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[57] ABSTRACT

This invention relates to the field of computer con-
trolled robotics. More specifically, it relates to a novel
method and algorithm to symbolically decompose the
robot jacobian matrix, in such a way that the robot
jacobian Moore-Penrose pseudo-inverse is obtained

- symbolically even when the robot jacobian is ill condi-

tioned or rank deficient, and to a general purpose com-
puter and method to perform the symbolic steps. The
resulting symbolic pseudo-inverse, after symbolic re-
duction techniques, is not only efficient from the point
of view of number of floating point operations, but is
also accurate (exact) and stable. It removes the restric-
tions imposed by the computational complexity of the

Jacobian pseudo-inverse, especially when the robot

jacobian is ill conditioned (robot near/at singularities).
This method 1s sufficiently fast to allow real time con-
trol of the robot and is sufficiently stable to allow good
robot performance near singularities. In addition, the
method presented in this invention is of special impor-
tance for the future design of prototypes of robot ma-
nipulators, as well as for robot trajectory planning.

12 Claims, 26 Drawing Sheets
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'METHOD AND APPARATUS FOR CONTROLLING
'ROBOT MOTION AT AND NEAR SINGULARITIES
AND FOR ROBOT MECHANICAL DESIGN

This 1s a continuation-in-part application based upon

my copending application Ser. No. 352,772, filed May
16, 1989 now abandoned.

BACKGROUND OF THE INVENTION

This invention relates to the field of computer con-

trolled robotics. Most existing industrial robot manipu-
- lators are serial mechanical structures/devices that re-
semble the human arm. In FIG. 1 are shown three ex-
amples of six-degree-of-freedom robots with spherical
~ wrists, namely the robots conventionally called the
~Cincinnati T3, the Stanford arm, and the Unimation
Puma 560. Robot manipulators are basically an open
loop (or closed) chain of links connected to each other
through joints, which are controlled by actuators. The
‘generalized coordinates 1 (6;, 62, 03, 64, 05,06¢6) are
called the joint coordinates and form the robot joint
space. The end effector Cartesian position/orientation 2
with respect to a Cartesian space coordinate system
represents the robot Cartesian space. In most robotic
control strategies, the primary task is driving the joint
actuators, so that the end effector follows a desired
Cartesian position/orientation trajectory. In order to
achieve that, a fundamental problem, which must be
solved in all sophisticated computer based robot Carte-
“sian controller design, is that robots are usually servoed
in the joint space (through the actuator motors), while
the robot desired tasks are best described and Spec1ﬁed
in the Cartesian space.

For instance, consider the task where the robot’s end
effector has to track a certain Cartesian surface when
applying a certain force on it (position and force con-
trol), or the task where the robot end effector has to
follow a certain Cartesian straight line (position con-
trol); we may notice that these tasks are best described
in the Cartesian space and not in the joint space. The
joints of the robot must move at different joint rates in
order to achieve the desired end effector position-
/orientation Cartesian trajectory. Therefore, the in-
verse mapping between the Cartesian space and the
joint space—i.e., given a desired Cartesian position-

/orientation of the end effector, then what is the set of

joint coordinates that the robot must have, to achieve
the desired end effector Cartesian position/orienta-
tion—, must be solved in every sophisticated computer-
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based robot control. This 1s known as the inverse kine-

matic problem. It is one of the most difficult problems in
robotics.

- A systematic and straightforward technique for com-
puting the forward kinematics (i.e., given the joint coor-
dinates, then determine the Cartesian position/orienta-
tion of the effector) is described in articles by Denavit
and R. Hartenberg, “A kinematic motion for lower-pair

- mechanisms based on matrices” AME J. Appl. Mech.
pp. 215-221, June 1955, and by Pieper, D. 1., and B.
Roth, “The kinematics of manipulators under computer
control”, Proc. 2nd Int. Conf. Theory of Machines and
Mechanisms, Warsaw, September 1969. The forward
kinematics problem is straightforward and simple. The
inverse kinematics problem (IKP) is more difficult and

a closed form solution is not known (may be impossible)
to this day. At one time, for simple robots, the IKP was
solved by man using his intuition and experience. To-

55

65

2

day, when the robots are called to perform sophisti-
cated Cartesian tasks, intuition and experience are not
enough to solve the problem. A closed form solution to
the IKP exists only for a limited number of robot kine-
matic designs that allow a closed form solution. The
IKP becomes more difficult when the robot is redun-
dant. A robot 1s redundant when it has more degrees of
freedom than necessary. It is well established that in the
case of a redundant robot, there is an infinity of solu-
tions to the IKP. The IKP is also even more difficult
when the robot 1s in a singular configuration. A robot
singular configuration is a configuration where the
robot end effector cannot move in certain Cartesian
directions. Robot singularities translate into rank defi-
ciency in the robot jacobian matrix. The robot jacobian
1s a matrix which forms the linear relation between the
differential changes in the Cartesian coordinates and the
differential changes in the joint coordinates. This matrix
is time varying and depends on the robot different _]olnt
configurations.

Many researchers 1in the field of robotics are still
searching for effective procedures to solve the IKP for
general architecture robots, in order to permit the im-
plementation of Cartesian-based robot controllers. In
the next section, the prior art best known methods of
Cartesian-based robot control, as well as prior art in-
verse kinematic methods, are briefly described. The
best prior art known methods to solve the IKP can be
classified in two categories:

(1) OPTIMIZATION METHODS BASED ON THE
GLOBAL CARTESIAN TRAJECTORY
INFORMATION.

The solution of these methods computes a joint tra-
jectory that optimizes certain performance criteria,
such as kinetic energy or completion time, while still
satisfying a desired Cartesian trajectory. These methods
usually produce joint trajectories with good perfor-
mance. Unfortunately, because of the complexity of the
scheme they are based on, they are limited to be off-line
methods (as opposed to real time) and do not incorpo-
rate real time trajectory correction based on the end
effector error measurements. For these reasons, these
methods have not seen much use. Among the articles
which use these methods, see articles by Fournier, A.,
and Khalil, W., 1977, “Coordination and reconfigura-
tion of mechanical redundant systems”, Proc. Int. Conf.
on Cybernetics and Society, pp. 227-231, and by Vuko-

bratovic, M., and Kircanski, M. 1984,” A dynamic ap-

proach to nominal trajectory synthesis for redundant
manipulators, IEEE Trans., Syst., Man., and Cybernet-
ics SMC 14 pp. 580-586. |

(2) METHODS BASED ON LOCAL CARTESIAN
- TRAJECTORY INFORMATION.

These methods are basically based on the inversion of
the robot jacobian using the Moore-Penrose pseudo-
inverse. These methods are the most widely used be-
cause they incorporate the robot end effector error

measurements, and therefore are suitable for real time

control in a changing environment. Real time control
based on sensory feedback is required in many robot
tasks and this is the major reason why these methods are
considered the prior art most popular IKP methods.

Among the articles which use these methods, see arti-

cles by Liegeois, A. 1977, “Automatic supervisory con-
trol of the configuration and behavior of multi-body
mechanisms”, IEEE Trans., Systems, Man, and Cyber-
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netics, SMC-7, by Klein, C. A. and Huang, C. H. 1983,
“Review of pseudo-inverse control for use with kine-
matically redundant manipulators”, IEEE Trans. Sys-
tems, Man, and Cybernetics SMC 13, pp. 245-250, by
Hollerback, J. M., and Suh, K. C. 1985, “Redundancy
resolution of manipulators through torque optimiza-
uion”’, Proc. IEEE Int. Conf. on Robotics and Automa-
tion, pp. 1016-1021, and by Nakamura, Y., and
Hanafusa, H., 1985, “Task priority based redundancy
control of robot manipulators in robotics research”, the
Second International Symposium, eds. H. Hanafusa and
H. Inoue, Cambridge, Mass. M.1.T. Press, pp. 155-162.

To control a manipulator to move along a specified
Cartestan trajectory, it is required to compute the
torques and forces needed to drive all the joints simulta-
neously with coordination, in order for the end effector
to achieve the desired Cartesian trajectory. Most of the
modern Cartesian-based robot control strategies and
techniques require the computation of the jacobian
pseudo-inverse to solve the IKP at the joint accelera-
tion level. The resulting joints accelerations are used
with the robot dynamics-based equations of motion
(highly coupled non linear second order ordinary differ-
ential equations) to compute the actuator torques. This
technique is known as the resolved acceleration control.
For a general background about this technique, refer-
ence i1s made to an article by Johnson Y. S. Luh, Mi-
chael W. Walker, and Richard P. C. Paul, “Resolved
acceleration control of mechanical manipulators™,
IEEE transactions on automatic control 25, 3 1980, pp.
468-474. The equations of motion are computationally
complex. To eliminate the restriction of this computa-
tional complexity on the evaluation of dynamics-based
joint control, well-established techniques, based on
symbolic reduction technigues, have been described in
articles such as “The explicit dynamic model and iner-
tial parameters of the Puma 560 arm” by B. Armstrong,
O. Khatib, and J. Burdick, in Proceedings of the IEEE
International Conference on Robotics and Automation,
San Francisco, Calif.,, April 1986, pp. 510-518, and
“Efficient Dynamics for a Puma-600" by M. B. Leahy,
Jr., L. M. Nugent, K. P. Valavanis, and G. N. Sandis,
Proceedings of the IEEE International Conference on
Rcbotics and automation, San Francisco, Calif.,, April
1986, pp. 519-524, and their references. Application of
this dynamics-based joint control in the Cartesian space
(resolved acceleration control) has been limited by the
additional requirements of efficient computation of the
robot jacobian pseudo-inverse, especially when the
jacobian is rank deficient.

From the foregoing, we note the important role of
the jacobian pseudo-inverse in most IKP algorithms as
well as most Cartesian-based control methods.

SHORTCOMINGS OF THE PRIOR ART
SCHEMES

Although various numerical schemes using the pseu-
do-inverse, such as those described above, have good
performance and features when the robot is away from
singularities, 1n the neighborhood of a singularity, these
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schemes fail. Near singularities the jacobian becomes -

1ll-conditioned and the pseudo-inverse solution gener-
aies large errors. None of the approaches described
above overcome the singularity problem. In an effort to
alleviate this problem, recently P. R. Chang and C. S.
G. Lee in the article *Residue Arithmetic VLSI Array
Architecture For Manipulator Pseudo-Inverse Jacobian
Computation”, 1988 IEEE International Conference of

65
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Robotics and Automation, proposed a VLSI architec-
ture for a numerical scheme for computation of the

jacobian pseudo-inverse. Unfortunately, the shortcom-

ings of their method are as follows:

(1) The procedures used are based on numerical
schemes which are iterative and therefore would not be
efficient for real time robot control.

