

US005182303A

United States Patent [19]

Daub et al.

[11] Patent Number:

5,182,303

[45] Date of Patent:

Jan. 26, 1993

[54] SUBSTITUTED SEMICARBAZONE ARTHROPODICIDES

[75] Inventors: John P. Daub; George P. Lahm, both

of Wilmington, Del.; Bradford S.

Marlin, Cochranville, Pa.

[73] Assignee: E. I. Du Pont de Nemours and

Company, Wilmington, Del.

[21] Appl. No.: 689,042

.

[22] PCT Filed: Dec. 20, 1989

[86] PCT No.: PCT/US89/05597

§ 371 Date: May 20, 1991

§ 102(e) Date: May 20, 1991

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 436,361, Nov. 13, 1989, abandoned, which is a continuation-in-part of Ser. No. 290,404, Dec. 27, 1988, abandoned.

564/20; 564/21; 564/36

[56] References Cited

U.S. PATENT DOCUMENTS

4,547,524	10/1985	Kaneko	514/594
4,593,027	6/1986	Mulder et al	. 564/36

FOREIGN PATENT DOCUMENTS

3913 9/1979 European Pat. Off. . 26040 4/1981 European Pat. Off. . 254461 1/1988 European Pat. Off. . 8800197 1/1988 PCT Int'l Appl. .

OTHER PUBLICATIONS

J. Indian Chem. Soc., 37, pp. 443-450 (1960).
Misra et al., J. Indian Chem. Soc., 52(10) pp. 981-982 (1975); Chem. Abst. vol. 84, 73957m (1976).
Lundquist, J. Chem. Soc. (C), pp. 63-66 (1970).
Treibs et al., Berichte, 86(5), pp. 616-625 (1953).

Primary Examiner—Bernard Dentz Attorney, Agent, or Firm—James A. Costello

[57] ABSTRACT

Certain substituted semicarbazones, including all geometric and stereoisomers thereof, agricultural compositions containing them and their use as arthropodicides.

13 Claims, No Drawings

SUBSTITUTED SEMICARBAZONE ARTHROPODICIDES

This application is a continuation-in-part filed via the PCT of U.S. application Ser. No. 07/436,361, filed on Nov. 13, 1989, now abandoned, which was a continuation-in-part of U.S. application Ser. No. 07/290,404, filed on Dec. 27, 1988, now abandoned.

BACKGROUND OF THE INVENTION

U. S. Pat. No. 4,547,524 discloses benzoyl hydrazone derivatives as insecticides.

WO 8800197 discloses as part of a broader scope 15 substituted semicarbazones derived from chromanones and thiochromanones as intermediates used in the preparation of insecticides.

EP-3,913 discloses substituted benzophenone hydrazones to be useful as insecticides.

EP-26,040 discloses a broad scope of substituted hydrazones to be useful as insecticides.

EP-254,461 discloses N-substituted hydrazones to be useful as insecticides.

J. Ind. Chem. Soc. 37, Pages 443 to 50 (1960) discloses a compound of the formula:

but no utility therefor.

SUMMARY OF THE INVENTION

This invention pertains to compounds of Formula I, ⁴⁰ including all geometric isomers, stereoisomers, and agronomically and nonagronomically suitable salts thereof, compositions containing them, and their use as agronomic and nonagronomic arthropodicides:

$$Q-N-C-N-(R_1)_m$$

$$Q-N-C-N-(R_1)_m$$

$$R_5$$

wherein: Q is

$$R_{2}$$
 R_{2}
 R_{3}
 R_{4}
 R_{4}

$$\begin{array}{c}
N \\
N \\
N \\
N \\
R_4
\end{array}$$
 $\begin{array}{c}
Q-2 \\
R_2)_n$

-continued

N

$$R_3$$
 R_4
 R_2
 R_4

$$(R_2)_n$$
 A
 R_3
 R_4
 R_4

$$(Rhd\ 2)_n$$
 R_4
 $Q-6$
 R_4
 R_4

$$V$$
 A
 R_3
 R_4
 R_{2}
 R_{2}
 N

$$(R_2)_n$$
 A
 R_3
 R_4
 R_4

A is $(CH_2)_t$, O, $S(O)_q$, NR₇, OCH₂ or $S(O)_q$ CH₂, wherein, each carbon individually can be substituted with 1 to 2 substituents selected from 1 to 2 halogen, C₁-C₆alkyl, C₃-C₆cycloalkyl, C₃-C₆halocycloalkyl, C₄-C₇ alkylcycloalkyl, C₂-C₄ alkoxycarbonyl, or phenyl optionally substituted with 1 to 3 substituent independently selected from W;

R₁ and R₂ are independently R₈, halogen, CN, NO₂, N₃, SCN, OR₈, SR₈, SOR₈, SO₂R₈, NR₈R₉, C(O)R₈, CO₂R₈, C(O)NR₈R₉, OC(O)R₈, OCO₂R₈, OC-(O)NR₈R₉, NR₉C(O)R₈, NR₉C(O)NR₈R₉, OSO₂R₈, NR₉SO₂R₈, or when m is 2, R₁ is optionally taken together to form a 5 or 6 membered fused ring as —OCH₂O, OCH₂CH₂O OR CH₂CH₂O each of which is optionally substituted with 1 to 4 halogen atoms or 1 to 2 methyl groups, or when n is 2, R₂ is optionally taken together to form a 5 or 6 membered fused ring as OCH₂O, OCH₂CH₂O or CH₂CH₂O each of which can be substituted 1 to 4 halogens or 1 to 2 methyl groups: R₂ being other than CH₃when R₁, R₃ and R₄ are H and A is CH₂;

R₃ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₄-C₆ alkylcy-cloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkoxyalkyl, C₂-C₆ cyanoalkyl, C₃-C₈ alkoxycarbonylalkyl, OR₈, S(O)_qR₈, NR₈R₉, CN, CO₂R₈, C(O)R₈, C(O)NR₈R₉, C(S)NR₈R₉, C(S)R₈, C(S)SR₈, phenyl optionally substituted with (R₁₀)_p or benzyl optionally substi-

tuted with 1 to 3 substituents independently selected from W or R₃ is C₃-C₆ cycloalkyl optionally substituted with 1 to 2 halogens or 1 to 2 CH₃;

R₄ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkyl, C₂-C₆ haloalkyl, nyl, C₂-C₆ alkoxyalkyl, C₂-C₆ cyanoalkyl, phenyl optionally substituted with $(R_{10})_p$ or benzyl optionally substituted with 1 to 3 substituents independently selected from W;

 R_5 and R_6 are independently H, C_{1} – C_{22} alkyl, C_{2} – C_{22} 10 alkoxyalkyl, C₂-C₂₂ alkylcarbonyl, C₂-C₂₂ alkoxycarbonyl, C2-C22 haloalkyl carbonyl, C2-C22 haloalkoxycarbonyl, SR₁₁, CHO, C₁-C₄ alkylsulfonyl, phenylsulfonyl optionally substituted with 1 to 3 substituents independently selected from W; C₇-C₁₅ 15 phenoxycarbonyl optionally substituted with 1 to 3 substituents selected from W; C₇-C₁₅ phenylcarbonyl optionally substituted with 1 to 3 substituents independently selected from W; C(O)CO₂C₁ to C₄ alkyl, C₈-C₁₂ benzyloxycarbonyl optionally substituted 20 with 1 to 3 substituents independently selected from W; or R₅ and R₆ are independently phenyl optionally substituted with 1 to 3 substituents independently selected from W, or benzyl optionally substituted with 1 to 3 substituents independently selected from 25 W;

R₇ is H, C₁-C₄ alkyl or phenyl optionally substituted with W; SR₈, SOR₈, SO₂R₈, C(O)R₈, CO₂R₈, C(O)NR₈R₉, C(S)NR₈R₉, C(S)R₈, C(S)OR₈, P(O)-(OR₈)₂, P(S)(OR₈)₂, P(O)(R₈)OR₈ or P(O)(R₈)SR₈; 30 provided that when R₇ is other than COR₈, C(O)NR₈R₉ or C(S)NR₈R₉ then R₈ is other than H;

R₈ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₄-C₇ cycloalkylalkyl, C₄-C₇ halocycloalkylalkyl C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ haloalky- 35 nyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C₁-C₆ nitroalkyl, C₂-C₆ cyanoalkyl, C₃-C₈ alkoxycarbonylalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, phenyl optionally substituted with 1 to 3 substituents independently selected from W or benzyl optionally 40 substituted with 1 to 3 substituents independently selected from W;

R₉ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, or R₈ and R₉ is optionally taken together as (CH₂)₄, (CH₂)₅ or (CH₂CH₂OCH₂CH₂);

R₁₀ is R₈, halogen, CN, NO₂, N₃, SCN, OR₈, SR₈, SOR₈, SO₂R₈, NR₈R₉, COR₈, CO₂R₈, CONR₈R₉, SO₂NR₈R₉, OC(O)R₈, OCO₂R₈, OC(O)NR₈R₉, NR₉C(O)R₈, NR₉C(O)NR₈R₉, OSO₂R₈, NR₉SO₂R₈ or when p is 2, R₁₀ is optionally taken together to 50 form a 5 or 6 membered fused ring as OCH₂O, OCH₂CH₂O, or CH₂CH₂O each of which is optionally substituted with independently, 1 to 4 halogen atoms or 1 to 2 methyl groups;

R₁₁ is C₁-C₂₂ alkyl, C₁-C₂₂ haloalkyl, phenyl optionally 55 substituted with 1 to 3 substituents independently selected from W, or R₁₁ is NR₁₂C(O)R₁₃, NR₁₂S(O)_aR₁₃, C(O)R₁₃, NR₁₂R₁₆, SR₁₄,

R₁₂ and R₁₆ are independently selected from C₁-C₆ 65 alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₄-C₇ cycloalkylalkyl, C₂-C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₃-C₈ alkoxycarbonylalkyl, C₄-C₈ dialkylaminocar-

4

bonylalkyl, phenyl optionally substituted by 1 to 2 substituents selected from W, benzyl optionally substituted by 1 to 2 substituents selected from W and phenethyl optionally substituted by 1 to 2 substituents selected from W, or R_{12-16} is optionally taken together as $(CH_2)_4$, $(CH_2)_5$ or $(CH_2)_2O(CH_2)_2$, each ring optionally substituted with 1 to 2 CH₃;

R₁₃ is F, C₁-C₂₀ alkyl, C₁-C₆ haloalkyl, C₂-C₈ dialkylamino, piperidenyl, pyrrolidenyl, morpholinyl, phenyl optionally substituted with 1 to 3 substituents selected from W, or R₁₃ is C₁-C₂₀ alkoxy C₁-C₆ haloalkoxy or C₁-C₄ alkoxy substituted with cyano, nitro, C₁-C₄ alkoxy, C₄-C₈ alkoxyalkoxy, C₁-C₂ alkylthio, C₂-C₃ alkoxycarbonyl, C₃-C₅ dialkylaminocarbonyl or phenyl optionally substituted with 1 to 3 substituents independently selected from W, or R₁₃ is phenoxy optionally substituted with 1 to 3 substituents selected from W;

O R₁₄ and R₁₅ are independently selected from C₁-C₄ alkyl, C₂-C₄ haloalkyl, phenyl optionally substituted with 1 to 3 substituents independently selected from W or R₁₄ and R₁₅ is optionally taken together as (CH₂)₂, (CH₂)₃ or CH₂C(CH₃)₂CH₂;

W is halogen, CN, NO₂, C₁-C₂ alkyl, C₁-C₂ haloalkyl, C₁-C₂ alkoxy, C₁-C₂ haloalkoxy, C₁-C₂ alkylthio, C₁-C₂ haloalkylthio, C₁-C₂ alkylsulfonyl or C₁-C₂ haloalkylsulfonyl;

m is 1 to 5;

n is 1 to 4;

t is 0 to 3;

q is 0 to 2;

p is 1 to 3;

a is 0 to 2;

V is O or S;

X is O or S; Y is O or S; and

Z is O or S.

Preferred Compounds (A) are those compounds of Formula I wherein; when R₃ or R₄ is H and A is oxygen then the remaining R₃ or R₄ is other than phenyl or phenyl optionally substituted with W and when t is 0 then R₃ or R₄ are other than Ph or phenyl optionally substituted with W.

Preferred Compounds (B) are Compounds of Formula I wherein;

R₁, R₂ and R₁₀ are R₈, halogen, CN, NO₂, OR₈, SR₈, SOR₈, SO₂R₈, NR₈R₉, CO₂R₈, SO₂NR₈R₉, or when m, n or q is 2, then R₁, R₂ or R₁₀ respectively is optionally taken together to form a 5 or 6 membered fused ring as OCH₂O, OCH₂CH₂O or CH₂CH₂O each of which is optionally substituted with 1 to 4 halogens or 1 to 2 methyl groups;

R₈ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkylalkyl, C₃-C₆ halocycloalkylalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, phenyl optionally substituted with 1 to 2 substituents independently selected from W or benzyl optionally substituted with 1 to 2 substituents independently selected from W;

R₅ and R₆ are independently H, C₁-C₃ alkyl, C₂-C₄ alkylcarbonyl, C₂-C₄ alkoxycarbonyl, CHO, SR₁₁, phenyl optionally substituted with 1 to 2 substituents independently selected from W, or benzyl optionally substituted with 1 to 2 substituents independently selected from W;

R₁₁ is C₁-C₃ alkyl, phenyl optionally substituted with 1 to 2 substituents independently selected from W, NR₁₂C(O)R₁₃, NR₁₂S(O)_aR₁₃, C(O)R₁₃, NR₁₂R₁₆;

$$ZR_{14}$$
 ZR_{14} ZR_{14} ZR_{14} ZR_{14} ZR_{14} ZR_{12} ZR_{15} ZR_{15} ZR_{15} ZR_{15} ZR_{15} ZR_{15}

R₁₂ and R₁₆ are independently selected from C₁-C₆ ¹⁰ alkyl, C₁-C₆ haloalkyl, C₅-C₆ cycloalkyl, C₃-C₈ alkoxycarbonylalkyl, phenyl, benzyl and phenethyl or each phenyl, benzyl and phenethyl optionally substituted with 1 to 2 substituents independently selected from W, or R₁₂ and R₁₆ can be taken together as (CH₂)₄, (CH₂)₅ or (CH₂)₂O(CH₂)₂;

R₁₄ and R₁₅ are independently selected from C₁ to C₃ alkyl or phenyl;

m is 1 to 2;

n is 1 to 2;

p is 1 to 2;

q is 0;

V is S; and

a is 2.

Preferred Compounds (C) are Compounds B wherein:

R₃ is H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, CN, phenyl optionally substituted with $(R_{10})_p$ or benzyl optionally substituted with 1 to $_{30}$ 2 substituents independently selected from W;

R₄ is H, C₁-C₃ alkyl, C₃-C₄ alkenyl or C₃-C₄ alkynyl; R₅ is H, Me, CO₂Me, CO₂Et, SR₁₁ or phenyl optionally substituted with 1 to 2 substituents independently selected from W;

R₆ is H, Me, C(O)Me, CO₂Me or SR₁₁;

R₁₁ is C₁-C₃ alkyl, NR₁₂C(O)R₁₃, NR₁₂S(O)_aR₁₃, C(O)R₁₃, or phenyl optionally substituted with Cl, NO₂ or CH₃;

R₁₂ is C₁-C₄ alkyl or phenyl optionally substituted with '₄₀ Cl or CH₃;

R₁₃ is C₁-C₁₂ alkyl, C₁-C₁₂ alkoxy, C₁-C₆ haloalkyl, dimethylamino, phenyl optionally substituted with Cl or CH₃, or R₁₃ is C₁-C₄ alkoxy substituted with C₂-C₄ alkoxy or 1 to 6 halogens;

A is CH₂, CH₂CH₂, O, S, OCH₂, NR₇ or SCH₂, wherein, each carbon is optionally substituted with C₁-C₃ alkyl or phenyl, wherein, the phenyl is optionally substituted with W; and;

R₇ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, ₅₀ C₂-C₄ alkylcarbonyl, C₂-C₄ alkoxycarbonyl or C₁-C₄ alkylsulfonyl.

Preferred Compound (D) are Compounds C wherein: R₁ and R₂ are independently selected from F, Cl, Br, CN, NO₂, OMe, CF₃, OCF₂H, OCF₂CF₂H, SMe, 55 SO₂Me, SCF₂H or when m or n is 2 R₁ or R₂ respectively is optionally taken together as CH₂C(CH₃)₂O or CF₂CF₂O;

R₃ is C₁ to C₄ alkyl, allyl, propargyl, or phenyl optionally substituted with F, Cl, Br, CF₃, OCF₂H, OCF₃, 60 SCF₂H, CN, NO₂, CH₃, OMe or CO₂Me;

R₄ is H or CH₃;

R₅ is H, CH₃ CO₂CH₃, CO₂Et, or phenyl optionally substituted with F or Cl;

R₆ is H, CH₃, C(O)CH₃ or CO₂CH₃; and

A is O, S or CH₂, optionally substituted with C₁-C₃alkyl or phenyl which may also be optionally substituted with W.

Preferred Compounds (E) are Compounds D wherein A is CH₂; and R₃is optionally substituted phenyl or C₁to C₄ alkyl. Preferred Compounds (F) are compounds of Formula I wherein Q is Q-1. Preferred Compounds (G) are compounds of Formula I wherein Q is Q-2. Preferred Compounds (H) are compounds of Formula I wherein Q is Q₃. Preferred Compounds (I) are compounds of Formula I wherein Q to Q₄. Preferred Compounds (J) are compounds of Formula I wherein Q is Q₅. Preferred Compounds (K) are compounds of Formula I wherein Q is Q₆. Preferred Compounds (L) are compounds of Formula I wherein Q is Q₇. Preferred Compounds (M) are compounds of Formula I wherein Q is Q₈. Preferred Compounds (N) are Compounds (E) wherein Q is Q-1.

Specifically preferred are the compounds:

O) 2-[5-fluoro-2-(4-fluorophenyl)-2,3-dihydro-1H-inden-1-yl-idene]-N-[4-(trifluoromethoxy)phenyl]hydrazine carboxamide;

²⁰ P) 2-[6-chloro-2,3-dihydro-2-methyl-2-(2-propenyl)-3-benzo-furanylidene]-N-[4-(trifluoromethoxy)phenyl]-hydrazine carboxamide;

Q) 2-(5-fluoro-2,3-dihydro-2-methyl-1H-inden-1-ylidene)-N-[4-(trifluoro methyl)phenyl]hydrazine carboxamide;

R) 2-[5-chloro-2,3-dihydro-2-(1-methylethyl)-1H-inden-1-ylidene]-N-[4-(trifluoromethyl)phenyl]hydrazine carboxamide;

S) 2-(5-chloro-2,3-dihydro-2-methyl-1H-inden-1-ylidene)-N-[4-(trifluoromethyl) phenyl]hydrazine carboxamide; and

T) 2-[5-fluoro-2-(4-fluorophenyl)-2,3-dihydro-1H-inden-1-yl-idene]-N-[4-(trifluoromethyl)phenyl]hydrazine carboxamide.

DETAILS OF THE INVENTION

The compounds of Formula I, where Q is Q-1, can be prepared by the reaction of hydrazones of Formula II with an aryl isocyanate of Formula III. Compounds of Formula I, where Q is Q-2 through Q-8, can be prepared by procedures which are analogous to those for compounds where Q is Q-1; therefore, for brevity only the Q-1 compounds are described. Typical reactions involve combination of equimolar amounts of II and III in a suitable solvent at temperatures generally in the range of -10° to 100° C. Although the reaction can be run neat, a solvent is generally preferred. Suitable solvents typically have sufficient polarity to effect solution of the Formula II hydrazone and include, but are not limited to, ethers such as diethyl ether, tetrahydrofuran and dioxane; halogenated hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; aromatic hydrocarbons such as benzene, toluene and xylene; esters such as ethyl acetate and polar aprotic solvents such as dimethylformamide and dimethylacetamide.

Compounds of Formula I include both geometrical and optical isomers as well as syn and anti isomers around the nitrogen-nitrogen bond. These isomers may vary in their biological activity. In some instances, it may be desirable to obtain compounds which are geometrically and/or optically pure or which are enriched in one or more of the possible isomers. All such isomers are included within the scope of this invention.

For the sake of simplifying the description of this 10 invention, the generic formula (Formula I) encompasses certain compounds that may have long term stability problems and/or are difficult to prepare. For example, when R₁ is an OCO₂R₈ group and R₈ is hydrogen the R₁ substituent is OCO₂H which will decompose to the corresponding phenol and carbon dioxide. Similarly, haloalkylamines when R₁ is NR₈R₉ and R₈ is C₁ to C₆ haloalkyl are unstable when the halo substituent is directly adjacent to nitrogen. These generally decompose 20 to the corresponding hydrogen halides and imine. These compounds, however, are relatively few; their identity would be obvious to one skilled in the art, and their excision from the scope would unduly complicate and lengthen the description of the invention.

The hydrazones of Formula II can be obtained by processes known in the art involving condensation of a ketone of Formula IV with either hydrazine or a substituted derivative thereof (Formula V). This reaction is 30 typically conducted with equimolar amounts of IV and V although greater than stoichiometric amounts of hydrazine (V) can be used. Suitable solvents include the alcohols such as methanol, ethanol, propanol, butanol and the like at temperatures in the range of 0° to 150° C., with the reflux temperature of the solvent generally being a convenient reaction temperature. Acid catalysis can also be useful, particularly for some of the more sterically hindered Formula IV compounds. Typical 40 acid catalysts include sulfuric, hydrochloric and p-toluene sulfonic acid.

An alternate process useful for the preparation of 55 compounds of Formula I involves condensation of a phenyl substituted semicarbazide of Formula VI with a ketone of Formula III. Preferred conditions for this reaction include an acid catalyst such as hydrochloric, sulfuric or p-toluene sulfonic acid. Reaction temperatures can range from 0° to 150° C. with the reflux temperature of the solvent used generally preferred. Suitable solvents include, but are not limited to, ethers such as tetrahydrofuran and dioxane; aromatic hydrocarbons such as benzene and toluene; and especially preferred are alcohols such as methanol, ethanol and isopropanol.

H₂N-N-C-NH-
$$(R_1)_m$$
 + III \rightarrow 1

Compounds of Formula I where R₅ and R₆ are other than hydrogen can generally be prepared from the corresponding compounds where R₅ and R₆ are hydrogen by reaction with electrophilic reagents such as alkyl halides, acyl halides, alkyl chloroformates and sulfenyl halides. The use of a base is generally preferred in these reactions but is dependent upon the specific nature of the reactants. For example, when the electrophilic reagent is selected from an alkyl halide, acyl halide or alkyl chloroformate, then metal hydrides such as sodium hydride or potassium hydride in solvents such as tetrahydrofuran or dimethylformamide are preferred. When sulfenyl halides are used then amine bases such as triethylamine in solvents such as diethyl ether or tetrahydrofuran are generally preferred. Of course, many of the compounds where R₅ is other than H can also be prepared by use of the appropriate hydrazine V in Scheme 2. For example, methyl hydrazine and methyl carbazate will produce compounds where R₅ is methyl and carbomethoxy, respectively.

The starting ketones of Formula II are known or can be obtained by processes analogous to known ones. Those skilled in the art will recognize the Formula II compounds to include indanones, tetralones, chromanones, thiochromanones, benzofuran-3-ones, thiobenzofuran-3-ones, isochromanones and others.

The following examples illustrate the invention.

EXAMPLE 1

Step A: 3-chloro-α-(4-chlorophenyl)benzenepropanoic acid

To a solution of 6.8 g (0.17 mol) of 60% sodium hy-45 dride in 150 ml of dimethylformamide under nitrogen was added 30.0 g (0.162 mol) of methyl 4-chlorophenylacetate dropwise such that hydrogen evolution was moderate and the temperature of the reaction was maintained at less than 50° C. Once hydrogen evolution had 50 ceased, a solution of 3-chlorobenzylbromide in 30 ml of dimethylformamide was added very cautiously such that the reaction temperature was maintained at less than 60° C. The reaction was maintained at 50° to 60° C. with stirring overnight after which time it was partitioned between 5% aqueous NaHCO3 and diethyl ether, the aqueous extracts were washed twice with ether and the combined organic extracts were then washed with water. The ether extracts were dried over MgSO₄, filtered and concentrated to afford 48.0 g of a brown oil.

The crude product was combined with 300 ml of methanol, 40 ml of water and 20 ml of 50% aqueous sodium hydroxide and refluxed overnight. After this time the reaction was concentrated and the crude residue partitioned between water and ether. The aqueous extracts were acidified with conc. hydrochloric acid and extracted several times with ether. The ether extracts were dried over MgSO₄, filtered and concentrated to 48.8 g of a yellow, oily solid.

¹H NMR (CDCl₃) δ 3.0 (dd, 1H), 3.3 (m, 1H), 3.84 (t, 1H), 6.77 (d, 1H), 6.9–7.4 (m).

Step B:

5-chloro-2-(4-chlorophenyl)-2,3-dihydro-1H-inden-1-one

The crude product from Step A was combined with 50 ml of thionyl chloride and then heated at reflux for 2 hours. Thionyl chloride was removed by concentration at reduced pressure and then the mixture was concentrated several times from carbon tetrachloride. The residue was combined with 200 ml of dichloroethane, cooled under nitrogen to 0° C., and 24.5 g of aluminum trichloride was then added. After stirring overnight the reaction was poured onto a mixture of ice in 1N hydrochloric acid, extracted three times with ether and chromatographed on silica gel (10% ethyl acetate/hexane) to afford 18.6 g of a yellow oily solid.

¹H NMR (CDCl₃) δ 3.20 (dd, 1H), 3.68 (dd, 1H), 3.90 (dd, 1H), 6.9–7.6 (m), 7.75 (d, 1H).

Step C: 2-[5-chloro-2-(4-chlorophenyl)-2,3-dihydro 1H-inden-1-ylidene]-N-[4-(trifluoromethyl)phenyl]hydro drazinecarboxamide

A mixture of 1.5 g of the indanone from Step B and 0.75 ml of hydrazine hydrate in 10 ml of ethanol was refluxed under N₂ overnight. The mixture was then partitioned between 5% NaHCO₃ and ether, the aqueous extracts were washed with chloroform and the combined chloroform/ether extracts were washed with water. The organic extracts were dried over magnesium sulfate and concentrated to 1.54 g of a yellow oil. To 0.45 g of this oil was added 10 ml of THF and 0.29 g of 4-trifluoromethylphenyl isocyanate. The mixture was then stirred under nitrogen overnight. Concentration at reduced pressure and then trituration with ether provided 0.27 g of the title compound as a yellow solid, m.p. 214° to 216° C.

¹H NMR (CDCl₃) δ 2.95 (dd, 1H), 3.74 (dd, 1H), 4.30 (dd, 1H), 7.1–7.8 (m), 8.33 (s, 1H); IR (nujol) 1680, 3190, 40 3360 cm⁻¹.

EXAMPLE 2

Step A: ethyl

2[5-fluoro-2-(4-fluorophenyl)-2,3-dihydro-1H-inden-1ylidene]hydrazine carboxylate

To a mixture of 1.5 g of 5-fluoro-2-(4-fluorophenyl)-2,3-dihydro-1H-inden-1-one (prepared by a procedure analogous to Example 1, Step B) and 0.63 g of ethyl carbazate in 20 ml of methanol was added 1 drop of 50 conc. H₂SO₄ and the reaction was refluxed under nitrogen overnight. The reaction was then partitioned between ethyl acetate and 5% aqueous NaHCO₃, the aqueous extracts were washed with ethyl acetate and the combined organic extracts were dried over MgSO₄. 55 Concentration of the organic extract afforded 1.9 g of a yellow oil, which was triturated with ether to afford 1.27 g of a white solid, m.p. 139°-141° C.

¹H NMR (CDCl₃) δ 1.26 (t, 3H), 2.91 (dd, 1H), 3.70 (dd, 1H), 4.2 (m, 3H), 6.9–7.3 (m, 6H), 7.52 (bs, 1H), 7.93 60 (dd, 1H).

Step B: ethyl

2-[5-fluoro-2-(4-fluorophenyl)-2,3-dihydro-1H-inden-1-ylidene]-1-[[[4-(trifluoromethyl)phenyl]amino]carbonyl]hydrazine carboxylate

65

To a solution of 1.02 g of the ethyl carboxylate from Step A and 0.62 g of 4-trifluoromethylphenylisocyanate

10

in 10 ml of THF was added 0.26 ml of triethylamine and the mixture was stirred under nitrogen overnight. The reaction was then partitioned between ethyl acetate and 5% aqueous NaHCO₃ and the aqueous extracts were washed twice with ethyl acetate. The organic extracts were dried over MgSO₄ and concentrated to 1.67 g of a yellow oil. Chromatography on silica gel afforded 0.37 g of a yellow solid m.p. 144–146.

