O 0 0O 0 A

. US005202988A
United States Patent p9 (11] Patent Number: 5,202,988
Spix et al. 45) Date of Patent: Apr. 13, 1993
[54] SYSTEM FOR COMMUNICATING AMONG [56] References Cited
PROCESSORS HAVING DIFFERENT US. PATENT DOCUMENTS
SPEEDS =
4,177,513 12/1979 Hoffman et al. ... 395/650
4615001 971986 Hudgins, JI. riicerrcicnnniinnnn. 364/200

[75] Inventors:

George A. Spix; Gregory G. Gaertner; 4648461 2/1987 JEONINGS coovcvrnrrrerrsssrenre

Diane M. Wengelski; Keith J. 4646231 2/1987 Green et al.
Thompson, all of Eau Claire, Wis. 4,805,107 2/1989 Kieckhafer et al. 364/200
4,943,913 771990 Clarkcoccveemeremssicnssecnnsen 364/200
[73] Assignee: Supercomputer Systems Limited 031,089 7/1991 Liuetal ..ieneeminnne. 364/200

Partnership, Eau Claire, Wis. Primary Examiner—Michael R. Fleming

Assistant Examiner—Debra A. Chen
[21] Appl. No.: 571,951 Attorney, Agent, or Firm—Ear]l C. Hancock

[22) Filed: Aug. 23, 1990 [57] ABSTRACT
Communication among processors having differing
operating speeds by providing wake queues in which

Related U.S. Application Data slower processors can queue entries, access to which by

[63] Continuation-in-part of Ser. No. 537,466, Jun. 11, 1990. multiple concurrent producers and multiple concurrent
consumers is synchronized or controlled using global

[51] IBt. CLS wcoosveerereerreneesssesceesnneeenee. GOSF 15716 registers. When a faster processor executes a kernel
[52] US.CL . 395/650; 364/DIG. 1; process for handling a wake queue, an entry 1s fetched

364/228.1; 364/228.9; 364/281.3; 364/281.7; from the wake queue and information stored in the
364/281.8 entry is used to process the entry.

[58] Field of Search ... 364/200 MS File, 900 MS File;
395/650, 725 6 Claims, 5 Drawing Sheets

10

RUN QUEUE

tAD
ZERO LEVEL
INTERRUPT
1112
INTEGRATED
DISPATCHER
30
70
CONSUME WAKE
ENTRY QUEUE
80
90

RUNNABLE ENTITY
WORK QUEUE QUEUE
| PROC IPROCS NTRY

M PROC

U.S. Patent Apr. 13, 1993 Sheet 1 of 5 5,202,988

INTERRUPT NUMBER INTERRUPT HANDLER

0 CLOCKINTR
1 DISKINTR

2 TTYINTR

3 DEVINTR

4 SOFTINTR

5 OTHERINTR

FIGURE 1

U.S. Patent Apr. 13, 1993 Sheet 2 of 5 5,202,988

10

RUN QUEUE

|AD

ZERO LEVEL
INTERRUPT

1112

INTEGRATED
DISPATCHER

70
CONSUME WAKE
ENTRY QUEUE
RUNNABLE ENTITY i
WORK QUEUE
| PROC IPROCS

M PROC

80

QUEUE
NTRY

FIGURE 2

U.S. Patent Apr. 13, 1993 Sheet 3 of 5 5,202,988

S LT R
o Jawe Jam
e Jee [fwse
I T Y o

FIGURE 3

U.S. Patent Apr. 13, 1993 Sheet 4 of 5 5,202,988

GLOBAL REGISTERS
MEMORY

AREA #2

GSTATS|

G_AVAIL

GREGS [WAKE QUEUE
GOFFS | AREA #1
GSTATS|

G _AVAIL Q FWA

GREGS |

GOFFS [WAKE QUEUE

FIGURE 4

U.S. Patent Apr. 13, 1993 Sheet 5 of 5 5,202,988

FORMATS OF THE GLOBAL REGISTERS ASSOCIATED WITH
THE WAKE QUEUE:

struct G_Stats {
unsigned padil 4,

unsigned fult : 28: [* occurrences of queue full*/
- unsigned pad2 : 4, |
unsigned walit : 28; /* occurrences of waiting
onentry */)
struct G_Avail { |
unsigned avail :16; /* avail entries in queue °/

unsigned q mask :16; /* static mask to do mod
on ordinal */

unsigned q fwa :32, /° base addr of cluster's

q entries */ };
struct G_Regs {
unsigned regs : 16; /* #outstanding requests */
unsigned idle - 8; [* #idle processors */