(2) In addition, numerical schemes typically intro-
duce errors, and are not 100% stable, especially when
the robot is at or near singularities.

(3) Moreover, and more importantly, their method is
based on numerical schemes and therefore it 1s very
difficult to find any analytical results that may be used
in the evaluation of robot performance as well as future
design of robot prototypes (as discused further below).

In accordance with the present invention, the defi-
ciency of the prior art robot Cartesian control tech-
niques near singularities is overcome by using an en-
tirely different strategy for efficiently computing the
robot jacobian pseudo-inverse. In view of the above
background of this invention, there is a need for eco-
nomical computers and methods for computing more
efficiently the robot jacobian pseudo-inverse, which is
required and critical in most modern Cartesian-based
control techniques and IKP schemes. It is the solution
of this type of problem to which the present invention is
directed.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1(a)-(c) are graphical representations of three
examples of existing six-degree-of-freedom industrial
robot manipulators with spherical wrists.

FIG. 2-25 is a general flow chart of the algorithm of
the present invention for constructing the first subset of
the orthonormal basis needed for the Megherbi Matrix
Decomposition.

FIG. 3 is a general flow chart of the algorithm of the
present invention for constructing the second subset of
the orthonormal basis needed for the Megherbi Matrix
Decomposition.

FIG. 4(a)-(b) are the graphical representations of the
kinematic representation of respectively a planar two-
link robot, and a planar four-link redundant robot.

FIG. § is a general flow chart of the computer
method of the present invention for implementing the
results of algorithms of FIG.-2 and FIG.-3 on a general
purpose digital computer.

FIG. 6 is a block diagram of a robot control system
using the computer method of FIG.-§ and algorithms of
FI1G. 2 and FIG. 3.

FIG. 7-10 are computer simulations of planar two-
link and planar 4-link redundant robots in motion ac-
cording to the invention.

FIGS. 11-23 represent the robot joint and Cartesian
position, velocity and acceleration time history.

SUMMARY OF THE INVENTION

‘The present invention is a novel method and a gen-
eral purpose computer method for resolving robot kine-
matic singularities, and for efficient and exact computa-
tional formulation for the robot jacobian pseudo-
inverse. These efficient and exact computational formu-
lations for the robot jacobian pseudo-inverse are stable
and fast enough to permit the real time implementation
of most Cartesian-based robot control strategies and
techniques. The efficient computation of the robot pseu-
do-inverse is done, in accordance with this mvention,
by effect of two steps, first, by effect of special symbolic



S
decomposition: of the robot jacobian under the Megh-
erbi Matrix Decomposition form, and secondly, by
effect of a computer method for the efficient implemen-
tation of the resulting analytical steps on a general pur-
- pose digital computer. The Megherbi Matrix Decompo-
‘sition has been made possible by the use of the Megherbi
Matrix Decomposition theorem, which will be dis-
cussed hereinafter in the detailed description section.
~ In accordance with the present invention, the algo-
rithm and procedure for achieving the Megherbi Matrix
Decomposition (MMD) of an m X n matrix A of rank r,
r=m=n, which will be rigorously detailed herein after
in the detailed description section, can be understood
better by considering the flow charts of FIG. 2 and
FIG. 3. An orthonormal basis {uj,u, . . ., usu,41, . .
, Um} is constructed in an m-dimensional vector space.
The first subset basis {u,+1,uy+2, . . ., Um}, is an ortho-
normal basis for the null space of the matrix transpose of
the matrix A noted A7, and is constructed according to
the algorithm outlined in the flow chart of FIG. 2. To
extend the orthonormal basis {u,+1,0r42, . .., Um} to an
-orthonormal basis for the whole m-dimensional vector
space, an orthonormal basis {uj,uy, . . ., u,}, for the
range space of the matrix A, is constructed according to
the algorithm outlined in the flow chart of FIG. 3. Let
Uj and U3 be the matrices defined respectively as U =-
(uuz, ..., u;) and U=, 1,u,42, . . ., Up).
- To construct the above orthonormal basis in an m-
dimensional vector space, an operator, which is the
generalization of the cross product operator of two
vectors in a three dimensional vector space, is defined
and introduced by the inventor to determine an mX 1
vector which 1s orthogonal to (m— 1) linearly indepen-
dent vectors in an m-dimensional vector space. When
the orthonormal matrix U=(uj,uj, . . ., u) is con-
structed according to the algorithm whose steps are
outlined in flow charts of FIG. 2 and FIG. 3, the diago-
nal matrix W and matrix V7 of full rank, are obtained by
computing the matrix, V¥*=(V*,V7¥), product of the
two matrices A 7and U, where the matrix V* is defined
as Vi*=A7U; and the matrix V,* is defined as any
n X (m—r) matrix and may be chosen such that its col-
umns form with the columns of the matrix Vi a set of
linearly independant unit vectors. The matrix V,* may
be defined such that each of its column vectors is or-
thogonal to the column vectors of the matrix Vi*. The
resulting matrix, V*=(V*,V,¥), is then decomposed
under the product of a matrix V=(V,V3) of full rank
and a diagonal matrix

")

& |

0 O

of rank r, where V*=WyV; and V2*=V>, according
to algorithm 1, whose steps are described herein after in
the detailed descnptmn section. The MMD of the ma-
trix A is then given by A=UWV7, The components
{w;, j=1,2, ..., m} of the diagonal matrix W are de-
fined and referred to, herein and in the rest of this patent
application, as the MMD diagonal values of the matrix
A. When the MMD of the matrix A, A=UWVT, is
established then the Moore-Penrose pseudo-inverse
matrix of A, noted A+, is given by A+=V(VIV)-I-
W+UT=V (V1TV)—1Wo—1U;7; where X—! denotes
the matrix inverse of the matrix X, and where the com-
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ponents, {d;, j=1,2, . . ., m}, of the diagonal matrix
W+ are defined and given by:

]

— fwi=£0
: J
d_f: wj j=l,2,...m
0 ifwj=0

In accordance with this present invention, when the

MMD-based pseudo-inverse of a matrix A is estab-

lished, a computer method, which is based on the algo-
rithm outlined in the flow chart of FIG. 5 which will be
detailed hereinafter in the detailed description, empha-
sizes on considerations relevant to the implementation
and performance of the analytical steps of the resulting
symbolic pseudo-inverse on a digital computer. This
computer method takes explicit considerations of
round-off errors, overflow as well as treatment of nu-
merical stability of the algorithm when the matrix A
becomes ill-conditioned. In preferred and efficient em-
bodiment of the present invention, the newly con-
structed method for efficient, stable, and exact compu-
tational formulation of the pseudo-inverse of a matrix
A, is applied to compute efficiently the robot jacobian
pseudo-inverse which is required in most modern Carte-
sian robot computer control systems. In conjunction
with the preferred embodiments, the major advantages
of the present invention are:
stability for resolving inverse kinematic singularities
with which the robot pseudo-inverse can be com-
puted when the jacobian is ill-conditioned.
efficiency and speed (after using symbolic reduction
techniques) with which the robot pseudo-inverse
can be computed. |
this efficient, stable, and exact computation of the
robot jacobian pseudo-inverse permits the real time
implementation of most Cartesian-based robot con-
trol strategies and techniques.
this special symbolic MMD of the robot jacobian is of
special importance in the evaluation of robot per-
formance as well as future design of prototypes of
robot manipulators. It offers analytical results
which lead to a better understanding of the relation
between the dynamics and kinematics of the robot
(relations not clearly understood as of today) as
well as the determination of some properties of the
robot workspace (as discussed in the detailed de-
scription section). These special, important and
fundamental features of this invention are not of-
fered by any other numerical method.
Additional features of this invention will appear
through the following detailed description in which the
preferred embodiments of the invention have been set
forth in detail in conjunction with the drawings.

DETAILED DESCRIPTION
GENERAL

The present invention provides a method and algo-
rithm to decompose symbolically the robot jacobian
matrix under the Megherbi Matrix Decomposition form
(MMD), and provides a special purpose computer and
method to implement and perform these symbolic steps.
This symbolic decomposition of the robot jacobian,
which has been made possible with the use of the Megh-
erbi Matrix Decomposition theorem, is of special im-
portance for the determination of the jacobian pseudo-
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inverse when the robot jacobian is ill-conditioned. The
technique brought by this present invention has supe-
rior stability and speed relative to prior art numerical
iterative methods, and is fast enough to permit the real
time implementation of most modern Cartesian space
manipulator control strategies. These Cartesian based
control strategies have until now been limited by the
requirement of efficient and stable methods for comput-
ing the robot jacobian pseudo-inverse.

Of special interest of this invention is the fact that the
resulting symbolic MMD form of the pseudo-inverse
shows clearly, and permits some analysis leading to a
better understanding of the resulting robot control sys-
tem, which is not possible by any other numerical
method. It also gives insight and a better understanding

of the relation between the dynamics and kinematics of

the robot, a relation, which is still not clearly under-
stood to this day. More specifically, the present inven-
tion answers the question of planning Cartesian trajec-
tories, which, in order to be executed by the robot, will
require torques and forces that are within the physical
limitations of the robot actuators; and if, the trajectory
is not realizable, how it can be modified on line in order
not to exceed the actuator torque limits. The present
invention leads to a better understanding of and gives
answers to these fundamental questions which are still
unanswered and not clearly understood to this day. In
addition, the principles of this invention are of special
importance in the design of future prototypes of robot
manipulators.

Even though the preferred embodiment of this inven-
tion has been chosen to be the robotics field, the princi-
ples of this invention are suitable for any other field or
application characterized by the problem of solving a
linear system A(@)x=y; where the matrix A(@) is either
rank deficient or else numerically ill-conditioned depen-
dently on the parameter 6. Examples of such applica-
tions are robotics (preferred embodiment of this inven-
tion), the problem of bifurcation in the fluid mechanics
field, linear multi-variable systems and control theory,
eic.

MATHEMATICAL DERIVATION

The present invention can be better understood with
reference to the following theorem, that the inventor
has established and refers to as the Megherbi Matrix
Decomposition theorem (MMD).

