A

i US005193204A
United States Patent [(111 Patent Number: 5,193,204
Qureshi et al. (45] Date of Patent: Mar. 9, 1993
[54] PROCESSOR INTERFACE CIRCUITRY FOR
EFFECTING DATA TRANSFERS BETWEEN FOREIGN PATENT DOCUMENTS
PROCESSORS 0044033 771981 European Pat. Off. .
4 982 E Pat. Off. .
(75] Inventors: Shahid U. H. Qureshi, Natick, Mass.; 0063394 6/1982 European Tat
George P. Chamberlin, Scottsdale, OTHER PUBLICATIONS
Ariz.

Motorola Microprocessors, 8-Bit Microprocessor and
[73] Assignee: Codex Corporation, Mansfield, Mass. Peripheral Data, 1983, Motorola Inc., pp. 3-149 to

3-178.
(21] Appl. No.: 478,068 Nyman et al, “Data Modem Evolution”, Electrical
22] Filed: . 7, 1990 Communication, vol. 57, No. 3, (1982), pp. 187-194.
1221 « reb Zarrella, “Microprocessor Software Engineering Con-
Related U.S. Application Data cept Series”, System Architecture, 1980, p. 150.

[63] Continuation of Ser. No. 147,109, Jan. 21, 1988, aban- Pnrfwry E.xamu:zer "‘I;;Vt‘t‘; L. %laTFk
doned, which is a continuation of Ser. No. 586,681, Assistant Examiner—Matthew C. Fagan

Mar. 6, 1984, abandoned. Attorney, Agent, or Firm—Darleen J. Stockley
[51] IRt CLS oo, GoeF 13/12 57 ABSTRACT
[52] US.Cl .eeccirreenn e 395/800; 395/275; Apparatus for enabling a first processor to cause a sec-

364/DIG. 2; 364/926; 364/929; 364/931.44; ond processor to effect a transfer of data between the
364/931.49; 364/942.4; 364/942.8; 364/960.2; processors in accordance with data transfer commands
364/960.6; 364/965.4 sent from the first processor to the second processor is

[58] Field of Search 364,200, 900, DIG. 1, described. The pProcessors each have a program imstruc-
364/DIG. 2; 395/800, 275 tion memory for enabling the processors to operate
[56] References Cited inde:pendcntly and simultaneously when no data trans-
fer is occurring between them, and the apparatus in-
U.S. PATENT DOCUMENTS cludes data transfer circuitry connected between the
3,678,467 7/1972 Nussbaum et al. . processors for enabling the data to be transferred, a
4,149,244 4/1979 Anderson et al. . program instruction decoder associated with the second
4,270,167 5/1981 Koehleret al.ccoonrvvennne. 364/200 processor for normally decoding and executing instruc-
4,344,176 8/1982 Qureshi ..ocooeoeeviemriieieeee, 375/15 tions stored in the program instruction memory of the
4,355,354 10/1982 Kempf et al. . second processor when no data transfer is occurring,
4 368,514 1/1983 P.:':rsaud etal, ..cooiireenrvieen.. 3647200 and routing circuitry for carrying the data transfer com-
4,428,044 171984 Liron AR LR TR LA AR AR, 364/200 mands fmm the ﬁl"St Processor to the program instruc-
4,455,661 6/1984 Qureshi ..., 375/8 tion decoder for d ling to provide signals to the data
4,509,116 4/1985 Lackeyetal.coceeneneen, 364/200 : :
4,547,849 10/1985 Louie et &l woovvvvvveverrrre 3647200 transfer circuitry to effect a transfer of data.
4,556,958 12/1985 UROM «oeeoerrveeereeerreeerrenennee. 364,200
4,731,736 3/1988 Mothersole et al. 364/900 4 Claims, 3 Drawing Sheets

DATA DATA
1o _JSOURCE SiINK

P

E

—————-1-:-——‘
“l:
"

-
l
|=
|
)
1
'
i
|
|
|
|
|
|
l
|
'
'
'
}

s il s e sl g s el N - -J

l MENOR

|

\

i

|

!