unsigned pad . 8;
unsigned no_sig :32; /* bit map of cpus NOT to

signal */ };
struct G_Offs {
unsigned pad1 :8; /" ensure no f&a overfiow
onin ord “/
unsigned in_ord :16; /* producer increments to
get slot */
unsigned pad2 :8: /* ensure no f{&a overtlow
on out _ord */
unsigned out_ord :16; /‘consumer increments
to get slot */
unsigned size : 8, [*entry size in bytes®/
/* addr = [in] [out]_ord
*size+q fwa */
unsigned pad3 . 7,
unsigned lock :1; /" table lock */ };

Note that the syntax "name : n" means that field "name”
consists of "n" bits.

FIGURE S

5,202,988

1

SYSTEM FOR COMMUNICATING AMONG
PROCESSORS HAVING DIFFERENT SPEEDS

RELATED APPLICATIONS

This application is a continuation-in-part of an appli-
cation filed in the U.S. Patent and Trademark Office on
Jun. 11, 1990, entitled INTEGRATED SOFTWARE
ARCHITECTURE FOR A HIGHLY PARALLEL
MULTIPROCESSOR SYSTEM, Ser. No. 07/537,466,
and assigned to the assignee of the present mvention,
the disclosure of which is hereby incorporated by refer-
ence in the present application. This application is also
related to the copending application entitled GLOBAL
REGISTERS FOR A MULTIPROCESSOR SYS-
TEM, Ser. No. 07/536,198. The application 1s ealso re-
lated to the copending applications filed currently here-
with, entitled SCHEDULING METHOD FOR A
MULTIPROCESSING OPERATING SYSTEM, and
METHOD OF IMPLEMENTING KERNEL FUNC-
TIONS USING MINIMAL-CONTEXT PRO-
CESSES, all of which are assigned to the assignee of
the present invention, the disclosures of which are
hereby incorporated by reference in the present applica-
tion.

TECHNICAL FIELD

The present invention relates generally to multipro-
cessor computer systems and specifically to allocating
processors in a tightly-coupled configuration to execute
the threads of one or more multithreaded programs that
are running on the system simultaneously.

BACKGROUND ART

The present invention involves the way the wake
queue in the preferred embodiment of the computer
system operates for coprocessors of unequal speed ver-
sus how an interrupt handler operates. The wake queue
consists of a data structure used as a repository between
communicating processors and the locking scheme im-
plemented in the global registers which coordinates
access to that data structure. Instead of interrupts, the
computer system can use the wake queue to alert the
consumer (procesor) of a request from a producer (i.e.,
disk drive). Prior art has typically involved interrupt
handlers in computer systems such as is done in con-

'iunction with the UNIX ™ ! operating system.
. UNIX is a trademark of ATT&T Bell Laboratones.

In the prior art, the kernel is responsible for handling
interrupts, whether they result from hardware (such as
from the clock or from peripheral devices), from a
programmed interrupt (execution of instructions de-
signed to cause “software interrupts™), or from excep-
tions (such as page faults). If the CPU is executing at a
lower processor execution level than the level of the
interrupt, it accepts the interrupt before decoding the
next instruction and raises the processor execution
level, so that no other interrupts of the same or lower
level can be serviced while it handles the current inter-
rupt, preserving the integrity of kernel data structures.
The kernel handles the interrupt with the following
sequence of operations:

1. It saves the current register context of the execut-
ing process and creates (pushes) a new context layer.

2. It determines the “source” or cause of the inter-
rupt, identifying the type of interrupt (such as clock or
disk) and the unit number of the interrupt, if applicable
(such as which disk drive caused the interrupt). When

10

13

20

25

30

35

45

335

635

2

the system receives an interrupt, it gets a number from
the machine that it uses as an offset into a table, com-
monly called an interrupt vector. The contents of inter-
rupt vectors vary from machine to machine, but they
usually contain the address of the interrupt handler for
the corresponding interrupt source and a way of finding
a parameter for the interrupt handler. For example, in
the table of interrupt handlers in FIG. 1, when a termu-
nal interrupts the system, the kernel gets interrupt num-
ber 2 from the hardware and invokes the terminal inter-
rupt handler ttyintr.

3. The kernel invokes the interrupt handler. The ker-
nel stack for the new context layer is logically distinct
from the kernel stack of the previous context layer.
Some implementations use the kernel stack of the exe-
cuting process to store the interrupt handler stack
frames, and other implementations use a global mter-
rupt stack to store the frames for interrupt handlers that
are guaranteed to return without switching context.