MMD THEOREM

For any m X n Matrix A of rank r,r=m=n, there exist
an n Xm matrix V of full rank, an m Xm orthonormal
matrix U, and an m Xm diagonal matrix

)

Wp being a diagonal matrix of rank r, such that
A=UWVT7 The matrix VT denotes the matrix trans-
pose of the matrix V.

W =

PROOF

Let {u,41,ur42, ..., Uy} be an orthonormal basis for
the null space of the n X m matrix A7, and let U be the
m X (m—r) orthonorma! matrix defined as Ux=(u,.
1,Ur+2, - .., Um). Let {uj,uy, ..., ut be an orthonormal
basis for the range space of the matrix A, which repre-
sents the extension of the set of orthonormal vectors
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{u,+1,Ur4+2, . . ., Un} to a set of orthonormal vectors
which forms an orthonormal basis for the whole m-
dimensional space. Recall that it is well known and
established that it is always possible to extend a set of
linearly independant vectors in an m-dimensional space
to a set of linearly independant vectors which forms a
basis for the whole m-dimensional space. Let Uy be the
m X r matrix defined as Uj=(u,uy, ..., u,). The proof
of the theorem may be based on the observation that if
{uj,uy, ..., us} is an orthonorma!l basis for the range
space of the matrix A of rank r, then there exist r n-
dimensional linearly independant column vectors v;*
such that,

ATy;

vl‘.. i=l’.2’--;’r

and such that,

AT =v*

where the n X r matrix V1* is defined as V*=(v1*,v>*,
..., V/*). More specifically, let {al,a2, ..., a’} be a set
of r linearly independant column vectors of the matrix
A, and let A, be the mXr submatrix of A defined as
A,=(al,a2, ..., a". Consequently the rXr matrix V,
defined as,

‘ Vr‘—'ArTUl

is a matrix of full rank r, since its r rows vectors are the
r linearly independant vectors {al,a?, ..., a’} expressed
in the new basis {uj,uy, . . ., u,}. The set of row vectors
of the matrix V,is a subset of the set of row vectors of
the matrix V1*; consequently, there exist r row vectors
of the n Xr matrix V* which are linearly independant,
and therefore the matrix Vi* i1s of full rank. Conse-
quently, there exist an rXr diagonal matrix Wy of rank
r and an n X r matrix Vy of full rank such that,

ATU =V Wy

where the column vectors of the matrix Vi, noted {v;

i=1,2, ..., r}, are unit vectors which are defined as,
v v;* Ly
V= = e = 12,7
P v WO;

where the elements {wg;i=1,2, ..., r} of the diagonal
matrix Wo are non negative, and it i1s convenient to
rearrange these elements such that,

WOoIZWDRE ... =wor=0

Let V2=(Vr+],vr+2, ¢ .oy Vm) be any HX(III—I') matrix
whose columns form with the columns of the matrix V)
a set of linearly independant unit vectors. The matrix
V2 may be defined such that each of its column vectors
is orthogonal to the column vectors of the matrix Vy, (it
can be proven that the column vectors of the matrix Vs,
as defined above, are in the null space of the matrix A).
Since Us is the matrix whose column vectors form an
orthonormal basis for the null space of the matrix A7,
therefore we have,

ATU;=0=V¥30
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and if we define the m X m matrix U, the m Xm matrix
- W, and the n Xm matrix V respectively by,

- Wo O
= (U), U2), V = (V}, V3),and W = [ ]
0 0
then,
- Wo O
ATy, Up) = ATU = (¥, V) = VW.
| 0 0
Therefore,
A= UWT

NOTE

10

15

The method (algorithm) to construct such decompo- 20

sition of a matrix is given hereinafter in the detailed
description, in the section MMD algorithm.

COROLLARY
If

is a MMD of an m X n matrix A of rank r, r=m=n, then
the exact nXm Moore-Penrose pseudo-inverse matrix
of the matrix A, noted A+, is given by,

| . o,
A+ = Ty~ |:W° 0
0

:IUT = vy~ twy o T
0 .

W,
A+ A4+ = V(VTV)-1|: 0
0

25

30

35

10

PROOF

It 1s well known and established that by definition the
matrix pseudo-inverse of an mXn matrix A is an nXm
matrix, noted A+, which verifies the following proper-
ties:

1) AATA=A

2) ATAA+T=A

I (A+AY =A+A

4) (AAH)T=AA+

Therefore, to prove the above corollary, it is necessary
and sufficient to show that the matrix

which is based on the MMD of the matrix A, verifies
the above four properties, i.e.,
0 ]UTUWVT

W' 0

At = V(VTV)-I
0

1)
. 1

AA*A = UWVTyrTn -1 7°
0

0

since U is an orthonormal matrix, then UTU=1,,%m,
where I, xm1s an m Xm identity matrix. Therefore, we

have,
W |
]WT=U[00 ]VT=A

0
0

Ir}(r 0
0 0

AATA = U[

where I,«,15 an rXr identity matrix.

2)
—1 —1
0 wo! o
uTuwvTy wTyy—1| 0 uT
0 0 0
Ly, O ] ~1
= pyTn-1| 7~ o Ul = vvTyy—1 Wo " O lur_ 4+
0 0 0
3)

A+ HT = [V(VTV)‘“‘“I [
Irxr O
yivTy)—1
[.( V) I:O 0

Since the matrix (¥71)—1 [

(o

Iryr O

0

)

Irxr O

o ]is symmetric then,

0

0

Consequently we have,
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-continued
T
Irr O Irxy O
(A+A)T=[V(VTV)“I[ X ]VT} — V(VTV)"‘I[ X }VT
0 O 0 ©
= AT A4
T T 4)
-~ 1 Irxr O
0 0 0 0
_ U[Ir Xr 0:|UT= A4+
0 0
g '0',2 = Jg w,z 2
NOTES 20 =1 i=1
The components {w;i=1,2, . . . ,m} of the diagonal : 2)
matrix W are defined by the inventor and referred to, W) = o = ( g wlg) and o = Wi
here in and in the rest of this patent application as the i=1
MMD diagonal values of a matrix. ”g
If the m X n matrix A of rank r is such that n=m=r, Im_ o Wm 3)
then the MMD of the matrix A is the transpose of the 7l it
MMD of the matrix A7.
~ The matrix A may be time or parameter varying, as it MMD ALGORITHM
1s the case, for example, in robotics where the robot 30 | _ _ _
jacobian matrix depends on the robot configuration. In this section, the algorithm for performing the
The MMD theorem can be considered as one of the MMD of an m X n matrix A of rank I1s given. For clear
most powerful tools of linear algebra. The well known  understanding of this algorithm, an illustrative example
Singular Value Decomposition theorem, one of the 1S given. Examples of apphcabﬂlty of this algorithm to
most powerful tools in linear algebra,—described in the ,, the robotics field, are given afterward, for a better un-
article by Virginia C. Klema and Alan J. Laub, “The > derstanding of the preferred embodiment of the present
singular value Decomposition: Its Computation and Invention.
Some Application”, IEEE trar}sactions on automatic ALGORITHM 1: MMD ALGORITHM.
control, Vol. AC-25, No. 2, April 1980, and the book by _
G. H. Golub, “Matrix Computations”, 1983 by the " Step 1: construct an orthonormal basis of vectors
Johns Hopkins University Press—, can be considered 1u,Uy, . .. :um:!’: such that {uj,uy, . .. u} fom_ls an
cnly a special case of the MMD theorem, i.e., a special ~ Orthonormal basis for the range space of the matrix A,
case where both the matrices U and V are orthogonal. and suc.h that {ur41,0r42, ... ,um} fOﬂPS anrorthonm_' -
The shortcomings of the Singular Value Decomposi- mal basis for .the null space of the‘matnx A . Step 1 IS
tion (SVD) are as follows: performed with the use of algorithm 2 given herein
(1) The scheme used to generate the SVD of a matrix 4 below. .
A 1s purely numerical and is based on very costly itera- Step 2: for*eachrvqctor u;, compute the vector v;
tive numerical procedures. Therefore the numerical  defined as, vi*=Afu;i=1,2, Lol
SV'D scheme would not be appropriate for real time Step 3: for each :/ecth vi* compute its 2-norm w;,
application or process, such as robot control. In addi- 50 defined as w;=| |v*||2i=1,2, ... ,m.#
tion the numerical procedures, typically, introduces Step 4: compute for each vector v;*, the vector v,
eITors. defined as
(2) The SVD scheme, being a numerical scheme, does
rot offer the major advantage that the symbolic MMD R
method offers, namely, and in accordance with the 55 WE T TS
embodiment of the present invention, some analytical
results leading to a better understanding and evaluation Step 5: form the matrices V=(vi,v2, . . . ,Vpm),
of the resulting robot control system when the robot is W =diagonal (wi,w2,...,w;), and U=(u,uy, ... ,um).
at, near, or away from a singular point. Step 6: The MMD of the matrix A is then given by
A=AWVT
PROPERTIES 60

Let {01,002, . . . ,00m} denote the singular values of an
m X n matrix A, with o and o,, being respectively the
maximum and minimum of these singular values. Let

{w1,w2, ...,wn} be one set of MMD diagonal values of s

this same matrix A, with wj and w,, being respectively
the maximum and minimum of these MMD diagonal
values. The following properties hold:

Before presenting algorithm 2 for constructing the or-
thonormal basis {uj,u), . . . ,um}, we will summarize
briefly the definition of the operator noted, L™, that the
inventor introduced and used in algorithm 2.

DEFINITION

. ,Vm-1, be a set of m—1 vectors in an
. ,em} be

Let vi,va, . .
m-dimensional vector space, and let {ej,e3, .



5,159,249

13

an orthonormal basis in that space. Let L™ be the opera-
tor, which will be defined herein below, which for the
above set of vectors assigns an m-dimensional vector,
 vm, Which is orthogonal to this set of vectors, and de-
noted by v, =Lm(v,v2, .. .,vim—1). Let B be the mXm
matrix defined such that its first row is the row formed
by e1,e2, .. . ,em, and such that the rest of the rows are
the transpose of the columns vectors {vi,va, ..., vim—_1},

i.ﬂ., 10

15

20

‘We define thus the operator L™ as follow:

Fm —_ Lm(vl, vz, . . O‘lellAII

0 _ 25

n
cy ¥m—1) = 1_2_

where by definition,

| 1. if i even 30
— ﬂ'f — '
—1 if / add

A; 1s an (m—1)X(m—1) submatrix of B, which is
obtained by crossing out the first row and the i’ column
of the matrix B.

| A;| =determinant of the matrix A,

Remark: One can think of the operator that the inven-
tor has defined here as the generalization of the cross
product operator of two vectors in a 3-dimensional
vector space, to a ¢ross product of (m— 1) vectors in an
m-dimensional space. Likewise, we may expect the
vector vy, defined as vy, =L"™(vi,vy, . .. ,vin—1), 1S 2
vector orthogonal to all the vectors vi,vy, . .. ,Vim—1.