¹H NMR (CDCl₃) δ 1.16 (t, 3H), 3.00 (dd, 1H), 3.65 (dd, 1H), 3.8–3.9 (m, 1H), 4.0–4.1 (m, 1H), 4.32 (dd, 1H), 6.85–7.2 (m, 6H), 7.60 (s, 4H), 8.05 (dd, 1H), 10.66 (s, 1H).

EXAMPLE 3

Step A: N-[4-trifluoromethyl)phenyl]hydrazine carboxamide

To a 0° C. solution of 10 ml of hydrazine hydrate and 75 ml of THF was added dropwise a solution of 6 g of 4-trifluoromethyl Phenyl isocyanate in 20 ml of THF. After 1 hr TLC indicated the reaction was complete. The reaction was partitioned between ether and water, the ether extracts were washed twice with water, dried over MgSO₄, and concentrated to 6.34 g of a white solid, m.p. 168°-172° C.

¹H NMR (CDCl₃) δ 3.9 (bm, 2H), 6.1 (bs, 1H), 7.56 (d, 2H), 7.61 (d, 2H), 8.4 (bs, 1H).

Step B: methyl

5-chloro-2,3-dihydro-2-methyl-1-oxo-1H-indene-2-carboxylate

To a mixture of 8.0 g of 5-chloroindanone and 4.2 ml of dimethylcarbonate in 60 ml of THF was added 4.0 g of 60% NaH and the mixture was heated to reflux under N₂ overnight. After this time the reaction was cooled to room temperature and 4.0 ml of methyl iodide was added and the mixture was reheated to reflux overnight. The reaction was then cooled and partitioned between ether and 5% aqueous NaHCO₃ and the aqueous extracts were washed twice with ether. The combined aqueous extracts were dried over MgSO₄ and concentrated to 11.24 g of a brown oil. Chromatogrpahy on silica gel (10% ethyl acetate/hexane) afforded 4.25 g of the title compound as a brown oil.

¹H NMR (CDCl₃) δ 1.52 s, 3H), 2.96 (d, 1H), 3.68 (s, 3H), 3.69 (d, 1H), 7.40 (d, 1H), 7.47 (s, 1H), 7.71 (d, 1H).

Step C: methyl

5-chloro-2,3-dihydro-2-methyl-1-[[[[4-(trifluorome-thyl)phenyl]amino]carbonyl]hydrazine]-1H-indene-2-carboxylate

To a mixture of 0.92 g of the compound from Step A and 1.0 g of the compound from Step B in 10 ml of methanol was added 1 drop of conc. H₂SO₄ and the mixture was heated to reflux under N₂ overnight. The reaction was then cooled to 0° C. and the precipitate filtered, rinsed with cold methanol and dried to 0.39 g of a brown solid, m.p. 192°-194° C.

¹H NMR (CDCl₃) δ 1.70 (s, 3H), 3.00 (d, 1H), 3.82 (s, 3H), 3.87 (d, 1H), 7.3 (m, 2H), 7.6–7.8 (m, 5H), 8.38 (s, 1H), 8.98 (s, 1H).

EXAMPLE 4

Step A: 3-(4-fluorophenyl)-1-phenyl-2-propen-1-one

To a mechanically stirred solution of 5.0 g NaOH in 35 ml H₂O and 25 ml EtOH at 15° C. was added 12.0 g (0.100 mole) of acetophenone and 12.4 g (0.100 mole) of

4-fluorobenzaldehyde. After a brief exotherm to 25° C., the temperature returned to 15° C., and the cooling bath was removed. The reaction mixture was stirred at room temperature for 1.5 hour, and the thick slurry was transferred to a beaker to cool overnight at 10° C. This mix-5 ture was filtered, and the solids were washed with distilled H₂O until the washings were neutral to litmus. Upon drying in vacuo, 20.8 g of a pale yellow solid was obtained, m.p. 86°-87° C.

IR (Nujol): 1660, 1605, 1590, 1580 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ 7.12 (d, J=16 Hz, 1H), 7.42–7.68 (m, 7H), 7.78 (d, J=16 Hz, 1H), 8.02 (m, 2H).

Step B:

3-(4-fluorophenyl)-2,3-dihydro-1H-indene-1-one

The title compound of Step A, Example 4, 11.3 g (0.50 mole), was added to 250 ml of mechanically-stirred polyphosphoric acid at 135° C., under a nitrogen atmosphere. This mixture was heated at 135° C. for 2 20 hours and then allowed to cool to 90° C. Ice water was added at such a rate as to maintain a temperature below 125° C. Once the material had become fluid, it was poured over ice and extracted with ether. The ether extracts were washed twice with saturated aqueous 25 NaHCO₃ and once with brine. The ethereal solution was dried over MgSO₄ and concentrated at reduced pressure. The resultant residue was recrystallized from hexane/chlorobutane to afford 5.90 g of the title compound as a brown powder, m.p. 117°-120° C.

IR (Nujol): 1705 (s), 1600 (br, m)

¹H NMR (200 MHz, CDCl₃) δ 2.64 (dd, 1H), 3.22 (dd, 1H), 4.57 (dd, 1H), 6.96–7.15 (m, 4H), 7.25 (m, 1H), 7.44 (m, 1H), 7.58 (m, 1H), 7.81 (m, 1H).

Step C:

2-[3-(4-fluorophenyl)-2,3-dihydro-1H-inden-1-ylidene]-N-[4-(trifluoromethyl)phenyl]hydrazine carboxamide

The title compound of Step B, Example 4, 2.26 g (0.010 mole), was combined with 0.60 ml of hydrazine 40 monohydrate (0.012 mole) in 30 ml of methanol and heated at reflux for 2 to 2.5 hours. The reaction mixture was concentrated at reduced pressure, and the resultant residue was dissolved in ethyl acetate and washed with saturated aqueous NaHCO₃, H₂O₃, and brine. The or- 45 ganic phase was dried over MgSO4 and concentrated in vacuo to afford 2.37 g of crude material. This material was dissolved in 30 ml of dry THF, and a 10 ml aliquot of this solution was added to a solution of 0.62 g (0.0033 mole) of 4-(trifluoromethyl)phenyl isocyanate in 20 ml 50 of dry THF. After this mixture was stirred overnight under a nitrogen atmosphere, it was concentrated in vacuo. The resultant residue was triturated with hexanes and filtered to obtain 1.23 g of an off-white product, m.p. 253°-255° C.

¹H NMR (200 MHz, d₆-DMSO): δ 2.74 (dd, 1H), 3.38 (dd, 1H), 4.65 (dd, 1H), 7.0–7.16 (m, 5H), 7.33–7.37 (m, 2H), 7.63–7.67 (m, 2H), 7.91–7.95 (m, 2H), 8.08 (m, 1H), 9.30 (s, NH), 10.00 (s, NH).

EXAMPLE 5

Step A: ethyl 4-fluoro-α-methylenebenzeneacetate

Sodium ethoxide solution was prepared by portionwise addition of sodium pieces (1.5 g, 0.065 mol) to ethanol (50 ml). To this solution was added first, 8.9 ml 65 (0.065 mol) of diethyloxalate in one portion and second, 10 g (0.059 mol) of methyl 4-fluorobenzeneacetate dropwise at such a rate as to keep the reaction mixture at 25°

C. After stirring at room temperature for 2 hrs, the ethanol was concentrated and the residue taken up in toluene. The toluene solution was concentrated and the solid residue was taken up in ether and 10% aqueous acetic acid. After stirring at room temperature for 1 hr the mixture was separated and the aqueous phase extracted twice with ether. The combined ether phases were washed once with saturated aqueous NaHCO₃ solution, dried (MgSO₄), and concentrated. The NMR of the crude product was complicated by a mixture of methyl and ethyl esters.

The crude diester was combined with 25 ml of water and 8 ml of 37% formalin solution. To this somewhat heterogeneous mixture was added a solution of 6.5 g of K₂CO₃ in 36 ml of water, dropwise as such a rate as to maintain a temperature of about 25° C. The reaction was stirred vigorously for three hours to mix the fine emulsion. Ether was added and the aqueous phase was separated and extracted three times with ether. The combined ether phases were dried (MgSO₄) and concentrated to a colorless oil (11 g, 96% yield).

¹H NMR (CDCl₃) δ: 7.41 (2H, m), 7.03 (2H, m), 6.34 (1H, s), 5.85 (1H, s), 4.28 (2H, q, J=7 Hz), 1.32 (3H, t, J=7 Hz).

Step B: ethyl 4-fluoro-α-[[(2-fluorophenyl)thio]methyl]benzeneace-tate

The crude product from Step A (3.9 g, 20 mmole) was taken up in 20 ml of ethanol. To this solution, being stirred at room temperature, was added 2-fluorothio-phenol (2.5 g, 20 mmole) and 50 mg of solid sodium ethoxide. After stirring for eight hours the ethanol was concentrated and the residue taken up in ether. The ether mixture was washed twice with 15% NaOH solution, dried (MgSO₄) and concentrated to a colorless oil (5.3 g, 82% yield).

¹H NMR (CDCl₃) δ: 7.28)4H, m), 7.06 (4H, m), 4.13 (2H, m), 3.72 (1H, m), 3.55 (1H, m), 3.20 (1H, dd, J=6, 12 Hz), 1.21 (3H, t, J=6 Hz).

Step C: 4-fluoro-α-[[(2-fluorophenyl)thio]methyl]-benzeneacetic acid

The crude ester from Step B (5.3 g, 16 mmole) was combined with 20 ml of 88% formic acid and 2.1 ml (33 mmole) of methane sulfonic acid. The emulsion was refluxed for five hours during which time it gradually became homogeneous. After cooling, water and methylene chloride were added and the aqueous phase was separated and extracted twice with methylene chloride. The organic phases were combined, dried (MgSO₄) and concentrated. The crude residue was taken up in 4% ethyl acetate/hexane and filtered through a plug of silica gel to remove nonpolar impurities. The product acid was then rinsed from the silica gel with ethyl acetate and the solvent concentrated. The acid was a color-less solid (4.5 g, 95% yield).

¹H NMR (CDCl₃) δ: 10.05 (1H, br s), 7.20 (5H, m), 7.03 (3H, m), 3.81 (1H, dd, J=6, 8 Hz), 3.57 (1H, m), 3.23 (1H, dd, J=6, 12 Hz).

Step D:

8-fluoro-3-(4-fluorophenyl)-2.3-dihydro-4H-1-benzothiopyran-4-one

The acid from Step C (4.5 g, 15 mmole) was dissolved in 30 ml of thionyl chloride and refluxed for four hours.

55

After cooling the thionyl chloride was concentrated and the residue taken up in carbon tetrachloride. The carbon tetrachloride was concentrated and the residue was taken up in 30 ml of dichloroethane. To the dichloroethane solution being cooled in an ice bath, was added aluminum trichloride (total of 2.1 g, 16 mmole) in three portions every 15 min. After stirring the black solution for an additional 30 min at 0° C., a 5% aqueous HCl solution was added. The aqueous phase was separated and extracted twice with methylene chloride. The organic phases were combined, dried (MgSO₄), and concentrated to give the crude product as a yellow oil (3.4 g, 82% yield).

¹H NMR (CDCl₃) δ : 7.97 (1H, dd, J=3, 9 Hz), 7.19 (6H, m), 4.12 (1H, dd, J=4, 12 Hz), 3.58 (1H, m), 3.32 ₁₅ (1H, ddm J=4, 12 Hz).

Step E:

2H-[8-fluoro-3-(4-fluorophenyl)-3,4-dihydro-2H-1-benzothiopyran-4-ylidene]N-[4-trifluoromethyl)-phenyl]-hydrazinecarboxamide

The thiochromanone from Step D (1.1 g 4.0 mmole) was treated according to the procedure in Example 1 Step C to give the desired product as a white powder (0.32 g, 17% yield). m.p.= 217° - 219° C. ¹H NMR ₂₅ (CDCl₃) δ : 8.33 (1H, s), 7.98 (1H, d, J=9 Hz), 7.69 (1H, s) 7.60 (4H, AB, J_{AB}=8 Hz), 7.15 (6H, m), 4.42 (1H, t, J=4 Hz), 3.44 (1H, dd, J=4, 12 Hz), 2.99 (1H, dd, J=4, 12 Hz).

EXAMPLE 6

Step A: methyl 6-fluoro-1,2,3,4-tetrahydro-1-oxo-2-naphthalenecar-boxylate

Hexane washed sodium hydride (3.5 g of 60%, 88 35 mmole) was covered with 75 ml of tetrahydrofuran and 5.4 ml (64 mmole) of dimethylcarbonate was added in one portion. The solution was heated to reflux and 6-fluoro-3,4-dihydro-1(2H)-naphthlenone (7.2 g, 44 mmole) in 25 ml of tetrahydrofuran was added drop-40 wise while maintaining reflux. After the addition was complete, the reaction was refluxed for 1.5 hours. The reaction was then cooled in an ice bath and 10% aqueous HCl solution was carefully added. The solution was diluted with ether and the aqueous Phase was separated 45 and extracted twice with ether. The combined organic phases were dried (MgSO₄) and concentrated. The crude product was a pale yellow solid (9.6 g, 98% yield).

¹H NMR (CDCl₃) δ : 7.99 (1H, dd, J=6,8 Hz), 6.95 50 (2H, m) 3.83 (3H, s), 3.82 (1H, m), 2.81 (2H, m), 2.58 (2H, m). NMR complicated by signals from enol tautomer.

Step B: methyl 6-fluoro-1,2,3,4-tetrahydro-1-oxo-2-phenyl-2naphthalenecarboxylate

The tetralone from Step A (2.4 g, 10.8 mmole) and triphenylbismuth dichloride (5.8 g, 11.3 mmole) were dissolved in 50 ml of benzene. 1,8-Diazabicyclo-[5.4.0]- 60 undec-7-ene (1.8 ml, 11.8 mmole) was added and the pale yellow solution was heated at reflux for 12 hours. The benzene solution was decanted from the gray sludge. The sludge was in turn triturated twice with ether and twice with acetone. The combined benzene, 65 ether, and acetone phases were washed once with water, dried (MgSO₄), and concentrated. The resulting residue was flash chromatographed on silica gel eluting

with 10% acetone/hexane. Purified product was obtained in 90% yield (2.9 g) as a viscous oil which solidified on standing.

¹H NMR (CDCl₃) δ: 8.17 (1H, dd, J=8,10 Hz), 7.31 (5H, m) 7.02 (1H, dt, J=3,8 Hz), 6.85 (1H, dd, J=3,9 Hz), 3.75 (3H, s), 2.94 (2H, m), 2.89 (2H, m).

Step C:

6-fluoro-3,4-dihydro-2-phenyl-1(2H)-naphthalenone

The tetralone from Step B (2.8 g, 9.4 mmole) was dissolved in 45 ml of dimethylformamide. To this solution was added lithium chloride (2.0 g, 47 mmole) and water (0.42 ml, 23 mmole). The reaction mixture was heated to 150° C. for 2.5 hrs and then cooled and partitioned between ether and water. The aqueous Phase was separated and extracted three times with ether. The combined organic phases were washed once with water, dried (MgSO₄), and concentrated (1.96 g, 87% yield).

¹H NMR (CDCl₃) δ: 8.13 (1H, dd, J=6,10 Hz), 7.31 (5H, m) 6.99 (2H, m), 3.80 (1H, m), 3.07 (2H, m), 2.43 (2H, m).

Step D:

2-(6-fluoro-1,2,3,4-tetrahydro-2-phenyl-1-naph-thalenylidene)-N-[4-(trifluoromethyl)-phenyl]hydrazinecarboxamide

The crude product from Step C (0.65 g, 2.7 mmole) was treated according to the procedure in Example 1, Step C. The product was obtained as a white powder (0.26 g, 22% yield). m.p. = 158°-160° C.

¹H NMR (CDCl₃) δ: 8.45 (1H, s), 8.15 (1H, d, J=9 Hz), 7.98 (1H, s), 7.61 (5H, m), 7.29 (2H, m), 7.18 (2H, m), 6.92 (1H, dd, J=3,9 Hz), 6.75 (1H, d, J=3 Hz), 4.18 (1H, m), 2.64 (2H, m), 2.31 (1H, m), 2.10 (1H, m).

EXAMPLE 7

Step A:

4-Chloro-2-(2-methoxy-1-methyl-2-oxoethoxy)-benzoic acid, methyl ester

A solution of methyl 4-chlorosalicylate (5.0 g) in dimethylformamide (10 ml) was treated sequentially with methyl 3-bromopropionate (4.0 g) and potassium carbonate (6.0 g). The mixture was stirred at room temperature for 18 hrs and diluted with water. The mixture was extracted with ether and the organics were washed with water. The organic layer was dried and evaporated to give the desired material (6.7 g) as a low melting solid.

NMR: 7.8 (d, 1H), 7.2 (m 1H), 6.9 (m, 1H), 4.8 (q, 1H), 3.9 (s, 3H), 3.8 (s, 3H), 1.7 (d, 3H).

Step B: 6-chloro-2-methyl-3(2H)-benzofuranone

A mixture of the compound of Example 7, Step A, (6.7 g) and sodium hydride (60% in oil, 1.5 g) was heated to reflux in tetrahydrofuran (50 ml). It was then allowed to cool to room temperature over 1.5 hrs. The cooled mixture was treated with aqueous ammonium chloride solution and ether. The ether solution was dried over magnesium sulfate and then evaporated. The oil was subjected to chromatography on silica gel with hexanes/ethyl acetate (25:1) as the eluent. The desired product (1.99 g) was obtained as a low melting solid.

NMR: 7.6 (d, 1H), 7.1 (m 2H), 4.7 (q, 1H), 1.55 (d, 3H).

45

50

Step C:

(Z)-2-(6-chloro-2-methyl-3(2H)-benzofuranylidene)-N-[4-(trifluoromethyl)phenyl]-hydrazinecarboxamide

The compound of Example 7, Step B, (1.9 g) was 5 dissolved in ethanol (15 ml) and degassed with nitrogen. Then hydrazine hydrate (1.2 ml) was added and the mixture was heated at reflux for 1.5 hrs and evaporated to dryness. The residue was chromatographed on silica in hexanes/ethyl acetate (2:1). The first product eluted 10 was the hydrazone syn to the methyl group (0.5 g). The next fraction (0.9 g) was mixed syn and anti. Pure anti hydrazone was eluted last (0.5 g). The syn hydrazone was treated with p-trifluoromethylphenylisocyanate (0.4 ml) in ether (10 ml). The desired material began to 15 crystallize soon after mixing. The mixture was filtered and washed with ether to provide a solid (0.8 g). m.p.: 196°-198° C. NMR: 10.0 (br, 1H), 9.4 (br, 1H), 8.2-7.0 (m, 7H), 5.35 (m, 1H), 1.6 (d, 3H).

Step D:

(E)-2-(6-chloro-2-methyl-3(2H)-benzofuranylidene)-N-[4-(trifluoromethyl)phenyl)-hydrazinecarboxamide

Treating the anti hydrazone (0.5 g) obtained in Step C with p-trifluoromethylphenylisocyanate (0.4 ml) in the 25 same manner as in Step C resulted in the isolation of the desired product as a solid (0.8 g). m.p. = 205°-207° C. NMR: (10.4 (br, NH), 9.4 (br, 1H), 8.2-7.0 (m, 7H), 5.8 (m, 1H), 1.47 (d, 3H).

By the general procedures described herein and obvious modifications known to one skilled in the art. one can prepare the compounds of Tables 1 to 16. The compounds of Tables 1 through 10 are listed along with their melting points.

In Tables 1 through 16 the following notations have 35 been used:

2. 2,4-OCF₂CF₂ is
$$F$$
 O
 F
 F

-continued

5. When A is OCH₂ or SCH₂, the compounds of

Formula I are, respectively,

$$R_2$$
 R_3
 R_4

or
$$R_2$$
 R_2
 R_3
 R_4

6. When A is CH₂O or CH₂S, the compounds of Formula I are, respectively,

$$R_2$$
 C
 R_3
 R_4

$$R_2$$
 R_3
 R_4

or

TABLE 1

$$R_{2} \xrightarrow{5} \overbrace{\bigcirc{}}^{4} \underbrace{\bigcirc{}}^{3} \underbrace{\bigcirc{}}^{R_{3}} \underbrace{\bigcirc{}}^{R_{4}} \underbrace{\bigcirc{}}^{R_{4}} \underbrace{\bigcirc{}}^{R_{4}} \underbrace{\bigcirc{}}^{R_{5}} \underbrace{\bigcirc{}}^{R_{6}} \underbrace$$

$$(A = CH_2, X = O)$$

CMPD	\mathbf{R}_1	R ₂	R ₃	R ₄	R ₅	R ₆	m.p. °C.
1	4-CF ₃	5-Cl	4-Cl—Ph	Н	Н	H	214-216
2	4-Br	5-Cl	4-Cl—Ph	H	H	H	230-232
3	4-OMe	5-CI	4-Cl—Ph	H	H	H	202-204

TABLE 1-continued

$$R_{2} \xrightarrow{4} A$$

$$R_{3}$$

$$R_{4}$$

$$R_{4}$$

$$R_{5}$$

$$R_{1}$$

$$C(X)N$$

$$R_{6}$$

 $(A = CH_2, X = O)$

CMPD	$\mathbf{R_1}$	\mathbf{R}_{2}	R ₃	R ₄	\mathbf{R}_{5}	R_6	m.p. °C.
A	······································		· · · · · · · · · · · · · · · · · · ·				
4 5	4-Cl 4-CF ₃	5-Cl 5-Cl	4-Cl—Ph Ph	H H	H H	H H	231–233 226–228
6	4-CF3 4-Br	5-Cl	Ph	H	H	H	237-238
7	4-OCF ₃	5-C1	Ph	H	H	H	198-200
8	4-CF ₃	5-C1	4-F—Ph	H	H	H	223-225
9	4-Cl	5-Cl	4-FPh	H	H	H	224-226
10	4-Br	5-C1 5-Cl	4-F—Ph	H	H	H	230–232
11	4-CF ₃	5-F	4-Cl—Ph	H	H	H	214-216
12	4-Cl	5-F	4-Cl—Ph	H	H	H	218-220
13	4-Br	5-F	4-Cl—Ph	H	H	H	223-225
14	4-CF ₃	5- F	4-F-Ph	H	H	H	224-226
15	4-Cl	5- F	4-F-Ph	H	H	Н	212-214
16	4-Br	5-F	4-F-Ph	H	H	H	219-221
17	4-OCF ₃	5-F	4-F-Ph	H	H	H	201-203
18	4-CF ₃	5-F	Ph	H	H	H	230-232
19	4-Cl	5-F	Ph	H	H	H	233–235
20	4-Вг	5-F	Ph	H	H	H	236-238
21	4-OCF ₃	5-F	Ph	H	H	H	187-190
22	4-CF ₃	5-OMe	Ph	H	H	H	219-221
23	4-OCF ₃	5-OMe	Ph	H	H	H	189-191
24	4-CF ₃	5-OMe	4-F-Ph	H	H	H	197–199
25	4-CF ₃	5-OCH ₂ CF ₃	4-F-Ph	H	H	H	217-219
26	4-OCF ₃	5-OCH ₂ CF ₃	4-F-Ph	H	H	H	204-206
27	4-CF ₃	5-O-i-Pr	4-F-Ph	H	H	H	198-201
28	4-CF ₃	5-OPh	4-F—Ph	H	H	H	224-226
29	4-CF ₃	5-OEt	4-FPh	H	H	H	206-208
30 21	4-OCF ₃	5-OEt	4-F-Ph	H	H	Н	195-197 220-221
31 32	4-Сl 4-Вг	H H	Ph Ph	H H	H H	H	231-232
33	4-Di 4-CF ₃	H	Ph	H	H	H	223-224
34	4-Cl 3	H	4-F—Ph	H	, H	H	197-201
35	4-CF ₃	5-OH	Ph	H	H	H	240-242 ·
36	4-CF ₃	5-Br	4-F-Ph	H	H	H	218-220
37	4-Br	5-Br	4-F-Ph	Ĥ	H	H	227-229
38	4-CF ₃	5-F	3-CF ₃ —Ph	H	H	H	225-227
39	4-Br	5-F	3-CF ₃ —Ph	H	Ħ	H	221-223
40	4-CF ₃	5-F	2-F-Ph	H	H	H	218-220
41	4-Br	5-F	2-FPh	H	Н	H	231-233
42	4-CF ₃	5-F	3-F-Ph	H	Н	H	210-212
43	4-Br	5-F	3-F-Ph	H	H	H	218-220
44	4-CF ₃	5-F	2,4-di-F-Ph	H	H	H	219-221
45	4-Br	5-F	2,4-di-F-Ph	H	H	H	214-216
4 6	4-CF ₃	5-F	4-OEt-Ph	H	H	H	184–186
47	4-CF ₃	5- F	4-Me—Ph	H	H	H	219-221
48	4-Br	5-F	4-Me—Ph	H	H	H	227-229
49	4-CF ₃	5-F	2-naphthyl	H	H	H	229-230
50	4-Br	5-F	2-naphthyl	H	H	H	230–232
51	4-CF ₃	5-F	3,4-di-Cl—Ph	H	H	H	214-216
52	4-CF ₃	4-F	Ph	H	H	H	214-216
53	4-Br	4-F	Ph	H	H	H H	222-224
54 55	4-CF ₃ 4-OCF ₃	4-F 4-F	4-Cl—Ph	Н	H H	n H	236-238 209-211
55 56	2,4-di-Cl	5-Cl	4-Cl—Ph Ph	H H	H	H	>259-211
57	2,4-ui-Ci H	5-Cl	Ph	Ή	H	H	209-211
58	4-NO ₂	5-Cl	Ph	H	H	H	>250
5 9	3,4-di-Cl	5-C1 5-F	4-F-Ph	H	H	H	132-136
60	2,4-di-F	5-F	4-F—Ph	H	H	H	213-215
61	4-F	5-F	4-F-Ph	H	H	H	216-218
62	4-CF ₃	6-F	4-Cl—Ph	H	H	H	237-239
63	4-Ci	6-F	4-Cl—Ph	H	H	H	236-238
64	4-Br	6-F	4-Cl—Ph	H	H	H	238-240
65	4-CF ₃	7-C1	Ph	H	H	H	124-125
66	4-CF ₃	4,5-di-F	4-FPh	Ħ	H	H	233-235
67	4-OCF ₃	4,5-di-F	4-F-Ph	H	H	H	224-226
68	4-Br	4,5-di-F	4-F—Ph	H	H	H	229-231
69	4-CF ₃	5-C1	4-Cl—Ph	Me	H	H	165–169
70	4-Вг	5-Ci	4-Cl—Ph	Me	H	H	149–153
					•		