i

a

|
CONTROL |
NAL LINES :
i

i

|

i

|

|

|

|

|

el

U.S. Patent Mar. 9, 1993 Sheet 1 of 3 5,193,204

/6

HOST
PROCESSOR

DATA
SINK
/4
DATA
SOURCE ,

- e wd

r__. ——— e —
: 20
|

ANALOG SIGNAL
INTERFACE - PROCESSOR

CHANNEL

5,193,204

Sheet 2 of 3

Mar. 9, 1993

U.S. Patent

o ———
“ = —
0930 |
- »
_ co $S340av SIN3WT3 3dS ¥3HL0 Ol “ ¢ 4
| _
“ _
| " o2 g/
“ 09 (3W) S39IA3Q _
_ S3NIT TYNOIS AYOW3N /
_ SN NS JHoN3N 0/1 -_- - | 13nNwHD
| "
| oc 2c _ AN3INI3
“ et
odsy 1+ [~ | F————~—"~"~"""""""""7
“ AN m%ﬂ__.mwwpzoo" b
WYN ISS 30044,
| R.q 204d TUNOIS,
96
L q———————
K Ppe
2 o “
_)
|
| 1 “
“ E"llﬁ_ smoavnan] T 1T 1T 1 |
|
p é.ﬂ B b |
, N
=/ E:mmmw,w . PyasILNI lanvd |
B IYNINY3L ANOY¥J \
1SOM | =
. (49 9f 4 . 2t “
| 250 “ |
| & |
T _
lllllllllllllll N

vivQ vivd

Sheet 3 of 3 5,193,204

Mar. 9, 1993

U.S. Patent

9

g 9/ 2
c9
4%
lllll 20/ ecl r——-- P s
ml HOuLS v ,,...WE I
| WVHOOHd | —_ i _mmon_mwm per
| d330-8, o0 | WIDAdS) f-—
- ————- : | LdNEYIALN | v
NOON Mo o I T B
.wSuwo NOILONMLSNI
Py
INOQ
.—.n_:mmwhz_ xuﬂ.m
8 YO0 l 5z nd
or

g od - —— — o by —_——
nano) ;3nano! | X

MSVL, | xmq»_ I Sl

V3AB03M1 (3N3I3M) |LNSNVML |
e e)

Iiij

SH3I1S1934!

35043Nd!
IVH3N3O Le 9
oMl >.E=._._._

3N

. mm._.m_omm.

(W) AHOW3N TYNMILX3

p6. cé .

\

N3N0

Sn8 viva 3AdS
SNA SS3¥AAY 3dS

-7 -

S30A30
0/1

TUNY3LXS

IIEII'IIIIIII

430023G
$5S34AQv

SN8 SS3AQVINGW

P . SN8 viva NdW

JOV4HALNI
TUNIWYIL

MNIS UNOS
viv(vivo

8¢

5,193,204

1

PROCESSOR INTERFACE CIRCUITRY FOR
EFFECTING DATA TRANSFERS BETWEEN
PROCESSORS

This is a continuation of copending application Ser.
No. 07/147,109 filed on Jan. 21, 1988, now abandoned,
which is a continuation of Ser. No. 06/586,681, filed
Mar. 6, 1984, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates to controlling transfers of data
between two processors, for example, a programmable
general-purpose (host) processor and a programmable
gignal processor cooperating to perform the functions
of a modem.

In such modems, signal processing e.g., filtering,
modulation, and demodulation, are assigned to the sig-
nal processor which is designed to perform those tasks
quickly and efficiently. The host processor maintains
overall control, supervises the signal processor, and
handles interactions with the operator and with the
devices which supply and use the information carned
over the channel to which the modem is connected. In
performing these tasks, data must frequently be trans-
ferred back and forth between the data buses of the
respective processors.

One way of controlling the data transfer is t0 connect
a pair of registers between the data buses, one register
for each direction of data transfer. To complete a data
transfer, the processor supplying the data loads it into
the proper register and interrupts the other processor
(using a special interrupt signal). The other processor
then jumps from the instruction it is currently executing
to a routine of instructions each of which must be
fetched, decoded, and executed in order for the inter-
rupted processor to collect the data from the proper
register and acknowledge receipt of the data so that
another piece of information may be transferred. Ulti-
mately the interrupted processor jumps back to the
instruction which was pending at the time of the inter-
ruption. Thus, the processors must execute several in-
structions in order to complete a single data transfer.

By replacing each register with a first-in first-out
(FIFO) buffer memory several pieces of data can be
queued up in each direction thus eliminating the need
for an interrupt (or other handshake) for each data
transfer.

By using a dual-port read-write memory in place of -

the FIFO buffer, multiple queues can be established n
each of the two directions by allocating segments of the
memory for use as circular FIFO buffers, thus enhanc-
ing flexibility. Input and output pointers and FIFO
depth counters must be maintained by each processor to
control the memory, at a substantial cost in processor
time.

In other systems two or more processors share both
program and data memories. In some cases one of the
processors is a specialized co-processor used in parallel
with a general-purpose microprocessor. The co-proces-
sor executes only a certain class of instructions, e.g.,
floating-point arithmetic, thus relieving the general-pur-
pose microprocessor’s load and enhancing its perfor-
mance. Simultaneous parallel operation of the two pro-
cessors in such a system requires queueing the instruc-
tions to, and the results from, the specialized processor.