4. The interrupt handler completes its work and re-
turns. The kernel executes a machine-specific sequence
of instructions that restores the register context and
kernel stack of the previous context layer as they ex-
isted at the time of the interrupt and then resumes exe-
cution of the restored context layer. The behavior of the
process may be affected by the interrupt handler since
the interrupt handler may have altered global kernel
data structures and awakened sleeping processes. Usu-
ally, however, the process continues execution as if the
interrupt had never happened. (Refer to *“The Design of
the UNIX Operating System” by Maurice J. Bach,
pages 162-163, Prentice-Hall, 1986.)

SUMMARY OF THE INVENTION

In the present invention, items are placed on a queue,
referred to as the wake queue. An objective of the in-
vention is to provide a method of placing the items on
the wake queue by a slower processor and removing
them by a faster processor without having the faster
processor wait for the slower processor. The wake
queue invention also provides a method whereby pro-
cessors of differing capability can efficiently communi-
cate. This allows realization of the objective for the
present invention of distributing the operating system
efficiently. Slower coprocessors can queue entries in
wake quenes. Access to these wake queues are gov-
erned by a queuing mechanism which utilizes the global
registers to synchronize multiple concurrent producers
and multiple concurrent consumers. (Refer to the re-
lated patent GLOBAL REGISTERS FOR A MULTI-
PROCESSOR SYSTEM.,)

When a fast processor runs the kernel procedure
assigned to handle the wake queue, entries are pulled off
of the wake queue and the information in that entry is
processed. Implementations can vary widely depending
upon the information and processing desired. One such
implementation involves having the slower coprocessor
queue a counting semaphore address onto a wake queue
and having the kernel procedure then wake a process
waiting for that semaphore. In this way, the objective of
allowing coprocessors to schedule tasks to be done by
the fast processors without delaying the fast processors
is achieved.

Counting semaphores are software mechanisms for
synchronization. The semaphore consists of a count of
the available resources to be managed and a list associ-
ated with entities waiting for a resource. To implement

5,202,988

3

a lock, this count is set to one so that only one resource,
the Jock, exists. If the semaphore is going to govern
multiple resources, it is set to the number of resources
available. This count is decremented as a resource is
taken. When the semaphore count goes to zero, no more
resources are available so the requester is put to sleep to
wait for one to become available. As a process frees a
resource, it increments the semaphore counter and
wakes up a waiting process.

Another implementation has the slower coprocessor
queuing command blocks onto the wake queue which a
kernel procedure in a fast processor dequeues and
queues onto a work queue before waking the appropri-
ate kernel daemon to process that work queue. When
this daemon runs, it consults the work queue to obtain
and to process the information communicated from the
slower processor. In this way, the objective of allowing
fast processors to do post interrupt processing without
being interrupted is achieved.

The objective of the present invention for the locking
necessary to efficiently synchronize the different speed
processors without blocking the faster processor is best
described by the following analogy: To visualize this
model, imagine a warehouse with a door for requestors
and a door for workers. Inside the warehouse 1s a long
table with chairs for requestors to write a work request
on one side and opposite chairs for workers to pick up
the work. The requestor looks at current requestor seats
available before he enters the warehouse and, if zero,
waits. Otherwise, he enters and decrements the re-
questor seat count.

To find a chair, he grabs the next request number
(modulo number of chairs, initialized to zero), goes to
the location, checks to see whether the previous re-
questor has left, sits down, and writes his work order.
He then increments the current work order outstanding
count by the worker door and may or may not ring the
service to get help.

A worker, either on hearing the bell or on glancing at
the work order outstanding count and seeing it nonzero,
decrements the work order outstanding count and, if
nonzero, enters the warehouse. To find a chair, he grabs
the next service number (modulo number of chairs,
initialized to zero), goes to the location, checks to see
whether the previous worker has left, sits down, picks
up the workorder, and leaves, incrementing the re-
questor seats available.

There is still individual locking required around the
seat position. This circular queue is basically a lock
distribution mechanism that avoids convoying around a
master queue Jock and is still FIFO in response. An
individual requestor or worker can still be waiting each
other if one or the other is slow (or not operating).

Although the present invention of the wake queue
with the associated integrated dispatcher and the ability
to create alternative processing entities is implemented
in a tightly coupled, multithreaded, multiprocessing
environment, it is not limited to this implementation.
The wake queue method of the present invention can be
implemented in other functions and utilities that require
efficient processor scheduling.