TABLE 1-continued

 $(A = CH_2, X = O)$

				,			
CMPD	Rı	R ₂	R ₃	R ₄	R ₅	R ₆	m.p. °C.
71	4-OMe	5-Cl	4-Cl—Ph	Me	H	H	187-190
72	4-CF ₃	5-F	4-F-Ph	Me	H	H	85-89
73	4-Br	5-F	4-F-Ph	Me	H	H	70–74
74	4-CF ₃	5-Cl	Н	H	H	H	240-242
75	4-Br	5-C1	H	H	H	H	2 44 -246
76	4-Cl	5-C1	H	Н	H	H	248-249
7 7	4-CF ₃	5-Cl	Me	H	H	H	208-210
78	4-Cl	5-Cl	Me	H	H	H	221-223
79	4-Вг	5-Cl	Me	H	H	H	228-230
80	4-CF ₃	7-C1	Me	H	H	Н	>250
81	4-CF ₃	5-F	Me	H	H	H	218-220
82	4-Cl	5-F	Me	Н	H	H	219-221
83	4-Br	5-F	Me	Н	H	H	224-226
84	4-CF ₃	5-OMe	Et	H	H	H	191-193
85	4-OCF ₃	5-OMe	Et	H	H	H	178-180
86	4-CF ₃	5-Cl	CO ₂ Me	H	H	Н	242-244
87	4-CF ₃	5-F	CO ₂ Me	Н	H	H	238-240
88	4-CF ₃	5-C1	CO ₂ Me	Me	Н	H	192-194
89	4-CF ₃	5-F	CO ₂ Me	Me	H	H	203-205
90	4-CF ₃	5-C1	i-Pr	Н	Н	Н	216-218
91	4-OCF ₃	5-C1	i-Pr	H	Н	Н	204-206
92	4-CF ₃	5-OCH ₂ CF ₃	Me	Н	· H	Н	212-214
93	4-OCF ₃	5-OCH ₂ CF ₃	Me	Н	Н	Н	189-191
94	4-C1	5-OCH ₂ CF ₃	Me	H	Н	Н	220-222
95	4-CF ₃	5-Cl	Me	Me ·	Н	H	215-217
96	4-Br	5-Cl	Me	Me	H	Н	214-216
97	4-Cl	5-Cl	Me	Me	Н	H	203-205
9 8	4-CF ₃	5-F	i-Pr	Ħ	H	H	216-220
9 9	4-Вг	5-F	i-Pr	Н	Н	H	217-222
100	4-CF ₃	5-F	Н	H	H	Н	>245
101	4-Cl	5-F	Н	H	Н	H	240-242
102	4-Вг	5-F	H	H	Н	H	>245
103	4-CF ₃	5-F	4-F-Ph	H	C(O)Me	Н	oil
104	4-OCF ₃	5-F	4-F—Ph	H	C(O)Me	H	oil
105	4-CF ₃	5-F	4-F-Ph	H	CO ₂ Me	H	oil
106	4-CF ₃	5-F	2,4-di-Ph	Н	CO ₂ Me	Н	oily
	_				_		solid
107	4-CF ₃	5-F	4-F—Ph	H	CO ₂ Et	H	144-146
108	4-Br	H	4-F-Ph	H	H	H	204-207
109	4-CF ₃	H	4-F-Ph	H	H	H	212-213
110	4-Cl	4-Ci	Ph	H	H	H	234-239
111	4-Br	4-Cl	Ph	H	H	H	283-285
112	4-CF ₃	4-CI	Ph	H	H	H	205-209
113	4-CF ₃	5-Me	4-Cl—Ph	H .	H	H	210-214
114	4-Br	5-Me	4-Cl—Ph	Ħ	H	H	260-262
115	4-Cl	5- M e	4-Cl—Ph	Н	H	H	270-272
116	4-CF ₃	4-Cl	4-F-Ph	H	H	H	wax
117	4-Br	4-Cl	4-F—Ph	H	H	H	wax
118	4-Cl	4-Cl	4-FPh	H	H	H	wax
119	4-CF ₃	5- F	CH ₂ Ph-4-F	CH ₂ Ph-4-F	H	H	76-81
120	4-Cl	5-F	CH ₂ Ph-4-F	CH ₂ Ph-4-F	H	H	84-89

TABLE 2

TABLE 2-continued

$$\begin{array}{c|c}
 & 3 \\
 & A \\
 & 2 \\
 & R_4 \\
 & R_4 \\
 & R_5 \\
 & C(X)N \\
 & R_6
\end{array}$$

$$(A = CH_2CH_2, X = O)$$

$$R_{2} \xrightarrow{4} A X R_{3}$$

$$R_{4}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{7}$$

$$R_{1}$$

$$R_{1}$$

$$C(X)N$$

$$R_{6}$$

$$(A = CH_2CH_2, X = O)$$

CMPD	R_1	R ₂	R ₃	R 4	R_5	R ₆	m.p. °C.	
121	4-Br	5-Cl	Ph	H	Н	Н	209-210	15
122	4-CF ₃	5-Cl	Ph	H	H	H	217-218	
123	4-Cl	5-C1	4-Br—Ph	H	H	Н	236-238	
124	4-Br	5-Ci	4-Br—Ph	H	H	H	248-250	
125	4-CF ₃	5-Cl	4-Br-Ph	H	H	H	245-247	
126	4-C]	5-Cl	4-OMe-Ph	H	H	H	209-210	
127	4-Br	5-Cl	4-OMe-Ph	H	H	H	216-217	20
128	4-CF ₃	5-Cl	4-OMe-Ph	H	H	H	226-228	
129	4-Cl	5-Cl	Me	H	H	H	236-238	
130	4-Br	5-Cl	Me	H	H	H	230-235	
131	4-CF ₃	5-Cl	Me	H	H	H	234-235	
132	4-CF ₃	5-Cl	CO ₂ Me	H	H	H	220-222	
133	4-Br	5-Cl	4-F-Ph	Ή	H	H	221-222	25
134	4-CF ₃	5-C1	4-F-Ph	H	H	H	233-234	
135	4-CF ₃	5-Cl	H	H	Me	H	114-117	
136	4-C]	4-F	Me	H	H	H	233-236	
137	4-Br	4-F	Me	H	H	H	236-239	
138	4-CF ₃	4-F	Me	H	H	H	235-237	
139	4-Cl	5-F	Ph	H	H	H	179–184	20
140	4-Br	5-F	Ph	H	H	H	185–192	30
141	4-CF ₃	5-F	Ph	H	H	H	158–160	
142	4-CF ₃	4-F	CO ₂ Me	H	H	H	203-204	
143	4-CF ₃	5-F	4-F—Ph	H	H	H	179–180	
144	4-CF ₃	5-F	4-Cl—Ph	H	H	H	225-230	
145	4-Cl	5- F	Me	H	H	H	200–210	
146	4-Вг	5-F	Me	H	H	H	196-198	35
147	4-CF ₃	5-F	Me	H	H	H	195–198	
148	4-CF ₃	H	CO ₂ Me	H	H	H	207–208	
149	4-CF ₃	H	CO ₂ Me	H	Me	H	oil	
150	4-CF ₃	H	H	H	H	H	230-232	
151	4-CF ₃	H	4-Cl—Ph	H	H	H	228-230	
								40

TABLE 3 R₄ ||1 N-N-R₅ C(X)N-

$$(A = (CH_2)_3, X = O)$$

CMPD	Rj	R_2	Rз	R ₄	R ₅	R _{6.}	m.p. °C.
159	4-CF ₃	5-CI	H	Н	Н	Н	224-225
160	4-Cl	5-C1	H	H	H	H	211-213
161	4-Br	5-C1	H	H	Ħ	H	210-213
162	4-CF ₃	5-Cl	Me	H	H	Н	174-176

TABLE 4

$$(X = O)$$

CMPD	R ₁	R_2	R ₃	R ₄	R ₅	R_6	. A	m.p. *C.
163	4-Cl	H	Me	Me	Н	Н	О	177-182
164	4-CF ₃	H	Me	Me	H	H	О	186-188
165	4-CF ₃	5-C1	Me	Me	H	H	Ο	214-217
166	4-Cl	5-Ci	Me	Me	H	H	0	204-207
167	4-Br	5-C1	Me	Me	H	H	0	204-208
168	4-CF ₃	4-F	Me	Me	H	H	О	203-206
169	4-C1	4-F	Me	Me	H	H	0	193-196
170	4-Br	4-F	Me	Me	H	H	Ο	1 94 –198
171	4-CF ₃	5-C1	Me	4-F-Ph	H	H	0	219-220
172	4-Cl	5-C1	Me	4-F-Ph	H	H	Ο	209-211
173	4-CF ₃	H	Me	Ph	H	H	0	174-176
174	4-Cl	H	Me	Ph	H	H	Ο	165-167
175	4-Br	H	Me	P h	H	H	0	165-166
176	4-CF ₃	5-C1	Me	Et	H	H	Ο	190-192
177	4-CF ₃	5-Cl	Me	allyl	H	H	Ο	150-152
178	4-C1	5-C1	Me	allyl	H	H	Ο	142-145
179	4-CF ₃	5-CF ₃	Me	Me	H	H	О	234-236

TABLE 4-continued

$$R_{2} \xrightarrow{4} A$$

$$R_{3}$$

$$R_{4}$$

$$R_{4}$$

$$R_{7}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{1}$$

(X = O)

CMPD	Ri	R ₂	R ₃	R ₄	R ₅	R ₆	Α	m.p. °C.
180	4-OCF ₃	5-CF ₃	Me	Me	Н	H	О	196-199
181	4-OCF ₃	5-C1	Me	allyl	H	H	О	128-130
182	4-C1	H	Me	Me	Me	Me	Ο	155-158
183	4-Cl	H	Me	Me	Me	H	0	wax
184	4-CF ₃	H	Ph	Me	Me	Me	Ο	128-130
185	4-CF ₃	H	Me	Me	H	H	S	193-197
186	4-C1	H	Me	Me	Me	Me	S	192-193

TABLE 5

$$\begin{array}{c} A \\ R_2 \\ \hline \\ R_4 \\ \hline \\ N-NH \\ \hline \\ CONH \\ \hline \end{array}$$

(A = O)

CMPD	\mathbf{R}_1	R ₂	R3	R ₄	syn/anti	m.p. °C.	35
187	4-CF ₃	Н	Me	Н	syn	179-180	
188	4-CF ₃	H	Me	H	anti	212-213	
189	4-CF ₃	5-Cl	Me	H	syn	196-198	
190	4-CF ₃	5-C1	Me	H	anti	205-207	
191	4-Br	\mathbf{H}	Me	H	mix	193-196	40
192	4-Br	5-C1	Me	Н	mix	195-200	40
193	4-CF ₃	Н	i-Pr	H	syn	201-202	
194	4-CF ₃	Н	i-Pr	H	anti	181-183	
195	4-Cl	H	i-Pr	Н	syn	151-153	
196	4-Cl	H	i-Pr	H	mix	203-205	
197	4-Br	H	i-Pr	H	mix	200-205	45
198	4-CF ₃	5-C1	i-Pr	H	syn	195-196	45
199	4-Br	5-C1	i-Pr	Н	mix	197-199	
200	4-C1	5-Ci	i-Pr	H	anti	192-196	
201	4-CF ₃	5-C1	i-Pr	H	mix	196-200	

TABLE 6

$$(A = CH_2, X = S)$$

CMPD	Ri	R_2	R ₃	R ₄	R ₅	R ₆	m.p. °C.	_
202	4-CF ₃	5-F	4-F-Ph	Н	Н	Н	192-194	
203	4-CF ₃	5-F	Ph	H	H	H	154-156	6.
204	4-Cl	5-F	4-F-Ph	H	H	H	182-184	
205	4-Br	5-C1	Ph	Н	Н	H	192-194	

TABLE 7

$$R_a$$
 R_b
 R_3
 R_1
 R_1
 R_1

	CMPD	Rı	R ₂	R ₃	\mathbf{R}_{a}	R_b	m.p. °C.
45	206	4-CF ₃	5-F	4-FPh	Me	Н	218-220
	207	4-CF ₃	5-Cl	Н	i-Pr	Н	238-240
	208	4-CF ₃	5-F	H	Me	H	241-243
	209	4-OCF ₃	5-F	H	Me	H	211-213
	210	4-CF ₃	H	H	Me	Me	222-223
	211	4-C1	Н	H	Me	Me	215-216
50	212	4-CF ₃	5-F	H	Me	Me	198-201
	213	4-F	5- F	H	Me	Me	201.5-205
•	214	4-CF ₃	H	H	Ph	H	248.5-250
	215	4-C1	H	H	Ph	H	253-254
	216	4-CF ₃	H	H	Ph	Me	207-209
	217	4-Cl	H	H	Ph	Me	203-205
55	218	4-CF ₃	H	H	4-Cl—Ph	H	243.5-245
	219	4-Cl	H	H	4-Cl—Ph	H	242.5-244
	220	4-CF ₃	5-C1	H	Ph .	Н	246-248
	221	4-Br	5-Cl	H	Ph	H	256-258
	222	4-CF ₃	5-Cl	H	4-Cl—Ph	H	235-238
	223	4-Br	5-Cl	H	4-Cl—Ph	H	260–262
40	224	4-CF ₃	H	H	4-F—Ph	H	253–255
60	225	4-Cl	H	H	4-F-Ph	H	249-250
	226	4-F	H	H	4-F-Ph	H	244 – 24 6
	227	4-CF ₃	5-F	H	Ph	H	>250
	228	4-Cl	5-F	H	H	H	>250
•	229	4-CF ₃	4-Cl	H	4-F-Ph	H	252.5-253
	230	4-C1	4-C]	H	4-F-Ph	H	260–261
65	231	4-CF ₃	4-Cl	H	4-F—Ph	Me	176–179
	232	4-CF ₃	4-F	H	4-FPh	H	242-244
	233	4-Cl	4-F	H	4-F-Ph	H	248-250

TABLE 11

		_	_
TA	RI	F	R
1 🗘		-	U

	·
$R_2 = \underbrace{\begin{array}{c} 4 \\ \\ \\ 6 \end{array}}_{2} \underbrace{\begin{array}{c} 3 \\ \\ \\ \\ \\ \\ \end{array}}_{2} R_4$ R_3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$N-R_5$ $C(O)NH$	NHCNH NHCNH
	R ₁ R ₂ R ₄ R ₁₀ A
CMPD R1 R2 R3 R4 R5 A m.p. °C. 234 4-Cl 5-Cl Ph H H O 180-182 235 4-Br 5-Cl Ph H H O 189-191 236 4-CF3 5-Cl Ph H H O 211-212 237 4-Cl 5-Cl 4-F-Ph H H O 171-173 238 4-Br 5-Cl 4-F-Ph H H O 187-189 239 4-CF3 5-Cl 4-F-Ph H H O 187-189 239 4-CF3 5-F Ph H H O 187-189 240 4-CF3 5-F Ph H H O 187-189 240 4-CF3 5-F Ph H H O 187-189 240 4-CF3 5-F Ph H H S 216-218	4-F 4-F H H CH2 4-Cl 4-F H H CH2 4-Cl 4-F H H CH2 4-OCF3 4-F H H CH2 3,4-di-Cl 4-F H H CH2 4-CN 4-Cl H H CH2 4-OCF2H 4-Cl H H CH2 4-OCF2H 4-Cl H H CH2 4-OCF2H 5-F H H CH2 4-OCF2CF2H 5-F H H CH2 4-NO2 5-F H H CH2 4-NO2 5-F H H CH2 4-SCF2H 5-F H H CH2 3,4-CF2CF2O 5-F H H CH2 4-Cl 5-Cl H H CH2 4-Cl 5-Br H H CH2 4-Cl 5-CN H H CH2
TABLE 9	40 4-OCF ₂ H 5-CN H H CH ₂ 4-OCF ₃ 5-CN H H CH ₂
$ \begin{array}{c c} R_2 & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ $	4-Cl 5-OMe H H CH ₂ 4-Br 5-OMe H H CH ₂ 4-CF ₃ 5-CF ₃ H H CH ₂ 4-Cl 5-CF ₃ H H CH ₂ 4-Cl 5-CF ₃ H H CH ₂ 4-OCF ₃ 5-CF ₃ H H CH ₂ 4-OCF ₂ H 5-CF ₃ H H CH ₂ 4-OCF ₂ H 5-OCF ₂ H H H CH ₂ 4-CF ₃ 5-OCF ₂ H H H CH ₂ 4-CF ₃ 5-OCF ₂ H H H CH ₂ 4-CF ₃ 5-OCF ₂ H H H CH ₂ 4-CF ₃ 5-OCF ₂ H H H CH ₂ 4-CF ₃ 5-OCF ₂ H H H CH ₂ 4-CF ₃ 5-OCF ₂ H H H CH ₂ 4-CF ₃ 5-OCF ₂ H H H CH ₂ 4-CF ₃ 5-OCF ₂ H H H CH ₂ 50 4-Cl 5-OCF ₂ H H H CH ₂ 4-OCF ₂ H 5-OCF ₃ H H CH ₂
CMPD R ₁ R ₂ R ₃ R ₅ R _c R _d A m.p. °C. 264 4-CF ₃ 5-Cl H H Me Me S 151-153	4-OCF ₃ 5-OCF ₃ H H CH ₂ - 4-CF ₃ 5-OCF ₃ H H CH ₂ 4-Cl 5-OCF ₃ H H CH ₂
265 4-CF ₃ 5-Cl H Me Me H S >250 266 4-CF ₃ 5-Cl H H H Me S 234-235 267 4-CF ₃ 5-Cl H H Me Me 0 253-255	4-Br 5-OCF ₃ H H CH ₂ 55 4-OCF ₂ H 5-OPh H H CH ₂ 4-OCF ₃ 5-OPh H H CH ₂ 4-CF ₃ 5-OPh H H CH ₂ 4-Cl 5-OPh H H CH ₂
TABLE 10	4-Br 5-OPh H H CH ₂ - 4-CF ₃ 5-SMe H H CH ₂
Q-NHCNH-CF3	60 4-Cl 5-SMe H H CH ₂ 4-Br 5-SMe H H CH ₂ 4-CF ₃ 6-F H H CH ₂ 4-Cl 6-F H H CH ₂ 4-Br 6-F H H CH ₂ 4-CF ₃ 6-Cl H H CH ₂
CMPD Q V A R2 R3 R4 m.p. °C. 268 Q-5 — CH2CH2 H H H 173-174	4-CF ₃ 6-Cl H H CH ₂ - 65 4-Cl 6-Cl H H CH ₂ 4-Br 6-Cl H H CH ₂
269 Q-5 — CH ₂ CH ₂ H H H 248-249	4-SCF ₂ H 5-F H 4-F CH ₂ - 4-F 5-F H 4-F CH ₂
	4-CN 5-F H 4-F CH ₂

TABLE	1 1	Loontin	nad
IADLE	11	t-contini	uea

TABLE 1	l-continued

TABLE 11-continued

 \mathbf{R}_2

 \mathbf{R}_{10}

TABLE	11-continued	

 R_{10}

TABLE 11-continued

TADID	11-continued
IAKIE	_^^fittm:iad
	1 1 - C C / I I I I I I I I C C I

R2-

 R_{10}

TABLE 11-continued

 R_{10}

TABLE 11-continued

 $R_2 - \frac{}{6}$

TABLE 11-continued

TABLE 11-continued

R₂-

 R_{10}

	3	
, , ,	A_{R_4} R_{10}	
サ ノー	$\sqrt{2}$	
\	√ ,	
7		•

4-OCF₂H

NMe

4-CI

5-F

4-Br

Me

4-F

Me

4-Cl

 SO_2

TABLE 11-continued

 R_4

 R_{10}

TABLE	11-continue	ď
	T T - CONTENTION	. •

 \mathbf{R}_{10}

Н

Н

Н

Η

H

Н

5-F

5-F

5-F

5-C1

5-**C**1

5-C1

4-CF₃

4-OCF₂H

4-OCF₃

4-Cl

4-Br

4-CF₃

Η

Η

Η

H

H

H

SCH₂

SCH₂

SCH₂

SCH₂

SCH₂

SCH₂

4-C1

4-Br

4-Cl

4-Br

4-CF₃

45

TABLE 11-continued

TABLE 12

4-F

4-F

5-F

5-F

5-F

H

H

H

H

H

CH₂S

CH₂S

CH₂S

CH₂S

CH₂S

4-Cl .

4-Cl

4-F

4-F

4-F

$$R_{2} \xrightarrow{\frac{5}{6}} A \times R_{3} \times R_{4} \times R_{1} \times R_{1} \times R_{1} \times R_{1} \times R_{1} \times R_{2} \times R_{1} \times R_{2} \times R_{2} \times R_{1} \times R_{2} \times$$

R1	R ₂	R ₃	R ₄	A
4-CF ₃	Н	H	Н	CH ₂
4-C1	H	H	H	CH ₂
4-Br	H	H	H	· CH ₂
4-OCF ₂ H	H	H	H	CH ₂
4-OCF ₃	H	H	H	CH ₂
4-CF ₃	4-F	H	Н	CH ₂
4-C1	4-F	H	H	CH ₂
4-Br	4-F	H	H	CH_2
4-OCF ₂ H	4-F	H	H	CH ₂

TABLE 12-continued

$$R_{2} \xrightarrow{5} \overbrace{ \begin{pmatrix} 4 \\ 7 \\ 1 \end{pmatrix}}^{3} \underbrace{ \begin{matrix} R_{3} \\ R_{4} \\ N-NHCNH- \\ 0 \end{matrix}}^{R_{1}}$$

\mathbf{R}_1	\mathbf{R}_{2}	R ₃	R ₄ .	Α
4-OCF ₃	4-F	H	H	CH ₂
4-CF ₃	4-Cl	H	H	CH ₂
4-Cl 4-Br	4-Cl 4-Cl	H H	H H	CH ₂
4-OCF ₂ H	4-C1 4-C1	H	H	CH ₂ CH ₂
4-OCF ₃	4-Cl	H	H	CH ₂
4-OCF ₂ H	5-F	H	H	CH ₂
4-OCF ₃	5-F	H	H	CH ₂
4-CF ₃	4-F	Me	H	CH ₂
4-Cl	4-F	Me	H	CH ₂
4-B r	4-F	Me	Н	CH ₂
4-OCF ₃	4-F	Me	Н	CH_2
4-OCF ₂ H	4-F	Me	H	CH_2
4-OCF ₃	5-Cl	Me	H	CH_2
4-OCF ₂ H	5-C1	Me	Н	CH_2
4-CF ₃	5-CF ₃	Me	H	CH_2
4-OCF ₃	5-CF ₃	Me	H	CH_2
4-C1	5-CF ₃	Me	H	CH ₂
4-Br	5-CF ₃	Me	H	CH ₂
4-OCF ₂ H	5-CF ₃	Me	H	CH ₂
4-CF ₃	5-OCF ₂ H	Me	H	CH ₂
4-Ci 4-Br	5-OCF-H	Me Me	H H	CH ₂
4-DI 4-OCF ₃	5-OCF ₂ H 5-OCF ₂ H	Me	H	CH_2 CH_2
4-OCF ₂ H	5-OCF ₂ H	Me	H	CH ₂
4-OCF ₃	5-5C1 211	Me	H	CH ₂
4-CF ₃	5-C1	Et	H	CH ₂
4-C1	5-Cl	Et	H	CH ₂
4-Br	5-Cl	Et .	H	CH ₂
4-OCF ₃	5-C1	Et	H	CH ₂
4-CF ₃	5-OCF ₂ H	E t	H	CH_2
4-C1	5-OCF ₂ H	Et	H	CH ₂
4-Br	5-OCF ₂ H	Et	H	CH_2
4-OCF ₃	5-OCF ₂ H	Et	H	CH_2
4-CF ₃	5-F	n-Bu	Η,	CH ₂
4-Cl	5-F	n-Bu	H	CH ₂
4-Br	5-F	n-Bu	H	CH ₂
4-OCF ₃	5-F	n-Bu	H	CH ₂
4-CF ₃ 4-Cl	4-F 4-F	n-Bu n-Bu	H H	CH ₂ CH ₂
4-Br	4-F	n-Bu	Ħ	CH ₂ CH ₂
4-OCF ₃	4-F	n-Bu	·H	CH ₂
4-CF ₃	5-Cl	allyl	H	CH ₂
4-Cl	5-C1	allyl	H	CH_2
4-Br	5-C1	allyl	H	CH ₂
4-OCF ₃	5-F	i-Pr	H	CH_2
4-CF ₃	4-F	i-Pr	H	CH ₂
4-OCF ₃	4-F	i-Pr	H	CH ₂
4-CF ₃	4-CF ₃	i-Pr	H	CH ₂
4-OCF ₃	4-CF ₃	i-Pr : D-	H	CH ₂
4-CF ₃ 4-OCF ₃	5-OCF ₂ H 5-OCF ₂ H	i-Pr i-Pr	H H	CH ₂ CH ₂
4-CF ₃	5-CF ₃	i-Pr	H	CH ₂
4-OCF ₃	5-CF ₃	i-Pr	H	CH ₂
4-CF ₃	5-Cl	Me	Me	CH ₂
4-Cl	5-Cl	Me	Me	CH ₂
4-Br	5-Cl	Me	Me	CH_2
4-CF ₃	5- F	Me .	Me	CH_2
4-C)	5-F	Me	Me	CH ₂
4-Br	5-F	Me	Me	CH ₂
4-CF ₃	5-OCF ₂ H	Me	Me	CH ₂
4-Cl	5-OCF ₂ H	Me	Me	·CH ₂
4-Br 4-CF ₃	5-OCF ₂ H 5-OCF ₃	Me Me	Me Me	CH ₂
4-CF3 4-Cl	5-OCF ₃	Me Me	me Me	CH ₂ CH ₂
4-Br	5-OCF ₃	Me	Me	CH ₂ CH ₂
4-CF ₃	4-F	Me	Me	CH ₂ CH ₂
4-Cl	4-F	Me	Me	CH ₂
4-Br	4-F	Me	Me	CH ₂
4-CF ₃	5-Br	Me	Me	CH ₂
4-Cl	5-Br	Me	Me	CH ₂

TABLE 12-continued

	ö \/			
\mathbf{R}_1	R_2	R ₃	R ₄	Α .
4-Br	5-Br	Me	Me	CH ₂
4-CF ₃	5-Cl	CH ₂ Ph	H	CH ₂
4-Cl	5-Cl	CH ₂ Ph	H	CH ₂
4-Br	5-C1	CH ₂ Ph	H	CH_2
4-OCF ₃	5-Cl	CH ₂ Ph	H	CH_2
4-OCF ₂ H	5-Cl	CH ₂ Ph	H	CH ₂
4-CF ₃	5-F	CH ₂ Ph-4-F	H	CH ₂
4-Ci	5-F	CH ₂ Ph-4-F	H H	CH ₂
4-Br 4-OCF ₂ H	5-F 5-F	CH ₂ Ph-4-F CH ₂ Ph-4-F	H	CH ₂ CH ₂
4-OCF ₃	5-F	CH ₂ Ph-4-F	H	CH ₂
4-CF ₃	5-OCF ₂ H	CH ₂ Ph-4-F	H	CH ₂
4-Cl	5-OCF ₂ H	CH ₂ Ph-4-F	H	CH_2
4-Br	5-OCF ₂ H	CH ₂ Ph-4-F	H	CH ₂
4-OCF ₃	5-OCF ₂ H	CH ₂ Ph-4-F	H	CH ₂
4-OCF ₂ H	5-OCF ₂ H	CH ₂ Ph-4-F	H	CH ₂
4-CF ₃ 4-Cl	5-Cl 5-Cl	CH ₂ Ph-4-Cl CH ₂ Ph-4-Cl	H H	CH_2 CH_2
4-Ci 4-Br	5-C1 5-Cl	CH ₂ Ph-4-Cl	H	CH ₂
4-OCF ₃	5-Cl	CH ₂ Ph-4-Cl	H	CH
4-OCF ₂ H	5-Cl	CH ₂ Ph-4-Cl	H	CH ₂
4-CF ₃	5-Cl	CO ₂ Me	H	CH ₂
4-Cl	5-Cl	CO ₂ Me	H	CH ₂
4-Br	5-Cl	CO ₂ Me	H	CH ₂
4-OCF ₂ H 4-OCF ₃	5-Cl 5-Cl	CO ₂ Me CO ₂ Me	H H	CH ₂ CH ₂
4-CF ₃	5-C; 5-F	CO ₂ Me	H	CH ₂
4-Cl	5-F	CO ₂ Me	H	CH ₂
4-Br	5- F	CO ₂ Me	Н	CH_2
4-OCF ₂ H	5-F	CO ₂ Me	H	CH ₂
4-OCF ₃	5-F	CO ₂ Me	H	CH ₂
4-CF ₃	4-F	CO ₂ Me	H .	CH ₂
4-С] 4-Вг	4-F 4-F	CO ₂ Me CO ₂ Me	H H	CH_2 CH_2
4-CF ₃	4-Cl	CO ₂ Me	H	CH ₂
4-Cl	4-Cl	CO ₂ Me	H	CH ₂
4-Br	4-Cl	CO ₂ Me	H	CH ₂
4-CF ₃	5-CF ₃	CO ₂ Me	H	CH ₂
4-OCF ₃	5-CF ₃	CO ₂ Me	H	CH ₂
4-CF ₃ 4-OCF ₃	5-OCF ₃ 5-OCF ₃	CO ₂ Me CO ₂ Me	H H	CH ₂ CH ₂
4-CF ₃	H	CO ₂ Me	Me	CH ₂
4-Cl	H	CO ₂ Me	Me	CH ₂
4-Br	H	CO ₂ Me	Me	CH_2
4-OCF ₂ H	H	CO ₂ Me	Me	CH ₂
4-OCF ₃	H	CO ₂ Me	Me	CH ₂
3,4-CF ₂ CF ₂ O	H H	CO ₂ Me	Me Me	CH ₂ CH ₂
3,4-CH ₂ C(Me) ₂ O 4-CF ₃	5-Cl	CO ₂ Me CO ₂ Me	Me	CH ₂ CH ₂
4-Cl	5-Cl	CO ₂ Me	Me	CH ₂
4-Br	5-Ci	CO ₂ Me	Me	CH_2
4-OCF ₂ H	5-Cl	CO ₂ Me	Me	CH_2
4-OCF ₃	5-Cl	CO ₂ Me	Me	CH ₂
3,4-CF ₂ CF ₂ O	5-Cl	CO ₂ Me	Me	CH ₂
3,4-CF ₂ C(Me) ₂ O 4-CF ₃	5-Cl 5-F	CO ₂ Me CO ₂ Me	Me Me	CH ₂ CH ₂
4-Cl	5-F	CO ₂ Me	Me	CH ₂
4-Br	5-F	CO ₂ Me	Me	CH ₂
4-OCF ₂ H	5-F	CO ₂ Me	Me	CH ₂
4-OCF ₃	5-F	CO ₂ Me	Me	CH ₂
3,4-CF ₂ CF ₂ O	5-F	CO ₂ Me	Me	CH ₂
3,4-CH ₂ C(Me) ₂ O 4-CF ₃	5-F 4-F	CO ₂ Me	Me Me	CH ₂ CH ₂
4-CF3 4-Cl	4-F 4-F	CO ₂ Me CO ₂ Me	Me	CH ₂ CH ₂
4-Br	4-F	CO ₂ Me	Me	CH ₂
4-OCF ₃	4-F	CO ₂ Me	Me	CH ₂
4-OCF ₂ H	4-F	CO ₂ Me	Me	CH ₂
3,4-CF ₂ CF ₂ O	4-F	CO ₂ Me	Me	CH ₂
3,4-CH ₂ C(Me) ₂ O	4-F 5 Ma	CO ₂ Me	Me Me	CH ₂
4-CF ₃ 4-Cl	5-Me 5-Me	CO ₂ Me CO ₂ Me	Me Me	CH ₂ CH ₂
	J-1416	~~Z141C	2720	