10

15

25

35

45

33

65

2

SUMMARY OF THE INVENTION

In general, the invention features, in one aspect, appa-
ratus for enabling a first processor to cause a second
processor to effect a transfer of data between the pro-
cessors in accordance with data transfer commands sent
from the first processor to the second processor, the
processors each having a program instruction memory
for enabling the processors to operate independently
and simultaneously when no data transfer is occurring
between them, the apparatus comprising data transfer
circuitry connected between the processors for en-
abling the data to be transferred, a program instruction
decoder associated with the second processor for nor-
mally decoding and executing instructions stored 1n the
program instruction memory of the second processor
when no data transfer is occurring, and routing cir-
cuitry for carrying the data transfer commands from the
first processor to the program instruction decoder for
decoding and executing to provide signals to the data
transfer circuitry to effect a transfer of data.

In preferred embodiments, the first processor also has
an address bus for normally carrying addresses repre-
senting locations of instructions in the program instruc-
tion memory of the first processor, and the routing
circuitry comprises at least a portion of the address bus;
data transferred from the first processor to the second
processor specifies a task to be performed by the second
processor by executing a set of corresponding instruc-
tions stored in the program instruction memory of the
second processor; there is circuitry for accepting from
an information-carrying channel and delivering to the
channel a carrier modulated in accordance with a se-
quence of signal points; the transferred data compnses
information about the signal points sent and signals
received over said channel; the second processor 1s
arranged to perform signal processing tasks on the re-
ceived signals; and the apparatus includes a memory in
the second processor for storing at successive addresses
2 number (M) of related pieces of the data upon which
an operation is to be performed, an indirect address
register in the second processor for holding a value
corresponding to the address of the next one of the
related pieces of information on which the operation is
to be performed, and updating circuitry for increment-
ing the value once after each performance of the opera-
tion until incrementing has occurred M-1 times, and
thereafter returning the value to its onginal level.

The invention provides a simple, efficient, flexible,
easy to implement technique for controlling data trans-
fers between two processors which at other times can
operate simultaneously in parallel; the first processor
can simply and quickly perform diagnostics, synchroni-
zation, debugging, and monitoring of the second pro-
cessor; the first processor can control the task sequence
of the second processor by sending task commands in
the form of data to the second processor; and the mod-
ulo M updating circuitry enables signal processing func-
tions to be implemented efhiciently.

Other features and advantages of the invention will
be apparent from the following description of the pre-
ferred embodiment, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a modem system.
FIG. 2 is a block diagram of the host and signal pro-
cessors of FI1G. 1.

5,193,204

K

FIG. 3 is a block diagram of the interconnection of
the host and signal processors of FI1G. 1.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Structure

Referring to FIG. 1, modem 10 includes a host pro-
cessor 12 connected to data source 14 (a device having
digital data to be transmitted), and to data sink 16 (a
device for using received digital data). Channel 18 (for
carrying analog modulated carrier signals transmitted
by and to modem 10) is connected via analog interface
20 to signal processor element (SPE) 22, which is in

10

turn connected to host processor 12 via connection 24.

Referring to FIG. 2, in host processor 12 a general-
purpose microprocessor unit (MPU) 32 (a Motorola
MC68000) is interconnected with read-only memory
(ROM) 34, which serves as a program instruction mem-
ory, random-access memory (RAM) 36, front panel 37,
and terminal interface 38 via MPU data bus 39, MPU
address bus 40, and MPU control signal lines 42. Clock
and interrupt generator 46, driven by oscillator 48, 1s
connected to MPU 32, to lines 42, and to other elements
(by connections not shown). MPU address decoder 49 is
connected to MPU address bus 40 and control signal
lines 42 and via line 244 to signal processor 22. Connec-
tion 24 between processors 12, 22 also includes a 16-bit
line 246 from MPU data bus 39 (for carrying data to be
transferred), a 6-bit line 24¢ from the six least significant
bit lines of MPU address bus 40 (for carrying data trans-
fer commands), and other control signal lines 244 (de-
scribed below).

In signal processor 22, lines 24a, 24c, 24d connect toO
signal processing controller (SPC) 52, which controls
the operation of processor 22 by fetching and executing
program instructions in 8K X 16 program (instruction)
memory 54 (of which only 2K X 16 is actually used in
the preferred embodiment). Controller 52 is a large-
scale H-MOS integrated circuit that serves as a program
sequencer and instruction decoder. Controller 32 and
memory 54 are interconnected by 13-bit program ad-
dress bus 86 (which can be tri-stated to allow another
processor to access program memory 54) and 16-bit
instruction bus 58. Controller 52 is connected via a
number of control signal lines 60, a 13-bit SPE address
bus 62, and a 16-bit SPE data bus 64 to two multiplier-
accumulator-RAM (MAR) circuits 66, 68 (designated
MAR-R and MAR-], respectively), and to 8K X 16 ex-

ternal memory (ME) 70 (organized to include 2K X 16

RAM and 4K X 16 ROM) and other external 1/0 de-
vices 72 (including analog-to-digital and digital-to-
analog converters, and automatic gain control circuits)
and in turn to analog interface 20 (which includes a line
interface and transmit and receive filters) MAR-R 66
includes 256 16-bit words of internal memory (MR) 76,
a 40-bit accumulator, special registers, and dedicated
logic. MAR-I 68 gimilarly includes 256 16-bit words
of internal memory (MI) 78 and the same set of other
components. Controller 52 is connected via SPE con-
trol signal lines 60 and address bus 62 to SPE address
decoder 63.