For a better understanding of the foregoing, consider
the following example: in a 4-dimensional vector space
we want to compute the vector v4 which is orthogonal
to the following three vectors vi,vy,v3, defined as,

35

45

50

35

According to the foregoing, va=L4(v{,v2,v3)
The matrix B in this case is defined as,

65

- The vector vg, according to the foregoing is then
- determined as,

0O 0 1 I O 1 1 0 1
vg = o110 O l1i{4+o09e2]12 1 1 {4 o332 0 1 }+
1 0 1 i 0 0 1 1 0

I
4c4 t 2

0 O
0 1
1 10

V4§ = —ej + € + €3 + &4

The vector vais therefore,

V4

We can verify by inspection that the vector vy is
indeed orthogonal to all the three vectors vi,vi,vs.
Now, algorithm 2 is presented.

ALGORITHM 2

Algorithm for constructing in an m-dimensional vec-
tor space an orthonormal basis, {u,uy, . . . ,um}, such
that the first subset basis {uj,u3, . . . ,u,} forms an ortho-
normal basis for the range space of the matrix A, and
such that the second subset basis {u,41,ur42, . . ., um}
forms an orthonormal basis for the null space of the
matrix AZ. The method of constructing the orthonor-
mal basis {u,41,u,42, . . . ,um} as outlined in the flow
chart of FIG. 2 is as follows: |

Step 1: Choose r linearly independant columns of the
matrix A, namely, {a;*,as%, ...,a,*}. Let the matrix A*
be defined as A*=(a*,a%, ... ,a,*). We do not lose any
generality of the algorithm, by assuming for simplicity
that the first r rows of the matrix A* are linearly inde-
pendent. If this is not the case we can always permute
the rows of the matrix A* such that this is true. Form
the matrix Brtl=(ay7+1%ayy+1% | | a/+1%) com-
posed of the first (r+1) rows of A*, and compute the
vectors a7+ !, defined as,

r+1*
r+1 o

— f‘—'lzlil
Il. » 3

T

Step 2: compute the (r+ 1) dimensional #e_ctor u+1
given by,

lllll

Step 3: The vector u,, 1 is then given by

Jeo

0 ]m--(r+l)

Bri1

Uril =

Step 4: If (r+2 >m) skip the following steps and jump
to Step 7.

Step 5: Form the (r+4-2) dimensional vector u,, 17+2
as,



),159,249

15

ur+] ]r + l
urr-:_ZI — | — g
1T

Step 6: For 1=2 to i=m—r, do the following steps:
form the matrix B’ti=(a; t*,ay+i* . . . ,a,/+i*) 10
composed of the first (r+1) rows of the matrix A¥*,
and compute the (r+i)-dimensional vectors a/+*

defined as,

15
af""‘ |
=—_-—_-_j — I-; 2!_*_,”'

y
| la; ™" 112

r-i
4;

compute the (r-+i) dimensional vector u,4; defined ,,

as,
EH- = Lr+ ;‘(a1r+ ‘_;ﬂzr+ ,r'_ . -ﬂrr+{-“r+ 1r+ f,u,-.;.g"*' r',
RN P A M)
. ‘ 25
The vector u,.;1s then given by,
Uryi ]" + 1
30

Ury | =

0 ]m—(r+:')

If (r4-1+1)>m) skip the following steps and jump to 15
Step. 7.

For j=1,2, . . . ,1 form the following vectors:
_ . 40
Urf :I" <+ J
u::—jHl —
0 :Il + -]
.. . 45
Step 7: Through the remaining steps of this algo-
ritiim, as outlined in the flow chart of FIG. 3, the ortho-
normal basis {uj,uy, . . . ,u,} is constructed.
Step 8: for 1=0, to 1=r—2, compute the m-dimen-
sional vectors u,_;, defined as, 50
a* az*
_;‘=Lm __:'"_"“,—_,...,
o ( [la1*| 12 ° []a2*]]2
55
ar—i—1* .
I |ﬂr--—:'-—1'| |2 y Mpefp- 15 =+ - 5 Upp
Step 9: 60
ai*
1= a2
65

Step 10: form the matrix U=(uj,u2, . . . ,um)
For a better understanding of the algonthm the fol-
lowing example is given:

16

EXAMPLE

The MMD algorithm described above is used to de-
termine the pseudo-inverse of the 3 X3 (m=n=3) ma-
trix defined as:

110
A(p) = | o10
| 00p

where p is a non-negative real variable.
The determinant of the matrix A(p) is |A(p)| =p. For
p=0, the matrix A(p) is rank deficient and its rank
drops from 3 to 2. To compute the Moore-Penrose

pseudo-inverse of the matrix A(p), we use the
MMD algornithms 1 and 2.

ALGORITHM 2

Step 1:
We have to construct an orthonomral basis ui,us,u3
where u3 is orthogonal to the range space of the matrix

A.
1 1
Leta;* =| 0 |a* =] 1
0 0
E » 11
B =(ai,a3)=|01 |,
00
L
1 N2
a;’ =0 |a? = 1
0 N2
0
Step 2:
0
a3 = L)%, a’) = | O
1
Step 3:
0
us =u3 =|§ 0
1
Step 8
3= 0
a.
uy = L3 —--é;--—- yu3 =11
Ilag |12 0
Step 9
1
up = ﬂ13 =10
0
Step 10:

In this case the matrix U is the identity matrix.

ALGORITHM 1

Step 2:
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-continued
-
100 || 3 B 2
ATuy=1110 |0 1=} 1 =Nz | 1
00p 0 0 w
0
- 0
ATuy =11 |
0
| | )
ATus =p|l o
]
Step 3: |
w1=w,m'=l,w3=p
Step 4: |
N2 To 0]
V) = ] va=11 tvi=1]0
N2 0 L]
0
Step 5 and Step 6:
1 0 0 |} o = = O
freoYe o0 INT
A=10 1 0 0 1 O
00 1. | 0 1 0
| 0 0 rldlo o

The pseudo-invefée of the matrix A (p), A (p)™, 1s then
given by,

]

| —_— 0 0
N2 —1 ol N2 1 00
A*®)=1{o0 1 o |{o 1 0 0 10
1 0 0 1
o o 1]}, o L
| p

Even though A(p) is a square matrix, we use the term
pseudo-inverse instead of inverse to keep the generality,
because for p equal zero, the matrix A(p) is rank defi-
cient and its inverse does not exist. According to the
MMD theorem and corollary, when p=0, we replace
the expression 1/p by zero in the expression of A+. This
leads to

1—10
A+t =10 10

|

“MMD AND ROBOTICS
Observation

0 00

for p=0.

For an n-link robot manipulator with a spherical
wrist, the MMD of the robot jacobian matrix is unique
if the choice of the column unit vectors of the matrix U
is made such that the related columns vectors which

span the range space of the jacobian matrix with the

higher column number are chosen first. This choice is
based on the fact that the columns of the jacobian ma-
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trix with the higher column number are in general com-

putationally less complex then the lower numbered

columns. This choice leads to a unique and more effi-
cient computational formulations of the MMD of the
robot jacobian matrix and the resulting jacobian pseu-
do-inverse matrix. More clarity about the above state-
ments and observation will come through the following
illustrative examples. | |

ROBOTICS EXAMPLE 1

Case of a planar two-link robot shown in FIG. 4. If
(x,y) is the Cartesian position of the hand of the robot 6,
the forward kinematics equations are:

I:x ]___ lier + 12012]
y | | hst + lasi2
Where si2=sin(6:+62), C; #cos(el),_and 1, 1 are

the lengths of the robot links. The robot jacobian
matrix, noted J(0), is defined as,

— 1151 ~ 1as19— 198
56) = 151 2512— 12512
liey + 12c12 Iaep

The jacobian determinant is defined as
|J(8)| = — 111282. For the robot configuration defined
by s2 =0, the rank of the jacobian J(8) drops from 2 to
1. This corresponds to the robot configurations where
the links are collinear. To compute symbolically the
pseudo-inverse of J(@), according to the MMD algo-
rithm, we need to construct an orthogonal basis {u;,
uz}, such that uyis orthogonal to the range space of J(6).
When s3=0, the columns of the matrix jacobian are
linearly dependant and the range of the jacobian is
spanned by either the first or the second column vector.
In light of the above observation, we choose the higher
numbered column i.e., the second column vector as
being the vector which spans the range space of the
matrix jacobian. Hence the unique choice of the vectors

ui,u2 1s,

—C12 ~3512
Uy = —s | and u) = c1s

Following the steps of the MMD algorithm 1 we obtain,

licy + 1
Iy = [ 162 2]
I2

The MMD of the robot jacobian is then,

—s12 ~c12 f[fw O
J(B) =
c12 -—s12 f1 0 w2

li+1 . 11

W]

o 0
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Where wi=V 1524 (11cy+ 12)%, and wa={1s3], are
by definition the MMD diagonal values of the robot
jacobian, and where 6 is defined as,

{1
o =
1

The MMD-based pseudo-inverse of J(€) is then given 10
by,

if 9 < 0
if 55 2 0

JT(6) =
, 15
0 o m—— )
Wi —512 €12
wi  —=8(l1ea + 1) , |:__C12 _512]
12 ) 0 __"‘3-
20
According to the MMD theorem and corollary,
when the robot jacobian is rank deficient (1.e., s2=0),
the matrix jacobian pseudo-inverse is obtained by re-
placing 1/w» by zero, i.e.,
235
liea + 1o
- W]
7@ = vonTvy- g luT= | sz en)
W 30
1o =|
~ {hea + 1)s12 (hex + T2)en2 45
H,IZ W12
- i 12¢12
H?lz W12