TABLE 12-continued

•		0 _		
\mathbf{R}_1	\mathbf{R}_{2}	\mathbf{R}_3	R ₄	Α .
4-Br	5-Me	CO ₂ Me	Me	CH ₂
4-OCF ₃ 4-OCF ₂ H	5-Me 5-Me	CO ₂ Me CO ₂ Me	Me Me	CH ₂ CH ₂
3,4-CF ₂ CF ₂ O	5-Me	CO ₂ Me	Me	CH ₂
3,4-CH ₂ C(Me) ₂ O	5-Me	CO ₂ Me	Me	CH ₂
4-CF ₃	5-Nic 5-Br	CO ₂ Me	Me	CH ₂
4-Cl	5-Br	CO ₂ Me	Me	CH ₂
4-Br	5-Вг	CO ₂ Me	Me	CH_2
4-OCF ₃	5-Br	CO ₂ Me	Me	CH_2
4-OCF ₂ H	5-Br	CO ₂ Me	Me	CH_2
3,4-CF ₂ CF ₂ O	5-Br.	CO ₂ Me	Me	CH_2
3,4-CH2C(Me)2O	5-Br	CO ₂ Me	Me	CH_2
4-CF ₃	5-OCF ₂ H	CO ₂ Me	Me	CH_2
4-Ci	5-OCF ₂ H	CO ₂ Me	Me	CH ₂
4-Br	5-OCF ₂ H	CO ₂ Me	Me	CH
4-OCF ₃	5-OCF-H	CO ₂ Me	Me	CH ₂
4-OCF ₂ H	5-OCF ₂ H 5-OCF ₂ H	CO ₂ Me CO ₂ Me	Me Me	CH ₂ CH ₂
3,4-CF ₂ CF ₂ O 3,4-CH ₂ C(Me) ₂ O	5-OCF ₂ H	CO ₂ Me	Me	CH ₂
4-CF ₃	5-OCF ₃	CO ₂ Me	Me	CH ₂
4-Cl	5-OCF ₃	CO ₂ Me	Me	CH ₂
4-Br	5-OCF ₃	CO ₂ Me	Me	CH ₂
4-OCF ₂ H	5-OCF ₃	CO ₂ Me	Me	CH_2
4-OCF ₃	5-OCF ₃	CO ₂ Me	Me	CH_2
3,4-CF ₂ CF ₂ O	5-OCF ₃	CO ₂ Me	Me	CH_2
3,4-CH2C(Me)2O	5-OCF ₃	CO ₂ Me	Me	CH_2
4-CF ₃	5-CN	COzMe	Me	CH ₂
4-Ci	5-CN	CO ₂ Me	Me	CH ₂
4-Br	5-CN	CO ₂ Me	Me	CH ₂
4-OCF ₂ H	5-CN	CO ₂ Me	Me Me	CH ₂ CH ₂
4-OCF ₃ 4-CF ₃	5-CN 5-CF ₃	CO ₂ Me CO ₂ Me	. Me	CH ₂ CH ₂
4-OCF ₃	5-CF ₃	CO ₂ Me	Me	CH ₂
4-CF ₃	6-F	CO ₂ Me	Me	CH ₂
4-Cl	6-F	CO ₂ Me	Me	CH ₂
4-Br	6-F	CO ₂ Me	Me	CH_2
4-OCF ₂ H	6-F	CO ₂ Me	Me	CH ₂
4-OCF ₃	6-F	CO ₂ Me	Me	CH ₂
4-CF ₃	5-Cl	CO ₂ Me	E t	CH ₂
4-Cl	5-Cl	CO ₂ Me	Et .	CH_2
4-Br	5-Cl	CO ₂ Me	Et CH-Dh	CH ₂
4-CF ₃ 4-Cl	5-Cl 5-Cl	CO ₂ Me CO ₂ Me	CH ₂ Ph CH ₂ Ph	CH ₂ CH ₂
4-C1 4-Br	5-C1	CO ₂ Me	CH ₂ Ph	CH ₂
4-CF ₃	5-Cl	CO ₂ Me	allyl	CH ₂
4-Cl	5-Cl	CO ₂ Me	allyl	CH ₂
4-Вг	5-C1	CO ₂ Me	allyl	CH_2
4-CF ₃	5-F	CO ₂ Et	Me	CH_2
4-Cl	5-F	CO ₂ Et	Me	CH_2
4-Br	5-F	CO ₂ Et	Me	CH ₂
4-CF ₃	5-F	CO ₂ CH ₂ CF ₃	Me	CH ₂
4-Cl	5-F	CO ₂ CH ₂ CF ₃	Me Mo	CH ₂
4-Br 4-CF ₃	5-F 5-F	CO ₂ CH ₂ CF ₃ CO ₂ Ph	Me Me	CH ₂ CH ₂
4-Ci	5-F	CO ₂ Ph	Me	CH ₂
4-Br	5-F	CO ₂ Ph	Me	CH ₂
4-CF ₃	5-Cl	CO ₂ H	H	CH ₂
4-CF ₃	5-C1	CONHMe	H	CH_2
4-CF ₃	5-Cl	CONMe	H	CH_2
4-CF ₃	5-C1	CONHPh	H	CH ₂
4-CF ₃	5-Cl	CSNMe ₂	H	CH ₂
4-CF ₃	5-Cl	propargyl	Me	CH ₂
4-CF ₃	5-Cl	CH ₂ CH ₂ CN	Me Me	CH ₂
4-CF ₃ 4-CF ₃	5-Cl 5-Cl	CH ₂ CO ₂ Me CH ₂ OMe	Me Me	CH ₂ CH ₂
4-CF3 4-CF3	5-Cl 5-Cl	OMe	H	CH ₂
4-CF ₃	5-Cl	SMe	H	CH ₂
4-CF ₃	5-cl	SO ₂ Me	H	CH ₂
4-CF ₃	5-Cl	C(O)Me	Me	CH ₂
4-CF ₃	5-CI	C(O)Et	Me	CH ₂
4-CF ₃	5-Cl	C(O)Me	H	CH ₂
	•			

TABLE 12-continued

$$R_{2} \xrightarrow{\frac{5}{6}} \underbrace{ \left(\begin{array}{c} \frac{3}{A} \\ \frac{7}{2} \\ \frac{7}{2} \\ \frac{1}{N} \\ \frac{1}{N$$

		o \		
\mathbf{R}_1	\mathbf{R}_{2}	\mathbf{R}_3	R ₄	Α
			Н	CH.
4-CF ₃ 4-CF ₃	5-Cl 5-Cl	C(O)Et CN	Me	CH ₂ CH ₂
4-CF ₃	5-C1 5-C1	CN	Et	CH ₂
4-CF ₃	5-Cl	CN	CH ₂ Ph	CH ₂
4-CF ₃	5-Cl	CN	H	CH ₂
4-CF ₃	Н	H	H	CH ₂ CH ₂
4-Cì	Н	Н	H	CH ₂ CH ₂
4-Вг	H	H	H	CH ₂ CH ₂
4-OCF ₂ H	H	H	H	CH_2CH_2
4-CF ₃	4-F	H	H	CH ₂ CH ₂
4-C)	4-F	H	H	CH ₂ CH ₂
4-Br	4-F	H	H	CH ₂ CH ₂
4-OCF ₂ H	4-F	H	Н	CH ₂ CH ₂
4-CF ₃ 4-Cl	4-Cl 4-Cl	H H	H H	CH ₂ CH ₂ CH ₂ CH ₂
4-C: 4-Βr	4-Cl	H	H	CH ₂ CH ₂
4-OCF ₂ H	4-Cl	H	H	CH ₂ CH ₂
4-CF ₃	5-F	H	H	CH ₂ CH ₂
4-Cl	5-F	H	H	CH_2CH_2
4-Br	5-F	H	H	CH_2CH_2
4-OCF ₂ H	5-F	H	H	CH_2CH_2
4-CF ₃	6-F	H	H	CH ₂ CH ₂
4-Cl	6-F	H	H	CH ₂ CH ₂
4-Br	6-F	H	H	CH ₂ CH ₂
4-OCF ₂ H 4-CF ₃	6-F 6-Cl	H H	H H	CH ₂ CH ₂ CH ₂ CH ₂
4-CI 3	6-C1	H	H	CH ₂ CH ₂
4-Br	6-Cl	H	H	CH ₂ CH ₂
4-OCF ₂ H	6-Cl	H	H ,	CH ₂ CH ₂
4-CF ₃	4-F	Me	H	CH ₂ CH ₂
4-C1	4-F	Me	H	CH_2CH_2
4-Br	4-F	Me	H	CH ₂ CH ₂
4-OCF ₂ H	4-F	Me	H	CH ₂ CH ₂
4-CF ₃ 4-Cl	5-Cl 5-Cl	Me Me	H H	CH ₂ CH ₂ CH ₂ CH ₂
4-Br	5-Cl	Me	H	CH ₂ CH ₂
4-OCF ₂ H	5-Cl	Me	H	CH ₂ CH ₂
4-CF ₃	5-OCF ₂ H	Me	H	CH_2CH_2
4-C1	5-OCF ₂ H	Me	H	CH_2CH_2
4-Br	5-OCF ₂ H	Me	H	CH ₂ CH ₂
4-OCF ₂ H	5-OCF ₂ H	Me	H	CH ₂ CH ₂
4-CF ₃ 4-Cl	5-F 5-F	Me Me	H H	CH ₂ CH ₂ CH ₂ CH ₂
4-Br	5-F	Me	H	CH ₂ CH ₂
4-CF ₃	5-Cl	Et	H	CH ₂ CH ₂
4-Cl	5-Cl	Et	H	CH_2CH_2
4 -Br	5-Cl	Et	H	CH_2CH_2
4-CF ₃	5-OCF ₂ H	Et _	H.	CH ₂ CH ₂
4-Ci	5-OCF ₂ H	Et .	H	CH ₂ CH ₂
4-Br 4-CF ₃	5-OCF ₂ H 5-F	Et n-Bu	H H	CH ₂ CH ₂ CH ₂ CH ₂
4-Cl	5-F	n-Bu	H	CH ₂ CH ₂
4-Br	5- F	n-Bu	H	CH ₂ CH ₂
4-CF ₃	4-F	n-Bu	H	CH ₂ CH ₂
4-C1	4-F	n-Bu	H	CH ₂ CH ₂
4-Br	4-F	ก-Bu	H	CH ₂ CH ₂
4-CF ₃	5-C1	allyl	H	CH ₂ CH ₂
4-Cl 4-Вг	5-Cl 5-Cl	allyl allyl	H H	CH ₂ CH ₂ CH ₂ CH ₂
4-CF ₃	5-C1 .	Me	Me .	CH ₂ CH ₂
4-C1	5-Cl	Me	Me	CH ₂ CH ₂
4-Br	5-C1	Me	Me	CH ₂ CH ₂
4-CF ₃	5-F	Me	Me	CH ₂ CH ₂
4-Ci	5-F	Me	Me	CH ₂ CH ₂
4-Br	5-F	Me	Me	CH ₂ CH ₂
4-CF ₃ 4-Cl	5-OCF ₂ H 5-OCF ₂ H	Me Me	Me Me	CH ₂ CH ₂ CH ₂ CH ₂
4-Br	5-OCF ₂ H	Me	Me	CH ₂ CH ₂ CH ₂ CH ₂
4-CF ₃	5-OCF ₃	Me	Me	CH ₂ CH ₂
4-Cl	5-OCF ₃	Me	Me	CH ₂ CH ₂
4-Вг	5-OCF ₃	Me	Me	CH ₂ CH ₂

TABLE 12-continued

$$R_{2} \xrightarrow{\frac{4}{6}} A \xrightarrow{A} R_{3}$$

$$R_{2} \xrightarrow{\frac{5}{6}} R_{4}$$

$$N-NHCNH$$

$$0$$

$$R_{1}$$

•		0		
\mathbf{R}_1	R_2	\mathbf{R}_3	R ₄	Α
				
4-CF ₃	4-F	Me	Me	CH ₂ CH ₂
4-Ci 4-Br	4-F 4-F	Me	Me	CH ₂ CH ₂
4-CF ₃	5-Br	Me Me	Me Me	CH ₂ CH ₂ CH ₂ CH ₂
4-C1 3	5-Br	Me	Me	CH ₂ CH ₂ CH ₂ CH ₂
4-Br	5-Br	Me	Me	CH ₂ CH ₂
4-CF ₃	5-Cl	CH ₂ Ph	H	CH ₂ CH ₂
4-Cl	5-Cl	CH ₂ Ph	H	CH ₂ CH ₂
4-Br	5-Cl	CH ₂ Ph	H	CH ₂ CH ₂
4-OCF ₃	5-C1	CH ₂ Ph	H	CH ₂ CH ₂
4-oCF ₂ H	5-C1	CH ₂ Ph	H	CH ₂ CH ₂
4-CF ₃	5-F	CH ₂ Ph-4-F	H	CH_2CH_2
4-C 1	5- F	CH ₂ Ph-4-F	H	CH_2CH_2
4-Br	5-F	CH ₂ Ph-4-F	H	CH ₂ CH ₂
4-OCF ₂ H	5-F	CH ₂ Ph-4-F	H	CH ₂ CH ₂
4-OCF ₃	5-F	CH ₂ Ph-4-F	H	CH ₂ CH ₂
4-CF ₃	5-OCF ₂ H	CH ₂ Ph-4-F	H	CH ₂ CH ₂
4-Cl 4-Br	5-OCF ₂ H 5-OCF ₂ H	CH ₂ Ph-4-F CH ₂ Ph-4-F	H H	CH ₂ CH ₂ CH ₂ CH ₂
4-OCF ₃	5-OCF ₂ H	CH ₂ Ph-4-F	H	CH ₂ CH ₂
4-OCF ₂ H	5-OCF ₂ H	CH ₂ Ph-4-F	H	CH ₂ CH ₂
4-CF ₃	5-Cl	CH ₂ Ph-4-Cl	H	CH ₂ CH ₂
4-Cl	5-Cl	CH ₂ Ph-4-Cl	H	CH_2CH_2
4-Br	5-C1	CH ₂ Ph-4-Cl	Н	CH ₂ CH ₂
4-OCF ₃	5-C1	CH ₂ Ph-4-Cl	Ħ	CH_2CH_2
4-OCF ₂ H	5-C!	CH ₂ Ph-4-Cl	H	CH_2CH_2
4-CF ₃	H	CO ₂ Me	H	CH ₂ CH ₂
4-C1	H	CO ₂ Me	H	CH ₂ CH ₂
4-Br	H	CO ₂ Me	H	CH ₂ CH ₂
4-OCF ₂ H 4-F	H H	CO ₂ Me CO ₂ Me	H H	CH ₂ CH ₂ CH ₂ CH ₂
4-CF ₃	5-Cl	CO ₂ Me	H	CH ₂ CH ₂ CH ₂ CH ₂
4-Cl	5-C1	CO ₂ Me	H	CH ₂ CH ₂
4-Вт	5-Cl	CO ₂ Me	H	CH ₂ CH ₂
4-OCF ₂ H -	5-C1	CO ₂ Me	H	CH_2CH_2
4-OCF ₃	5-Cl	CO ₂ Me	H	CH ₂ CH ₂
4-NO ₂	5-Cl	CO ₂ Me	H	CH_2CH_2
4-CF ₃	5-F	CO ₂ Me	H	CH ₂ CH ₂
4-Cl	5-F	CO ₂ Me	H	CH ₂ CH ₂
4-Br	5-F	CO ₂ Me	H	CH ₂ CH ₂
4-OCF ₂ H 4-OCF ₃	5-F 5-F	CO ₂ Me CO ₂ Me	H H	CH ₂ CH ₂ CH ₂ CH ₂
4-CN	5-F	CO ₂ Me	H	CH ₂ CH ₂ CH ₂ CH ₂
4-CF ₃	4-F	CO ₂ Me	H	CH ₂ CH ₂
4-C1	4-F	CO ₂ Me	H	CH ₂ CH ₂
4-B r	4-F	CO ₂ Me	H	CH ₂ CH ₂
4-CF ₃	4-Cl	CO ₂ Me	Н	CH ₂ CH ₂
4-Cl	4-Cl	CO ₂ Me	H	CH ₂ CH ₂
4-Br	4-C1	CO ₂ Me	H	CH ₂ CH ₂
4-CF ₃	5-Ci	CO ₂ Me	Me	CH ₂ CH ₂
4-Cl 4-Br	5-Cl	CO ₂ Me	Me Me	CH ₂ CH ₂
4-DI 4-OCF ₂ H	5-Cl 5-Cl	CO ₂ Me CO ₂ Me	Me	CH ₂ CH ₂ CH ₂ CH ₂
4-OCF ₃	5-Cl	CO ₂ Me	Me	CH ₂ CH ₂
3,4-CF ₂ CF ₂ O	5-Cl	CO ₂ Me	Me	CH ₂ CH ₂
3,4-CF ₂ C(Me) ₂ O	5-Cl	CO ₂ Me	Me	CH ₂ CH ₂
4-CF ₃	5-F	CO ₂ Me	Me	CH ₂ CH ₂
4-Cl	5-F	CO ₂ Me	Me	CH ₂ CH ₂
4-B r	5-F	CO ₂ Me	Me	CH ₂ CH ₂
4-OCF ₂ H	5-F	CO ₂ Me	Ме	CH ₂ CH ₂
4-OCF ₃	5-F	CO ₂ Me ⁻	Me	CH ₂ CH ₂
3,4-CF ₂ CF ₂ O	5-F 5-F	CO ₂ Me	Me Me	CH ₂ CH ₂ CH ₂ CH ₂
3,4-CH ₂ C(Me) ₂ O 4-CF ₃	5-F H	CO ₂ Me H	ме Н	OngCh2
4-Cl 3	H	H	H	Ö
4-Br	H	H	H	ŏ
4-OCF ₃	H	H	H	0
4-OCF ₂ H	Н	H	H	О
4-CF ₃	4-F	H	H	О
4-Cl	4-F	H	H	0
4-Br	4-F	H	H	O

TABLE 12-continued

2	6	/2\ . R4 /	$ R_1$	
	7		\mathcal{A}^{N_1}	
		N-NHCNH-(<i>)</i> /	
		ö		
TD .	n -	D.	D.	Α
R ₁	R ₂	R ₃	R ₄	<u>A</u>
4-OCF ₃ 4-OCF ₂ H	4-F 4-F	H H	H H	0
4-CF ₃	4-Cl	H	H	Ŏ
4-C]	4-Cl	H	H	0
4-Br	4-Cl	H	H	0
4-OCF ₃ 4-OCF ₂ H	4-Cl 4-Cl	H H	H H	0
4-CF ₃	5-F	H	H	Ō
4-Cl	5-F	H	H	0
4-Br 4-OCF ₃	5-F 5-F	H H	H H	0
4-OCF ₂ H	5-F	H	H	ŏ
4-CF ₃	6-F	H	H	0
4-CF ₃	4-F	Me	H H	0
4-Cl 4-Br	4-F 4-F	Me Me	H	0
4-OCF ₃	4-F	Me	H	0
4-OCF ₂ H	4-F	Me	H	0
4-CF ₃ 4-Cl	5-Cl 5-Cl	Me Me	H H	0
4-Br	5-C1	Me	H	ŏ
4-OCF ₃	5-C1	Me	H	0
4-OCF ₂ H 4-CF ₃	5-Cl 5-OCF ₂ H	Me Me	H H	0
4-C1 3	5-OCF ₂ H	Me	H	ŏ
4-Br	5-OCF ₂ H	Me	H	0
4-OCF ₃	5-OCF ₂ H	Me	H	0
4-OCF ₂ H 4-CF ₃	5-OCF ₂ H 5-CF ₃	Me Me	H H	Ö
4-Cl	5-CF ₃	Me	H	Ö ,
4-Br	5-CF ₃	Me	H	0
4-OCF ₃ 4-OCF ₂ H	5-CF ₃ 5-CF ₃	Me Me	H H	0 .
4-CF ₃	5-E1 3	Me	H,	ŏ
4-Cl	5-F	Me	Н	0
4-Br	5-F 5-F	Me Me	H H	0
4-OCF ₃ 4-CF ₃	5-F 5-Cl	Et	H	Ö
4-C1	5-C1	Et	Н	0
4-Br	5-Ci	Et .	H	0
4-CF ₃ 4-Cl	5-OCF ₂ H 5-OCF ₂ H	Et Et	H H	Ö
4-Вг	5-OCF ₂ H	Et	H	Ō
4-CF ₃	5-F	n-Bu	H	0
4-Cl 4-Вт	5-F 5-F	n-Bu n-Bu	H H	0
4-CF ₃	4-F	n-Bu	H	Ö
4-Cl	4-F	n-Bu	H	0
4-Br 4-CF ₃	4-F 5-Cl	n-Bu allyl	H H	0
4-Ci .	5-Cl	allyl	H	ŏ
4-Br	5-Cl	allyl	Н .	0
4-CF ₃ 4-Cl	5-Cl 5-Cl	Me Me	Me Me	0
4-Br	5-Cl	Me	Me	ŏ
4-CF ₃	5- F	Me	Me	0
4-Cl 4-Br	5-F 5-F	Me Me	Me Me	0
4-CF ₃	5-OCF ₂ H	Me	Me	ŏ
4-Cl	5-OCF ₂ H	Me	Me	0
4-Br	5-OCF ₂ H	Me Me	Me Me	O O
4-CF ₃ 4-Cl	5-OCF ₃ 5-OCF ₃	Me Me	Me Me	0
4-Br	5-OCF ₃	Me	Me	0
4-CF ₃	4-F	Me	Me	0
4-Ci 4-Br	4-F 4-F	Me Me	Me Me	0
4-CF ₃	5-Br	Me	Me	ŏ
4-C!	5-Br	Me	Me	0
4-Br 4-OCF ₃	5-Br 5-Cl	Me allyl	Me Me	0
- - 3			-	•

TABLE 12-continued

$$R_{2} \xrightarrow{\frac{4}{6}} A \xrightarrow{A} R_{3}$$

$$R_{2} \xrightarrow{\frac{5}{6}} R_{4}$$

$$N-NHCNH$$

$$0$$

		0 \		
\mathbf{R}_1	\mathbf{R}_2	\mathbf{R}_3	R ₄	A
4-CF ₃	5-F			· · · · · · · · · · · · · · · · · · ·
4-OCF ₃	5-F	allyl allyl	Me Me	0
4-CF ₃	5-F	Et .	Me	o´
4-OCF ₃	5-F	Et	Me	Ö
4-CF ₃	5-Cl	Et	Me	Ο
4-OCF ₃	5-Cl	E t	Me	О
4-CF ₃	5-CF ₃	Et	Me	O
4-CF ₃	5-CF ₃	allyl	Me	0
4-OCF ₃ 4-CF ₃	5-CF ₃ 5-F	aliyl CH ₂ Ph	Me Me	0
4-OCF ₃	5-F	CH ₂ Ph	Me	ŏ
4-CF ₃	5-C1	CH ₂ Ph	Me	ŏ
4-OCF ₃	5-C1	CH ₂ Ph	Me	0
4-CF ₃	5-Cl	CH ₂ Ph	H	0
4-Ci	5-Cl	CH ₂ Ph	H	0
4-Br 4-OCF ₃	5-Cl 5-Cl	CH ₂ Ph CH ₂ Fh	H H	0
4-OCF ₂ H	5-Cl	CH ₂ Ph	H	0
4-CF ₃	5-F	CH ₂ Ph-4-F	H	Õ
4-Cl	5-F	CH ₂ Ph-4-F	H	Ö
4-Br	5-F	CH ₂ Ph-4-F	H	О
4-OCF ₂ H	5-F	CH ₂ Ph-4-F	H	0
4-OCF ₃	5-F	CH ₂ Ph-4-F	H	0
4-CF ₃ 4-Cl	5-OCF ₂ H 5-OCF ₂ H	CH ₂ Ph-4-F CH ₂ Ph-4-F	H H	0
4-Br	5-OCF ₂ H	CH ₂ Ph-4-F	H	Ö
4-OCF ₃	5-OCF ₂ H	CH ₂ Ph-4-F	H	Ö
4-OCF ₂ H	5-OCF ₂ H	CH ₂ Ph-4-F	H	0
4-CF ₃	5-C1	CH ₂ Ph-4-Cl	H	0
4-Cl	5-Cl	CHZPh-4-Cl	H	0
4-Br 4-OCF ₃	5-Cl 5-Cl	CH ₂ Ph-4-Cl CH ₂ Ph-4-Cl	H H	0
4-OCF ₂ H	5-Cl	CH ₂ Ph-4-Cl	H	O
4-CF ₃	H	CO ₂ Me	H	Ö
4-Ci	H	CO ₂ Me	H '	О
4-Br	H	CO ₂ Me	H	0
4-OCF ₂ H	H	CO ₂ Me	H	0
4-F 4-CF ₃	H 5-Cl	CO ₂ Me CO ₂ Me	H H	0
4-Cl	5-Cl	CO ₂ Me	H	Ö
4-Br	5-Cl	CO ₂ Me	H	O
4-OCF ₂ H	5-Cl	CO ₂ Me	H	O
4-OCF ₃	5-C1	CO ₂ Me	H	0
4-NO ₂ 4-CF ₃	5-Cl 5-F	CO ₂ Me	H	0
4-Cl	5-F	CO ₂ Me CO ₂ Me	H H	0 0 .
4-Br	5-F	CO ₂ Me	H	Ŏ
4-OCF ₂ H	5-F	CO ₂ Me	H	Ο
4-OCF ₃	5- F	CO ₂ Me	H	0
4-CN	5-F	CO ₂ Me	H	0
4-CF ₃ 4-Cl	4-F 4-F	CO ₂ Me CO ₂ Me	H H	0
4-Br	4-F	CO ₂ Me	H	0
4-CF ₃	4-Cl	CO ₂ Me	H	o ·
4-C1	4-Cl	CO ₂ Me	H	0 .
4-Br	4-Cl	CO ₂ Me	H	0
4-CF ₃	H	CO ₂ Me	Me	0
4-Cl 4-Br	H H	CO ₂ Me . CO ₂ Me	Me Me	0
4-OCF ₂ H	H	CO ₂ Me	Me	0
4-OCF ₃	H	CO ₂ Me	Me	Ŏ
4-CF ₃	5-Ci	CO ₂ Me	Me	0
4-Cl	5-Cl	CO ₂ Me	Me	0
4-Br 4-OCF ₂ H	5-Cl	CO ₂ Me	Me	0
4-OCF ₂ H 4-OCF ₃	5-Cl 5-Cl	CO ₂ Me CO ₂ Me	Me Me	O- O
4-CF ₃	5-E1	CO ₂ Me	Me	Ö
4-C1	5-F	CO ₂ Me	Me	ŏ
4-Br	5- F	CO ₂ Me	Me	0
4-OCF ₂ H	5-F	CO ₂ Me	Me	0
4-OCF ₃	5-F	CO ₂ Me	Me	. O