Address decoder 63 is connected to transceiver 80 (a
16-bit tristate, bidirectional bus buffer or interface ad-
dressable as an external device) which is in turn con-
nected both to MPU data bus 39 by line 240 and to SPE
data bus 64. Transceiver 80 has data transfer circuitry
which includes two octal bus transceiver devices, for
example type 7418623, each connecting eight bits of

15

25

30

35

45

33

4

each of the two 16-bit data buses. The transceiver de-
vices allow data transmission from bus 39 to bus 64
depending on two enable inputs 65, 67. When both
inputs are inactive, the buses are effectively isolated
from each other. Transceiver 80 may be enabled by
controller 52 via SPE address decoder 63 to effect a
data transfer between the two processors 12, 22 in either
direction.

Referring to FIG. 3, the connections between MPU
32 and controller 52 are arranged to enable MPU 32 to
cause controller 82 to effect transfers of data between
processor 12 and controller 52 through transceiver 80.
Connections 24g, 24c, and 24d carry the data transfer
commands and control signals from processor 12. The
data transferred through transceiver 80 can be informa-
tion about signals received or signal points to be sent
over channel 18, information about the operating status
of the processors, or signal processing instructions tell-
ing the signal processor 22 what task to perform.

Line 24a carries a chip enable (CEN) signal to con-
troller 52 by which the MPU 32 can (by addressing a
block of 64 locations allocated to processor 22 in the
memory space of processor 12) alert controller 52 that a
data transfer command is on address bus 40. Line 24¢
acts as routing circuitry to connect the six least signifi-
cant bits of the MPU address bus 40 (which can carry
signals representing the data transfer commands) to
instruction decode logic 90 in controller 52. There are
four lines 24d. A READ/WRITE line carries a signal to
controller 52 to indicate which way data 1s to be trans-
ferred through transceiver 80 (when a data transfer
operation is ordered). A DTACK (data transfer ac-
knowledge) line carries a signal from controller 52 to
MPU 32 acknowledging that a transfer has been re-
quested (thus enabling MPU 32 to adjust the timing of
control signals to the MPU data bus, which operates
asynchronously, so that data can be passed in synchro-
nism with the operation of controller 52). A DONE line
carries a signal from controller 52 to clock and interrupt
generator 46 to cause it to interrupt MPU 32. An IACK
(interrupt acknowledge) line carries a signal from MPU
32 to controller 52 acknowledging receipt of a signal on
the DONE line. Controller 52 has internal register file
74, (which includes 32 general purpose registers each 16
bits long), an ALU 120, special purpose registers 122, an
8-deep program counter stack 102, interrupt logic 124,
and program instruction decoder logic 90.

The registers in file 74 are used to supply indirect
addresses to the memories (M1, ME, or MR).

Register file 74 is segmented into four pages (identi-
fied as 00, 01, 10, and 11), each containing eight regis-
ters. In each register, the 13 least significant bits repre-
sent data, ¢.g., an indirect address. The three most sig-
nificant bits define if and how the value represented by
the 13 least significant bits is to be updated each time
that value is used as an indirect address, in accordance
with the following table:

Mode Bit

14 13 Updating Mode

Increment or Decrement by 1
Increment or Decrement by the
vajue N1

1 Increment or Decrement by the
value N2

Increment or Decrement with

reverse Carry
Increment or Decrement in

5,193,204

S

-continued

Mode Bit

15 14 13 Updating Mode

accordance with modulo
register MM

Some instructions in the instruction set for controller 52
may refer to any register in file 74; others may only
refer to one of the eight registers in the so-called current
page of file 74. When an instruction refers to a register
for indirect addressing, the 13 least significant bits are
unloaded onto address bus 62 and are also passed
through ALU 120 and written back into the register
after being updated in accordance with the three mode
bits. |

Instructions for controller 52 can be provided either
from program memory 54 or from processor 12. The
instruction from program memory 54 which onginally
referred to the register includes two bits to indicate
whether to increment, decrement, or not change the
register data value.