50
ROBOTICS EXAMPLE 2
Case of planar redundant 4-link robot shown in FIG.
4. The forward kinematics equations are:
33

M

Where 11,12,13,14 are the lengths of the robot links.
The robot jacobian may be written as,

lic1 + laci2 + 13c123 + 1401234
l1sy + 12512 + 135123 + las1234

1000

1100
1110
1111

J(6) = J(6) 65

Where J(8) is defined as,

20

70) = ~ 1151~ 12512—135123— 1451234
| hier laerz I3c123 laci23d

We consider the MMD of the left hand matrix J (6).
To determine the MMD of the matrix J (6), according
to the MMD algorithm, we need to construct an or-
thogonal basis {uy, uz}, such that uz is orthogonal to the
range space of J(6). We choose, based on the above
observation,

~—C1234 —351234
Uy = ,and y; = :
—351234 €1234

According to the MMD algorithm,

116234
(O = 112;24
14 -
— 115234
IOy = :112:3-:4
0

The MMD of J (8) is then given by,

110234 I2c3a 1304 14
—si23a—~c1234 [ W1 O W] wiowi wp
€1234 *-51234] 0 w —his234 —12s34 —1354
W2 w2 W2 0

Where the MMD diagonal values of the matrix J(6)
are  wi1=V142+112c0342+ 122c342+ 132c42,  and
w2=V 11252342 + 1225342 + 132542

ROBOTICS EXAMPLE 3

Case of a 3-dimensional robot: the Stanford arm
shown in FIG. 1, which is a 6-degree-of-freedom robot
manipulator with a spherical wrist. The 6 X6 jacobian

matrix, in the case of the Stanford arm, can be written

as,

J, O
J(6) =
) J5 Ro’J,

Where Rg3,J5,J5,J0 are 3 X 3 matrices. The matrix Rg3
1 a rotation matrix, and the matrices J,, and J, are re-
ferred to respectively as the wrist position jacobian
matrix and the wrist orientation jacobtan matrix. Since
the inversion of the above 6 X6 jacobian matrix J(8) is
given by,

J ! | 0
J_l(ﬂ) - 137 1 1 pdT
—J; RU JQ-J; Jﬂ_ Rﬂ
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we will consider only the MMD of the wrist position
and orientation jacobian matrices J,, and J,. For the
Stanford manipulator the matrices J, and J, can be de-
fined respectively as, |

—f5152 — rey feiea €18

JA0) = | feis2 — rs1 fsie2 s152 |, and

0 —f52 2
0 —54 c4s55

Jf0) =10 c4  sa55
1 0 C5

Where (01,0,,1,04,65) are the first five joint variables of
the robot, and r i1s a length parameter related to the
second robot link. |

THE MMD OF THE MATRIX J,

The determinant of the matrix J,is |J,| = —f2s;. For
s2=0 the matrix J,1s of rank 2 and its range is spanned
by either the first and third columns or the second and
third columns of the matrix J,. In light of the observa-
tion made at the beginning of the section MMD and
robotics, the choice of the related third and second
column vectors of the matrix J,, (i.e., column vectors

with the higher column numbers), as being the column
- vectors which span the range space of the matrix J, will
lead to a unique and more efficient computational for-
mulations of the MMD of the matrix J,. Based on the
foregoing the vector usis chosen to be the unit vector
which is orthogonal to the third and second columns of
Jp. The vectors uy,uz,u3 are then given by,

_....51
u3 = L3a33, a3’) = [ c1 :l
|1 ©

—€2€)

uy = L¥a3d, u3) = | —e29
52
€152
) = a33 = 1 5152

€2

Where a3’ and a3 are unit vectors which are respec-
tively in the direction of the third and second column
vector of the matnix J,. Following the steps of the
MMD algorithms we obtain,

' @u =] o |
o 1 |
re?
IOy = | —f
0

30

22
-continued
f52

Jp 703 = | 0o
5 O

The MMD of the wrist position jacobian matrix J, is
then given by,

10 J6) =
c1s2 —~cc1 =51 w1 O O W Wi -
15 | s152 —cs1 @ 0 w2 O re (o
| ¢ s2 0 0 0 wy |l ™ w2
o 0 0
oo Where the MMD  diagonal values are

wi=VrsZ+1, wa=VR4+12c72, wi= |fsz .

]
5 =
25 -1

THE MMD OF THE MATRIX J,

The determinant of the matrix J,, is |J,| = —ss. When
ss=0, the matrix J, 1s of rank 2 and the range space of
the matrix J,1s spanned by the second and third column

vectors of the matrix J,. Accordingly, we choose the
vectors uj, uj, us3 as,

if so 2 0

if 57 <0

35

— €45
u3 = L3a33, ar3) = | —sacs

S5

40
54
uy = L3a3’, u3) = | —cy
0
45
€455
U] = a33 = | 5455
cs
50

where a33, and a;3 are unit vectors which are respec-
tively in the direction of the third and second column
vector of the matrix J,.

Jnrﬂl =10
1

0
m JQTHZ = [1

0]

[ss
JﬂTHS =10

65 0

The MMD of the wrist orientation jacobian matrix J,
1s then given by,
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c455 S4 —cacs {{wy O O €5 .
W] Wi
JAO) = | 5455 —C€4 —354C5 0 w O
0 1 O
¢cs O 55 0 0 wy 5 0 0

Where the MMD diagonal values of wrist orientation
jacobian matrix are w)=Vecsi+1, wy=1, and
wi=|ss|; 6 is defined as,

] if ss = 0
-1 ifss <O

ROBOTICS EXAMPLE 4
Case of the Unimation Puma 560 shown in FIG.-1: a

10

15

six-degree-of-freedom robot with a spherical wrist. As 20

with the Stanford arm the 6 X 6 jacobian matrix J(8) can
be written as,

J(@) =
J5 RoJ,

where the matrices J,and J, can respectively be defined
for the Puma robot as,

f51523 — esjcy — gey —fr1c33 ~ ecysa  —fc1623

J8) = | —fa1s23 + ecic2 — g5y ~fs1023 — es1s2 —fepe23
0 f523 — ec2 523
and
0 —s4 c455
O ~cq4 5455

where (01, 02, 83, 64, 0s5) are the five first robot joint
coordinates, and where f and e are length parameters
related to the second and third robot links.

We may notice that it is not necessary to rederive the
MMD of the wrist orientation matrix, J,, for this exam-
ple since the orientation matrices in this example and
the last example can be derived from each other by
matrix row permutations. Hence only the MMD of the
wrist position jacobian J, will be considered. As we
have covered the three first robotics examples in details,
for this example, without going into the final details we
will give only the important step of choosing the ortho-
normal basis {uj, us, uz}. The determinant of the matrix
J, is defined as |J,| =efci(ecy—1s23). In the case of the
Puma robot the rank of the wrist position jacobian ma-
trix J, can be 3, 2, or 1, depending on the robot joint
configuration. For ¢3=0 or ecy;—1fs23=0, the position
Jacobian matnx J, is of rank 2 and its range space is
spanned by the third and first columns vectors. For
c¢3=0 and ecy—fs23=0, the position jacobian matrix is
of rank 1 and its range space is spanned by the third
column vector. According to the MMD algorithm we
need to construct an orthonormal basis {uj, us, us} such
that u3 is orthogonal to the range space of J, when the
rank of J,1s 2, and such that u3 and u; are orthogonal to
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the range space of J, when the rank of Jp1s 1. We
choose,

uy = L3(a3’, a1°)
uy = L(a3, u3)

u) = a3’

where a33, and a;3 are unit vectors which are respec-
tively in the direction of the third and first column
vector of the matrix J,. With the above choice for the
orthonormal basis uj, uy, u3 the resulting MMD diago-
nal values wj, wa, and w3 are such that when the rank of
the matrix, Jp, drops from 3 to 1 (i.e., either when ¢3=0
or when ecy—fs33=0) the MMD diagonal value w3
goes to zero, and such that when the rank of the matnx
J,drops from 2 to 1 (i.e., when ¢3=0 and ecz~1s23=0),
both the MMD diagonal values w; and w3 go to zero.

COMPUTER METHOD AND
IMPLEMENTATION ON A DIGITAL
COMPUTER

The problem of programming a computer to perform
the analytical steps of the pseudo-inverse obtained by
using the MMD algorithm outlined is flow charts of
FI1G.-2 and FIG.-3, leads in a natural way to questions
concerning the stability of the divisors {w;i=1,2, ... ,i}
of the diagonal matrix W, i.e., the MMD diagonal val-
ues. The emphasis in this section will be on numerical
considerations pertinent to the implementation of the
analytical steps on a digital computer. Explicit consider-
ations of round-off errors, overflow as well as treatment
of the numerical stability is done. Analytically a matrix
is either rank deficient or not. Unfortunately, this is not
true numerically, and because of the finite precision
nature of any computing machine, the implementation
on a digital computer involves issues of computational
problem overflow caused by the instability of the divi-
sors {w;i=1,2,...,m} when one or more of the MMD
diagonal values w; become small. In accordance with
the preferred embodiment of the present invention, this
happens when the jacobian becomes ill conditioned
(near or at a singularity). .

The problem is to intelligently decide when a MMD
diagonal value of the set {w;i=1,2, ...,m} is neglecta-
ble such that its reciprocal {1/w;i=1,2,...,m} in the
expression of the MMD-based pseudo-inverse can be
replaced by zero, in other words, the outstanding prob-
lem of deciding when a matrix becomes ill conditioned.
The determination of the ill condition or the rank defi-
ciency of a matrix numerically, is a highly nontrivial
problem. It is well known from linear algebra that a
matrix 1s ill conditioned if its condition number (ratio
o1/0m, between the maximum and minimum of its
singular values) is too large, that is, if its reciprocal
approaches the machine floating point precision. Unfor-
tunately, it is also well known that the numerical evalu-
ations of the singular values of a matrix can be done
only numerically and are very costly computationally.