TABLE 12-continued

$$R_{2} \xrightarrow{\frac{4}{6}} A \xrightarrow{A} R_{3}$$

$$R_{4}$$

$$N-NHCNH$$

$$0$$

$$R_{1}$$

Ri	R ₂	R ₃	R ₄	Α .
4-CF ₃	4-F	CO ₂ Me	Me	Ο
4-C1	4-F	CO ₂ Me	Me	0
4-Br	4-F	CO ₂ Me	Me	0
4-OCF ₃ 4-OCF ₂ H	4-F 4-F	CO ₂ Me CO ₂ Me	Me Me	0
3,4-CF ₂ CF ₂ O	4-F	CO ₂ Me	Me	,0 0
3,4-CH ₂ C(Me) ₂ O	4-F	CO ₂ Me	Me	Ö
4-CF ₃	5-CF ₃	CO ₂ Me	Me	0
4-Ci	5-CF ₃	CO ₂ Me	Me	0
4-Br ·	5-CF ₃	CO ₂ Me	Me	0
4-OCF ₃ 4-OCF ₂ H	5-CF ₃ 5-CF ₃	CO ₂ Me CO ₂ Me	Me Me	0
4-CF ₃	5-Br	CO ₂ Me	Me	ŏ
4-Cl	5-Br	CO ₂ Me	Me	Ο
4-Br	5-Br	CO ₂ Me	Me	0
4-OCF ₃	5-Br	CO ₂ Me	Me	0
4-OCF ₂ H 3,4-CF ₂ CF ₂ O	5-Br 5-Вг	CO ₂ Me CO ₂ Me	Me Me	0
3,4-CH ₂ C(Me) ₂ O	5-Br	CO ₂ Me	Me	Ö
4-CF ₃	5-OCF ₂ H	CO ₂ Me	Me	Ö
4-C1	5-OCF ₂ H	CO ₂ Me	Me	О
4-Br	5-OCF ₂ H	CO ₂ Me	Me	0
4-OCF ₃	5-OCF-H	CO ₂ Me	Me Me	0
4-OCF ₂ H 4-CF ₃	5-OCF ₂ H 5-Cl	CO ₂ Me CO ₂ Me	Et .	0
4-Cl 3	5-Cl	CO ₂ Me	Et	ŏ
4-Вг	5-C1	CO ₂ Me	Et	Ο
4-CF ₃	5-C1	CO ₂ Me	CH ₂ Ph	0
4-Cl	5-Cl	CO ₂ Me	CH ₂ Ph	0
4-Br 4-CF ₃	5-Cl 5-Cl	CO ₂ Me CO ₂ Me	CH ₂ Ph allyl	0 0
4-Cl 3	5-C1 5-C1	CO ₂ Me	allyl·	Ö
4-Br	5-Cl	CO ₂ Me	allyl	Ö
4-CF ₃	5- F	CO ₂ Et	Me	О
4-Cl	5-F	CO ₂ Et	Me	0
4-Br 4-CF ₃	5-F 5-F	CO ₂ Et CO ₂ CH ₂ CF ₃	Me Me	O O
4-Cl	5-F	CO ₂ CH ₂ CF ₃	Me	ŏ
4-Br	5-F	CO ₂ CH ₂ CF ₃	Me	O
4-CF ₃	5-F	CO ₂ Ph	Me	0
4-Cl	5-F	CO ₂ Ph	Me	0
4-Br 4-CF ₃	5-F 5-Cl	CO ₂ Ph CO ₂ H	Me H	O O
4-CF ₃ 4-CF ₃	5-C1 5-C1	CONHMe	H	Ö ·
4-CF ₃	5-C1	CONMe	H	Ö
4-CF ₃	5-Cl	CONHPh	H	0
4-CF ₃	5-Cl	CSNMe ₂	H	0
4-CF ₃ 4-CF ₃	5-Cl 5-Cl	propargyl CH ₂ CH ₂ CN	Me Me	0
4-CF ₃	5-Cl	CH ₂ CO ₂ Me	Me	ŏ
4-CF ₃	5-Cl	CH ₂ OMe	Me	O
4-CF ₃	5-C1	OMe	H	0
4-CF ₃	5-C1	SMe	H	O
4-CF ₃ 4-CF ₃	5-Cl 5-Cl	SO ₂ Me C(O)Me	H Me	0
4-CF ₃	5-Cl	C(O)ME C(O)Et	Me	Ö
4-CF ₃	5-Cl	C(O)Me	H	Ö
4-CF ₃	5-Cl	C(O)Et	H	О
4-CF ₃	5-Ci	CN	Me	0
4-CF ₃ 4-CF ₃	5-CI	CN CN	Et CH ₂ Ph	0
4-CF ₃ 4-CF ₃	5-CI 5-Cl	CN	Н	Ö
4-CF ₃	H	H	H	Š
4-Cl	Н	H	H	S
4-Br	H	H	H	S
4-OCF ₂ H	H	H	H	S
4-CF ₃ 4-Cl	4-F 4-F	H H	H H	S S
4-Br	4-F	H	H	Š
4-OCF ₂ H	4-F	H	Н	S
4-CF ₃	4-Cl	H	H	S

TABLE 12-continued

		ö		
\mathbf{R}_1	R ₂	R ₃	R ₄	A
4-C1	4-Cl	Н	Н	
4-Br	4-C1	Н	H	S
4-OCF ₂ H	4-C1	Н	Н	S
4-CF ₃	5-F	Н	H	Š
4-Cl	5-F	H	H	S
4-Br	5-F	H	H	S
4-OCF ₂ H	5-F	Н	Н	S
4-CF ₃	4-F	Me	H	S
4-Cl	4-F	Me	Н	S
4-Br	4-F	Me	Н	S
4-OCF ₂ H	4-F	Me	Н	S
4-CF ₃	5-Cl	Me	Н	S
4-C1	5-C1	Me	H	S
4-Br	5-C1	Me	Н	S
4-OCF ₂ H	5-C1	Me	H	S
4-CF ₃	5-OCF ₂ H	Me	H	S
4-Cl	5-OCF ₂ H	Me	H	S
4-Br	5-OCF ₂ H	Me	H	S
4-OCF ₂ H	5-OCF ₂ H	Me	Н	S
4-CF ₃	5-F	Me	H	S
4-Cl	5-F	Me	Н	S
4-Br	5- F	Me	H	S
4-CF ₃	5-Cl	Et ·	Н	S
4-C1	5-Cl	Et	H	S
4-Br	5-C1	Et	H	S
4-CF ₃	5-OCF ₂ H	Et	H	S
4-C1	5-OCF ₂ H	Et	H	S
4-Br	5-OCF ₂ H	Et	H	S
4-CF ₃	5-F	n-Bu	H	S
4-Cl	5-F	n-Bu	Н	S
4-Br	5-F	n-Bu	H	S
4-CF ₃	4-F	n-Bu	. H	S
4-Cl *	4-F	n-Bu	H	S
4-Вг	4-F	n-Bu	H	S
4-CF ₃	5-C1	allyl	Н	S
4-C1	5-Cl	allyl	H	S
4-Br	5-Cl	allyl	H	S
4-CF ₃	5-C1	Me	Me	S
4-C1	5-Cl	Me	Me	S
4-Br	5-C1	Me	Me	S
4-CF ₃	5-F	Me	Me	S
4-C1	5-F	Me	Me	S
4-Br	5-F	Me	Me	S
4-CF ₃	5-OCF ₂ H	Me	Me	S
4-Cl	5-OCF ₂ H	Me	Me	S
4-Br	5-OCF ₂ H	Me	Me	S
4-CF ₃	5-OCF ₃	Me	Me	S
4-C1	5-OCF ₃	Me	Me	S
4-Br	5-OCF ₃	Me	Me	S
4-CF ₃	4-F	Me	Me	S
4-Cl	4-F	Ме	Me	S
4-Br	4-F	Me	Me	S
4-CF ₃	5-Br	Me	Me	S
4-Cl	5-Br	Me	Me	S
4-Br	5-Br	Me	Me	S
4-CF ₃	5-C1	CH ₂ Ph	H	S
4-C1	5-Cl	CH ₂ Ph	H	S
4-Br	5-Cl	CH ₂ Ph	H	S
4-OCF ₃	5-Ci	CH ₂ Ph	H	S
4-OCF ₂ H	5-Cl	CH ₂ Ph	H	S
4-CF ₃	5-F	CH ₂ Ph-4-F	H	S
4-Cl	5-F	CH ₂ Ph-4-F	H	S
4-Br	5-F	CH ₂ Ph-4-F	H	S
4-OCF ₂ H	5-F	CH ₂ Ph-4-F	H	5
4-OCF ₃	5-F	CH ₂ Ph-4-F	H	S
4-CF ₃	5-OCF-II	CH ₂ Ph-4-F	H	5
4-Cl	5-OCF-H	CH ₂ Ph-4-F	H	2
4-Br	5-OCF ₂ H	CH ₂ Ph-4-F	H	2
4-OCF ₃	5-OCF ₂ H	CH ₂ Ph-4-F	H	2
4-OCF ₂ H	5-OCF ₂ H	CH ₂ Ph-4-F	H	2
4-CF ₃	5-Ci	CH ₂ Ph-4-Cl	H	S

TABLE 12-continued

$$R_{2} \xrightarrow{\frac{4}{6}} A \xrightarrow{A} R_{3}$$

$$R_{4}$$

$$N-NHCNH$$

$$0$$

$$R_{1}$$

		ö \		
\mathbf{R}_1	R ₂	R ₃	R ₄	Α
4-Cl	5-Cl	CH ₂ Ph-4-Cl	Н	S
4-B r	5-Cl	CH ₂ Ph-4-Cl	H	S
4-OCF ₃	5-Cl	CH ₂ Ph-4-Cl	H	S
4-OCF ₂ H	5-Cl	CH ₂ Ph-4-Cl	H	S
4-CF ₃ 4-Cl	H H	CO ₂ Me	H H	S S
4-Ci 4-Br	H	CO ₂ Me CO ₂ Me	H	S
4-OCF ₂ H	H	CO ₂ Me	H	S
4-F	H	CO ₂ Me	H	S
4-CF ₃	5-Cl	CO ₂ Me	H	S
4-Cl 4-Br	5-Cl 5-Cl	CO ₂ Me CO ₂ Me	H H	S S
4-OCF ₂ H	5-C1 5-C1	CO ₂ Me	H	S
4-OCF ₃	5-C1	CO ₂ Me	H	S
4-NO ₂	5-C1	CO ₂ Me	H	S
4-CF ₃	5-F	CO ₂ Me	H	S
4-Cl 4-Br	5-F 5-F	CO ₂ Me CO ₂ Me	H H	S S
4-OCF ₂ H	5-F	CO ₂ Me	H	Š
4-OCF ₃	5-F	CO ₂ Me	H	S
4-CN	5-F	CO ₂ Me	H	S
4-CF ₃	4-F	CO ₂ Me	H	S
4-С1 4-Вт	4-F 4-F	CO ₂ Me CO ₂ Me	H H	S S
4-CF ₃	4-Cl	CO ₂ Me	H	Š
4-Cl	4-C1	CO ₂ Me	Н	S
4-Br	4-Cl	CO ₂ Me	H	S
4-CF ₃	H	CO ₂ Me	Me	S
4-Cl 4-Br	H H	CO ₂ Me CO ₂ Me	Me Me	S S
4-OCF ₂ H	H	CO ₂ Me	Me	Š .
4-OCF ₃	H	CO ₂ Me	Me	S
3,4-CF ₂ CF ₂ O	H	CO ₂ Me	Me	S
3,4-CH ₂ C(Me) ₂ O	H 5 Cl	CO ₂ Me	Me Me	S S
4-CF ₃ . 4-Cl	5-Cl 5-Cl	CO ₂ Me CO ₂ Me	Me	S
4-Br	5-Cl	CO ₂ Me	Me	Š
4-OCF ₂ H	5-C1	CO ₂ Me	Me	S
4-OCF ₃	5-C1	CO ₂ Me	Me	S
3,4-CF ₂ CF ₂ O 3,4-CF ₂ C(Me) ₂ O	5-Cl 5-Cl	CO ₂ Me CO ₂ Me	Me Me	S S
4-CF ₃	5-E1	CO ₂ Me	Me	Š
4-C1	5- F	CO ₂ Me	Me	S
4-Br	5-F	CO ₂ Me	Me	S
4-OCF ₂ H 4-OCF ₃	5-F 5-F	CO ₂ Me CO ₂ Me	Me Me	S S
3,4-CF ₂ CF ₂ O	5-F	CO ₂ Me	Me	S
3,4-CH ₂ C(Me) ₂ O	5-F	CO ₂ Me	Me	S
4-CF ₃	4-F	CO ₂ Me	Me	S
4-Cl	4-F	CO ₂ Me	Me	S
4-Br 4-OCF ₃	4-F 4-F	CO ₂ Me CO ₂ Me	Me Me	S S
4-OCF ₂ H	4-F	CO ₂ Me	Me	Š
3,4-CF ₂ CF ₂ O	4-F	CO ₂ Me	Me	S
3,4-CH ₂ C(Me) ₂ O	4-F	CO ₂ Me	Me	S
4-CF ₃ 4-Cl	5-OCF ₂ H 5-OCF ₂ H	CO ₂ Me CO ₂ Me	Me Me	S
4-Br	5-OCF ₂ H	CO ₂ Me	Me	S
4-OCF ₃	5-OCF ₂ H	CO ₂ Me	Me	Š
4-OCF ₂ H	5-OCF ₂ H	CO ₂ Me	Me	S
3,4-CF ₂ CF ₂ O	5-OCF ₂ H	CO ₂ Me	Me	S
3,4-CH ₂ C(Me) ₂ O 4-OCF ₂ H	5-OCF ₂ H 6-F	CO ₂ Me CO ₂ Me	Me Me	S S
4-OCF ₂ H 4-OCF ₃	6-F	CO ₂ Me	Me	S
4-CF ₃	5-Cl	CO ₂ Me	Et	S
4-Cl	5-Cl	CO ₂ Me	Et	S
4-Br	5-Ci	CO ₂ Me	Et CH-Dh	S
4-CF ₃ 4-Cl	5-Cl 5-Cl	Co ₂ Me CO ₂ Me	CH ₂ Ph CH ₂ Ph	S S
4-Ci 4-Br	5-C1 5-C1	COzMe	CH ₂ Ph	S
4-CF ₃	5-Cl	CO ₂ Me	allyl	S

TABLE 12-continued

$$R_{2} \xrightarrow{5} \overbrace{ \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}}^{3} R_{3}$$

$$R_{3}$$

$$R_{4}$$

$$N-NHCNH$$

$$0$$

•		O		
\mathbf{R}_1	R ₂	\mathbf{R}_3	R ₄	· A
4-Cl	5-Cl	COzMe	allyl	S
4-Br 4-CF ₃	5-Cl 5-F	CO ₂ Me	allyl Me	S
4-Cl 3	5-F	CO ₂ Et CO ₂ Et	Me	S
4-Br	5- F	CO ₂ Et	Me	S
4-CF ₃	5-F	CO ₂ CH ₂ CF ₃	Me	S
4-Cl 4-Вг	5-F 5-F	CO ₂ CH ₂ CF ₃ CO ₂ CH ₂ CF ₃	Me Me	S S
4-CF ₃	5-F	CO ₂ Ph	Me	S
4-Cl	5-F	CO ₂ Ph	Me	S
4-Br	5-F	CO ₂ Ph	Me	S
4-CF ₃ 4-CF ₃	5-Cl 5-Cl	CO ₂ H CONHMe	H H	S
4-CF ₃	5-Cl	CONMe	H	S
4-CF ₃	5-Cl	CONHPh	H	S
4-CF ₃	5-Cl	CSNMe ₂	H	S
4-CF ₃ 4-CF ₃	5-Cl 5-Cl	propargyl CH ₂ CH ₂ CN	Me Me	5
4-CF ₃	5-Cl	CH ₂ CO ₂ Me	Me	S
4-CF ₃	5-Cl -	CH ₂ OMe	Me	S
4-CF ₃	5-Cl	OMe	H	S
4-CF ₃ 4-CF ₃	5-Cl 5-Cl	SMe SO ₂ Me	H H	S
4-CF ₃ 4-CF ₃	5-Cl	SO ₂ Me C(O)Me	n Me	S
4-CF ₃	5-Cl	C(O)Et	Me	S
4-CF ₃	5-Cl	C(O)Te	H	S
4-CF ₃ 4-CF ₃	5-Cl 5-Cl	C(O)Et CN	H Me	S
4-CF ₃ 4-CF ₃	5-Cl	CN	Me Et	S S
4-CF ₃	5-C1	CN	CH ₂ Ph	Š·
4-CF ₃	5-Cl	CN	H	S
4-CF ₃ 4-Cl	4-F 4-F	allyl allyl	H H	OCH_2 OCH_2
4-Br	4-F	allyl	H	OCH ₂ OCH ₂
4-OCF ₂ H ·	4-F	allyl	H	OCH_2
4-OCF ₃	4-F	allyl	H	OCH ₂
4-CF ₃ 4-Cl	4-Cl 4-Cl	allyl allyl	H H	OCH ₂ OCH ₂
4-C: 4-Br	4-Cl	allyl	H	OCH ₂
4-OCF ₂ H	4-Cl	allyl	H	OCH_2
4-OCF ₃	4-Cl	allyl	H	OCH ₂
4-CF ₃ 4-Cl	5-F 5-F	propargyl propargyl	H H	OCH_2 OCH_2
4-Br	5-F	propargyl propargyl	H	OCH ₂
4-OCF ₂ H	5- F	propargyl	H	OCH ₂
4-OCF ₃	5-F	propargyl	H	OCH ₂
4-CF ₃ 4-Cl	5-C1 5-C1	Me Me	H H	OCH_2 OCH_2
4-Br	5-Cl	Me	H	OCH ₂
4-OCF ₂ H	5-Cl	Me	H	OCH_2
4-OCF ₃	5-CI	Me	H	OCH ₂
4-CF ₃ 4,Cl	5-CF ₃ 5-CF ₃	Me Me	H H	OCH ₂ OCH ₂
4-Br	5-CF ₃	Me	H	OCH ₂
4-OCF ₂ H	5-CF ₃	Me	H	OCH ₂
4-OCF ₃	5-CF ₃	Me	H	OCH ₂
4-CF ₃ 4-Cl	5-OCF ₂ H 5-OCF ₂ H	Me Me	H H	OCH ₂ OCH ₂
4-Br	5-OCF ₂ H	Me	H	OCH ₂
4-OCF ₂ H	5-OCF ₂ H	Me	Н	OCH ₂
4-OCF ₃	5-OCF ₂ H	Me CH-Db	H	OCH ₂
4-CF ₃ 4-Cl	4-F 4-F	CH ₂ Ph CH ₂ Ph	H H	OCH ₂ OCH ₂
4-Br	4-F	CH ₂ Ph	H	OCH ₂
4-OCF ₂ H	4-F	CH ₂ Ph	H	OCH ₂
4-OCF ₃	4-F	CH ₂ Ph	H	OCH ₂
4-CF ₃ 4-Cl	4-Cl 4-Cl	CH ₂ Ph CH ₂ Ph	H H	OCH_2 OCH_2
4-Br	4-Cl	CH ₂ Ph	H	OCH ₂ OCH ₂
4-OCF ₂ H	4-Cl	CH ₂ Ph	Η .	OCH ₂
4-OCF ₃	4-Cl	CH ₂ Ph	H	OCH_2

TABLE 12-continued

$R_2 \xrightarrow{4} A$ R_3 R_4 R_1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
ö	

R ₁	\mathbf{R}_2	R ₃	R4	A	<u>. </u>	
4-CF ₃	5-F	CH ₂ Ph	Н	OCH ₂		
4-Ci	5-F	CH ₂ Ph	H	OCH ₂		
4-Br	5-F	CH ₂ Ph	H	OCH ₂		
4-OCF ₂ H	5-F	-	H	-		•
•		CH ₂ Ph		OCH ₂		
4-OCF ₃	5-F	CH ₂ Ph	H	OCH ₂	•	
4-CF ₃	5-Ci	CH ₂ Ph-4-Cl	H	OCH ₂		
4-Cl	5-C1	CH ₂ Ph-4-Cl	H	OCH_2		
4-Br	5-C1	CH ₂ Ph-4-Cl	H	OCH ₂		
4-OCF ₂ H	5-Cl	CH ₂ Ph-4-Cl	H	OCH_2		
4-OCF ₃	5-C1	CH ₂ Ph-4-Cl	H	OCH ₂		
4-CF ₃	5-CF ₃	CH ₂ Ph-4-Cl	H	OCH_2		
4-Ci	5-CF ₃	CH ₂ Ph-4-Cl	H	OCH ₂		
4-Br	5-CF ₃	CH ₂ Ph-4-Cl	H	OCH ₂		
4-OCF ₂ H	•	-		_		
-	5-CF ₃	CH ₂ Ph-4-Cl	H	OCH ₂		
4-OCF ₃	5-CF ₃	CH ₂ Ph-4-Cl	H	OCH ₂		_
4-CF ₃	5-OCF ₂ H	CH ₂ Ph-4-Cl	H	OCH ₂		
4-C1	5-OCF ₂ H	CH ₂ Ph-4-Cl	H	OCH_2		
4-Вг	5-OCF ₂ H	CH ₂ Ph-4-Cl	H	OCH_2		
4-OCF ₂ H	5-OCF ₂ H	CH ₂ Ph-4-Cl	H	OCH_2		
4-OCF ₃	5-OCF ₂ H	CH ₂ Ph-4-Cl	H	OCH ₂		
4-CF ₃	4-F	CO ₂ Me	H	OCH ₂	•	
4-CI	4-F	CO ₂ Me	H	OCH ₂		
4-Вг	4- F	CO ₂ Me	H	OCH ₂		
4-OCF ₂ H	4-F	CO ₂ Me	H	OCH ₂		
4-OCF ₃	4-F		H	OCH ₂		
•		CO ₂ Me		_		
4-CF ₃	4-Cl	CO ₂ Me	H	OCH ₂		
4-Cl	4-Cl	CO ₂ Me	H	OCH ₂		
4-Br	4-C1	CO ₂ Me	H	OCH ₂		
4-OCF ₂ H	4-Cl	COzMe	H	OCH_2		
4-OCF ₃	4-Cl	CO ₂ Me	H	OCH ₂		-
4-CF ₃	5-F	CO ₂ Me	H	OCH_2		
4-Cl	5-F	CO ₂ Me	H	OCH_2		
4-Br	5-F	CO ₂ Me	H	OCH_2		
4-OCF ₂ H	5-F	CO ₂ Me	H	OCH	•	
4-OCF ₃	5-F	CO ₂ Me	H	OCH ₂		
4-CF ₃	5-Cl	CO ₂ Me	H	OCH ₂	•	
4-Cl	5-C1		H	OCH ₂		
4-Br	5-C1	CO ₂ Me		-		
		CO ₂ Me	H	OCH ₂		•
4-OCF ₂ H	5-C1	CO ₂ Me	H	OCH ₂		
4-OCF ₃	5-C1	CO ₂ Me	H	OCH ₂		
4-CF ₃	5-CF ₃	CO ₂ Me	H	OCH ₂	•	
4-Cl	5-CF ₃	CO ₂ Me	H	OCH_2		
4-Вг	5-CF ₃	CO ₂ Me	H	OCH_2		
4-OCF ₂ H	5-CF ₃	CO ₂ Me	H	OCH ₂		
4-OCF ₃	5-CF ₃	CO ₂ Me	H	OCH_2		
4-CF ₃	5-OCF ₂ H	CO_2Me	H	OCH ₂		
4-C)	5-OCF ₂ H	CO ₂ Me	H	OCH ₂		•
4-Br	5-OCF ₂ H	CO ₂ Me	H	OCH ₂		_
4-OCF ₂ H	5-OCF ₂ H	CO ₂ Me	H	OCH ₂		•
4-OCF ₃	5-OCF ₂ H	CO ₂ Me	H	OCH ₂		
4-CF ₃	-	_		-		
_	4-F	CO ₂ Me	Me	OCH ₂		
4-CI	4-F	CO ₂ Me	Me	OCH ₂		
4-Br	4-F	CO ₂ Me	Me	OCH ₂	•	
4-OCF ₂ H	4-F	CO ₂ Me	Me	OCH ₂	•	
4-OCF ₃	4-F	CO ₂ Me	Me	OCH ₂		
4-CF ₃	4-Cl	CO ₂ Me	Me	OCH ₂		
4-Cl	4-C1	CO ₂ Me	Me	OCH ₂		
4-B r	4-C1	$CO_2^{-}Me$	Me	OCH_2		
4-OCF ₂ H	4-C1	CO ₂ Me	Me	OCH ₂		
4-OCF ₃	4-Cl	CO ₂ Me	Me	OCH ₂		
4-CF ₃	5-F	CO ₂ Me	Me	OCH ₂		
4-Cl	5-F			_		•
		CO ₂ Me	Me	OCH ₂		
4-Br	5-F	CO ₂ Me	Me	OCH ₂		
4-OCF ₂ H	5-F	CO ₂ Me	Me	OCH ₂	•	
4-OCF ₃	5-F	CO ₂ Me	Me	OCH_2		
4-CF ₃	5-C1	CO ₂ Me	Me	OCH ₂		
4-Cl	5-C1	CO ₂ Me	Me	OCH ₂		
4-Br	5-Cl	CO ₂ Me	Me	OCH ₂		
4-OCF ₂ H	5-Cl	CO ₂ Me	Me	OCH ₂		
4-OCF ₃	5-Cl	CO ₂ Me	Me	OCH ₂		
4-OCF ₃	5-CF ₃	CO ₂ Me	Me	OCH ₂ OCH ₂	•	
ment A. C.J.	3a6 577		5/1 (4			