Special purpose registers 122 include two 2-bit page
registers which determine which page in file 74 is the
current page. One of the page registers holds a value
(called PAGE) which determines the current page for
finding indirect addresses called by SPC instructions
from program memory 54. The other page register,
called the host page register is accessible by MPU 32,
and holds a value (PAGEH) which determines the page
in file 74 to be accessed for instructions delivered from
MPU 32.

Special purpose registers 122 also include two 13-bit
offset registers for holding the values N1, and N2 for
use in incrementing or decrementing a value in one of
the registers in file 74 when the appropriate mode bits

appear.

In addition, special purpose registers 122 include four 49

modulus registers (M0, M1, M2, M3) each of which can
hold a value less than or equal to 8191. When the mode
bits of an accessed register indicate incrementing or
decrementing by a modulus value, that value is found in
the modulus register named by the second two mode
bits. The effect of such mode bits is to cause the register
data to be incremented by 1 modulo M where M-11s the
value stored in the specified modulus register. This
permits creating circular buffers in memories MR, MI,
or ME, the length of the buffer being specified by the
value stored in the corresponding modulus register.

Finally, a reverse carry (RC) register is included m
special purpose registers 122. When the mode bits spec-
ify an increment or decrement by reverse carry, the
value stored in RC register is added to or subtracted
from the lower 13 bits of the register, with arithmetic
being performed with reverse carry, i.e., from left to
right.

Instruction decoder logic 90 decodes each instruction
appearing on instruction bus 58 and produces the micro-
signals needed to control the various parts of controller
§2. There are three possible sources for the instruction
on the instruction bus 58: program memory 34, address
lines 24c together with READ/WRITE and IACK
lines 244, and data bus 64. Instructions received over
address lines 24c and READ/WRITE and IACK lines
244 are mapped into instruction bits as follows:

10

135

20

25

35

45

35

65

Source of Signal
from Processor 12
or [Arbitrary Value]

HA I
HA2
HA3
IACK
HA4
[0)
HAS
HA6
0]
[0]
READ/WRITE
(1}
[0]
[0] 13
[0] 14
{0) 15

M

Instruction Bit

W os - W - O

10
il
12

The eight indirect address registers in the page speci-
fied by the host page register may be accessed by MPU
32 (using the three least significant bits of the six address
bits carried on line 24¢) in order to effect direct transfers
to M1, MR, or ME memory.

External memory 70 is organized to include three
circular queues. Transmit task queue 92 holds the coor-
dinates of the signal point to be next sent over channel
18. Receive output queue 94 holds the demodulated,
equalized, and otherwise processed signal point most
recently received over channel 18. Output queue 94 also
holds status flags, e.g., carrier detect/loss, indicating
how the signal receiving process is progressing. Re-
ceive task queue 96 holds a list of signal processing
instructions (in the form of unique task numbers loaded

‘in by MPU 32) to be performed by controller 52. Each

task in task queune 96 corresponds to a set of instructions
stored in program memory 3.

The input and output pointers, and depth counters
necessary to define and maintain queues 92, 94, 96, are
provided by controller 52, using facilities already avail-
able including the register file and modulus registers
referred to above, thus permitting an extremely versa-
tile interface to be established using a minimum of exter-
nal circuitry. .

Controller 52 also includes a halt flip-flop 100 which
starts and stops the operation of controller 32.

Operation

‘To transmit data from data source 14 over channel
18, host processor 12 accepts the data stream through
terminal interface 38, accumulates the data bits into
symbols, maps the symbols into signal points and loads
the signal points into transmit task queue 92 in external
memory 70 of signal processor 22. Signal processor 22
converts the signal points into samples of the modulated
carrier which it then delivers through external 1/0
devices 72 to channel 18.

When signals are received over channel 18, MPU 32
directs (by signal processing instructions loaded into
receive task queue 96) signal processor 22 to perform
filtering, equalization, demodulation, and decision-mak-
ing functions. When finished, signal processor 22 stores
each received signal point in receive output queue 04,
where it is picked up by MPU 32. The received signal
point is stored in the form of decision index pointing to
a particular signal point in the available constellation of
signal points. MPU 32 then decodes and descrambles

5,193,204

7

the received signal point and delivers the resulting sym-
bol to data sink 16.

During periods when host processor 32 is performing
certain tasks (e.g., handling operator and terminal inter-
action) signal processor 22 can be independently per-
forming a different task (e.g., filtering) assigned to it by
host processor 12.

When processors 22, 32 are operating independently,
MPU 32 performs its functions by generating an instruc-
tion address on MPU address bus 40, reading the in-
struction from ROM 34 over MPU data bus 39, decod-
ing the instruction, and executing it by manipulating
data stored in its internal registers or accessing data in
RAM 36 or ROM 34 using address and data buses 40,
39.