Therefore, a need for a more efficient measure of the
“nearness of a matrix to rank deficiency”, is required, a
new measure which is stable and computationally effi-
cient. To determine the condition of a matrix, the com-
puter method presented in this invention, and which
will be described hereafter, is based on the following
measure of the “nearness of a matrix to rank deficiency”
of an m X n matrix A(0), noted k(@), and defined as,
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wm(6)

w1(6)

 k(8) =

Where, w,,,(e) and wi(f) are respectively the mini-
mum and maximum MMD diagonal values of the matrix
A(0) given by the MMD algorithm. This choice of

measure of the ° neamess of a matrix to rank defi-

ciency”, is based on the third property stated in the
section Mathematical derivation, which states that the
ratio between the minimum and maximun singular val-
ues of a matrix is always lower or equal to the ratio
~ between the minimum and maximum of its MMD diago-
nal values as given by the MMD aigorithm. Therefore,
if P denotes the floating point machine precision of a
computing machine, —for example P~10-¢ and
P=10—12 are respectively the machine floating point
single precision and machine floating point double pre-
ci1sion on the VAX 780 computer; the choice of P may
be dependant on the problem at hand—, then the recip-
rocal of the condition number of a matrlx, om/ol, 1s
also lower or equal to P, i.e., |

This implies that the abov'e newly defined measure k(0),
1s not only efficient computationally (symbolic), but

also it gives a good measure of the “nearness of a matrix ~°

to rank deficiency”.
For example, for the two link robot example consid-
~ered in the section entitled MMD algorithm, the mea-
- 'sure k(8) of “nearness of the robot to singularity” is
defined from the foregoing as

| 153 ]

N 122 + (113 + 12)2

k(8) =

EIS

In robotics terms, this newly defined measure k(€) can
be considered as a new measure of the robot manipula-
bility.

Based on the foregoing and according to the pre-
ferred embodiment of this present invention a, com-

puter method to numerically perform and compute the

- symbolic MMD-based robot jacobian pseudo-inverse is

shown and outlined in the flow chart of FIG.-5. First, it

is necessary to read the dimensions m and n of the robot
jacobian matrix as well as the current robot joint coor-
dinates € step 7. After numerical computation of the
MMD diagonal values for the current robot joint coor-
dinates 0, step 8, the maximum MMD diagonal values,
noted WMAX, i1s computed step 9. The variable WMIN
1s then defined as the product of the constant P by
WMAX, i.e., PXWMAX, where P is the floating point
single or doub]e precision of the computing machine.
To test intelligently the rank of the robot jacobian, each
diagonal value {w;i=1,2, . .
WMIN, step 10. If one or more of the MMD diagonal
values {w, i=1,2,...,m} is lower or equal to WMIN
then the robot is near or at a singularity, and the jaco-
- bian is ill conditioned. To maintain stability of the algo-

rithm and avoid machine overflow the expression 1/w;

in the pseudo-inverse, corresponding to w;=WMIN, is
then replaced by zero, step 11. The more diagonal val-
ues {w;i=1,2, . . . ,m} are tested to be neglectable in
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comparison to WMIN, the more degenerate the jaco-
bian is.
The stability of the divisors

{-1--:'=1,2,...,m}
Wi

being insured, the solution based on pseudo-inverse is
then computed, step 12. In the case of robotics, when
one of the diagonal values are neglectable in the sense
that they are smaller than WMIN, this means that the
motion of the robot is made possible in all directions u,,
which are columns of U whose same numbered element
W; are non-zero, except in the direction u; whose same
numbered element w;is neglectable. By replacing in the
expression of the robot pseudo-inverse the divisor 1/w;
by zero, when wjis neglectable, we allow the robot to
move only within allowed and physically possible di-
rections that are within the range space of the robot
jacobian. The main advantage of the computer method
presented 1n this section are its computational efficiency
(after symbolic reduction techniques) and its robustness
vis a vis of singularities, as it will be shown through

computer simulation examples in the next section enti-
tled Preferred Embodiment.

PREFERRED EMBODIMENT

In FIG.-6, is an application system for utilizing the
MMD to evaluate symbolically the robot pseudo-
inverse using the process outlined in flow charts of
FIG.-2 and FIG.-3, and a programmed digital computer
13 having stored therein the program which implements
the computer method outlined in the flow charts of
FIG.-5, to compute, efficiently and with stability, the
robot jacobian pseudo-inverse matrix. This application
consists of a computer-based process control 13, which
controls a robot manipulator 14. The desired com-
manded Cartesian trajectory 15, which consists of the
desired end effector cartesian position/orientation, xg,
velocity, X4, and acceleralation X4, may be for example
the output of a higher level hierarchy trajectory plan-
ner, getting inputs from a vision camera or other types
of sophisticated sensory feedback.

To control the robot 14 to move along the com-
manded input trajectory 18§, it is required to compute
the torques and forces 7, 16, needed to drive all the
joints simuitaneously with coordination and at different

50 joint rates in order for the end effector to achieve the

35

. ,m} is compared to g

65

desired cartesian commanded input trajectory 15. To
achieve that the inverse kinematics at the accelerator
level must be solved. For that, the input data 15 are
input to the pseudo-inverse computer 17 which carries
out the process summarized in the flow chart of FIG. 5.
The pseudo-inverse computer 17 reads inputs from
memory 18, where the symbolic pseudo-inverse is
stored. The process outlined in FIG. 2, and FIG. 3 is
done off-line to determine the symbolic pseudo-inverse
of the jacobian; after using symbolic reduction tech-
niques, the efficient and exact symbolic computational
formulation of the pseudo-inverse is stored in memory
18, to be used by the pseudo-inverse computer 17. The
resulting joint acceleration 8, 19, is used with the robot
dynamics based equations of motion to compute the
actuators torques and forces, 16. The computed torques
and forces 7, 16, are then sent to the hardwired circuit,
20, designed to interface with the robot hardware. The
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outputs of the circuit 20, are applied to the robot link
actuators motors 22. Physical sensors, 23, mounted on
the individual robot links to provide link joint position,
29, and joint velocity, 25 are continuously responsive to
change in the actual current robot joint position and
velocity. Those changes of the joint position and veloc-
ity are fed back to the robot controller, 13, which gener-
ates a position error signal which represents the differ-
ence between the desired and actual end effector posi-
tion. This error signal 1s suitably used by the controller,
13, to compute the new correction torque that has to be
sent to the robot in order to reduce to zero the deviation
of the robot from the desired trajectory. This form of
feedback control 1s very common in robotics, and the
best known prior art technique is called “resolved ac-
celeration and computed torque technique”.

Robot control i1s a real time process whose output, 21,
are applied to the motors, 22, as a sequence of set points
which are spaced in time and separated by one sample
period. The sampling period must be small enough to
ensure a stable and smooth motion. The evaluation of
the torques is computationally complex. Even though
some well established methods to eliminate the restric-
tions of the computational complexity on the evaluation
of the dynamics terms, which occur in the expressions
of the equations of motions as stated in the articles by B.
Armstrong, O. Khatib, and J. Burdick, “The explicit
dynamic model and inertial parameters of the Puma 560
arm’” in Proceedings of the IEEE International Confer-
ence on Robotics and Automation, San Francisco,
Calif.,, April 1986, pp. 510-518, and by M. B. Leahy, Jr.,
L. M. Nugent, K. P. Valavanis, and G. N. Sarides,
“Efficient Dynamics for a Puma-600" in Proceedings of
the 1IEEE International Conference on Robotics and
automation, San Francisco, Calif.,, April 1986, pp.
519-524, and their references, this evaluation has been
limited by the additional requirements of efficient com-
putations of the robot jacobian pseudo-inverse, spe-
cially when the jacobian becomes ill conditioned.

In some applications, using the arguments that the
dynamic-based terms occurring in the robot equations
of motion change less rapidly then the joint position, the
dynamic based terms in the expression of the torques are
performed periodically at a slower rate sampling fre-
quency than the jacobian pseudo-inverse, which has to
be computed in real time at the same rate as the joint
servo rate to ensure the robot controller stability.
Through this application example, we see that control
computer of sophisticated anthropomorphic robots
must contain provisions for efficient (real time) and
stable (singularities) computation of the pseudo-inverse.
It 1s the solution of this type of problem to which the
present invention is directed. In accordance with the
present invention, the deficiency of the prior art control
techniques near singularities is overcome by using an
entirely different strategy for efficient and stable com-
putation of the robot pseudo-inverse based on the
Megherbi Matrix Decomposition (MMD) algorithm
and computer method. It is important to realize that a
general or special purpose computer must be employed
in order to physically implement the steps outlined in
this section to control the robot.

To simulate the behavior and robustness to singulari-
ties of the above robot control system based on the
computer method outlined in the flow chart of F1G.-5
and the MMD algorithm outlined i1n the flow charts of
F1G.-2 and FI1G.-3, computer simulations of the two-
link planar robot and the four-link redundant planar
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robot of FIG.-4 are presented and shown in FIG.-7
through FIG.-10. For both robots, singularities occur
when the links are collinear. For the two-link robot two
different cases were considered for simulation. In the
first case, FIG.-7, the robot end effector follows, with a
uniform Cartesian speed of 0.66 m/s (in magnitude), a
circle trajectory, 26, which crosses a near singularity at
27. The simulation results, shown in FIG.-7, were per-
formed with the links lengths values 1,=2 and l,=1.
The cirles 28 and 29 are the boundaries of the two-link
robot workspace. The robot end effector initial and
final positions are 30. The Figures referred to as FIGS.
11-23 are detailed simulation results for the above-
described two-link robot example. FIG. 11 repeats the
illustration of FIG.-7. FIG. 12 and FIG. 13 represent
the joint position time history during the robot enf ef-
fector travel of FIG. 11. FIG. 14 and FIG. 15 represent
the joint velocity time history during the robot end
effector travel of Annex 1. FIG. 16 and FIG. 17 repre-
sent the joint acceleration time history during the robot
end effector travel of FIG. 11.

FIGS. 18 through 23 represent the actual and desired
Cartesian trajectory (position, velocity, acceleration) of
the robot end effector. As can be seen, the present in-
vention yields actual results which coincide with the
desired Cartesian trajectory at all points, including at
near singularities.

In the second case, the robot end effector tries to
follow, with a uniform Cartesian speed of 1 m/s (in
magnitude), a desired circle trajectory, which goes
partially out of the range the robot workspace, 31 in
FIG.-8a. The simulation results are shown i FI1G.-8a.
For clarity, in FIG.-8b are shown the simulation results
of only the actual trajectory followed by the end effec-
tor 32.

For the four-link robot two different cases were con-
sidered for simulation. In the first case, FIG.-9, the
robot end effector follows, with a uniform Cartesian
speed of 2.5 m/s (in magnitude), a circle trejectory, 37,
which crosses two different singularities at 33 and 34;
these two singularities correspond respectively to the
robot links being complietely extended, and the robot
links being completely retracted. The simulation results,
shown in FI1G.-9, were performed with the links lengths
values 11 =3, 12=1, 13=1, 1,=0.5. The circles 35 and 36
are the boundaries of the four-link robot workspace.
‘The robot end effector initial and final positions are 38.