Those having normal skill in the art will recognize
the foregoing and other objects, features, advantages
and applications of the present invention from the fol-
lowing more detailed description of the preferred em-
bodiments as illustrated in the accompanying drawings.

3

10

15

25

35

40

45

33

65

4

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a table showing prior art interrupt handilers.

FIG. 2 is a schematic diagram showing the wake
queue in the integrated dispatcher environment.

FIG. 3 is a pictorial representation of an excerpt
showing the format of wake queue related global regis-
ters.

FIG. 4 is an illustration of the interaction between
global registers and certain portions of memory.

FIG. 8§ is an excerpt from the header file that de-
scribes the format of the wake queue-related global
registers. |

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The wake queue mechanism is a way for coproces-
sors of unequal speed to efficiently communicate m a
multiprocessor operating system. Slow speed producers
can produce entries for high speed consumers without
interrupting the consumer. The consumers in the pres-
ent invention are typically processors in the preferred
embodiment. Typical producers are anything attached
to the input/output controller 10C), i.e., a disk drive or
a frame buffer, although the computer system proces-
sors can also be producers.

FIG. 2 shows the functions and data structures in the
preferred embodiment of the wake queue. In the present
invention, the producer communicates with the con-
sumer by queuing an entry in the queue entry function
80 on a wake queue data structure 70. The entry is
ultimately consumed by the consuming processor when
it runs the integrated dispatcher function 1112, or any
other kernel procedure assigned to process wake queue
entries, which dequeues the entry via consume entry
function 30. The related patent application entitled
SCHEDULING MECHANISM FOR A MULTI-
PROCESSING OPERATING SYSTEM contains
information on the integrated dispatcher. Using the
integrated dispatcher to process wake queue entries is
useful in the preferred embodiment of the present inven-
tion; however, other means are available. That is, any
kernel procedure can be enhanced with the intelligence
needed to process wake queue entries.

The processing done on the entry can vary widely,
depending upon the intelligence added in the consume
entry function 30. For example, if the wake queue’s
entries consist of semaphore addresses, the consume
entry function can wake a process waiting for the sema-
phore address in an entry, thereby queuing that process
in the run queue data structure 10. This process is then
eligible to be run. This allows coprocessors to schedule
tasks they want fast processors to execute. If this wake
queue’s entries consist of command blocks, the consume
entry function-30 could queue the command block onto
a work queue data structure 90 and wake a waiting
iproc, queuing it on the run queue data structure 10. An
iproc is a minimal context process entity capable of
performing all system-side tasks associated with kernel
functions of a kernel based operating system. It is de-
scribed in greater detail in the commonly assigned and
copending patent application entitled METHOD OF
IMPLEMENTING KERNEL FUNCTIONS USING
MINIMAL-CONTEXT PROCESSES.

The iproc after being queued on the run queue 10, 15
eligible to run. When the iproc does, it consults the
appropriate work queue to obtain the information com-
municated from the coprocessor and processes the in-

5,202,988

S

formation accordingly. This allows fast processors to
do what is referred to in standard UNIX as “post inter-
rupt processing” without having to interrupt the fast
processor. It is important that once the iproc runs, it
will process all of its work queue entries, not just one.
That is, multiple entries may have been queued onto the
wake queue by coprocessors and then transferred to the
work queue before this iproc was chosen to run. This
allows the consumer (the iproc) to process the output of

multiple producers (the coprocessors) much more effi- 10

ciently. It should be noted that what is placed on the
wake queue and what the consumer does with it upon
removal is irrelevant to the present invention. The in-
vention is an apparatus for placing and removing items
only.

The wake queue can be used to implement a co-
processor scheduling mechanism with limited inter-
rupts. That 1s, interrupts are now limited to handle the
case when the wake queue fills up. The wake queue is
circular and of fixed size, so when it fills an interrupt is
generated such that the integrated dispatcher can run
and empty out the wake queue. This situation where the
wake queue fills up could occur when the processors
would otherwise be flooded by requests, as in the case
of multiple striped disk requests occurring at the same
time.

The wake queue in accordance with this invention is
to avoid having slower coprocessors (e.g. disk control-
ler) interrupt fast processors, which slows down the fast
processors. The wake queue eliminates such interrup-
tions by letting coprocessors queue entries in a certain
section of memory, called the wake queue. Access 1o
this section of memory is governed by a locking mecha-
nism implemented in a set of global registers. Interface
functions between memory areas and global registers
are illustrated in FIG. 4. Both the processors and the
coprocessors must adhere to this locking mechanism
when queuing or dequeuing entries in the wake queue.