TABLE 12-continued

$$R_{2} \xrightarrow{\frac{5}{6}} A \xrightarrow{A} R_{3}$$

$$R_{4}$$

$$N-NHCNH$$

$$N$$

$$N$$

		O		
\mathbf{R}_1	\mathbb{R}_2	R ₃	R_4	Α
	······································		<u></u>	
4-C1	5-CF ₃	CO ₂ Me	Me	OCH ₂
4-Br	5-CF ₃	CO ₂ Me	Me	OCH ₂
4-OCF ₂ H 4-OCF ₃	5-CF ₃ 5-CF ₃	CO ₂ Me	Me Me	OCH ₂ OCH ₂
4-CF ₃	5-OCF ₂ H	CO ₂ Me CO ₂ Me	Me	OCH ₂
4-Cl 3	5-OCF ₂ H	CO ₂ Me	Me	OCH ₂
4-Br	5-OCF ₂ H	CO ₂ *ue	Me	OCH ₂
4-OCF ₂ H	5-OCF ₂ H	CO ₂ uc CO ₂ Me	Me	OCH ₂
4-OCF ₃	5-OCF ₂ H	CO ₂ Me	Me	OCH ₂
4-CF ₃	4-F	Me	Н	SCH_2
4-Cl	4-F	Me	H	SCH ₂
4-Br	4-F	Me	H.	SCH ₂
4-OCF ₂ H	4-F	Me	H	SCH_2
4-OCF ₃	4-F	Me	H	SCH ₂
4-CF ₃	4-Cl	Me	H	SCH ₂
4-Cl	4-Cl	Me	H	SCH ₂
4-Br	4-Cl	Me	H	SCH ₂
4-OCF ₂ H	4-Cl	Me	H	SCH ₂
4-OCF ₃	4-Cl 5-F	Me allyl	H H	SCH ₂ SCH ₂
4-CF ₃ 4-Cl	5-F	allyl	H	SCH ₂
4-Br	5-F	allyl	H	SCH ₂
4-OCF ₂ H	5-F	allyl	Ĥ	SCH ₂
4-OCF ₃	5-F	allyl	H	SCH ₂
4-CF ₃	5-C1	CH ₂ Ph	H	SCH_2
4-C1	5-C1	CH_2^- Ph	Н	SCH ₂
4-B r	5-Cl	CH ₂ Ph	H	SCH ₂
4-OCF ₂ H	5-Cl	CH ₂ Ph	H	SCH ₂
4-OCF ₃	5-Cl	CH ₂ Ph	H	SCH ₂
4-CF ₃	5-CF ₃	CH ₂ Ph-4-Cl	H	SCH ₂
4-Cl	5-CF ₃	CH ₂ Ph-4-Cl	·H	SCH ₂
4-Br	5-CF ₃	CH ₂ Ph-4-Cl	H H	SCH ₂ SCH ₂
4-OCF ₂ H 4-OCF ₃	5-CF ₃ 5-CF ₃	CH ₂ Ph-4-Cl CH ₂ Ph-4-Cl	H	SCH ₂
4-CF ₃	5-OCF ₂ H	CH ₂ Ph-4-Cl	H'	SCH ₂
4-C1	5-OCF ₂ H	CH ₂ Ph-4-Cl	H	SCH ₂
4-Вг	5-OCF ₂ H	CH ₂ Ph-4-Cl	Н	SCH_2
4-OCF ₂ H	5-OCF ₂ H	CH ₂ Ph-4-Cl	H	SCH ₂
4-OCF ₃	5-OCF ₂ H	CH ₂ Ph-4-Cl	H	SCH_2
4-CF ₃	4-F	CO ₂ Me	H	SCH ₂
4-C)	4-F	CO ₂ Me	H	SCH ₂
4-Br	4-F	CO ₂ Me	H	SCH ₂
4-OCF ₂ H	4-F	CO ₂ Me	H H	SCH ₂
4-OCF ₃ 4-CF ₃	4-F 4-Cl	CO ₂ Me CO ₂ Me	H	SCH ₂ SCH ₂
4-Cl	4-Ci	CO ₂ Me	H	SCH ₂
4-Br	4-Cl	CO ₂ Me	H	SCH ₂
4-OCF ₂ H	4-C1	CO ₂ Me	H	SCH ₂
4-OCF ₃	4-C1	CO ₂ Me	H	SCH_2
4-CF ₃	5-F	CO ₂ Me	H	SCH ₂
4-Ci	5-F	CO ₂ Me	H	SCH ₂
4-Br	5-F	CO ₂ Me	H	SCH ₂
4-OCF ₂ H	5-F	CO ₂ Me	H	SCH ₂ .
4-OCF ₃	5-F	CO ₂ Me	H	SCH ₂
4-CF ₃	5-Cl	CO ₂ Me	H H	SCH ₂ SCH ₂
4-Cl 4-Br	5-C] 5-C]	CO ₂ Me CO ₂ Me	H	SCH ₂
4-OCF ₂ H	5-Cl	CO ₂ Me	**	SCH ₂
4-OCF ₃	5-Cl	CO ₂ Me	H	SCH ₂
4-CF ₃	5-CF ₃	CO ₂ Me	H	SCH ₂
4-Cl	5-CF ₃	CO ₂ Me	H	SCH ₂
4-Вг	5-CF ₃	CO ₂ Me	H	SCH ₂
4-OCF ₂ H	5-CF ₃	CO ₂ Me	H	SCH ₂
4-OCF ₃	5-CF ₃	CO ₂ Me	H	SCH ₂
4-CF ₃	5-OCF ₂ H	CO ₂ Me	H	SCH ₂
4-Cl	5-OCF-H	CO ₂ Me	H	SCH ₂
4-Br	5-OCF-H	CO ₂ Me	H	SCH ₂
4-OCF ₂ H	5-OCF ₂ H	CO ₂ Me	H H	SCH ₂ SCH ₂
4-OCF ₃ 4-CF ₃	5-OCF ₂ H 4-F	CO ₂ Me CO ₂ Me	Me	SCH ₂ SCH ₂
4-CF3 4-Cl	4-F	CO ₂ Me	Me	SCH ₂
	. -		+·**	

TABLE 12-continued

Ri	R ₂	R ₃	R ₄	A
4-Br	4-F	CO ₂ Me	Me	SCH ₂
4-OCF ₂ H	4-F	CO ₂ Me	Me	SCH ₂
4-OCF ₃	4-F	CO ₂ Me	Me	SCH ₂
4-CF ₃	4-Cl	CO ₂ Me	Me	SCH ₂
4-C 1	4-C1	CO ₂ Me	Me	SCH ₂
4-B r	4-Cl	CO ₂ Me	Me	SCH ₂
4-OCF ₂ H	4-Cl	CO ₂ Me	Me	SCH ₂
4-OCF ₃	4-Cl	CO ₂ Me	Me	SCH ₂
4-CF ₃	5-F	CO ₂ Me	Me	SCH ₂
4-Cl	5-F	CO ₂ Me	Me	SCH ₂
4-Вг	5-F	CO ₂ Me	Me	SCH ₂
4-OCF ₂ H	5-F	CO ₂ Me	Me	SCH ₂
4-OCF ₃	5-F	CO ₂ Me	Me	SCH ₂
4-CF ₃	5-Cl	CO ₂ Me	Me	SCH ₂
4-Cl	5-Cl	CO ₂ Me	Me	SCH ₂
4-Br	5-Cl	CO ₂ Me	Me	SCH ₂
4-OCF ₂ H	5-CI	CO ₂ Me	Me	SCH ₂
4-OCF ₃	5-Cl	CO ₂ Me	Me	SCH ₂
4-CF ₃	5-CF ₃	CO ₂ Me	Me	SCH ₂
4-Cì	5-CF ₃	CO ₂ Me	Me	SCH_2
4-Br	5-CF ₃	CO ₂ Me	Me	SCH ₂
4-OCF ₂ H	5-CF ₃	CO_2Me	Me	SCH_2
4-OCF ₃	5-CF ₃	CO_2Me	Me	SCH_2
4-CF ₃	5-OCF ₂ H	CO ₂ Me	Me	SCH ₂
4-C1	5-OCF ₂ H	CO ₂ Me	Me	SCH ₂
4-Br	5-OCF ₂ H	CO ₂ Me	Me	SCH ₂
4-OCF ₂ H	5-OCF ₂ H	CO ₂ Me	Me	SCH ₂
4-OCF ₃	5-OCF ₂ H	CO ₂ Me	Me .	SCH ₂

TABLE 13

R ₁	\mathbb{R}_2	R ₃	R4	R ₅	R ₆	A
4CF ₃	5-C1	Pt	Н	Me	Н	CH ₂
4-Cl	5-Cl	Ph	H	Me	H	CH_2
4-Br	5-Cl	Ph	H	Me	H	CH_2
4-CF ₃	5-Cl	Ph	H	C(O)Me	H	CH_2
4-Cl	5-Cl	Ph	H	C(O)Me	H	CH_2
4-Br	5-Cl	Ph	H	C(O)Me	H	CH_2
4-CF ₃	5-CI	Ph	Ħ	CO ₂ Me	• •H	CH_2
4-Cl	5-Cl	Ph	H	CO ₂ Me	H	CH_2
4-Br	5-Cl	Ph	H	CO ₂ Me	• H	CH_2
4-CF ₃	5-CI	Ph	Н	Ph	H	CH_2
4-Cl	5-C1	Ph	H	Ph	H	CH_2
4-Br	5-Cl	Ph	Н	Ph	H	CH ₂
4-CF ₃	5-Cl	Ph	H	4-Cl-Ph	H	CH ₂
4-Cl	5-Cl	Ph	H	4-Cl-Ph	H	CH ₂
4-Br	5-C1	Ph	H	4-Cl-Ph	H	CH_2
4-CF ₃	5-Cl	Ph	H	4-F-Ph	H	CH ₂
4-Cl	5-C1	Ph	H	4-F-Ph	H	CH_2
4-Br	5-C1	Ph	H	5-F-Ph	H	CH ₂
4-CF ₃	5-F	Ph	H	Me	Ħ	CH_2
4- Cl	5-F	Ph	H	Me	H	CH_2
4-Br	5-F	Ph	H	Me	Н	CH ₂
4-CF ₃	5-F	Ph	H	Ph	H	CH_2
4-Cl	5-F	Ph	H	Ph	H	CH_2
4-Br	5-F	Ph	H	Ph	H	CH ₂
4-CF ₃	5-F	Ph	H	SN(Me)CO ₂ n-Bu	H	CH_2

TABLE 13-continued

6 2 2 1 2 1 2 1 2 1 2						
			7	N /	R_1	
				$N-C-N-\left(\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		
_	_	_	_	R ₅ O R ₆ _		
\mathbf{R}_1	R ₂	R ₃	R ₄	R ₅	R ₆	<u>A</u>
4-Сl 4-Вг	5-F 5-F	Ph Ph	H H	SN(Me)CO ₂ n-Bu SN(Me)CO ₂ n-Bu	H H	CH_2 CH_2
4-CF ₃	5-F	Ph	H	SN(i-Pr)CO ₂ Et	H	CH ₂
4-Cl	5-F	Ph	Н	SN(i-Pr)CO ₂ Et	H	CH_2
4-Br 4-CF ₃	5-F 5-F	Ph Ph	H H	SN(i-Pr)CO ₂ Et SCO ₂ n-Hex	H H	CH ₂ CH ₂
4-Cl	5-F	Ph	H	SCO ₂ n-Hex	H	CH ₂
4-Br	5-F	Ph	H	SCO ₂ n-Hex	H	CH ₂
4-CF ₃ 4-Cl	5-F 5-F	Ph Ph	H H	SN(Me)SO ₂ Me SN(Me)SO ₂ Me	H H	CH ₂ CH ₂
4-Br	5-F	Ph	H	SN(Me)SO ₂ Me	H	CH ₂
4-CF ₃	5-Cl	4-Cl-Ph	H	Me	H	CH ₂
4-Cl 4-Br	5-Cl 5-Cl	4-Cl-Ph 4-Cl-Ph	H H	Me Me	H H	CH ₂ CH ₂
4-CF ₃	5-Cl	4-Cl-Ph	H	4-F-Ph	H	CH ₂
4-C1	5-Cl	4-Cl-Ph	H	4-F-Ph	H	CH ₂
4-Br 4-CF ₃	5-Cl 5-Cl	4-Ci-Ph 4-Cl-Ph	H H	4-F-Ph S-Ph	H H	CH_2 CH_2
4-Cl	5-Cl	4-Cl-Ph	H	S-Ph	H	CH ₂
4-Br	5-Cl	4-Cl-Ph	H	S-Ph	H	CH ₂
4-CF ₃ 4-Cl	5-Cl 5-Cl	4-Cl-Ph 4-Cl-Ph	H H	CO ₂ Et CO ₂ Et	H H	CH_2 CH_2
4-Br	5-Cl	4-Cl-Ph	Н	CO ₂ Et	H	CH ₂
4-CF ₃	5-Cl	4-Cl-Ph	H	SCO ₂ n-Bu	H	CH ₂
4-Cl 4-Br	5-Cl 5-Cl	4-Cl-Ph 4-Cl-Ph	H H	SCO2n-Bu SCO2n-Bu	H H	CH_2 CH_2
4-CF ₃	5-Cl	4-Cl-Ph	H	SMe	H	CH_2
4-Cl	5-Cl 5-Cl	4-Cl-Ph 4-Cl-Ph	H H	SMe SMe	H H	CH ₂ CH ₂
4-Вт 4-СF ₃		4-Ci-Fii	H	CO ₂ Me	H .	CH ₂
4-C1	5-Cl	4-F-Ph	H	CO ₂ Me	H	CH_2
4-Br 4-CF ₃	5-Cl 5-Cl	4-F-Ph 4-F-Ph	H H	CO ₂ Me SN(Me)SO ₂ -4-Me-Ph	H H	CH ₂ CH ₂
4-Cl 3	5-C1	4-F-Ph	H	SN(Me)SO ₂ -4-Me-Ph	H	CH ₂
4-Br	5-Cl	4-F-Ph	H	SN(Me)SO ₂ -4-Me-Ph	H	CH_2
4-CF ₃ 4-Cl	5-Cl 5-Cl	4-F-Ph 4-F-Ph	H H	SN(Me)P(O)(OEt) ₂ SN(Me)P(O)(OEt) ₂	H H	CH_2 CH_2
4-Br	5-C1	4-F-Ph	H	$SN(Me)P(O)(OEt)_2$	H	CH ₂
4-CF ₃	5-C1	4-F-Ph	H	O OEt / SN(Me)P	H	CH ₂
				Et		
4-Ci	5-C1	4-F-Ph	Н	O OEt	H	CH ₂
				SN(Me)P Et		
4-Br	5-Cl	4-F-Ph	H	O OEt	H	CH ₂
4-Di	J-C1	4-1 -1 11	**		4.4	Q11 ₂
				SN(Me)P		
				Et		
4-CF ₃	5-Cl	4-F-Ph	H	CO ₂ Et	H	CH ₂
4-Ci 4-Br	5-Cl 5-Cl	4-F-Ph 4-F-Ph	H H	CO ₂ Et CO ₂ Et	H H	CH ₂ CH ₂
4-CF ₃	5-Cl		H	Ph	H	CH ₂
4-C)	5-C1	4-F-Ph	H	Ph	H	CH ₂
4-Br 4-CF ₃	5-Cl 5-Cl		H H	Ph H	H Me	CH ₂ CH ₂
4-Cl	5-Cl	Ph	H	H	Me	CH_2
4-Br	5-Cl 5-Cl	Ph Ph	H H	H H	Me C(O)Me	CH ₂
4-CF ₃ 4-Cl	5-Cl	Ph	H	H	C(O)Me	CH ₂ CH ₂
4-Br	5-Cl	Ph	H	H	C(O)Me	CH_2
4-CF ₃	5-Cl	Ph	H	H	CO ₂ Me	CH ₂
					•	•

TABLE 13-continued

					K ₅ U	K ₆		
R ₁	\mathbb{R}_2	R ₃	R ₄	R ₅			R ₆	Α
4-C1	5-C1	Ph	H	H			CO ₂ Me	CH_2
4-Br	5-C1	Ph	H	H			CO ₂ Me	CH_2
4-CF ₃	5-Cl	Ph	H	H			CO ₂ Et	CH_2
4-C1	5-Cl	Ph	H	H			CO ₂ Et	CH_2
4-Br	5-Cl	Ph	H	H			CO ₂ Et	CH ₂
4-CF ₃	5-Cl	Ph	H	H			C(O)Ph	CH_2
4-Cl	5-C1	Ph	H	H			C(O)Ph	CH_2
4-Br	5-C1	Ph	H	H			C(O)Ph	CH ₂
4-CF ₃	5-Cl	Ph	H	H			C(O)nPr	CH ₂
4-Cl	5-Cl	Ph	H	H			C(O)nPr	CH_2
4-Br	5-Cl	Ph	H	H			C(O)nPr	CH_2
4-CF3	5-F	Ph	H	H			CH ₂ Ph	CH_2
4-Cl	5-F	Ph	H	H			CH_2Ph	CH_2
4-B r	5-F	Ph	H	H			CH ₂ Ph	CH_2
4-CF ₃	5-F	Ph	H	H			SN(Me)CO ₂ n-de	ec CH ₂
4-Cl	5-F	Ph	Ħ	H			SN(Me)CO ₂ n-de	ec CH ₂
4-Br	5-F	Ph	H	H			SN(Me)CO ₂ n-de	ec CH ₂
4-CF ₃	5-F	Ph	H	H			SN(i-Pr)CO ₂ Et	CH_2
4-CI	5-F	Ph	H	H	•		SN(i-Pr)CO ₂ Et	CH_2
4-Br	5-F	Ph	H	H			SN(i-Pr)CO ₂ Et	CH_2
4-CF ₃	5-F	Ph	H	H			SCO ₂ Et	CH_2
4-Cl	5-F	Ph	H	H			SCO ₂ Et	CH_2
4 -Br	5-F	Ph	H	Н			SCO ₂ Et	CH_2
4-CF ₃	5-F	Ph	H	H			C(O)Me	CH_2
4-Cl	5-F	Ph	H	Н			C(O)Me	CH_2
4-Br	5-F	Ph	Н	H			C(O)Me	CH_2
4-CF ₃	5-F	Ph	Ħ	H			CO ₂ Me	CH_2
4-Cl	5- F	Ph	H	H			CO ₂ Me	CH_2
4-Вг	5-F	Ph	H	H			CO ₂ Me	CH_2
4-CF ₃	5-Cl	4-Cl-Ph	H	H			Me	CH_2
4-Cl	5-Cl	4-Cl-Ph	H	Н			Me	CH_2
4-Br	5-Cl	4-Cl-Ph	H	Н			Me	CH_2
4-CF ₃	5-Cl	4-Cl-Ph	Н	H			CO ₂ Me	CH_2
4-Cl	5-Cl	4-Cl-Ph	H	H			CO ₂ Me	CH_2
4-Br	5-C1	4-Cl-Ph	Н	Н			CO ₂ Me	CH_2
4-CF ₃	5-C1	4-Cl-Ph	Н	H			CO ₂ Et	CH_2
4-Cl	5-C1	4-Cl-Ph	H	Н			CO ₂ Et	CH_2
4-Br	5-Cl	4-Cl-Ph	Н	H			CO ₂ Et	CH_2
4-CF ₃	5-Cl	4-Cl-Ph	H	H			C(O)Me	CH_2
4-Cl	5-C1	4-Cl-Ph	H	H			C(O)Me	CH_2
4-Вг	5-C1	4-Cl-Ph	Н	H			C(O)Me	CH_2
4-CF ₃	5-Cl	4-Cl-Ph	Н	H			SN(Et) ₂	CH_2
4-Cl	5-Cl	4-Cl-Ph	H	H			$SN(Et)_2$	CH_2
4-Br	5-Cl	4-Cl-Ph	Н	H			$SN(Et)_2$	CH_2
4-CF ₃	5-Cl	4-Cl-Ph	H	Н			SO ₂ Ph	CH_2
4-Cl	5-C]	4-Cl-Ph	Н	H			SO ₂ Ph	CH_2
4-Вг	5-C1	4-Cl-Ph	H	Н			SO ₂ Ph	CH ₂
4-CF ₃	5-C1	4-F-Ph	H	H			Me	CH_2
4-Cl	5-C1	4-F-Ph	Н	Н			Me	CH_2
4-Br	5-Cl	4-F-Ph	H	H			Me	CH_2
4-CF ₃	5-C1	4-F-Ph	Н	H			C(O)Me	CH_2
4-Cl	5-Cl	4-F-Ph	H	H			C(O)Me	CH ₂
4-Br	5-Cl	4-F-Ph	Н	H			C(O)Me	CH_2
4-CF ₃	5-C1	4-F-Ph	H	H			CO ₂ Me	CH ₂
4-Cl	5-C1	4-F-Ph	H	H			CO ₂ Me	CH ₂
4-Br	5-Cl	4-F-Ph	H	H			CO ₂ Me	CH ₂
4-CF ₃	5-CI	4-F-Ph	H	H			n-Bu	CH ₂
4-Cl	5-Cl	4-F-Ph	Н	H			n-Bu	CH_2
4-B r	5-C1	4-F-Ph	H	H			n-Bu	CH_2
4-CF ₃	5-Cl	4-F-Ph	H	H			SN(Me)CO ₂ Et	CH ₂
4-Cl	5-CI	4-F-Ph	H	H			SN(Me)CO ₂ Et	CH ₂
4-Br	5-Cl	4-F-Ph	H	H			SN(Me)CO ₂ Et	CH ₂
4-CF ₃	5-Cl	4-F-Ph	H	H			C(O)Ph	CH ₂
4-Cl	5-Cl	4-F-Ph	H	H			C(O)Ph	CH ₂
4-Br	5-C1	4-F-Ph	H	H			C(O)Ph	CH ₂
4-CF ₃	5-Cl	4-Cl-Ph	Me	H			Me	CH ₂
4-Cl	5-Cl	4-Cl-Ph	Me	H			Me	CH ₂
4-Br	5-Cl		Me	H			Me	CH ₂
4-CF ₃			Me	Me			Н	CH ₂
. 🕒 ,	2 01	1 11	1116	A7#				

TABLE 13-continued

\mathbf{R}_1	R_2	R ₃	R ₄	R ₅	R ₆	A
4-CI	5-Cl	4-Cl-Ph	Me	Me	H	CH ₂
4-Br	5-Cl	4-Cl-Ph	Me	Me	H	CH_2
4-CF ₃	5-Cl	4-Cl-Ph	Me	Ph	Н	CH_2
4-C1	5-Cl	4-Cl-Ph	Me	Ph	H	CH_2
4-B r	5-C1	4-Cl-Ph	Me	Ph	H	CH_2
4-CF ₃	5-C1	4-Cl-Ph	Me	H	CO ₂ Me	CH_2
4-C1	5-C1	4-Cl-Ph	Me	H	CO ₂ Me	CH_2
4-Br	5-C1	4-Cl-Ph	Me	H	CO ₂ Me	CH_2
4-CF ₃	5-Cl	4-Cl-Ph	Me	H	C(O)Me	CH_2
4-CI	5-Cl	4-Cl-Ph	Me	H	C(O)Me	CH_2
4-Br	5-Cl	4-Cl-Ph	Me	H	C(O)Me	CH_2
4-CF ₃	5-Cl	4-Cl-Ph	Me	H	SCO ₂ Me	CH_2
4-C1	5-C1	4-Cl-Ph	Me	H	SCO ₂ Me	CH_2
4-Br	5-Cl	4-Cl-Ph	Me	H	SCO ₂ Me	CH_2
4-CF ₃	5-Cl	4-Cl-Ph	H	Me	Me	CH_2
4-Cl	5-C1	4-Cl-Ph	H	Me	Me	CH_2
4-Br	5-C1	4-Cl-Ph	H	Me	Me	CH_2
4-CF ₃	5-C1	4-Cl-Ph	H	Me '	Me	CH_2
4-Cl	5-Cl	4-Cl-Ph	H	Me	Me	CH_2
4-B r	5-C1	4-Cl-Ph	H	Me	Me	CH_2
4-CF ₃	5-Cl	4-Cl-Ph	H	Ph	Me	CH_2
4-Cl	5-C1	4-Cl-Ph	H	Ph	Me	CH_2
4-Br	5-C1	4-Cl-Ph	H	Ph	Me	CH_2
4-CF ₃	5-Cl	4-Cl-Ph	H	Ph	CO ₂ Me	CH_2
4-C1	5-Cl	4-Cl-Ph	\mathbf{H}_{-}	Ph	CO ₂ Me	CH_2
4-Br	5-C1	4-Cl-Ph	H	Ph	CO ₂ Me	CH_2
4-CF ₃	5-C1	Ph	H	Me	Me	CH_2
4-Cl	5-C1	Ph	H	Me	Me	CH_2
4-Br	5-Cl	Ph	H	Me	Me	CH_2
4-CF ₃	5-Cl	Ph	H	CO ₂ Me	Me .	CH_2
4-C1	5-Cl	Ph	H	CO ₂ Me	Me	CH_2
4-Br	5-C1	Ph	H	CO ₂ Me	Me	CH_2

TABLE 14

 \mathbb{R}_3

TABLE 14-continued

 \mathbb{R}_3

TABLE 14-continued

TABLE 14-continued

$R_2 = \frac{5}{6}$	$\int_{A}^{A} X_{R_{2}}^{R_{3}}$	3		$R_2 = \underbrace{\begin{array}{c} 4 \\ \\ 6 \end{array}}$) A	R ₃ ∕ R ₄	-
7	N N NI	HCNH-(S)	Rì	10	III N	NHCNH—	R ₁
R1	R ₂ R	3 R ₄	Α	\mathbf{R}_1	\mathbf{R}_2	R ₃	R ₄ A
4-Br 4-OCF ₂ H 4-CF ₃ 4-Cl 4-Br 4-OCF ₂ CF ₂ H 3-Cl,4-CF ₃ 3,4-CH ₂ C(Me) ₂ O 3,4-CF ₂ CF ₂ O 4-CN 4-NO ₂ 4-F 3,4-di-Cl 4-CO ₂ Me 4-SCF ₂ CF ₂ H 4-OCF ₃ 4-OCF ₂ CF ₂ H 4-OCF ₃ 4-CP ₃ 4	5-Ci 5-F Pi 5-F 5-F Pi 5-F	h Me	CH ₂ CCH ₂ CCH ₂ CCH ₂ CCH ₂ CCH ₂ CCH ₂ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	4-OCF ₃ 4-CF ₃ 4-CI 4-Br 4-OCF ₂ H	5-F C C C F 3 5-F C C C F 5-F C C C C C C C C C C C C C C C C C C C	Me Me Me Me Me Me Me CH ₂ Ph Me Me Me Me Me Me Me i-Pr i-Pr i-Pr i-Pr i-Pr Ph Ph Ph Ph Ph 4-Cl-Ph 4-Cl-Ph 4-F-Ph 4-F-Ph 4-F-Ph 4-F-Ph 4-F-Ph 4-F-Ph 4-F-Ph 4-F-Ph 4-F-Ph 4-Cl-Ph	allyl O Me O M