In the second case, FIG.-10, the robot end effector
tries to follow, a LSPB (Linear Segment with Parabolic
Blends) straight line trajectory from initial point 39, to
singularity point 40. The simulation results shown in
FI1G.-10, were performed with the links lengths values
=1, l=1, I3=1, l4=1.

OTHER EMBODIMENTS |
Other Embodiments Within the Robotics Field

As discussed above in the section general, the result-
ing symbolic MMD of the robot jacobian shows clearly
and leads to some analytical results that may be used in
the evaluation and better understanding of the robot
performance, as well as in the future design of robot
prototypes. These analytical results are hard to find and
not offered by any other numerical method. For exam-
ple:
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PLANNING TRAJECTORIES

The analytical formulations of the MMD diagonal
values of the robot jacobian can be analyzed and used to
‘have an 1dea about some global and local properties of
the robot workspace. More specifically, the analysis of
the MMD diagonal values analytical formulations will
lead to a desirable property that has not been yet made
possible or offered by any other numerical method.
Namely, the desirable property of being able to deter-

b

10

mine some bound on the maximum magnitude of the

joint speed in terms of the bound on the magnltude of
‘the robot end effector Cartesian speed, and in terms of
the joint configuration of the robot. It is well known
that the maximum ratio between the magnitude of the
joint speed and the magnitude of the Cartesian speed is
given by,

116112 I
| x4l ]2 OTm

——
—————

where o, 1s the minimum singular value of the robot
jacobian. Unfortunately, in general, the minimum singu-
lar value of an mxn robot jacobian, can be obtained only
numerically thought iterative and computationally very
costly numerical schemes. In accordance with the pres-
ent invention, and more specifically based on the second
property given in the section entitled Mathematical

Derivation, the maximum ratio between the magnitudes

of the joint velocity and Cartesian velocity is always
greater or equal to the reciprocal of the minimum
MMD diagonal value of the robot jacobian, i.e.,

16112
| {xaii2

]

Wy

T

11

max

For example in the case of the two-link robot the
above Inequality becomes,
1
11152

116112
| | xd] |2

11

max

Therefore, for the two-link robot, the term

1

| 1152 ]

may be considered as a lower bound on the maximum
ratio between the magnitudes of the joint speed and
Cartesian speed in terms of the joint configuration of °
the robot. We may notice that both the diagonal values
w1, wp are independent of € but dependent only on 6..
‘This is true not only for the two-link robot but for any
robot manipulator: the diagonal values obtained by the
symbolic MMD of any 6 X n robot jacobian (n being the
number of robot links) are independent of the first joint.
From the foregoing, we may see that the Cartesian
- speed magnitude, noted v, that may be specified during
trajectory planning at all the points in the two-link
robot workspace characterized by 6,=0,* must verify
the following inequality,
VE | hiSez | | |Omar| |2 (1)
where | [@mar| |2 is the maximum joint velocity physi-
cally reachable by the robot. We may note that the
pomts in the workspace characterized by (6;=6,%)
- form a circle in the robot workspace that we denote by
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C. From the foregoing, since the MMD diagonal values
wi, and w; are independent of the joint variable 0; we
can state that all the points on the circle C in the robot
workspace, share the same property that the magnitude
Cartesian speed v, to be specified during trajectory
planning at these points for any Cartesian trajectory
crossing the circle C, must verify the inequality (1).
Hence, for the points on the circle C in the robot work-
space characterized by (62=6,*) the expression
vE|L Se2*| | |@maz| |2 may be used as a measure to
provide information concerning the determination of
the Cartesian speed, v, not to exceed for all the trajecto-
ries crossing the circle C at their intersections with the
circle C, in order not to exceed the maximum magni-
tude of the joint velocity physically reachable by the

robot.

Reciprocally, if the magnitude of the joint velocity is
kept constant and equal to a, based on the property 2
given in the section mathematical derivation, the maxi-

mum ratio between the magnitudes of the Cartesian

velocity and joint velocity a, verifies the following
inequality,

)
i=1

where, o1 and w) are respectively the maximal singular
value and maximal MMD diagonal value of the robot
jacobian. For the two-link robot the above mequallty
becomes,

|1 x] Iz

Wi =max

| 1x]]2

N 122 4 (Liez + 12)? Smax = V2122 + 112 + 211120

From the foregoing we see that the absolute maxi-
mum Cartesian speed reachable by the two-link robot
end effector is v 122+ (1 +12)% a, that is when the end
effector i1s on the workspace boundary and the robot
links are completely extended; and the maximum mag-
nitude of the Cartesian speed that the end effector may
reach at the origin (6:=1), is v 1>+ (1, + [2)? @, that
i1s when the robot links are completely retracted. For
example, when |

(=)

the maximum Cartesian Sp«eed in magnitude that the
robot end effector may reach is a value between V21,
a and V21,2412 q, i.e., for 11=12=1 m, and for the
magnitude of the joint velocity a kept constant and
equal to 1 rd/s, the maximum Cartesian speed (in magni-
tude) that the robot end effector may reach at the con-
figurations

92=%

is a value between V2 m/s and V3 m/s.

The above reasoning may be repeated now for the
following fundamental question: given a robot conﬁgu-
ration (6:*, 62*) in the robot workspace and given the
maximuin possﬂ:)le actuator torque limits max
| {7 | 2=7max, the fundamental guestion is what is the
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maximum magnitude of Cartesian acceleration | |Xg| |2
that one can specify at the configuration (61*, 6>*) in
order not to exceed the actuators limit bound 7,,4? It is
well known that the robot equations of free motion for
an n-link robot manipulator are,

r = DO (0)K — J(8,0)8) + h(6,0) + 2(6)

Where,
t=nX1 vector of input generalized torques and
forces.
D{(0)=n Xn positive definite mertia matrix.
J+(6)=n X6 robot jacobian pseudo-inverse matrix.
h(0, 8)=n X1 vector defining coriolis and centrifugal
terms.
g(@)=n X1 vector defining the gravity terms.
x=6X 1 vector defining the Cartesian linear and an-
N 5ular acceleration of the robot end effector.
J(6, 8)=6Xn matrix defining the jacobian derivative
with respect to time. |
6=n X1 vector defining the robot joint coordinates.
8=n X1 vector defining the robot joint coordinates
velocities.
The same reasoning as before may be done by consider-
ing this time the minimum diagonal value w>* given by

the MMD of the matnx M(6), defined as the product of

the jacobian matrix J(@), by the inverse of the robot
inertia matrix D—¥8), i.e., M(8)=J(6)D—X6). The
inertia matrix D(€) 1n the case of the two link robot 1s a
2 X2 matrix depending only on 8., the hink lengths 1,
and 1., the weights m; and m: of the links, and the
individual moments of inertias I, I.z, through the link 1
and 2 centers of mass. If the term J(8, 6)8 is neglected,
we have,

17 — h(6,0) — g(0)] |2 i
| |xd| |2 wa*(82)

v

max

Therefore, in order not to exceed the torques limits
Tmax, the Cartesian, acceleration | | x4/ |2, to be specified
at all the points on the circle C in the robot workspace
must verify,

| |Xg] |25 max| | Tmax—h(6*,6*)—g(6*)] |2w2%(82%)

where 6* is the joint velocity with which the specified
trajectory crosses the circle C at the configuration 6*.
Recall the circle C is the set of points in the robot work-
space characterized by 68,=0>*.

MODIFYING ON LINE UNREALIZABLE
TRAJECTORIES

If a trajectory 1s not realizable how can it be modified
on line in order not to exceed the joint velocities. In
further accord with the present invention a variation of
the procedure Damped jacobian pseudo-inverse

(Damped Least Square method) whose principles and

shortcoming are described in the article by Stephen K.
Chan and Peter D. Lawrence, “General inverse kine-
matics with the error damped pseudo-inverse”, Pro-
ceedings of the 1988 IEEE International Conference on
Robotics and Automation, and its references, can be
used to reduce and damp on-line the joint velocities
near singularities. A number of algorithms based on the
damped pseudo-inverse are described and compared in
that article. The shortcomings of the Damped pseudo-
inverse methods are:
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lack of efficiency in the computations;

most importantly, the rate of convergence of the
controller based on damped pseudo-inverse meth-
ods, decreases especially near robot singularities.

Using the principles of this invention it is possible to

efficiently (computational point of view) damp and

reduce on line the joint velocities in order not to exceed
the physical joint velocities limits, without decreasing
the rate of convergence of the robot controller near
singularities. This can be done, in the case of the two-
link robot for example, by multiplying the diagonal
values wj and w2 by the same time varying, approprni-
ately chosen function f(wi, w2). The fact of multiplying
the diagonal values wi, and w; by the same time varying
function f(wi, w2) will affect the magnitude of the joint
velocities | |6| |2 (and therefore the magnitude of the
Cartesian velocity | |x]|2) without affecting the direc-
tions of the joint velocities. For an appropriate choice
of the time varying function f(wi, wz), this method will
lead the robot to reduce the Cartesian speed (in magni-
tude) near singularities while still keeping track of the
desired trajectory.

NOTE

As seen above, the question of modifying the trajec-
tory on-line in order not to exceed the actuator torques
may be covered using the same above reasoning, but by

using instead the MMD diagonal values w1 *, wy* of the
matrix M(0)=J(8)D—1(6) (as defined above).

ROBOT MECHANICAL DESIGN

As future robots are called to achieve more versatile
tasks in a changing environment (in a space station for
example) a need for designing and building robots with
variable and adjustable kinematic parameters (link
lengths and geometry) and adjustable dynamic parame-
ters (weight of links, moment of inertia, maximum actu-
ator torques) is needed. In further accord with the pres-
ent invention the resulting symbolic MMD of the robot
canonical jacobian, which will be defined herein below,
is of special importance in the future design of robot
prototypes. More specially the analysis of the MMD
diagonal values of the robot canonical jacobian, is use-
ful for the dynamic and kinematic designs of robots.