FIG. § shows an excerpt from the header file that
describes the format of the wake queue-related global
registers with their format described pictorially in FIG.
3.

These Global registers are initialized as follows:

G.Stats = 0

full = 0, no occurrences of queue full

wait = 0, no occurrences of waiting for entry

GAvail =0

available = number of entnes in queue (a power of 2)
queue.mask = available-]1 (mod max entries)

queue.fwa = base address of queue entries (in this cluster)
G.Regs = 0

requests = 0, number of requests outstanding

idle = number of Klle processors

dontsignal = bit map of processors never 10 mgnal

(must always be at least one eligible)

G.Offs = 0

pad = 0, used to insure no f & a overflow of in and out ordinals
in.ordinal = 0, producer increments to get slot to store entry
out.ordinal = 0, consumer increments to get slot to process

size = eatry size in words (address = ordinal*size 4 gquene.fwa)
locked = 0, table unlocked

The locking mechanism implemented 1n these global
registers is used to govern access to the memory being
used as a wake queue. This mechanism consists of hav-
ing ‘producers’ gain access to queue an entry on the
wake queue by decrementing the “available” field and
incrementing the “requests” field, and conversely, hav-
ing ‘consumers’ gain access to dequeue an entry from
the wake queue by decrementing the “requests” field

3

13

25

35

43

53

65

6

and incrementing the “available” field. In this way, the
in and out pointers safely chase each other through the
queue entries.

That is, to queue an entry, a producer calls queue__
entry which performs the following:

1. Uses an atomic operation to obtain and to update
the G_Avail register value. If the avail field of this
register indicates that there are no available slots in the
wake queue, generate an interrupt to allow the fast
processors to clean out the wake queue.

This operation can be a FCA (Fetch and Condition-
ally Add) instruction. FCA adds a value to the contents
of the register and returns the result to that register if
the result is greater than or equal to zero.

2. Uses an atomic operation to obtain and update the
G__Offs register value.

This operation can be FAA (Fetch and Add) instruc-
tion. FAA adds a value to the contents of the register
and returns the result to that register.

3. Calculates the address in the wake queue at which
to deposit the entry using the in_ord and size fields of
the G_Offs register and the q_fwa and q__mask fields
of the G_Avail register.

4. Updates the G_Stats register.

5. Deposits ‘entry’ information at ‘address’.

6. Uses an atomic operation to increment the requests
field of the G_Reqs register.

To dequeue an entry, a consumer calls consume__en-
try which performs the following:

1. Uses an atomic operation to obtain the G_Avail
register value.

2. Uses an atomic operation to obtain and update the
G_Reqs register value.

The FCA is used to decrement the outstanding re-
quests counter.

3. Uses an atomic operation to obtain and to update
the G__OfTs register value.

The FAA is used to increment the out_ord field.

4. Calculates the address in the wake queue from
which to dequeue the entry using the out_ord and size
fields of the G__Offs register and the q_fwa and q—
mask fields of the G_Avail register.

5. Updates the G_Stats register.

6. Dequeues ‘entry’ information at ‘address’.

7. Uses an atomic operation to increment the avail
field of the G._Avail register.

This scheme allows coprocessors t0 communicate
with faster processors without interrupting the faster
processors. Some kernel routine must be embellished
with the intelligence to handle each wake queue. In the
described embodiment, this routine is the integrated
dispatcher. When a fast processor executes whatever
routine has been specified to handle the wake gueue, it
will dequeue entries and do whatever processing is
appropriate for that entry. .

The information communicated between the co-
processor and the processor is completely implementa-
tion independent as long as the coprocessor routine
queuing entries and the kernel routine dequeuing entries
mutually understand the contents of the entry and the
processing appropriate for the entry.

Multiple wake queues can exist, and each different
wake queue can have entirely unique entry formats.
Each wake queue would depend upon setting up a set of
global registers governing access to it and enhancing
some kernel routine with the intelligence to process its
entries. Each entry on a specific wake queue will be of

5,202,988

7

the same format/size, but entries from different wake
queues need have nothing in common. For example,
one coprocessor may queue eight byte entries on a cer-
tain wake queue while another coprocessor may queue
twenty-four byte entries on a different wake gueue.