Likewise, when not interacting with host processor
12, signal processing controller 52 decodes and executes
instructions fetched from its associated program mem-
ory 54, in accordance with the task that it has been
assigned to perform. In executing signal processing
tasks, MAR-R 66 and MAR-] 68 can be commanded to
perform arithmetic and logic functions or operations
based on control signals sent from controller $2. The
independent data paths and memories in each MAR
enable up to two internal data transfers and MAR oper-
ations to be executed simultaneously based on the ad-
dress generated by controller $2, an arrangement which
provides a considerable speed enhancement for signal
processing involving complex numbers.

In implementing signal processing functions, it 1s
typically useful to configure memories MR, MI, or ME
to behave like circular buffers, e.g., to behave like a
delay line for equalization. This can be accomplished by
indirectly addressing the locations in MR, MI, or ME

10

15

25

30

using addresses supplied by controller 52 from one of 35

the 32 registers in register file 74. While the MAR cir-
cuits 66, 68 are busy operating on the presently ad-
dressed piece of data, controller 52 updates (e.g., by
incrementing or decrementing) the address to be used in
the next operation, and stores it back in register file 74.
Apart from the usual post-increment, post-decrement
type of address arithmetic, controller §2 provides the
capability to increment or decrement the address 1n a
circular fashion (modulo M). This permits easy structur-
ing of circular memory to emulate delay lines for

45

modem filtering or equalization operations, or first-in-

first-out queues. The value M-1 (where M is the length
of the circular memory) is stored in one of the four
separate modulo registers in controller 52.

Data may be directly transferred between an external
device 72 and memory MR 76, M1 78, or ME 70 using
one instruction, where the address of the external de-
vice is provided using part of the bits on SPE control
bus 60 while the memory location is specified as usual
via SPE address bus 62.

Processors 12, 22 must frequently transfer data back
and forth, which requires distracting controller 52 from
the program instructions it is performing. Thus it 1s
desirable to make the execution of data transfer com-
mands as rapid and simple as possible.

Data transfers are accomplished by data transfer
commands sent from MPU 32 and directly executed
(without referring to program memory 54) by processor
22. When MPU 32 intends to send a data transfer com-

35

mand, it delivers a CEN signal over line 24a. Receipt of 65

the CEN signal causes controller 52 to pause at the end
of the execution of the current program instruction.
Controller 52 then holds the address of the next instruc-

tion temporarily in program counter 102. The CEN
signal has the effect of enabling controller 52 to accept
the 6 bits (HA6-HA1) on MPU address bus 40. The
unique address combination indicated by HA6-HA1 1s
then converted by instruction decode logic 90 into a
corresponding data transfer command, and immediately
executed. When finished, controller 52 typically returns
to the next instruction in the program it had been work-
ing on prior to the pause.

During execution of a data transfer command, the
controller 52 generates control and address signals
which are used by address decoder 63 to send signals
both to the element (e.g., memory) which is to receive
or send data from/to processor 12, and also to trans-
ceiver 80 to enable the transfer between the MPU data
bus 39 and SPE data bus 64 and to indicate the direction
of the transfer (derived from the READ/WRITE sig-
nal received over READ/WRITE line 244).

A complete list of the data transfer commands which
may be executed in this manner is:

COMMAND

DESIGNATION DATA TRANSFER DESCRIPTION

HO SPC internal control (normal mode)

H1.0 HOST to ME(INDIRECT) (1)

Hl1.1 ME(INDIRECT) 1o HOST (1)

H1.2 HOST to MR(INDIRECT) (1)

H1.3 MR(OANDIRECT) to HOST (1)

Hl4 HOST to MI(INDIRECT) (1

H1.5 MI(INDIRECT) to HOST (D

H2 HOST to SPC register 2)

H3 SPC register to HOST (2)

H4 Read register in HOST Page and
set (nonzero) SPC register

HS5.0 READ PC (program counter) and
clear HALT

H5.1 READ PC and set HALT

Hé Load PC (Host Jump)

H7 Read Program Memory at PC,
Increment PC

H8 Single Step

H9 Read data from HOST and EXECUTE
(Host Execute)

H10 Store interrupt priority in SPC
register, IACK

Notes:

(1) Register may be modified ss follows:

{a) no change.

(b) posi-increment by 1 according to mode.
(2) Transfer all 16 bita o/from HOST.

The HO command causes controller 52 to continue to
operate in its normal mode, fetching and executing
instructions from its program memory.