T	A	\mathbf{B}	LE	14-continu	ed
---	---	--------------	----	------------	----

TABLE 14-continued						<u>.</u>	T		5-continue	ed			
$R_2 = \frac{5}{6}$	$R_2 \xrightarrow{\frac{5}{6}} A$ X				5		Q-	O NHCNH-		-R ₁	•		
	7		R ₄		R ₁		Q	\mathbf{R}_1	\mathbf{R}_{2}	R ₃	\mathbb{R}_4	Α	
			NHCNH—		· ·	10	Q-2 Q-2 Q-2 Q-2 Q-2	OCF ₃ CF ₃ OCF ₃ OCF ₃	H H H H	H Me Me 4-F-Ph 4-F-Ph	H H H Me	0 0 0 0	
4-CF ₃		₹ ₂ -Cl	R ₃ CO ₂ Me	R ₄ Me	CH ₂ CH ₂	•	Q-2 Q-2	CF ₃ OCF ₃	H H	4-Cl-Ph 4-Cl-Ph	Me Me	0 0	
4-Cl 4-Br	5	i-Cl i-Cl	CO ₂ Me CO ₂ Me	Me Me	CH ₂ CH ₂ CH ₂ CH ₂	15	Q-2 Q-2	CF ₃ OCF ₃	H H	i-Pr i-Pr	H H	0	
4-OCF ₂ H 4-CF ₃	5	-Cl -F	CO ₂ Me CO ₂ Me	Me H	CH ₂ CH ₂ CH ₂ CH ₂		Q-2	CF ₃ OCF ₃	5-CF ₃ 5-CF ₃	H H	H H	0	
4-Cl 4-Br	4	-F -F	CO ₂ Me	H H	CH ₂ CH ₂		Q-2 Q-2	CF ₃	5-CF ₃	Me	H	0	
4-OCF ₂ H	4	⊦ F	CO ₂ Me	H	CH ₂ CH ₂ CH ₂ CH ₂	••	Q-2 Q-2	OCF ₃	5-CF ₃ 5-CF ₃	Me i-Pr	H H	0	
4-CF ₃ 4-Cl	4	ŀ-F ŀ-F	CO ₂ Me	Me Me	CH ₂ CH ₂ CH ₂ CH ₂	20	Q-2 Q-2	OCF ₃ CF ₃	5-CF ₃ 5-CF ₃	i-Pr 4-F-Ph	H Me	0	
4-Br 4-OCF ₂ H		⊦F ⊦-F	CO ₂ Me CO ₂ Me	Me Me	CH ₂ CH ₂ CH ₂ CH ₂		Q-2 Q-3	OCF ₃ CF ₃	5-CF ₃ H	4-F-Ph H	Me H	O CH ₂	
4-OCF ₃ 4-OCF ₂ CF ₂ H		5-Cl 5-Cl	4-Cl-Ph 4-Cl-Ph	H H	CH ₂ CH ₂ CH ₂ CH ₂		Q-3 Q-3	OCF ₃ CF ₃	H H	H Me	H H	CH_2 CH_2	
3-Cl,4-CF ₃ 3,4-CH ₂ C(Me) ₂ (5	5-Cl 5-Cl	4-Cl-Ph 4-Cl-Ph	H H	CH ₂ CH ₂ CH ₂ CH ₂	25	Q-3 Q-3	OCF ₃ CF ₃	H H	Me 4-F-Ph	H H	CH ₂ CH ₂	
3,4-CF ₂ CF ₂ O 4-CN	5	5-Cl 5-Cl	4-Cl-Ph 4-Cl-Ph	H H	CH ₂ CH ₂ CH ₂ CH ₂		Q-3 Q-3	OCF ₃ CF ₃	H H	4-F-Ph 4-Cl-Ph	H H	CH ₂ CH ₂	
4-NO ₂ 4-F	5	5- C 1	4-Cl-Ph 4-Cl-Ph	H H	CH ₂ CH ₂ CH ₂ CH ₂		Q-3	OCF ₃ CF ₃	H 4-CF ₃	4-Cl-Ph Me	H H	CH ₂ CH ₂	
3,4-di-Cl	5	S-CI S-CI	4-Cl-Ph	H	CH ₂ CH ₂	30	Q-3 Q-3	OCF_3	4-CF ₃	Me	H	CH_2	
4-CO ₂ Me 4-SCF ₂ H	5	5-Cl 5-Cl	4-Cl-Ph 4-Cl-Ph	H H	CH ₂ CH ₂ CH ₂ CH ₂		Q-3 Q-3	CF ₃ OCF ₃	4-CF ₃ 4-CF ₃	4-F-Ph 4-F-Ph	H H	CH ₂ CH ₂	
4-SCF ₂ CF ₂ H 4-OCH ₂ CF ₃	_	5-C1 5-C1	4-Cl-Ph 4-Cl-Ph	H H	CH ₂ CH ₂ CH ₂ CH ₂		Q-3 Q-3	CF_3 OCF_3	4-CF ₃ 4-CF ₃	4-Cl-Ph 4-Cl-Ph	H H	CH ₂ CH ₂	
4-OCF ₃ 4-OCF ₂ CF ₂ H		5-Cl 5-Cl	Ph Ph	H H	CH ₂ CH ₂ CH ₂ CH ₂	25	Q-3 Q-3	CF ₃ OCF ₃	4-CF ₃ 4-CF ₃	Me Me	H H	CH_2 CH_2	
3-Cl,4-CF ₃ 3,4-CH ₂ C(Me) ₂ (5-Cl 5-Cl	Ph Ph	H H	CH ₂ CH ₂ CH ₂ CH ₂	35	Q-3 Q-3	$\mathbf{CF_3}$ $\mathbf{OCF_3}$	4-CF ₃ 4-CF ₃	4-F-Ph 4-F-Ph	H H	CH_2 CH_2	•
3,4-CF ₂ CF ₂ O 4-CN	5	5-Cl 5-Cl	Ph Ph	H H	CH ₂ CH ₂ CH ₂ CH ₂		Q-3 Q-3	CF ₃ OCF ₃	H H	H H	H H	0	
4-NO ₂ 4-F	:	5-Cl 5-Cl	Ph Ph	H H	CH ₂ CH ₂ CH ₂ CH ₂	,	Q-3 Q-3	CF ₃ OCF ₃	H H	Me Me	H H	O O	
3,4-di-Cl	:	5-Cl	Ph	H H	CH ₂ CH ₂ CH ₂ CH ₂	40	Q-3 Q-3	CF ₃ OCF ₃	H H	4-F-Ph4-F-Ph	Me Me	0 0	
4-CO ₂ Me 4-SCF ₂ H	:	5-Cl 5-Cl	Ph Ph	H	CH ₂ CH ₂		Q-3 Q-3	CF ₃ OCF ₃	4-Cl-Ph H	Me 4-Cl-Ph	O Me	0	•
4-SCF ₂ CF ₂ H 4-OCH ₂ CF ₃		5-C1 5-C1	Ph Ph	H	CH ₂ CH ₂ CH ₂ CH ₂		Q-3	CF ₃ OCF ₃	H H	i-Pr i-Pr	H H	0	
				•		45	Q-3 Q-3 Q-3	CF ₃ OCF ₃	4-CF ₃ 4-CF ₃	H H	H H	0 0	
		TA	BLE 15		······································	-	Q-3 Q-3	CF ₃ OCF ₃	4-CF ₃ 4-CF ₃	Me Me	H H	0	
•	Q-	O NHCNH		R ₁		50	Q-3 Q-3 Q-3 Q-4	CF ₃ OCF ₃ CF ₃ OCF ₃	4-CF ₃ 4-CF ₃ 4-CF ₃ 4-CF ₃	i-Pr i-Pr 4-F-Ph 4-F-Ph H	H H Me Me H	O O O CH ₂	
QR	-1	R ₂	R ₃	R ₄	A	#	Q-4 Q-4	OCF ₃ CF ₃	H H	H Me	H H	CH_2 CH_2	
•	F ₃ CF ₃	H H	H H	H H	CH_2 CH_2		Q-4 Q-4	OCF ₃ CF ₃	H H	Me 4-F-Ph	H H	CH_2 CH_2	
Q-2 C	F ₃ CF ₃	H H	Me Me	H H	CH ₂ CH ₂	55	Q-4	OCF ₃ CF ₃	H H	4-F-Ph 4-Cl-Ph	H H	CH ₂ CH ₂	
Q-2 C	F ₃	H	4-F-Ph 4-F-Ph	H H	CH ₂		Q-4 Q-4	OCF ₃	H	4-Cl-Ph	H	CH ₂	
Q-2 C	CF ₃	H	4-Cl-Ph	H	CH ₂		Q-4 Q-4	CF ₃ OCF ₃	5-CF ₃ 5-CF ₃	Me Me	H	CH ₂ CH ₂	
Q-2 C	CF ₃	H 5-CF ₃	4-Cl-Ph Me	H H	CH ₂ CH ₂	6 0	Q-4 Q-4	CF ₃ OCF ₃	5-CF ₃ 5-CF ₃	4-F-Ph 4-F-Ph	H	CH ₂ CH ₂	
Q-2 C	CF ₃	5-CF ₃ 5-CF ₃	Me 4-F-Ph	H H	CH ₂ CH ₂		Q-4 Q-4	CF ₃ OCF ₃	5-CF ₃ 5-CF ₃	4-Cl-Ph 4-Cl-Ph	H H	CH ₂ CH ₂	
Q-2 C	CF ₃	5-CF ₃ 5-CF ₃	4-F-Ph 4-Cl-Ph	H H	CH ₂ CH ₂		Q-4 Q-4	CF ₃ OCF ₃	4-F 4-F	Me Me	, H H	CH ₂ CH ₂	
Q-2 O	CF ₃	5-CF ₃ 5-Cl	4-Cl-Ph Me	H H	CH ₂ CH ₂	65	Q-4 Q-4	CF ₃ OCF ₃	4-F 4-F	4-F-Ph 4-F-Ph	H H	CH_2 CH_2	
Q-2 O	CF ₃	5-Cl 5-Cl	Me 4-F-Ph	H H	CH_2 CH_2		Q-4 Q-4	CF ₃ OCF ₃	H H	H H	H H	0	
Q-2 O	CF ₂	5-Cl H	4-F-Ph H	H H	CH ₂ O		Q-4 Q-4	CF ₃ OCF ₃	H H	Me Me	H H	O O	
-	-						•	-					

TABLE 15-continued	•	TABLE 16-continued
	·— -	

$Q-NHCNH-\left(\begin{array}{c} \\ \\ \\ \end{array}\right)-R_1$	$Q-NHCNH- O R_1$
Q R ₁ R ₂ R ₃ R ₄ A	$(\mathbf{V} = \mathbf{S})$
Q-4 OCF ₃ 4-F-Ph Me O Q-4 OCF ₃ H 4-F-Ph Me O Q-4 OCF ₃ H 4-Cl-Ph Me O Q-4 CF ₃ H i-Pr H O Q-4 OCF ₃ H i-Pr H O Q-4 OCF ₃ S-CF ₃ H H O Q-4 OCF ₃ S-CF ₃ Me H O Q-4 OCF ₃ S-CF ₃ i-Pr H O Q-4 OCF ₃ S-CF ₃ i-Pr H O Q-5 OCF ₃ S-CF ₃ H H H CH ₂ Q-5 OCF ₃ H H H CH ₂ Q-5 OCF ₃ H H H CH ₂ Q-5 OCF ₃ H Me H CH ₂ Q-5 OCF ₃ H Me H CH ₂ Q-5 OCF ₃ H Me H CH ₂ Q-5 OCF ₃ H A-F-Ph H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H CH ₂ Q-5 OCF ₃ S-CF ₃ Me H O Q-5 OCF ₃ S-C	Q R ₁ R ₂ R ₃ R ₄ A Q-6 CF ₃ 5-Cl 4-Cl-Ph H CH ₂ Q-6 CF ₃ 5-F Me H CH ₂ Q-6 CF ₃ 5-F 4-F-Ph H CH ₂ Q-6 CF ₃ 1 H H H Q Q-6 Q-6 Q-7
TABLE 16	$- \frac{1}{2} = \frac{1}{2} + $
$Q-NHCNH-\left\langle \begin{array}{c} O \\ \\ \end{array} \right\rangle -R_1$ $(V=S)$	Q-7 OCF ₃ 4-F H H O Q-7 CF ₃ 4-F Me H O Q-7 OCF ₃ 4-F Me H O Q-7 CF ₃ 4-F i-Pr H O Q-7 OCF ₃ 4-F i-Pr H O Q-7 CF ₃ 4-F i-Pr H O Q-7 CF ₃ 4-F 4-F-Ph Me O
Q R ₁ R ₂ R ₃ R ₄ A Q-6 CF ₃ H H H CH ₂	Q-7 OCF ₃ 4-F 4-F-Ph Me O Q-8 CF ₃ H H H CH ₂ Q-8 OCF ₃ H H H CH ₂
Q-6 OCF ₃ H H CH ₂ Q-6 CF ₃ H Me H CH ₂ Q-6 OCF ₃ H Me H CH ₂	60 Q-8 CF ₃ H Me H CH ₂ Q-8 OCF ₃ H Me H CH ₂ Q-8 CF ₂ H 4-F-Ph H CH ₂
Q-6 CF ₃ H 4-F-Ph H CH ₂ Q-6 OCF ₃ H 4-F-Ph H CH ₂ Q-6 CF ₃ H 4-Cl-Ph H CH ₂	Q-8 OCF ₃ H 4-F-Ph H CH ₂ Q-8 CF ₃ H 4-Cl-Ph H CH ₂ Q-8 OCF ₃ H 4-Cl-Ph H CH ₂
Q-6 OCF ₃ H 4-Cl-Ph H CH ₂ Q-6 CF ₃ 5-Cl Me H CH ₂ Q-6 OCF ₃ 5-Cl Me H CH ₂	65 Q-8 CF ₃ 4-F Me H CH ₂ Q-8 OCF ₃ 4-F Me H CH ₂ Q-8 CF ₃ 4-F 4-F-Ph H CH ₂
Q-6 CF ₃ 5-Cl 4-F-Ph H CH ₂ Q-6 OCF ₃ 5-Cl 4-F-Ph H CH ₂	Q-8 OCF ₃ 4-F 4-F-Ph H CH ₂ Q-8 CF ₃ 4-F 4-Cl-Ph H CH ₂

TABLE 16-continued

Q-NHCNH-
$$\left(\begin{array}{c} O \\ \\ \end{array}\right)$$
-R₁

Q	Ri	\mathbf{R}_2	R ₃	R4	Α
Q-8	OCF ₃	4-F	4-Cl-Ph	H	CH ₂
Q	\mathbf{R}_1	R_2	\mathbf{R}_3	\mathbb{R}_4	A
Q-8	CF_3	5-C1	Me	H	CH_2
Q-8	OCF_3	5-C1	Me	H	CH ₂
Q-8	$\mathbf{CF_3}$	5-C1	4-F-Ph	H	CH_2
Q-8	OCF_3	5-Cl	4-F-Ph	H	CH ₂
Q-8	CF_3	4-F	H	H	О
Q -8	OCF_3	4-F	H	H	0
Q-8	CF ₃	4-F	Me	H	0
Q-8	OCF_3	4-F	Me	\mathbf{H}	0
Q-8	CF ₃	4-F	4-F-Ph	Me	0
Q-8	OCF_3	4-F	4-3F-Ph	Me	0
Q-8	CF ₃	4-F	4-Cl-Ph	Me	0
Q- 8	OCF_3	4-F	4-Cl-Ph	Me	0
Q -8	CF_3	4-F	i-Pr	H	0
Q-8	OCF_3	4-F	i-Pr	H	0
Q-8	\mathbf{CF}_3	5-Cl	H	H	0
Q -8	OCF_3	5-Cl	H	H	O
Q-8	\mathbf{CF}_3	5-C1	Me	H	0
Q- <u>.</u> 8	OCF_3	5-C1	Me	H	Ο
Q-8	CF ₃	5-C1	i-Pr	H	Ο
Q-8	OCF_3	5-C1	i-Pr	H	О
Q-8	CF ₃	5-C1	4-F-Ph	Me	0
Q-8	OCF ₃	5-C1	4-F-Ph	Me	0

Arthropodicidal Formulation and Use

The compounds of this invention will generally be used in formulation with a carrier comprising a liquid or solid diluent or an organic solvent. Useful formulation's 35 of the compounds of Formula I can be prepared in conventional ways. They include dusts, granules, pellets, solutions, suspensions, emulsions, baits, wettable powders, emulsifiable concentrates, dry flowables and the like. Many of these can be applied directly. Spraya- 40 ble formulations can be extended in suitable media and used at spray volumes of from about one to several hundred liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The formulations, broadly, contain about 1% to 45 99% by weight of active ingredient(s) and at least one of a) about 0.1% to 20% surfactant(s) and b) about 5% to 99% solid or liquid diluent(s). More specifically, they will contain these ingredients in the following approximate proportions:

	Percent by Weight				
	Active Ingredient	Diluent(s)	Surfactant(s)		
Wettable Powders	25-90	0-74	1–10	55	
Oil Suspensions,	1-50	40-95	0-35		
Emulsions, Solutions,					
(including Emulsifiable					
Concentrates)					
Dusts	1-25	70-99	0-5		
Granules, Baits	0.01-95	5-99	0-15	6 0	
and Pellets					
High Strength	9 0-99	0-10	0–2		
Compositions					

Lower or higher levels of active ingredient can, of 65 course, be present depending on the intended use and the Physical Properties of the compound. Higher ratios of surfactant to active ingredient are sometimes desir-

able, and are achieved by incorporation into the formulation or by tank mixing.

Typical solid diluents are described in Watkins, et al., "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Dorland Books, Caldwell, N.J. The more absorptive diluents are preferred for wettable powders and the denser ones for dusts. Typical liquid diluents and solvents are described in Marsden, "Solvents Guide," 2nd Ed., Interscience, N.Y., 1950. Solubility under 0.1% is preferred for suspension concentrates; solution concentrates are preferably stable against phase separation at 0° C. "McCutcheon's Detergents and Emulsifiers Annual", Allured Publ. Corp., Ridgewood, 15 N.J., as well as Sisely and Wood, "Encyclopedia of Surface Active Agents", Chemical Publ. Co., Inc., N.Y., 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth, etc. Preferably, ingredients should be approved by the U.S. Environmental Protection Agency for the use intended. The methods of making such compositions are well known. Solutions are prepared by simply 25 mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer or fluid energy mill. Suspensions are prepared by wet milling (see, for example, U.S. Pat. No. 3,060,084). Granules and pellets can be made by spraying the active 30 material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, Dec. 4, 1967, pages 147 and following, and "Perry's Chemical Engineer's Handbook", 4th Ed., McGraw-Hill, N.Y., 1963, pages 8 to 59 and following.

EXAMPLE A

Emulsifiable Concentrate

	
2-(5-chloro-2,3-dihydro-2-phenyl-1H-inden-1-ylidene)-	20%
N-[4-(trifluoromethyl)phenyl]hydrazinecarbox-	
amide	
blend of oil soluble sulfonates	10%
and polyoxyethylene ethers	
isophorone	70%

The ingredients are combined and stirred with gentle warming to speed solution. A fine screen filter is included in packaging operation to insure the absence of any extraneous undissolved material in the product.

EXAMPLE B
Wettable Powder

2-(5-chloro-2,3-dihydro-2-phenyl-1H-inden-1-ylidene)-	30%
N-[4-(trifluoromethyl)phenyl]hydrazinecarbox-	
amide	
sodium alkylnaphthalenesulfonate	2%
sodium ligninsulfonate	2%
synthetic amorphous silica	3%
kaolinite	63%

The active ingredient is mixed with the inert materials in a blender. After grinding in a hammermill, the material is re-blended and sifted through a 50 mesh screen.

EXAMPLE H

Oil Suspension

	· · · · · · · · · · · · · · · · · · ·
Wettable powder of Example B	10%
pyrophyllite (powder)	90%

The wettable powder and the pyrophyllite diluent are
thoroughly blended and then packaged. The Product is
suitable for use as a dust.

EXAMPLE D

Granule

2-[5-chloro-2-(4-chlorophenyl)-2,3-dihydro-1H-inden-1-y lidene]-N-[4-(trifluoromethyl)phenyl]hydrazine-	10%
carboxamide attapulgite granules (low volative matter, 0.71/0.30 mm; U.S.S. No. 25-50 sieves)	90%

The active ingredient is dissolved in a volatile solvent such as acetone and sprayed upon dedusted and prewarmed attapulgite granules in a double cone blender. The acetone is then driven off by heating. The granules are then allowed to cool and are packaged.

EXAMPLE E

Granule

15%
69%
16%

The ingredients are blended in a rotating mixer and 35 water sprayed on to accomplish granulation. When most of the material has reached the desired range of 0.1 to 0.42 mm (U.S.S. No. 18 to 40 sieves), the granules are removed, dried, and screened. Oversize material is crushed to Produce additional material in the desired 40 range. These granules contain 4.5% active ingredient.

EXAMPLE F

Solution

2-(5-chloro-2,3-dihydro-2-phenyl-1H-inden-1-ylidene)- N-[4-(trifluoromethyl)phenyl]hydrazinecarboxamide	25%
N-methyl-pyrrolidone	75%

The ingredients are combined and stirred to produce a solution suitable for direct, low volume application.

EXAMPLE G

Aqueous Suspension

2-(5-chloro-2,3-dihydro-2-phenyl-1H-inden-1-ylidene)-	40%
N-[4-(trifluoromethyl)phenyl]hydrazinecarboxamide	
polyacrylic acid thickener	0.3%
dodecyclophenol polyethylene glycol ether	0.5%
disodium phosphate	1.0%
monosodium phosphate	0.5%
polyvinyl alcohol	1.0%
water	56.7%

The ingredients are blended and ground together in a sand mill to produce Particles essentially all under 5 microns in size.

J	2-[5-chloro-2-(4-chlorophenyl)-2,3-dihydro-1H-inden-1-ylidene]-N-[4-(trifluoromethyl)phenyl]hydrazine-carboxamide	35.0%
	blend of polyalcohol carboxylic esters and oil soluble petroleum sulfonates	6.0%
10	xylene range solvent	59.0%

The ingredients are combined and ground together in a sand mill to produce Particles essentially all below 5 microns. The product can be used directly, extended with oils, or emulsified in water.

EXAMPLE I

Bait Granules

2-(5-chloro-2,3-dihydro-2-phenyl-1H-inden-1-ylidene)-	3.0%
N-[4-(trifluoromethyl)phenyl]hydrazinecarboxamide	
blend of polyethoxylated nonylphenols and sodium	9.0%
dodecylbenzene sulfonates	
ground up corn cobs	88.0%

The active ingredient and surfactant blend are dissolved in a suitable solvent such as acetone and sprayed onto the ground corn cobs. The granules are then dried and packaged. Compounds of Formula I can also be mixed with one or more other insecticides, fungicides, nematocides, bactericides, acaricides, or other biologically active compounds to form a multi-component pesticide giving an even broader spectrum of effective agricultural protection. Examples of other agricultural protectants with which compounds of the present invention can be mixed or formulated are:

Insecticides

- 3-hydroxy-N-methylcrotonamide(dimethylphosphate)ester (monocrotophos)
- methylcarbamic acid, ester with 2,3-dihydro-2,2dimethyl-7-benzofuranol (carbofuran)
- O-[2,4,5-trichloro- α -(chloromethyl)benzyl]phosphoric acid, O',O'-dimethyl ester (tetrachlorvinphos)
- 2-mercaptosuccinic acid, diethyl ester, S-ester with thionophosphoric acid, dimethyl ester (malathion)
- phosphorothioic acid, O,O-dimethyl, O-p-nitrophenyl ester (methyl parathion)
- 50 methylcarbamic acid, ester with α -naphthol (carbaryl) methyl O-(methylcarbamoyl)thiolacetohydroxamate (methomyl)
 - N'-(4-chloro-o-tolyl)-N,N-dimethylformamidine (chlordimeform)
- 55 O,O-diethyl-O-(2-isopropyl-4-methyl-6-pyrimidylphosphorothioate (diazinon)
 - octachlorocamphene (toxaphene)
 - O-ethyl O-p-nitrophenyl phenylphosphonothioate (EPN) (S)-a-cyano-m-phenoxybenzyl(1R,3R)-3-(2,2dibromovinyl)-2,2-dimethylcyclopropanecarboxylate (deltamethrin)
 - -dimethyl-N-[chloro(methylcarbamoyl-Methyl-N',N)oxychloro]-1-thioox amimidate (oxamyl)
- cyano(3-phenoxyphenyl)-methyl-4-chloro-a-(1methylethyl)benzeneacetate (fenvalerate) 65
 - (3-phenoxyphenyl)methyl (\pm) -cis,trans-3-(2,2-dichloro)ethenyl)-2,2-dimethylcyclopropanecarboxylate (permethrin)

a-cyano-3-phenoxybenzyl 3-(2,2-dichlorovinyl)-2,2dimethylcyclopropane carboxylate (cypermethrin) O-ethyl-S-(p-chlorophenyl)ethylphosphonodithioate

(profenofos)

phosphorothiolothionic acid,

O-ethyl-O-[4-(methylthio)-phenyl]-S-n-propyl ester (sulprofos).

Additional insecticides are listed hereafter by their common names: triflumuron, diflubenzuron, methoprene, buprofezin, thiodicarb, acephate, azinphos- 10 methyl, chlorpyrifos, dimethoate, fonophos, isofenphos, methidathion, methamidiphos, monocrotphos, phosmet, phosphamidon, phosalone, pirimicarb, phorate, profenosos, terbusos, trichlorson, methoxychlor, bifenthrin, biphenate, cyfluthrin, fenpropathrin, fluvali- 15 nate, flucythrinate, tralomethrin, metaldehyde and rotenone.

Fungicides

methyl 2-benzimidazolecarbamate (carbendazim) tetramethylthiuram disulfide (thiuram) n-dodecylguanidine acetate (dodine) manganese ethylenebisdithiocarbamate (maneb)

1,4-dichloro-2,5-dimethoxybenzene (chloroneb)

methyl 1-(butylcarbamoly)-2-benzimidazolecarbamate 25 (benomyl)

1-[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2ylmethyl]-1H-1,2,4-triazole (propiconazole)

2-cyano-N-ethylcarbamoy-2-methoxyiminoacetamide (cymoxanil)

1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone chloro(triadimefonchloro)

N-(trichloromethylthio)tetrahydrophthalimide (captan) N-(trichloromethylthio)chlorophthalimide (folpetchloro)

1-chloro[[[bis(4-fluorophenyl)][methyl]silyl]methyl]-1H-1,2,4-triazole.

Nematocides

1-(dimethylcarbamoyl)-N-(methylcar- 40 S-methyl bamoyloxy)-thioformimidate S-methyl

1-carbamoyl-N-(methylcarbamoyloxy)thioformimidate N-isopropylphosphoramidic acid, O-ethyl O'-[4-(methylthio)-m-tolyl]diester (fenamiphos)

Bactericides

tribasic copper sulfate streptomycin sulfate

Acaricides

senectionic acid, ester with 2-sec-butyl-4,6-dinitrophenol (binapacryl)

6-methyl-1,3-cithiolo[4,5- β]quinoxalin-2-one (oxythioquinox)

ethyl 4,4'-dichlorobenzilate (chlorobenzilate) 1,1bis(pchlorophenyl)-2,2,2-trichloroethanol (dicofol)

bis(pentachloro-2,4-cyclopentadien-1-yl) (dienochlor) tricyclohexyltin hydroxide (cyhexatin)

trans-5-(4-chlorophenylchloro)-N-cyclohexyl-4-methyl-2-oxothiazolidine-3-carboxamide (hexythiazox) amitraz

propargite fenbutatin-oxide

Biological

Bacillus thuringiensis Avermectin B.

Utility

The compounds of this invention exhibit activity against a wide spectrum of foliar and soil inhabiting arthropods which are pests of growing and stored agronomic cropschloro, forestry, greenhouse cropschloro, ornamentals, nursery crops, stored food and fiber products, livestock, household, and public and animal health. Those skilled in the art will recognize that not all compounds are equally effective against all pests but the compounds of this invention display activity against economically important agronomic, forestry, greenhouse, ornamental food and fiber product, stored product, and nursery Pests, such as:

larvae of the order Lepidoptera including fall and beet armyworm and other Spodoptera spp., tobacco budworm, corn earworm and other Heliothis spp., European corn borer, navel orangeworm, stalk/stem borers and other pyralids, cabbage and soybean loopers and other loopers, codling mothchloro, grape berry moth and other tortricids, black cutworm, spotted cutworm, other cutworms and other noctuids, diamondback moth, greechloron cloverworm, velvetbean caterpillar, green cloverworm, pink bollworm, gypsy moth, and spruce budworm;

foliar feeding larvae and adults of the order Coleoptera including Colorado potato beetle, Mexican bean beetle, flea beetle, Japanese beetles, and other leaf beetles, boll weevil, rice water weevil, qranary weevil, rice weevil and other weevil pests, and soil inhabiting insects such as Western corn rootworm and other Diabrotica spp., Japanese beetle, European chafer and other coleopteran grubs, and wireworms;

adults and larvae of the orders Hemiptera and Homoptera including tarnished Plant bug and other plant bugs (midridae), aster leafhopper and other leafhoppers (cicadellidae), rice planthopper, brown planthopper, and other planthoppers (fulgoroidea), Psylids, whiteflies (aleurodidae), aphids (aphidae), scales (coccidae and diaspididae), lace bugs (tingidae), stink bugs (pentatomidae), cinch bugs and other seed bugs (lygaeidae), cicadas (cicadidae), spittlebugs (cerocopids), squash bugs (coreidae), red bugs and cotton stainers (pyrr-45 hocoridae);

adults and larvae of the order acari (mites) including European red mitechloro, two spotted spider mite, rust mites, McDaniel mite, and foliar feeding mites;

adults and immatures of the order Orthoptera includ-50 ing grasshoppers;

adults and immatures of the order Diptera including leafminers, midges, fruit flies (tephritidae), and soil maggots; adults and immatures of the order Thysanoptera including onion thrips and other foliar feeding thrips.

The compounds are also active against economically important livestock, household, public and animal health pests such as:

insect pests of the order Hymenoctera including carpenter ants, bees, hornets, and wasps;

insect pests of the order Diptera including house files, stable flies, face flies, horn flies, blow flies, and other muscoid fly pests, horse flies, deer flies and other Brachycera, mosquitoes, black flies, biting midges, sand flies, sciarids, and other Nematocera;

insect pests of the order Isoptera including including 65 cockroaches and crickets;

insect pests of the order Isoptera including the Eastern subterranean termite and other termites;

insect pests of the order Mallophaga and Anoplura including the head louse, body louse, chicken head louse and other sucking and chewing parasitic lice that attack man and animals:

insect pests of the order Siphonoptera including the 5 cat flea, dog flea and other fleas.

The specific species for which control is exemplified are: fall armyworm, Spodoptera fruigiperda; tobacco budworm, Heliothis virescens; boll weevil, Anthonomus grandis; aster leafhopper, Macrosteles fascifrons; southern corn rootworm, Diabrotica undecimpunctata. The pest control protection afforded by these compounds of the present invention is not limited, however to these species.

Application

Arthropod pests are controlled and protection of agronomic crops, animal and human health is achieved by applying one or more of the Formula I compounds of this invention, in an effective amount, to the locus of infestation, to the area to be protected, or directly on the pests to be controlled. Because of the diversity of habitat and behavior of these arthropod pest species, many different methods of application are employed. A preferred method of application is by spraying with equipment that distributes the compound in the environment of the pests, on the foliage, animal, person, or premise, in the soil or animal, to the plant part that is infested or needs to be protected. Alternatively, granular formulations of these toxicant compounds can be applied to or incorporated into the soil.

Other methods of application can also be employed including direct and residual sprays, aerial, baits, eartags, boluses, foggers, aerosols, and many others. The compounds can be incorporated into baits that are consumed by the arthropods or in devices such as traps and the like which entice them to ingest or otherwise contact the compounds.

The compounds of this invention can be applied in their pure state, but most often application will be of a formulation comprising one or more compounds with suitable carriers, diluents, and surfactants and possibly in combination with a food depending on the contemplated end use. A preferred method of application involves spraying a water dispersion or refined oil solution of the compounds. Combinations with spray oils, spray oil concentrations, and synergists such as piperonyl butoxide often enhance the efficacy of the compounds of Formula I.

The rate of application of the Formula I compounds required for effective control will depend on such factors as the species of arthropod to be controlled, the pest's life cycle, life stage, its size, location, time of year, host crop or animal, feeding behavior, mating behavior, 55 ambient moisture, temperature, etc. In general, application rates of 0.05 to 2 kg of active ingredient per hectare are sufficient to provide large-scale effective control of pests in agronomic ecosystems under normal circumstances, but as little as 0.001 kg/hectare or as much as 8 60 kg hectare may be required. For nonagronomic applications, effective use rates will range from about 0.1 to 5 mg/square foot but as little as about 0.01 mg/square foot or as much as 15 mg/square foot may be required.