A command block is set up to detail specific process-
ing. It is often associated with 1/0. For example, the
operating system can pass command blocks to a disk
controller to inform the controller where data should be
read from or written to, the amount of data to transfer,
of other relevant parameters.

Command blocks can be queued on a wake queue to
detail peripheral activity. That is, a fast processor could
be the producer queuing an entry on a wake queue and
the controller would then be a consumer dequeuing
entries to decipher details of disk transfers. Note that
this implies that a coprocessor routine rather than a
kernel routine would be enhanced with the intelligence
to process queue entries. Upon completion of the disk
activity, the roles could be reversed. The controller
would then be the producer queuing an entry on a dif-
ferent wake queue and the fast processor would then be
a consumer dequeuing the entry to determine which
process should be woken up as a result of the completed

35

10

15

disk activity. (This is the example mentioned above of 25

the coprocessor queuing an address on the wake queue
and the integrated dispatcher waking up the process
sleeping on that address.)

With respect to the queue entry function 80, a proces-
sor or coprocessor calls the quene_entry routine when-
ever it has information it wants communicated via the
wake queue mechanism. Although not limited to this
use, it was designed with the intent of allowing slower
coprocessors to communicate with fast processors with-
out interrupts.

For the consume entry function 30, whatever routine
has been enhanced with the intelligence to process a
wake queue’s entries calls consume__entry to dequeue
an entry and then performs the appropnate processing
on that information. In the example described herein,
the coprocessor queues an address on the wake queue
which the integrated dispatcher dequeues. The inte-
grated dispatcher knows that this address is the address
of a semaphore upon which a process has been sleeping
while waiting for the coprocessor to finish its task. The
integrated dispatcher performs a wake operation on the
semaphore, queuing the process on the run queue so
that it can be chosen for execution.

While the exemplary preferred embodiments of the
present invention are described herein with particular-
ity, those having normal skill in the art will recognize
various changes, modifications, additions and applica-
tions other than those specifically mentioned herein
without departing from the spirit of this invention.

What is claimed is:

1. In a computing system having a plurality of shared
data storage resources, a plurality of sources of service
requests and a plurality of processors, each capable of

30

35

45

35

60

65

performing tasks required by said service requests, ap-
paratus for queuing service requests and processes for
performing the required tasks comprising:
wake queue means in at least one of said shared data
storage resources for storing service requests,

queue entry means coupled between the wake queue
and the plurality of sources of service requests for
entering in said wake queue means service requests
and context used to respond to associated entered
service requests,
access means controlled by one of said plurality of
processors for processing wake queue entnies,

consume entry means coupled to said wake queue
means for retrieving a process identified by the said
access means, and

run queue’ means coupled to said consume entry

means for storing a retrieved process to be run
when a processor becomes available to run the
process identified by context entered in said wake
queue means.

2. The apparatus of claim 1 wherein:

said wake queue means includes a plurality of data

storage areas within said plurality of shared data
storage resources, and

said queue entry means enters the context in said data

storage areas in response to service requests.

3. The apparatus of claim 2 wherein at least one of
said plurality of processors scans said wake queue for
determining whether a service request requires han-
dling.

4. The apparatus of claim 2 wherein said shared stor-
age resources each comprise global register means
shared by more than one of said plurality of processors
and wherein said queue entry means sequentially enters
said context in said global register means.

8. The apparatus of claim 4 wherein

said queue entry means enter semaphore address

entries in said global register means, and

said consume entry means reads each semaphore

address entry and retrieves a process waiting for
each semaphore address.
6. The apparatus of claim 4 wherein
said queue entry means enters command blocks 1n at
least one of said global register means of said wake
queue means, further including work queue means
in at least one of said plurality of shared data stor-
age resources for storing command blocks, and
wherein said consume entry means includes

means for reading a command block from said wake
queue means,

means for queuing a read out command block in said

work queue means,

means for retnieving a command block process to

process the command block in said work queue
means, and

means for queuing said command block process in

said run queue means.
* & =& % =

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

; 2,988

PATENT NO. >:20

DATED . April 13, 1993
INVENTOR(S) : George A. Spix et al.

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

TITLE PAGE:

Under Assistant Examiner, please delete "Debra A. Chen" and insert
--Debra A. Chun-- therefore.

Column 3, Line 39, insert --bells-- after service, therefore.

Column 3, Line 54, delete "waiting each" and insert
--waiting for each-- therefore.

Signed and Sealed this
Eleventh Day of June, 1996

BRUCE LEHMAN

Attesting Officer Commissioner of Patents und Trademarkys

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