The group of commands H1.0 through H1.5, enable
direct data transfers between the processor 12 and
MAR or ME memories using a register in internal regis-
ter file 74 for indirect addressing. When such commands
are used, the three least significant bits of the MPU
address bus 40 (HA3, HA2, HA1) specify one of eight
registers in a page of eight registers in internal register
file 74 (the page devoted to use by MPU 32 1s deter-
mined by a value, called PAGEH, previously stored in
the host page register). When a register in file 74 is used
as an indirect address register, its least significant 13 bits
may be subsequently incremented according to the
mode bits of the register (i.e., the upper 3 bits). Bit HA4
determines whether the register is to be post-incre-
mented or left unchanged. Note that there are a total of
48 possible indirect addressing data transfer instruc-
tions, because each of the six instructions H1.0 through

3,193,204

9

H1.5 can address memory via any one of eight different
registers in file 74.
The next two commands, H2 and H3, permit reading

or writing one of eight registers in the current page of

the register file 74, at a page number supplied by the
PAGEH register which may be altered by the PAGEH
SPE instruction. Note that reading or writing a register
in register file 74 includes a transfer of the upper three
mode bits, i.e., all 16 bits of the register are transferred
to/from processor 12.

There are seven remaining commands, which can be
used for diagnostics, synchronization, debugging, and
monitoring of processor 22 by processor 12.

The Read register in Host Page And Set (nonzero)
SPC register command (H4) places the contents of one
of the first four registers in the page specified by
PAGEH on SPE data bus 64 (for delivery to processor
12) and loads that register with all ones (13 bits). This

test-and-set-type command permits synchronization of

software tasks between processors 12, 22 and arbitration
of resources shared between the two processors.

In the Read PC (program counter), and Clear Halt,
and the Read PC, and Set Halt commands (HS.0, HS.1),
controller 52 provides the value in the controller’s pro-
gram counter 102 to MPU 32 on the 13 least significant
bits of MPU data bus 39. The upper three bits are read
as 1. MPU 32 may set or clear HALT f{lip-flop 100 with
these commands according to the value of the least
significant bit (HA1). If Halt 100 was clear, setting Halt
will stop controller 82 and clearing it will have no ef-
fect. If Halt 100 was set, setting it will have no effect
and clearing 1t will restart controller 52. Controller 52
should typically be restarted (Halt cleared) only after
program counter 102 has been restored to the controller
52 from MPU 32 via the Host Jump instruction (see
below).

The Load PC (Host Jump) command (H6) causes
program counter 102 to be loaded with data supplied by
processor 12. This instruction can be used only while
Halt 1s set.

In executing the Read Program Memory at PC, In-
crement PC command (H7), the program memory 54 1s
read by MPU 32 at the location pointed to by program
counter 102, which is then post-incremented. This com-
mand is used only if controller 52 is halted and inter-
rupts are disabled.

The Single Step command (H8) is used only in the
Halt mode. The command removes the Halt and typi-
cally executes one instruction. After completion, con-
troller 52 returns to its previous state which should be a
Halt.

The Read Data from Host and Execute (Host Exe-
cute) command (H9) instructs controller 52 to take the
data supplied by MPU 32 on SPE data bus 64 and exe-
cute it as an instruction.

The Valid JACK command (H10) is executed dunng
a Host Interrupt sequence (i.e., when controller 52 1n-
terrupts processor 12). The three least significant bits
{(HA3-HA1) are continuously compared to a priority
register in controller 52. The priority register contains
three interrupt priority bits and can be set by the PRTY
SPE instruction. If the compare is true and the JACK
and DONE signals are asserted, a valid 1ACK occurs.
The command then causes an interrupt vector, stored in
page zero of file 74, to be read by MPU 32 to begin
interrupt processing.

The set of host commands have been selected to
permit an efficient and flexible software interface be-

5

10

13

20

23

30

35

43

33

60

65

10

tween processors 12, 22, without requiring an external
FIFO or dual-port memory device.

In operation, clock and interrupt circuitry 46 inter-
rupts MPU 32 at the transmit and receive symbol (or
baud) clock rates. When interrupted by the transmit
clock, MPU 32 collects data from source 14 and trans-
lates it into signal point coordinates to be sent. MPU 32
then loads these coordinates into transmit task queue 92
by commanding a data transfer using the appropriate
data transfer command. When interrupted by the re-
ceive clock, MPU 32 first collects the results of the
previous symbol’s receive task from receive output
queue 94. Based on the status flags, e.g., carrier detect-
/1oss, also collected from output queue 94, MPU 32
updates its receiver state and assigns a new receive task
to controller 52 by storing a unique task number In
receive task queune 96. The MPU 32 also decodes, de-
scrambles, and delivers the previous symbol’s data to
data sink 16. The receive symbol interrupt has higher
priority than the transmit interrupt in MPU 32.