The following Examples demonstrate the control 65 efficacy of compounds of Formula I on specific pests; see Tables 1 to 10 for compound descriptions. Compounds followed by a dash in the percent mortality

column were either not screened or had less than 80% mortality on the test species.

EXAMPLE 8

Test units, each consisting of an 8-ounce plastic cup containing a layer of wheat germ diet, approximately 0.5 cm thick, were prepared. Ten third-instar larvae of fall armyworm (Spodoptera frugiperda) were placed into each cup. Solutions of each of the test compounds (acetone/distilled water 75/25 solvent) were sprayed onto the cups, a single solution per set of three cups. Spraying was accomplished by passing the cups, on a conveyer belt, directly beneath a flat fan hydraulic nozzle which discharged the spray at a rate of 0.5 pounds of active ingredient per acre (about 0.55 kg/ha) at 30 p.s.i. The cups were then covered and held at 27° C. and 50% relative humidity for 72 hours, after which time readings were taken. The results are tabulated below.

Compound	% Mort.
1	100
2	10 0
3	100
4	100
5	100
6	
7	100
8	100
9	100
10	100
11	100
12	100
13	100
14	100
15 14	100
16 17	100 100
18	67
19	60
20	. 47
21	100
22	87
23	100
24	87
25	100
26	100
27	100
28	—
29	100
30	100
31	_
32	
33	
34 25	100
35 26	
36 37	100
38	100 100
3 9	87
40	93
41 •	73
42	100
43	100
44	100
45	100
. 46	100
47	100
. 48	87
49	80
50	80
51 52	100
52 53	
53 54 55 56	100
54 55	100
33 84	100
50 57	<u></u> 80

-continued		_	-continued		
Compound	% Mort.		Compound	% Mort.	
58	· · · · · · · · · · · · · · · · · · ·		139		
59	80	5	140		
60	47	_	141		
61 62	100 100		142 143	33 100	
63	60		143	60	
64			145		
65		10	146		
66 67	100	10	147		
68	100 100		148 149	13	
6 9	100		150	_	
70	• —		151		
71	4 0	15	152		
72 . 73	100 93	1.5	153 154		
74	27 ·		155		
. 75	20		156		
. 76			157		
77 78	100	20	158		
76 7 9	20 40	20	159 160	· —	
80		•	161		
81	87		162		
82	33		163		
83 84	80 6 0	25	164 165		
85	80	25	166	ŏ	
86			167		
87			168	47	
88 89	73		169 . 170	20	
90 ¹	100	20	171		
91	100	30	172		
. 92	100		173		
93 94	100		174		
95	100 93		175 176	67	
96			177	87	
97		35	178	33 .	
98 99	100	•	179		
100	93 60		180 181	100	
101			182	•	
102		,	183		
103 104	100	40	184 . 185		
105	100		186		
106	100		187		
107	100		188	100	
108 109	100	ΑE	189 190	100 · 93	
110	100	45	191	20	
111	100		192		
112	100		193	60	
113 114			194 195		
115		50	196		
116		50	197		
117	-		198		
118 119			199 200		
120			. 201	·	
121	60	5 6	202	100	
122		22	203	100	
123 124	 	•	204 205	100 67	
125		•	206	100	
126			207		
127	 ·	٠.	208	40	
128 129		60	209 210	4 0 —	
130			211		
131			212	.100	
132			213		
133 134	33	~ *	214 215		
134		65	215	73	
136	. ca-u 		217		
137	· · · · · · · · · · · · · · · · · · ·		218	· • • • • • • • • • • • • • • • • • • •	
138	33		219		

91			97	Z
-contin	-continued		-conti	nued
Compound	% Mort.		Compound	% Mort.
220	60		16 17	100
221 222	100	5	18	100 100
223			. 19	40
224 225	47		20 21	67 100
226			22	-
227	73	10	23	
228 229		••	24 25 ·	13 100
230			26	100
231			27	100
232 233			28 29	47 87
233 234	47	15	30	7 3
235			31	
236			32	
237 238	53		33 34	
239			35	0
240	93	20	36	93
241 242	100 100		3 / 38	100 100
243	13		39	73
244			40	100
245 246	67	35	41 42	73 100
246 247		25 .	43	87
248			44	100
249			45 46	100
250 251	40 40		40 47	100 73
251 252	40 67	30	48	33
253	87	50	49	
254 255	100		50 51	60 —
255 256	30 —		52	·
257			53	
258	60	35	54 55	100 100
259 260			5 6	-
261		•	57	
262			58 59	100
263 264			60	
265		40	61	40
266			62 63	_
267			64	
268 269			65	
¹ Test procedure was identical to that descr	ibed except there was only one test cup		66 47	. 100
Test procedure was raciniour to man descr	ioca checpi incie was omy one test cop.	45	67 68	100 87
			69	100
EXAMI	PLE 9		70 71	93
Tobacco B	ludworm		72	100
The test procedure of Ex	ample 8 was repeated for	50	73	60
efficacy against third-instar	larvae of the tobacco bud-	50	74 75	
worm (Heliothis virescens)	except that mortality was		75 76	-
assessed at 48 hours. The res	sults are tabulated below.		77	100
		-	78 70	20
· · · · · · · · · · · · · · · · · · ·		- 55	79 80	
Compound	% Mort.	•	81	
1	100		82	
3	100 73		83 84	
4	100		85	
5	93	60	86 87	
7	100		· 87 88	60
8	100		89	-
9	100		90 ¹	100
10 11	100 100	65	91 92	100 100
12 -	100	65	93	100
13	100		94 05	87 80
14 15	100 100		95 96	
	100		70	

-continued

-continued

-continued			-COlitinuc	-continued	
Compou	nd % Mort.		Compound	% Mort.	
97		_	178		
98	100		179	73	
99	100	5	180	7.5	
				<u></u>	
100			181	53	
101			182		
102			183		
103	87		184	(*********	
104	33	10	185		
105	100	**	186		
106	100		. 187		
107	100		188		
108	**************************************		189	. 	
109			190	53	
110	67	1.5	191	T-COLUMN -	
111	· ·	15	192		
112			193		
113	 .		194	13	
114			195		
115			196		
116			197		
117		20	198		
118			199		
119			200		
120			201		
121			202	100	
122			203		
123	**************************************	25	204	67	
124		ب سک	205	67	
125			206	100	
126			207	33	
127			208	_	
128			209	60	
129		30	210		
130		30	211		
131	•		212		
132	O		213		
133			214	· · · · · · · · · · · · · · · · · · ·	
134			215		
135			216	20	
136		35	217	13	
137			218		
138	67		219		
. 139	<u> </u>		220		
140	27		221		
141	*****		222	•	
142	20	40	223		
143	100		224		
144	80		225	****	
145			226		
146	·		227		
147			228		
148		45	229		
149		45	230	<u> </u>	
150			231		
151			232		
152			233		
153			234	<u> </u>	
153			235	• •	
155	·	50	236	80	
156	·		237		
157			238	60	
158			239	80	
159	<u> </u>		240		
160			241		
161		55	242	93	
162				73 7	
163			243	•	
			244		
164	<u> </u>		245		
165 166	80 73		246 247		
166	73 40	60	247		
167	4 0	60			
168			249	. 	
169			250		
170	47		251		
171			252 253	87 *3	
172	27		253 254	53	
173		65			
174			255 256	7	
175			256	33	
176	80		257	47	
177	20		258	33	
•					

75			7	U	
-continu	-continued		-conti	nued	
Compound	% Mort.		Compound	% Mort.	
259			47	100	
260	_	5	48		
261			49		
262 263	****		50 51	<u> </u>	
263 264	<u> </u>		52	· _	
265			53		
266		10	54		
267		10	55 56		
268 269	<u> </u>		57	<u> </u>	
	· · · · · · · · · · · · · · · · · · ·		58		
			59		
EXAMPI	LE 10	15	60 61	12 96	
			62	_	
Aster Leafl	nopper		63		
Test units were prepared f	rom a series of 12-ounce		64	•	
cups, each containing oat (Av			65 66	50	
1-inch layer of sterilized so	oil. The test units were	20	67		
sprayed with individual solu			68	72	
compounds. After the oats	had dried from being		69	88	
sprayed, between 10 and 15	adult aster leafhoppers		70 71	84	
(Mascrosteles fascifrons) were			71 72	<u> </u>	
covered cups. The cups were	_		73		
relative humidity for 48 hours			74		
ity readings were taken. The fe			75 76		
activity of the compounds tes	· -		70 77	100	
	* *		78	83	
		30	79	71	
Compound	% Mort.		80 81	100	
1			82	 .	
2			83	82	
3 A	<u> </u>		84		
	·	35	85 - 86		
6			87		
7	44		88	91	
8	100		89		
10	85		90, • • • • • • • • • • • • • • • • • • •		
11	****	40	92	77	
12	95		93	94	
13 14	83		94 05	_	
15	- 73		95 96	/ 4	
16	75		97	· ——	
17		45	98		
18 10	100 100		99 100	100	
20	100		100 101		
21			102		
22			103		
23 24		50	104	100	
25	_	•	105	84	
26			107	100	
27	<u></u>		108	71	
28 29			109 110		
30	<u> </u>	55	111		
31			112	. —	
32			113		
33 24			114 115		
3 4 35			116		
36	-	6 0	117		
37	91		118		
38 30			119 120		
40			121		
41	60		122		
42	98	65	123		
43 44	89		124 125		
45	100		125		
46			127		

	-continued		-	-continued		
	Compound	% Mort.		Compound	% Mort.	
	128			209		
	129 130	<u></u>	5	210 211	9 0	
	131	_		212	88	
	132			213		
	133 134			214 215	· · · · · · · · · · · · · · · · · · ·	
	135	*** ******	10	216		
	136	***	10	217 .		
	137 138	92		218 219		
	139			220		
	140 141			221 222		
	142		15	223		
	143	##=#R==		224		
	144 145			225 226		
	146	<u>—</u>		227		
	147		20	228		
	148 149		20	·229 230		
	150		•	231		
	151 152	<u> </u>		232 233		
	153	<u> </u>	•	234	92	
	154		25	235	100	
	155 156	- 	•	236 237	• 91 98	
	157	- 		238	98	
	158 159			239	98 ·	
	160		20	240 241	100 97	
	161		30	242		
	162 163	<u> </u>		243		
	164			244 245	**************************************	
	165	36		246	_	
	166 167		35	247 . 248		
	168			249		
	169 170			250		
	171			251 252	<u> </u>	
	172		40	253 ·	<u>·</u>	
	173 174		40	254		
	175			255 256		
	176 177	91 93		257		
	178	6 0		258 259	. 62	
	179		45	260		
	180 181	<u> </u>	•	261 262		
	182	68	•	262 263		
	183 184	_ _		264		
	185	_	5 0	265 266		
	186		50	267		
	187 188	<u>_</u>		268		
	189	81		269		
	190 191	70 —		•		
	192	95	55	EXAM	IPLE 11	
	193					
	194 195		_		rn Rootworm	
	196				ng of an 8-ounce plastic cup	
	197 198				seed, were prepared. Sets of	
	199			.	ed as described in Example 8 of the below-listed com-	
-	200				on the cups had dried, five	
	201 202	100			outhern corn rootworm (Dia-	
	203				wardi) were placed into each	
	204 205	94	65 cur	p. A moistened dental v	wick was inserted into each	
•	206	66	cup	p to prevent drying and	the cups were then covered.	
	207	57			at 27° C. and 50% relative	
	208	_				

humidity for 48 hours, after which time mortality readings were taken. The results are tabulated below.

		_
-con	+:	mad
-C()]]	1111	

	-		Compound	% Mort.
<u></u>	~ 3.4. ·		7 9	100
Compound	% Mort.	5	80 81	100
1	100		81 82	100
2	100		83	100
3	100		84	-
4	100		85	
5	100		86	
6		10	87	93
7	100		88	100
8	100		89	100
10	100		90 ¹	
10	100 100		91	100
1 I 12	100	4.0	92	100
13	100	15	93	100
14	100		94	100
15	100		95	100
16	100		96	100
17	100		97	100
18	100	20	98	100
19	100	20	99	100
20	100	•	100	100
21	100		101	100
22			102	40
23	100		103	
24	93		104	100
25		25	105 106	67
26	87		106 107	100
27			107	100
28			109 .	_
29			110	100
30	87		111	. 100
31	100	30	112	100
32			113	
33			114	
34	100	•	115	
35			116	
36	100		117	
37	100	35	118	
38	100		119	_
39	100		120	
40	80		121	
41	100		122	· -
42	100	•	123	_
43	100	40	124	. —
44	100		125	
45			126	
4 6	100		127	
47	_		128	
48			129	
49		45	130	60
5 0	47		131	
51	100		132	
52		•	133	47
53			134	100
54 56	100		135	100
55 56	100	50	136	100
56 57			137	100
57 50	20		138	100
58 50	30 100		139	100
5 9 6 0	100 80		140 141	93 1 0 0
61	100		141 . 142	
62	100	55	142	100
63	80		143	100
64	1 0 0		145	87
65		•	146	
66	100		147	100
67	100		148	47
68	100	60	149	. —
69	100		150	
70	100		151	
71	47		152	100 .
72	73		153	<u>·</u>
73			154	 .
74	100	65	155	<u></u>
75	67	0 5	156	
76	67		157	
			158	<u></u>
7 7	100		170	

-continued		•	-continued		
Compound	% Mort.		Compound	% Mort.	
160	0		241	100	
161		5	242	100	
162	. 		243	**************************************	
163 164	93		244 245	27	
165	100		246		
166	87		247		
167		10	248		
168	100	10	24 9		
169	100		250	<u></u>	
170	100		251 252	100	
171	0.2		252 253	100 100	
172 173	93 100		253 254	80	
174		15	255	100	
175			256		
176	100		257	93	
177	100		258	100	
178	100		259		
179	100	20	260	93	
180 181	100 100	20	261 262		
182	100		263		
183	60		264		
184			265		
185	100		266	****	
186	100	25	267		
187			268		
188 189	100		269		
190	100				
191	100		•		
192	100	30	EXAM	PLE 12	
193	100	30	Boll W	7aavi1	
194	100		DOII W	CCVII	
195		F	ive adult boll weevils (Anthonomus grandis) were	
196 197				of 9-ounce cups. The test	
198			•	en otherwise the same as in	
199		• • • • • • • • • • • • • • • • • • • •	<u>-</u>	s per treatment. Mortality	
200			-	rs after treatment. The re-	
201			s are tabulated below.	arter treatment. The re-	
202	100	Suits	s are tabulated below.		
203 204	100	•		•	
205	100	40	Compound .	% Mort.	
206	100	 	1	87	
207	93		2	66	
208	100		3	20 .	
209	100		4	`100	
210 211	100 100	A.E	5	. 80	
212	100	45	6		
213			7	100	
214			გ ე	100	
215			10	100	
216			11	100	
217 218		50	12	100	
219			13	100	
220			14	100	
221			15	100	
222			. 17	100	
223	1.00	55	18	100	
224	100		19	100	
225 226	<u> </u>		20	100	
227	100 .		21	100	
228	13		22	93	
229			23	100	
230		60	24 25	100	
231			25 26	• • • • • • • • • • • • • • • • • • •	
232			26 27		
233 234	100		28	•	
235	100		29	100	
236	100	65	30	100	
237	100	4.5	31	100	
238	100		32		
239	100		33	100	

	10	03	J,102,500	104		
-continued			-	-continued		
	Compound	% Mort.		Compound	% Mort.	
	35			116		
	36	87	5	117		
	37	100	J	118	 	
	38	73		119		
	39	87		120		
	40	100		121		

	35			116	-	
	36	87		117		
			5		_	
	37	100		118	_	
	38	73 .		119	_	
	39	87 ·		120	_	
	40	100		121		
	41	100		122	67	
	42	100		123	_	
			10	124	- <u>-</u>	
	43	100			_	
	44	93		125 ·		
	45	93		126		
	46	93		127		
	47	100		128	_	
	48	80		129		
	49	67	15	130		
		80		131		
	50				 -	
	51	93		132		
	52			133	100	
	53			134	93	
		100				
	54	100	••	135		
	55		2 0	136	_	
	56			137	93	
	57	· 53		138	100	
		J J				
	58			139	47	
	5 9	100		140	93	
	6 0			141	93	
		100	25			
	61	100	25	142	100	
	62	100		143	100	
	63	100		144	100	
	64	100		145		
		100			60	
	65			146		
	6 6	100		147	93	
	67	100	20	148	67	
	68	100	30	149	0	
					U	
	69	93		150		
	70	53		151		
	71			152	_	
	72	40		153		
						
	73	87	25	154		
	74	100	35	155		
	75	60		156		
	76	93	•	157		
	77	100		158	_	
	78	100		159	_	
	79	100		160	33	
		100	40		55	
	80		40	161		
	81	100		162	_	
	82	100		163	33	
				164	73	
	83	100				
	84	100		165	100	
	85	80		166	80	
	86		15	167	13	
		100	45		93	
	87	100		168		
	88	100		169	87	
	89	100		170	100	
	9 01			171	_	
		0.2				
	91	93		172		
	92	100	50	173	20	
	93	100		174	_	
	94	100		175		
	95	100		176	100	
	96	73 - 7		177	100	
	97	67		178	73	
	98	100		179		
	99	100	55	180		
					100	
,	100	100		181	100	
,	101	100		182	87	
	102	40		183	100	
	103			184	-	
					97	
	104			. 185	87	
	105	100	60	186	73	
	106	100		. 187		
	107	100		188		
					100	
	108	100		189	100	
	109			190	93	
	110	100		191	100	
	111	100	15	192	100	
			65			
	112	100		193	100	
	113	7		194	6 0	
	114			195	_	
	115			196	_	
	112			170		

	•	1
-cont	117111	മ്പ
-6.00111	. 1 1 1 1 1	LU

• (-continued		
Compound	% Mort.		X //
197			$Q-N-\ddot{C}-N-\langle ($
198		5	
199 20 0			R ₅ R ₆ _
201			•
202	100	V	vherein:
203			Q is
204	100	10	
205	100	10	
206	100 87		
207 208	100		()
209	100		
210	93	1.5	
211	100	13	$(\mathbb{R}_2)_n$
212	100		
213 214			A is $(CH_2)_t$, wherein, each
215			substituted with 1 to 2 s
216	100		to 2 halogen, C ₁ -C ₆
217		20	C ₃ -C ₆ halocycloalkyl,
218			C ₂ -C ₆ halocycloaikyi, C ₂ -C ₄ alkoxycarbonyl,
219			_
220			tuted with 1 to 3 substitu
221 222		•	from W;
223		25	R ₁ and R ₂ are independent
224	₽		N ₃ , SCN, OR ₈ , SR ₈ ,
225			$C(O)R_8$, CO_2R_8 , $C(O)N$
226			$OC(O)NR_8R_9$, NR_9C
227	87		OSO_2R_8 , $NR_9SO_2R_8$;
228 229	,	30	when R ₁ , R ₃ and R ₄ are
230	· · · · · · · · · · · · · · · · · · ·	50	R_3 is H, C_1 - C_6 alkyl, C_1 - C_6
231			cloalkyl, C2-C6 alkenyl
232	***		alkynyl, C ₂ -C ₆ haloall
233			C ₂ -C ₆ cyanoalkyl, C
234	~~~	. 25	OR_8 , $S(O)_qR^8$, NR_8R
235 236	33 80	35	$C(O)NR_8R_9$, $C(S)NR_8$
230	-		phenyl optionally subst
238		•	optionally substituted w
239			pendently selected from
240	93		<u>-</u>
241	100	40	kyl optionally substitute
242 243	100		to 2 CH ₃ ;
244			R_4 is H, C_1 - C_6 alkyl, C_1 - C_6
245	27		C ₂ -C ₆ haloalkenyl, C ₂ -
246			nyl, C ₂ -C ₆ alkoxyalkyl,
247		45	optionally substituted w
248 249			ally substituted with 1
25 0			dently selected from W
251			R ₅ and R ₆ are independent
252	100		alkoxyalkyl, C2-C22 alk
253	100	50	carbonyl, C2-C22 haloa
254 255	100		loalkoxycarbonyl, SR ₁
255 256	93 100		nyl, phenylsulfonyl opti
250 257	87		3 substituents indepe
258	93		C ₇ -C ₁₅ phenoxycarbo
259		8.5	with 1 to 3 substituents
260		55	
261			phenylcarbonyl options
262 263	20		substituents independen
263 264	•		CO ₂ C ₁ to C ₄ alkyl, C ₈ -
265			tionally substituted wit
266		60	pendently selected fron
267			pendently phenyl option
268			substituents independe
269			benzyl optionally subst
			ents independently sele
What is claimed is:		65	Rois H C1-C4 alkyl C

What is claimed is:

1. A compound of the formula

Q-1 N--

h carbon individually can be substituents selected from 1 alkyl, C₃-C₆ cycloalkyl, l, C4-C7 alkylcycloalkyl, or phenyl optionally substituent independently selected

ently R₈, halogen, CN, NO₂, .8, SOR8, SO₂R₈, NR₈R₉, NR_8R_9 , $OC(O)R_8$, OCO_2R_8 , $C(O)R_8$, $NR_9C(O)NR_8R_9$, R₂ being other than CH₃ re H and A is CH₂;

-C₆ haloalkyl, C₄-C₆ alkylcyyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₂-C₆ alkoxyalkyl, C₃-C₈ alkoxycarbonylalkyl, R^9 , CN, CO₂R₈, C(O)R₈, R_9R^9 , $C(S)R_8$, $C(S)SR_8$, stituted with $(R_{10})_p$ or benzyl with 1 to 3 substituents indeom W or R₃ is C₃-C₆ cycloalted with 1 to 2 halogens or 1

-C₆ haloalkyl, C₂-C₆ alkenyl, -C₆ alkynyl, C₂-C₆ haloalkyl, C₂-C₆ cyanoalkyl, phenyl with $(R_{10})_p$ or benzyl option-1 to 3 substituents indepen-W;

ently H, C_1 – C_{22} alkyl, C_2 – C_{22} lkylcarbonyl, C2-C22 alkoxyoalkyl carbonyl, C2-C22 ha-11, CHO, C1-C4 alkylsulfotionally substituted with 1 to endently selected from W; onyl optionally substituted its selected from W; C7-C15 nally substituted with 1 to 3 ently selected from W; C(O)--C₁₂ benzyloxycarbonyl opith 1 to 3 substituents indeom W; or R₅ and R₆ are indeonally substituted with 1 to 3. ently selected from W, or stituted with 1 to 3 substitulected from W;

R₈ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₄-C₇ cycloalkylalkyl, C₄-C₇ halocycloalkylalkyl C₂-C₆ alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C2-C6 alkoxyalkyl, C2-C6 alkylthioal-

15

kyl, C₁-C₆ nitroalkyl, C₂-C₆ cyanoalkyl, C₃-C₈ alkoxycarbonylalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, phenyl optionally substituted with 1 to 3 substituents independently selected from W or benzyl optionally substituted with 1 to 3 substituted with 1 to 3 substituents independently selected from W;

R₉ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl or C₂-C₄ alkynyl; R₁₀ is R₈, halogen, CN, NO₂, N₃, SCN, OR₈, SR₈, SOR₈, SO₂R₈, NR₈R₉, COR₈, CO₂R₈, CONR₈R₉, SO₂NR₈R₉, OC(O)R₈, OCO₂R₈, OC(O)NR₈R₉, 10 NR₉C(O)R₈, NR₉C(O)NR₈R₉, OSO₂R₈ or NR₉SO₂R₈;

R₁₁ is C₁-C₂₂ alkyl, C₁-C₂₂ haloalkyl, phenyl optionally substituted with 1 to 3 substituents independently selected from W;

W is halogen, CN, NO₂, C_1 – C_2 alkyl, C_1 – C_2 haloal-kyl, C_1 – C_2 alkoxy, C_1 – C_2 haloalkoxy, C_1 – C_2 alkylthio, C_1 – C_2 haloalkylthio, C_1 – C_2 haloalkylsulfonyl;

m is 1 to 5;

n is 1 to 4;

t is 0 to 3; when t is 2 and R₂, R₃, R₄, R₅ and R₆ are each H, then R₁ is other than H or NO₂;

q is 0 to 2;

p is 1 to 3; and

- X is O or S; X being O when A is CH₂ and R₂, R₃ and R₄ are H, with the further proviso that when X is S and A is CH₂, the 2,3-dihydro-indene moiety may not be substituted solely with a single methyl group.
- 2. A compound according to claim 1 wherein: when t is 0 then R₃ or R₄ are other than Ph or phenyl optionally substituted with W.

3. A compound according to claim 1 wherein: R₁, R₂ and R₁₀ are R₈, halogen, CN, NO₂, OR₈, SR₈, 35 SOR₈, SO₂R₈, NR₈R₉, CO₂R₈, SO₂NR₈R₉;

R₈ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkylalkyl, C₃-C₆ halocycloalkylalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, phenyl optionally substituted with 1 to 40 2 substituents independently selected from W or benzyl optionally substituted with 1 to 2 substituents independently selected from W;

R₅ and R₆ are independently H, C₁-C₃ alkyl, C₂-C₄ alkylcarbonyl, C₂-C₄ alkoxycarbonyl, CHO, SR₁₁, 45 phenyl optionally substituted with 1 to 2 substituents independently selected from W, or benzyl optionally substituted with 1 to 2 substituents independently selected from W;

R₁₁ is C₁-C₃ alkyl, phenyl optionally substituted with 50 1 to 2 substituents independently selected from W; m is 1 to 2;

n is 1 to 2;

p is 1 to 2; and

q is 0.

4. A compound according to claim 3 wherein:

R₃ is H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, CN, phenyl optionally substituted with $(R_{10})_p$ or benzyl optionally substituted with 1 to 2 substituents independently selected from W;

R₄ is H, C₁-C₃ alkyl, C₃-C₄ alkenyl or C₃-C₄ alkynyl; R₅ is H, Me, CO₂Me, CO₂Et, SR₁₁ or phenyl optionally substituted with 1 to 2 substituents independently selected from W;

R₆ is H, Me, C(O)Me, CO₂Me or SR₁₁;

R₁₁ is C₁-C₃ alkyl, or phenyl optionally substituted with Cl, NO₂ or CH₃; and

A is CH₂, wherein the carbon is optionally substituted with C₁-C₃ alkyl or phenyl, wherein, the phenyl is optionally substituted with W.

5. A compound according to claim 4 wherein:

R₁ and R₂ are independently selected from F, Cl, Br, CN, NO₂, OMe, CF₃, OCF₂H, OCF₂CF₂H, SMe, SO₂Me, SCF₂H;

R₃ is C₁ to C₄ alkyl, allyl, propargyl, or phenyl optionally substituted with F, Cl, Br, CF₃, OCF₂H, OCF₃, SCF₂H, CN, NO₂, CH₃, OMe or CO₂Me; R₄ is H or CH₃;

R₅ is H, CH₃, CO₂CH₃, CO₂Et, or phenyl optionally substituted with F or Cl; and

 R_6 is H, CH₃, C(O)CH₃ or CO₂CH₃.

6. A compound according to claim 5 wherein: A is CH₂; and R₃ is optionally substituted phenyl or C₁ to C₄ alkyl.

7. A compound according to claim 6:

- 30 2-[5-fluoro-2-(4-fluorophenyl)-2,3-dihydro-1H-inden-1-yl-idene]-N-[4-(trifluoromethoxy)phenyl]hydrazine carboxamide.
 - 8. A compound according to claim 6:
 - 2-(5-fluoro-2,3-dihydro-2-methyl-1H-inden-1-ylidene)-N-[4-(trifluoro methyl)phenyl]hydrazine carboxamide.
 - 9. A compound according to claim 6:
 - 2-[5-chloro-2,3-dihydro-2-(1-methylethyl)-1H-inden-1-ylidene]-N-[4-(trifluoromethyl)phenyl]hydrazine carboxamide.
 - 10. A compound according to claim 6:
 - 2-(5-chloro-2,3-dihydro-2-methyl-1H-inden-1-ylidene)-N-[4-(trifluoromethyl)phenyl]hydrazine carboxamide.
 - 11. A compound according to claim 6:
 - 2-[5-fluoro-2-(4-fluorophenyl)-2,3-dihydro -1H-inden-1-yl-idene]-N-[4-(trifluoromethyl)phenyl]hydrazine carboxamide.
 - 12. An arthropodicidal composition comprising an arthropodicidally effective amount of a compound according to claim 1 and a carrier therefor.
- 13. A method for controlling arthropods comprising applying to them or to their environment an arthropodicidally effective amount of a compound according to claim 1.