

loop; and

ad) identifying said first conditional branch instruc-

tion as being controlled by at least one of the identi-
fied region constants.

9. The method of claim 7, wherein said first cond:-
tional branch instruction is identified only if it is repre-

10

15

25

30

35

45

33

63

8

sented by a flow graph as an articulation node of a
strongly connected region.

10. A computer implemented method of reducing the
execution time of a computer program which includes
at least one instruction loop having a first conditional
branch instruction which has a condition part and a
branch part including a target address, wherein the
condition part is invariant with respect to the instruc-
tion loop, said computer implemented method compris-
ing the steps of:

a) locating the instruction loop in the computer pro-

gram

b) identifying said first conditional branch instruction
in the instruction loop;

c) copying said first conditional branch instruction to
a location in the computer program immediately
before the instruction loop to create a second copy
of the conditional branch instruction;

d) copying the instruction loop to create a copy of the
instruction loop, including a third copy of the con-
ditional branch instruction, and inserting the copy
of the instruction loop in a location in the computer
program after the instruction loop, wherein said
location is identified by a starting address;

e) modifying the branch part of the second copy of
the conditional branch instruction to branch to the
copy of the instruction loop;

f) inserting an unconditional branch instruction, to
branch around the copy of the instruction loop, at
a location in the computer program before the
copy of the instruction loop;

g) deleting the first conditional branch instruction;
and

h) changing the third conditional branch instruction
to an unconditional branch instruction, wherein
said unconditional branch instruction includes a
further target address and said further target ad-
dress is said target address modified relative to said
starting address such that the execution time of the

computer program is reduced.
® . x = &

	Front Page
	Drawings
	Specification
	Claims