After completing its previous task, controller 52 ex-
amines the receive and transmit task queues 92, 96, in
that order, to determine whether one or the other task
is awaiting execution. The receive task is thus given
higher priority. During execution of the receive task,
controller 32 unloads the task number from receive task
queue 96, operates (using instructions in its program
memory 54) on received signal samples according to the
assigned task, generates status flags and data for MPU
32, and stores them in the output queue 94. Upon exe-
cuting a transmit task, controller 52 unloads the signal
point coordinates from transmit task queue 92 and gen-
erates samples of the transmit waveform to be transmit-
ted over channel 18.

Using the appropriate commands, MPU 32 may also
read/write other data memory locations at sporadic
intervals for maintenance, diagnostics Or monitoring.

Other embodiments are within the following claims.

We claim:

1. Apparatus for effecting a transfer of data between
a first processor and a second processor in accordance
with data transfer commands sent from said first proces-
sor to said second processor, said processors ¢ach hav-
ing a program instruction memory, said processors op-
erating independently and simultaneously when no data
transfer is occurring between said processors, said appa-
ratus comprising:

data transfer circuitry connected between said pro-
cessors for transferning said data;

a program instruction decoder operably coupled by
routing circuitry to said first processor and opera-
bly coupled to the program mnstruction memory of
said second processor, said first processor sending
said data transfer commands to said program in-
struction decoder which decodes said data transfer
commands and sends signals to said data transfer
circuitry to effect the transfer of data between said
ProCessors,;)

said second processor executing instructions stored in
the program instruction memory of said second
processor by decoding said instructions by said
program instruction decoder when no data transfer
is occurring between said processors; and

interface circuitry, coupled to one of said processors,
for delivering to an information-carrying channel a
carrier signal modulated by said one processor in
accordance with said data transferred between said
processors, said interface circuitry also for accept-

5,193,204

11

ing a modulated carrier signal of data for process-
ing by one of said processors.

2. The apparatus of claim 1 wherein said second pro-
cessor uses at least its program instruction memory and
said program instruction decoder to perform signal
processing tasks on said accepted carrier signal.

3. Apparatus for effecting a transfer of data between
a first processor and a second processor in accordance
with a data transfer command sent from said first pro-
cessor to said second processor, said processors each
having a program instruction memory, said processors
operating independently and simultaneously when no
data transfer is occurring between said processors, said
apparatus COmprising:

data transfer circuitry connected between said pro-
cessors for transferring said data;

a program instruction decoder operably coupled by
routing circuitry to said first processor and coupled
to the program instruction memory of said second
processor, said first processor sending said data
transfer command to said program instruction de-
coder, said second processor utilizing said program
instruction decoder for performing said data trans-
fer command by decoding said data transfer com-
mand and sending signals to said data transfer cir-
cuitry to effect the transfer of data between said
processors;

said second processor executing instructions stored in
the program instruction memory of said second
processor when no data transfer is occurring be-
tween said processors, said first processor perform-
ing a task command when no data transfer is occur-
ring between said processors by decoding and exe-
cuting instructions stored in the program instruc-
tion memory of said first processor;

said first processor further comprising an address bus
for carrying addresses of the instructions in the
program instruction memory of said first proces-
sor; and

3

10

15

20

25

30

35

said routing circuitry comprising at least a portion of 40

said address bus for carrying said data transfer
command to said program instruction decoder.

4. Apparatus for effecting a transfer of data between

a first processor and a second processor in accordance

with a data transfer command sent from said first pro-

45

55

65

12

cessor to said second processor, said processors each
having a program instruction memory, said processors
operating independently and simultaneously when no
data transfer is occurring between said processors, said
apparatus COmprising:

data transfer circuitry connected between said pro-
cessors for transferring said data;

a program instruction decoder operably coupled by
routing circuitry to said first processor and coupled
to the program instruction memory of said second
processor, said first processor sending said data
transfer command to said program instruction de-
coder, said second processor utilizing said program
instruction decoder for performing said data trans-
fer command by decoding said data transfer com-
mand and sending signals to said data transfer cir-
cuitry to effect the transfer of data between said
pProcessors;

said first processor performing a first task command
when no data transfer is occurring between said
processors by decoding and executing instructions
stored in the program instruction memory of said
first processor, said second processor performing a
second task command by executing instructions
stored in the program instruction memory of said
second processor when no data transfer is occur-
ring between said processors;

a memory in said second processor for storing at
successive addresses each of a number (M) of re-
lated pieces of said data upon which said second
processor is to perform said second task command;

an indirect address register, operably coupled to said
memory, for holding a value corresponding to the
address of a next one of said related pieces of data
upon which said second task command is to be
performed; and

updating circuitry, operably coupled to at least said
indirect address register, for incrementing, in circu-
lar buffer fashion, said value once after each perfor-
mance of said second task command until said in-
crementing has occurred M-1 times, and thereafter
returning the value to the first address of said suc-

cessive addresses.
* % » » &

	Front Page
	Drawings
	Specification
	Claims