ROBOT KINEMATIC DESIGN
Definition

If X=1(0) represent a robot forward kinematic equa-
tions, the canonical jacobian noted, J(6) 1s defined by
the inventor as,

= af(6

where <y is a vector of vaniables which occur in the
robot forward kinematic equations and which are linear
combinations of the joint variables.

For example, for the two-link robot the canonical
jacobian matrix J(@) is defined as follows: as seen above
in the section entitled MMD and robotics, the forward
kinematic equations are rewritten here for clarity,

¥ x |_ ey + lacg2
y 1151 + 12512

-sl—
——
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The forward kinematic equations are functions of the
~ variables y1=80), y2=01+6>. If the new joint variables
vector, 7 is defined as

_ I:‘Vl ]
"=y
then J(0), according to the above definition, is

X ax

- aX 3'}'1 372
HO) = == 3
oY s )
Y1 Jy2
— 1137 — 12512

il

Tyey 12012]

)

10

15

The robot _]&COblaIl J(6) expressed in terms of the 20

robot canonical jacobian J(8) is,

J(0)=JO)N

where the matrix N is defined as,

{1 0|

The MMD decomposition of the robot canonical
jacobian in the case of the two-link robot is,

- . —J312 {12 q 122.._..22 + 12 0
J(6) = [ C132 — 512 :l[ | 1152}
where,
~11fsy) 2 0
N lifss <O

where wi=V1;2c52+152, and wo = |11s2|, are the MMD
diagonal values of the two-link robot canonical jacobian
J(8), and the measure k(8) of the “nearness of the canon-
ical jacobian matrix to rank deficiency”—as defined
above 1n the section entitled Computation and Imple-
mentation on a Digital Computer—, is

| 1152}

N 1,222 + 152

- 'The analytical formulations of the MMD diagonal

k(6) =

23

30
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“values of the robot canonical jacobian shows clearly the

infuence of the robot link lengths on the measure k(6).
In order to increase the performance of a controlled
robot, the measure k(6) of the “nearness of the of the
_canonical jacobian to rank deficiency” must be in-
‘creased to 1 as much as possible, to keep good manipu-
lability of the robot. Hence the kinematic design (for
example choosing the 'appmpriate link lengths 1) and 1)
in the case of the two link robot is resolved to maximize
the function

65
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k0% — wa(62*)  |lasp*|
T @) T N2 20
12 + 4o

for a certain nominal joint value 8;° which characterizes
the task in hand. For example, if we want to determine
the lengths I; and 1, of the two-link robot in order to
increase the performance of the robot independantely of
the robot configuration 6,*, we want to choose the link
lengths 1;, and I such that:

a) w2(62")=wi(0;") independantly of the robot con-
figuration 6;°

b)

| | 1252%|
k(62%) =

q 122 4+ 112cz2t

1S mamnlzed independently of the robot configuration
6,°

To satisfy condition a) the lengths ratio 12/1; must
satisfy the condition 1/1) 2 1. To satisfy condition b) the
lengths ratio must satisfy 12/1;=1. Hence, the condition
I»/11=1 is the answer to the above kinematic design
problem. This means that if the link lengths are equal,
the performance of the controlled robot is increased
independentely of the robot configuration.

Robot Dynamic Design

The same reasoning as the one held with robot kine-

matic design can be held with robot dynamic design.
But this time the analysis of the diagonal values given

q11262 + 192 ‘lllcz + 152

by the symbolic MMD of the matrix M(8), as defined
below, 1s considered. If the matrix M(@), as defined in
the section planning trajectories, is the matrix product
of the jacobian matrix J(8) by the inverse of inertia
matrix D—1(#), and if the robot canonical jacobian J(6),
as defined above, is J (0)=J(@)N, then the canonical
inertia matrix D(8) is defined as D(0)=D{0)N, and the
matrix M(0) is defined as the product J(6)D—1(0). It
may be noticed that J(0)D—1(8)=J(6)D—1(6). Again
for illustration let’s take the two-link robot as an exam-
ple, and let w1°(62°, m1, my, 1y, 12, I, I2) and w2*(8,", my,
my, I, 12), be the MMD diagonal values given by the
symbolic MMD of the matrix M(8), as defined above:
where, mi, m; are the link weights, I, I, are the lndl'VId-
ual moment of inertia of the links through the individual

center of mass, and 1y, 1, are the link lengths. The dy-

namic design problem is resolved to find the parameters

mj, my, 11, Iz, I, I, which maximize the function

“’2'
k(6;*) = i
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for a certain nominal joint value 6," which characterizes
the task in hand.

OTHER EMBODIMENTS WITHIN OTHER
FIELDS

While the Megherbi Matrix Decomposition algo-
rithm and computer method have a very useful role in
solving finite dimensional indetermined linear systems,
their full power is realized in the obtention of a regular-
ization procedure for analysis of certain ill conditioned
problems which occur in areas, for example, as bifurca-
tion theory (fluid mechanics fields), Multivariable linear
systems and control theory (where the matrix transfer
function depends of a Laplace operator), Robotics (pre-
ferred embodiment of this invention, where the robot
matrix jacobian depends on the robot joint configura-
tion), or any other field or application which is charat-
erized by solving a linear system A(8)x=y; where A(0)
is an m X n matrix, € is a vector or a scalar parameter, y
is an m X 1 vector, and x is an nX 1 vector; where nor-
mally, the matrix A(0) is of full rank, however, for
certain critical values of the parameter 0, this rank
drops down with one unit or more, depending on the
problem at hand. In this case, special computational
action must be taken, and the principles of this invention
are suitable for solving efficiently and analysing this sort
of problems. |

I claim:

1. A method for controlling motion of a robot which
is capable of moving through and near singularities,
given a corresponding robot Jacobian matrix, compris-
ing the method steps:

symbolically computing a robot Jacobian pseudo-

inverse matrix for the robot Jacobian matrix, even
when the Jacobian is rank deficient;

sensing a set of data representative of a current joint

configuration of the robot;

computing a set of MMD (Megherbi Matrix Decom-

position) diagonal values from the Jacobian pseu-
do-inverse matrix, based upon the sensed set of
data,

determining, from the sensed set of data, a minimum

allowable MMD diagonal value,

for each of said MMD diagonal value which 1s less

than the determined minimum MMD diagonal
value, substituting zero for the reciprocal of each
such value occurring in the robot Jacobian pseudo-
inverse matrix, thereby permitting robot motion
only in allowable physical directions;

computing a set of control signals from the robot

Jacobian pseudo-inverse matrix for controlling
further motion of the robot; and

moving the robot in response to the set of control

signals,

2. The method for controlling motion of a robot ac-
cording to claim 1, wherein the step of computing the
set of control signals from the robot Jacobian pseudo-
inverse matrix for controlling further motion of the
robot further includes determining a Cartesian speed at
which the robot is to be moved at each point of its
motion such that a maximum joint velocity physically
realizable by the robot is not exceeded.

3. The method for controlling motion of a robot ac-
cording to claim 1, wherein the step of computing the
set of control signals from the robot Jacobian pseudo-
inverse matrix for controlling further motion of the
robot further includes determining a maximum Carte-
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sian speed at which the robot is to be moved for a given
constant robot joint velocity.

4. The method for controlling motion of a robot ac-
cording to claim 1, wherein the step of computing the
set of control signals from the robot Jacobian pseudo-
inverse matrix for controlling further motion of the
robot further includes determining 2 maximum Carte-
sian acceleration at which the robot i1s to be moved at
each point of its motion such that a maximum joint
actuator torque limit i1s not exceeded.

5. The method for controlling motion of a robot ac-
cording to claim 1, wherein the step of computing the
set of control signals from the robot Jacobian pseudo-

inverse matrix for controlling further motion of the

robot further includes damping and reducing robot joint
velocities such that maximum joint velocities physically
realizable by the robot are not exceeded, without de-
creasing a rate of convergence of the method of con-
trolling robot motion near singularities.

6. The method for controlling motion of a robot ac-
cording to claim 1, wherein the step of computing the
set of control signals from the robot Jacobian pseudo-
inverse matrix for controlling further motion of the
robot further includes damping and reducing robot joint
velocities such that maximum joint actuator torque
limits are not exceeded, without decreasing a rate of
convergence of the method of controlling robot motion
near singularities.

7. A robot which is capable of moving through and
near singularities, given a corresponding robot Jacobian
matrix, comprising:

sensing means for sensing a set of data representative

of a current joint configuration of the robot;

processing means for providing a set of control sig-

nals for controlling motion of the robot compris-

ing:

memory means for storing a symbolically com-
puted robot Jacobian pseud-inverse matrix for
the robot Jacobian matrix, even when the Jaco-
bian is rank deficient;

computing means responsive to the sensing means
and memory means for computing a set of MMD
(Megherbi Matrix Decomposition) diagonal val-
ues from the Jacobian pseudo-inverse matrix;

determining means responsive to the sensing means
for determining a minimum allowable MMD
diagonal value;

substituting means for substituting zero for the
reciprocal of each of said MMD diagonal value
occurring in the robot Jacobian pseudo-inverse
matrix which is less than the determined mini-
mum MMD diagonal value, thereby permitting
robot motion only in allowable physical direc-
tions: and

control means for computing the set of control
signals from the robot Jacobian pseudo-inverse
matrix; and

means for moving the robot in response to the set of

control signals.

8. A robot according to claim 7, wherein the control
means further comprises means for determining a Carte-
sian speed at which the robot is to be moved at each
point of its motion such that a maximum joint velocity
physically realizable by the robot i1s not exceeded.

9. A robot according to claim 7, wherein the control
means further comprises means for determining a maxi-
mum Cartesian speed at which the robot is to be moved
for a given constant robot joint velocity.
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10. A robot according to claim 7, wherein the control
means further comprises means for determining a maxi-
mum Cartesian acceleration at which the robot is to be
moved at each point of its motion such that a maximum
joint actuator torque limit is not exceeded.

11. A robot according to claim 7, wherein the pro-
cessing means further comprises means for damping and
reducing robot joint velocities such that maximum joint
velocities physically realizable by the robot are not

exceeded, without decreasing a rate of convergence of 10

the processing means for providing the set of control
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signals for controlling motion of the robot near singu-
larities.

12. A robot according to claim 7, wherein the pro-
cessing means further comprises means for damping and
reducing robot joint velocities such that maximum joint
actuator torque limits are not exceeded, without de-
creasing a rate of convergence of the processing means
for providing the set of control signals for controlling

motion of the robot near singularities.
| * % % % =
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